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FULLY DISCRETE POINTWISE SMOOTHING ERROR ESTIMATES FOR
MEASURE VALUED INITIAL DATA

DMITRIY LEYKEKHMAN!, BORIS VEXLER?® AND JAKOB WAGNER?

Abstract. In this paper we analyze a homogeneous parabolic problem with initial data in the space
of regular Borel measures. The problem is discretized in time with a discontinuous Galerkin scheme of
arbitrary degree and in space with continuous finite elements of orders one or two. We show parabolic
smoothing results for the continuous, semidiscrete and fully discrete problems. Our main results are
interior L°° error estimates for the evaluation at the endtime, in cases where the initial data is supported
in a subdomain. In order to obtain these, we additionally show interior L> error estimates for L? initial
data and quadratic finite elements, which extends the corresponding result previously established by
the authors for linear finite elements.
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1. INTRODUCTION

In this work we discuss smoothing properties of the fully discrete approximation of the homogeneous parabolic
problem
Ow—Av=0 in [IxQQ,
v=0 on I x99Q, (1)
v(0) =vy in £,

where Q € RV, N = 2,3 is a bounded, convex, polygonal/polyhedral domain, and I = (0,7] a bounded time
interval. In particular we are interested in pointwise error estimates in the case when the initial condition vy is
a regular Borel measure vy € M() supported in some subdomain € such that Qy C €, for example a linear
combination of Dirac delta functions, vg = > j Bj0;. Our main result of this paper establishes the fully discrete
error estimate of the form

(v = vkn)(T) || L 0y < C(Q0,T) (¥ + Linh® ™) ool amce)- (2)

Keywords and phrases. Optimal control, sparse control, initial data identification, smoothing estimates, parabolic problems,
finite elements, discontinuous Galerkin, error estimates, pointwise error estimates.
I Department of Mathematics, University of Connecticut, Storrs, CT 06269, USA.

2 Chair of Optimal Control, Technical University of Munich, School of Computation Information and Technology, Department
of Mathematics, Boltzmannstrafie 3, 85748 Garching b. Munich, Germany.

3 Chair of Optimal Control, Technical University of Munich, School of Computation Information and Technology, Department
of Mathematics, Boltzmannstrafie 3, 85748 Garching b. Munich, Germany.
*Corresponding author: vexler@ma.tum.de

© The authors. Published by EDP Sciences, SMAI 2023

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


https://doi.org/10.1051/m2an/2023076
https://www.esaim-m2an.org
https://orcid.org/0000-0001-6211-4263
https://orcid.org/0000-0001-8510-9790
mailto:vexler@ma.tum.de
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0

3092 D. LEYKEKHMAN ET AL.

Here r > 0 is the order of time discretization, s = 1,2 is the order of the space discretization, and £ is a
logarithmic term that depends on the mesh size h and the maximum time step k. In order to simplify the
presentation, we assume that vy is supported in the same subdomain 2y, in which the L error is estimated,
wheareas in general, two different subdomains could be chosen. We would like to point out that the piecewise
linear case s = 1 does not require any additional smoothness assumptions beyond regularity results available
on convex domains 2. The higher order convergence of s = 2 requires some additional smoothness assumptions,
which are available for example on rectangular domains (cf. Sect. 6). In this case, the logarithmic term £, only
depends on k.

The above problem is classical and many important results are available in the literature. The L? theory for
a uniform time partition is well presented in the classical textbook of Thomée [20]. Extensions to variable time
steps are available in Eriksson et al. [7]. The L' — L stability results, are technically more difficult and one
of the first papers in this direction was the work of Schatz et al. [18], where such results were established in two
space dimensions for piecewise linear elements and strongly A-stable single step methods with uniform time
steps. The sharpest result in the case of smooth domains and uniform time steps was obtained by A. Hansbo
in [9].

In our previous paper [15], for piecewise linear space discretizations on a convex polygonal/polyhedral domain
Q and vy € L%(9), we have obtained

(v = ven)(T) || L (00) < C(T) (B2 + linh®) [|voll L2y »

with explicit form of the constant C'(T'). Such results were required for obtaining sharp results in initial data
estimation of the parabolic problems from final time observation [15]. However, in order to extend the results to
the situation when the final time observation is taken at a finite number of points [14], which is more relevant
in applications, we require the results of the form (2). This yields an error estimate for the adjoint state,
which satisfies a backwards-in-time problem, with a final time condition given by a measure supported in the
observation points. Since these points are fixed, this support is contained in a proper subdomain, and hence
the assumptions for (2) are satisfied. In summary, the main contribution of our paper is the establishment of
fully discrete error estimates (2) for Galerkin methods on potentially highly varying time partitions and quasi-
uniform meshes on convex polygonal/polyhedral domains, without any additional smoothness assumptions in
the case of piecewise linear case and with additional smoothness assumptions in the case of quadratic elements.

The rest of the paper is organized as follows. In Section 2, we review the notion of very weak solutions for
parabolic homogeneous problems with initial data given in the space of regular Borel measures. In Section 3, we
discuss space-time discretization schemes and introduce the semidiscrete and fully discrete Galerkin solutions
to (1). In Section 4, we review and show continuous and discrete smoothing estimates for the continuous,
semidiscrete and fully discrete solutions. Our main result will be the pointwise fully discrete error estimate for
initial data in M (), see Theorem 5.3, which we establish in Section 5. Finally, in Section 6 we extend our main
result to a higher order space discretization.

2. VERY WEAK SOLUTIONS AND REGULARITY

We begin by introducing the proper setup for the existence and regularity of the solution with measure valued
initial data. Throughout this work, we use standard notations LP(2), Wk?(Q), Wg P(Q) for the Lebesque and
Sobolev spaces and abbreviate them by H*(Q), H¥((2), in case p = 2. The L?(€2) inner product will be denoted
by (-, -)o. We denote the Bochner spaces of whkop (Q) valued, g—integrable functions over the time interval T
by L9(I; WkP(Q)), and denote by (-,)rxq the inner product on L%(I; L3(Q)) =2 L?(I x ). The space M ()
of regular Borel measures can be identified with the dual space of Co(Q) := {v € C(Q) : v|gpg = 0}, d.e. it
holds M(2) = (Co(©2))*. The norm on M(Q) is then given as [|uf vy = SUPoLvecy (@) ”<‘v7u> Note that

vlleg )
this norm is equivalent to the total variation norm |u|(Q2) = p* () + ©= (), where u = pu* — = is the Jordan
decomposition of p € M(£2). With theses notations fixed, we can state the very weak formulation of (1).
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Definition 2.1. Let vy € M(Q) be given. A function v € L*(I x Q) is called a very weak solution to the heat
equation (1), if
0
—/ A Ap | vde dt = / »(0) dvg for all p € O, (3)
rxa \ Ot Q

where the space ®7 of all test functions is given by

Pr={pe®: p(T)=0inQ} with &= {pe Ll?([;H)(Q): dp+Ape LI xQ)Np(T)eL*(Q)}.

With this definition, we have the following result (see [5], Lem. 2.2):
Theorem 2.2. For a given vy € M(Q), there exists a unique solution v in the sense of (3). The solution v lies

in the space L"(I; Wy P(Q)) for any p,r € [1,2) with 24 % > N + 1, with the estimate

H’U”LT(I;WOLP(Q)) <Crp ||U0||M(Q) :

Moreover, v € C([0,T); W=1P(Q)), making the evaluation v(t) well defined at any t € [0,T), and in addition
v(T) € L?(2) with

||U(T)HL2(Q) <Cr ||U0HM(Q) :
For any ¢ € ® there holds

| ey - /m,T)XQ(a“"*A*”)”d”C = [ 9(0) du.

In the second estimate of the above theorem, the constant Cr depends on T'. We shall make this dependence
more explicit in Lemma 4.2. For the error analysis below, we will require the following result.

Lemma 2.3. Let 7 € (0,T) and let v1 be the very weak solution of the heat equation on the subinterval (0,7)
in the sense of (3). Let vy be the weak solution of the heat equation on the subinterval (1,T') with initial data

v1(7) € L3(Q). Then v defined as
_ Ju(®)te(0,7]
“”—{wmte@T)
is the very weak solution in the sense of (3).

Proof. The proof is straightforward. O

3. DISCRETIZATION

In this section we describe the semidiscrete and fully discrete finite element discretizations of the homogeneous
equation (1) and present smoothing type error estimates. To discretize the problem, we use continuous Lagrange
finite elements of order s > 1 in space and discontinuous Galerkin methods of order » > 0 in time.

3.1. Time discretization

To be more precise, we partition I = (0,7 into subintervals I,, = (t;—1,tm] of length k., = t,, — t;m_1,
where 0 =ty < t; < --- <tpy—1 <tpy =T. The maximal and minimal time steps are denoted by k = max,, k,
and kpin = ming,, k,, respectively. We impose the following conditions on the time mesh (as in [12] or [16]):

(i) There are constants ¢, 5 > 0 independent on k such that

kmin Z Ck'ﬂ .
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(ii) There is a constant x > 0 independent on k such that for alm=1,2,... , M —1

km

1 <
km—i—l

(iii) It holds k < 51.

The semidiscrete space X} for the case vg € L*(Q) is taken as

Xi={ or € LX(I; Hy () | on

In EPr(In; H3(Q)), m=1,2,...,M },

where P,.(I,,,; V') is the space of polynomial functions of degree r in time on I,,, with values in a Banach space V.
However, for the semidiscrete formulation of (1) with measure valued initial data vy € M(Q) to be well defined,
at initial time the test functions ¢ need to be in Cp(). Since for N > 2 the space H}(Q) is not embedded in
the space of continuous functions, we need to modify the spaces of trial and test functions, as

X = {or € LA < Q) s pulr,, € PoTus W (), m =12, M }

and
Xr = {@k € L2(I % Q) : oulr, € Pl WP (Q)), m =1,2,.. .,M} ,

2N N 2N
for some 75 < p < x7 and F=;

the embedding W~ > (Q) — Co(Q), yields that (vo,ga;;o) is well defined for all test functions gy, € )?,:, while
every trial function vy € )Z',Z satisfies vy (t) € Wy P(Q) — L2(Q) for every ¢t € I. With these spaces, the dG(r)
semidiscrete (in time) solution vy of (1) for vg € M(Q) is given by v, € X}, that satisfies

> p’ > N the dual exponent satisfying %—i— 1% = 1. In this setting,

B(vg, or) = <v0,<p;;0> for all o), € X}. (4)

Here the bilinear form B(-,-) is defined by

M
Z (Orw, ©) 1, x0 + (Vw, Vo) rxa + Z [Wlm—-1, 90 _1)a + (wg,¢d)a, (5)
m=1

m=2

where (-, )1, xq is the duality product between L?(I,,; W~1P(Q)) and L?(I,,; Wol’p/ (€2)). In the above definition
we use the usual notation for functions with possible discontinuities at the nodes t,,

wh = lim w(t, +¢), w, = lim w(t, —¢), [Wn=w! —w,,
e—0t e—0t

Remark 3.1. Note that whenever vy € L?(€2) the formulation (4) is equivalent to searching v, € X7, satisfying

B(vg, 1) = (UO"PZ,O)Q for all ¢ € X7,. (6)

Remark 3.2. Since we are dealing with a homogeneous parabolic problem with constant coefficients, the
discontinuous Galerkin method actually coincides with subdiagonal Padé approximations and one can use, for
example, a rational representation of the semidiscrete solution. While it is more convenient for our analysis to
use the definition based on the bilinear form B(-,-), this rational expression allows us to show wellposedness of
the semidiscrete problem.

Theorem 3.3. Let vy € M(Q). Then the semidiscrete problem (4) has a unique solution vy € )?,2
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Proof. Tt is sufficient to show the claim on the first time interval. Let {¢; : j = 0,...,7} denote a basis of
P,.(I1;R). It is well known, that in the setting of (6), there exist polynomials P;(z), j = 0,...,r and Q(z) of
degrees r and 7+ 1, respectively, such that the variational formulation is equivalent to the rational representation

Ny BikA)
vkl _jZ::O¢j N

see [11], Section 4.1 of [13]. Here Q(z) corresponds to the denominator of the subdiagonal (r,r + 1) Padé
approximation of e~*. The polynomial Q(z) posesses r + 1 complex zeroes &, € C, n =1,...,r + 1. These all
satisfy Re(&,) < 0, and thus &, € p(—k1A), i.e., they are contained in the resolvent set of —k; A, see Theorem 1.1
of [17]. This implies that the operators (&, + k1 A)~1: L2(Q) — HE (), are well defined. By Theorem 8 of [21]
and the fact that the (r,r + 1) Padé approximation is of order 2r + 1, we know that the zeroes &, of Q(z) are
pairwise distinct. Hence for the coefficients of vg|r,, there holds a partial fraction decomposition, and for some

cin€C,j=0,...,r,n=1,...,7 4+ 1 we have the representation
T r+1
Okl = )65 D inlEn + k1) v, (7)
§=0 =1

By the elliptic theory, we can show, that (&, +k1A)~t: M(Q) — Wol’p(Q), are well defined, which implies that
(7) holds also true for vg € M(2). To show wellposedness of the elliptic problems, we employ the following
construction. For any p € M(Q), due to Corollary 2.7 of [6], there exists a unique solution u,, € Wy"*(2) with
2N < < _N_ tO
Ntz SPS §N4a

k1 (Vuy,, Vo)g = (u,v)  for all v € WP ().

By the embedding W, ?(Q) < L2(Q), it holds (&, + k1A) 'u, € HA(Q). From this, we can construct (&, +
ki A) " via €, (En + k1 A) " uy, — uy, € WP (), which concludes the proof. O

Remark 3.4. Due to Remark 3.1, the semidiscrete problem for vy € M(2), can equivalently be formulated
using H} () for test and trial functions on the intervals I,,,, m = 2,..., M, instead of using the spaces )?,:7 )?,Z
defined above. By definition, it holds v, € VVO1 P(Q) < L?(Q), hence on subsequent intervals, the solution lies
in XJ. This construction of spaces was pursued in [15].

Rearranging the terms in (5), we obtain an equivalent (dual) expression for B:

M M—1
B(w,p) == > (w,0:0)1,,x0 + (Y, Vo) 1xa = D (Wi, [Plm)a + (wiy, ©3p)e- (8)

Notice that for the very weak solution v to (3) and the semidiscrete solution v, € X 7 to (4) we have the following
orthogonality property: R
B(v— vk, ) =0 forall ¢, € X],

which can be shown by splitting v at ¢; according to Lemma 2.3, using the weak formulation on (¢;,7] and a
density argument on I; to show, that the very weak solution can be tested with semidiscrete functions ¢ € Xj..
Next we define the fully discrete approximation scheme.

3.2. Space discretization

For some ho > 0 and h € (0,hg] let 7 denote a quasi-uniform triangulation of  with mesh size h, i.e.
T = {7} is a partition of  into cells (triangles or tetrahedrons) 7 of diameter h, and measure |7| such that for
h = max; h,,

h. <h<Clr|~, forall 7€T,
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hold. Let V¥ C H{(92) be the usual space of conforming piecewise polynomial finite elements of degree s. We
define the following three operators to be used in the sequel: the discrete Laplacian Ap: V7 — V;?, defined by

(7Ahvh, wh)g = (Vvh, th)g for all Vp, Wh € V]f,

the L? projection Py : L*(Q) — V;?, defined by

(Prv,wp)q = (v,wp)q for all wy € V7,

and the Ritz projection Rp,: HJ(Q) — V;#, defined by
(VRhU,th)Q = (V’U,th)g for all wy, € V;f
To obtain the fully discrete approximation of (1) we consider the space-time finite element space

X;:; = {Ukh S X;; ‘ 'Ukh‘Im € PT(Im;V}f), m = 1,2,...,M}.
We define a fully discrete cG(s)dG(r) approximation vy, € X’} of (1) by

B(vkh, ¢kn) = <vo,<pzh’0> for all prn € X7 (9)

Similarly to the time semidiscretization, we have the following orthogonality relation for the semidiscrete solution
vg to (4) and the fully discrete solution vy, € X7 to (9):

B(vy, — vk, prn) = 0 for all ¢y € X775 (10)

Existence of a unique solution vy, is shown, e.g., in [20]. At the end of this section, we would like to introduce the
following truncation argument, which we will use often in our proofs. For wg, px € Xy, we let wr = X (1, 7)Wk
and Q. = X(t,,,7)%k, Where x (. 71 is the characteristic function on the interval (tin, T, for some 1 < m < M,
i.e. W =0on I) U---U I for some m and Wy = wy on the remaining time intervals. Then from (5), we have
the identity

B(wg, pr) = B(w, @) + (Wy s i) (11)

The same identity holds of course for fully discrete functions wgp, rn € X5 .

4. PARABOLIC SMOOTHING

In this section we review and establish smoothing properties of the continuous and discrete solutions, which
are essential for the establishment of our main results.

4.1. Smoothing estimates for the continuous problem

It is well known that homogeneous parabolic problems have a strong smoothing effect. In particular, for vy €
L?(2), the solution v to the problem (1) has the following smoothing property, see Chapter 1, Equation (1.14)
of [3]

C
10t ®l2@ + [(=A) @)z < Fllvollzzy >0, 1=0,1,.... (12)

Remark 4.1. In many situations it is sufficient to have smoothing type estimates in L? norms and the corre-
sponding smoothing results, for example in LP norms, can obtained by the Gagliardo-Nirenberg inequality

N

_ N
o 11—«
||9||Lp(B) §C||9||H2(B) HgHLz(B)v 2<p<oo, fora= FEETS
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which holds for any subdomain B C  fulfilling the cone condition (in particular for B = Q) and for all
g € H?(B), see Theorem 3 of [1]. In particular, for p = 0o on convex domains, we have

N 1—N
gl e @) < CIAGI 20 N9ll 2y > for g € H? () N Hp(Q). (13)
(V) () @
Thus using (13) and the smoothing estimates (12) for vy € L?(Q), we immediately obtain

lo()llL=@) < —xllvollz2@) >0 (14)

~
»\2‘ Q

Using a duality argument and the smoothing estimates, this result can be easily extended to the case vy € M(Q).
First we derive the explicit time dependence of the constant occuring in the estimate of Theorem 2.2.

Lemma 4.2. Let vg € M(Q) and v be the very weak solution of (1). Then

C
vl z2() < EHUOHM(Q) t>0.

Proof. We will establish the result for ¢ = T". Define y to be the solution to the dual problem

-0y — Ay =0 inl xQ
y=0 on I x 99
y(T)=v(T) in Q.

Then (14) applied to y yields y(0) € Cy(£2) and we have the estimate
N
[v(T)1Z2() = ((T), y(T)a = (v0,y(0)) < C llvollpyey 19(O0)lz~ () < CT™ [lvoll wyeay 10(D)22(0-
Canceling [[v(T')||z2(q) gives the result. O

Corollary 4.3. Let vo € M(2) and v be the very weak solution of (1). Then

[0jv(t) 20y + (=A)0(t)| 20y <

Ay lvollmey t>0, 1=0,1,....

Proof. This is a direct consequence of Theorem 2.2, Lemma 2.3 and the above smoothing result. The time
dependency of the constant can be seen, by fixing ¢t € (0,7) and setting 7 = % in Lemma 2.3. Then by

N
4

Lemma 4.2, we have ||v (%) HL2(Q) <C(2) [[voll p(qy- By (12), it also holds

(5)
-
2

By applying the Gagliardo-Nirenberg inequality (13), we immediately obtain:

C

< Y ||”0HM(Q)~

10}0(8)] L2@) + [1(=A) 0 (1) || L2() < < -
L)t

C
-5 ’

Corollary 4.4. Let vg € M() and v be the very weak solution of (1). Then

C
lo() Lo (o) < EHUOHM(Q), t>0.
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4.2. Smoothing estimates for the discrete solutions

For the time discontinuous Galerkin solutions, both the semidiscrete and the fully discrete, similar smoothing
type estimates also hold (see [13], Thms. 3,4,5,10 and [15], Lem. 3.2 for general LP norms, cf. also [7], Thm. 5.1
for the case of the L? norm).

Lemma 4.5. Let vy € X and vgn, € X)), be the semidiscrete and fully discrete solutions of (4) and (9),
respectively, with vo € L?(Q). Then, there exists a constant C' independent of k and h such that

vkl oo (r;z2(0)) < Cllvollzz)  and  ||vknllLos(1:022)) < Cllvollz2(o)-

Lemma 4.6. Let v, € X} and vy, € X;; be the semidiscrete and fully discrete solutions of (4) and (9),
respectively, with vo € L?(Q). Then, there exists a constant C independent of k and h such that

_ C

sup [|0yvr(t) || 22(0) + sup |Avk(t)|20) + ki l[vklm-1llz2(0) < —llvoll2(e)
tel,, tel, tm
C

Sup 0svrn ()] L2y + Sup [ ARvkR ()| L2(0) + K 1 [vkn)m—1]l22(0) < T||UO||L2(Q)7
tel,, tel,, m

form=1,2,..., M. For m =1 the jump term is understood as [v]o = ”ljo — vy and [vgplo = vljh o — Pruvo.
The above estimates immediately imply the following stability result.

Corollary 4.7. Under the assumptions of Lemma 4.6, we have

M
T
>~ (100l ez + 180N (1, 22(00) + Rl AVl 2@) + k-1 l22e)) < Cln o2y

m=1

and

M
T
> (||5tvkh||L1<1m;L2(sz))+||Ahvkh||L1(Im;L2(sz))+km||Ahvk+h,mHL2(52>+||[Ukh]m—lllm(sz)) < Cln—lvollz2(0).

m=1
For sufficiently many time steps, applying Lemma 4.6 iteratively, we have the following result.

Lemma 4.8. Let v, € X] and vy, € X7} be the semidiscrete and fully discrete solutions of (4) and (9),
respectively, with vg € L?(Q). Then, for any m € {1,2,... M}, any | < m, there hold

_ _ _ C
tselip 10 (=) or(8) | £2(0) +tS€1§P (=) k)l z20) + En 1I(=A) " or]m—1ll 220 < tTHUOHL?(Q)

and

_ _ _ C
sup 106(—=AR) ™ v (B) | 12 () +t81}p 1(=An) ven ()l z20) + ki 1I(=A0)" ™ vklm—1ll L2 (0) < tT||7fo||L2(Q)7
€lm celm m

provided k < lt+71

Using the continuous (13) and the discrete version of the Gagliardo-Nirenberg inequality, namely

¥ 1_% s
x|z () < CHAhX”fz(Q)”XHLz(Q)w for all x € V), (15)

which for example was established for smooth domains in Lemma 3.3 of [9], but the proof is valid for convex
domains as well, we immediately obtain the following smoothing result.
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Corollary 4.9. Under the assumptions of Lemmas 4.5 and 4.6 for allm =1,2,..., M, we have
C C
sup [og(t)]|L=(@) < w7z llvollz)  and  sup [lukn(t)]| L= (@) < 7z llvollL2(@)-
tel, m tel,, tm

Similarly to the continuous case, using a duality argument, the above smoothing results can be extended to

Vo € M(Q)
Lemma 4.10. Let vg € M(Q), and let v, € )N(}; and vgp € X,Z,Z be the semidiscrete and the fully discrete
solutions of (4) and (9) respectively. For any m € {1,2,... M}, there hold

C
vk (tm) |1 22(0) + [Vrn (Em)l 22(0) < FHUOHM(W

m

Proof. Let m=1,2,..., M, and define y;, € )?,: to be the semidiscrete solution of the backward problem
Bk, yk) = (Vs Vk(tm))es Vo1 € X7,

where the right hand side is well defined, due to the assumptions on )N(,:, yielding vy (t,,) € L*(). Since for

this dual problem, the test functions are taken from the weaker space X;, choosing v, = v € X}, and using
Corollary 4.9 for the backward problem, we have

C
ok (tm) 172 = Bk yx) = <Uo7y;f,o> < lvollme 1y (0)][ Lo (@) < WHUOHM(Q)Hvk(tm)HLQ(Q)~
Canceling, we obtain the result for the time semidiscrete solution vi. The argument for the fully discrete solution

vgp 1S almost identical. O

From Lemma 4.8, we can obtain the following result

Lemma 4.11. Let v € )Z',: and vy, € X[} be the semidiscrete and the fully discrete solutions of (4) and (9)
respectively. Let m € {1,2,... M} large enough and I < m, such that k < min{%, %}, then there hold

sup [|0y(—=A)" k()| 22(2) + sup (=) k()| 22(2) + sup k' I(=2)" k] m-1llz20) < 7 lvollaee
tel,, tel,, tel,, T
and
sup [|9 (—=An)" vrn ()l 220)+ sup [[(=An) ven ()l 22(0)+ 5P ki | [(=An)' ™ wrn)m-1ll 220 < 73 lvollaee)-
tel,, tel, t€l it

Proof. We will only establish semidiscrete smoothing estimates for measure valued initial data, the analysis for
the fully discrete solution is similar. Combining Lemma 4.8 with Lemma 4.10, gives us for all m > m +[:

sup (=)' 02y + 5 (=) vk 0 12(s) + K N(-A)' " euln a2
c c
llnta)lony € ————

P
- (tm - tm

||UO||M(Q)~

For fixed t,, with m large enough such that k < min{%ﬂ, ﬁ} we apply the above argument to t;; such that

% € (tm—1,tm]- By the requirements on k we obtain on the one hand that there are at least [ timesteps between
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ts and t,,, which allows us to use the smoothing estimate of Lemma 4.8 for the specified I. On the other hand,
1

we obtain ; ; ; ;
tm — tm > 77"— _g_fzim yielding (tm—tm)—lgzﬂa.
_N _N
2 < Q%tm“ , which allows us to eliminate ¢,; in the final bound and obtain
_N
4

S

The choice % < tpm givest
_ _ —1
222 +tS€qu (=) vk (Bl 22 () + ko II(=A) " k]l L2 ) < CU Nt [|voll e -
O

sup |9y (—A)" " ok (t)
tely,
5. SMOOTHING TYPE ERROR ESTIMATES

First we review smoothing results with the initial data in L?(2) and then extend the corresponding results

to M(Q).
5.1. Review of pointwise smoothing error estimates for vg € L2(Q)

In [15], we have established the following pointwise fully discrete error estimate.
Proposition 5.1. Let vy € L%(), let v and vy, € X,:,ll satisfy (1) and (9), respectively. Then for any subdo-

main Qg with Qg C Q there holds
1 = vrn) (Tl (020) < C(T, Q) (Exnh® + 52 ) ool 12

where l, = In L + |Inh| and C(T,Q) is a constant that depends on T and Qo and the explicit form can be
traced from the proof.
The proof of the above result was based on the following splitting of the error

(v = ven)(T) = (v — o) (T) + (Rrvr — ven)(T) + (v — Rpor)(T). (16)
Then each term was treated separately. The first error term was estimated in Theorem 3.8 of [15] by

(17)

(v = v) (D)l =0y < CTE* vl gy

with C(T) ~ T~@+14%) The above estimate follows from (see [15], Lem. 7.2)
< (DK wollp2y» 7=0,1,

[(=A) (v - “k)(T)HLZ(Q)

The second error term in (16) satisfies,
T,
I(Brhvk = vk ) (D)l L= (0 < C(T) In -k [[voll 12

which followed from (see [15], Lem. 8.2-8.3)
, T :
1(=2n)7 (R = o) (T) |20 < CHT) I 2B [[voll 2y, 7= 0,1,

and the discrete Gagliardo-Nirenberg inequality (15l Here, we point out that the treatment of the first and the
second terms of (16) do not require the condition Q¢ C €, they are global in nature. Finally, the estimate of

the last term in (16) follows from the interior elliptic error estimate (cf. [19])
1(vr = Rvr)(T) [l L= (20) < C(T, Q) h|h? [[vol L2 (g -
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5.2. Pointwise smoothing error estimates for vy € M(Q)

We now turn towards proving the pointwise error estimate for measure valued initial data. To this end, first
recall that in Lemma 5.1 of [15] we have shown the following L? error estimate for parabolic problems with
initial data in M (), where for the spatial estimate we impose a condition on the support of vg.

Lemma 5.2. Let vg € M(Q) with suppvy C g for some subdomain Qo C Qo C Q and let v, vy, € )?,Z and
Vg € X,:i the continuous, semidiscrete and fully discrete solutions to (1), (4) and (9) respectively. Then there
hold the estimates

[0 = o) (D)l z2) < CTIE o0l e
Ik = v ) (Dl 2200 < C(Q0, Tk 0] ).

where g, = In L 4+ Inh| and C(T,Q) is a constant that depends on T and Qg and the explicit form can be
traced from the proof.

Our main result can now be obtained directly by introducing an auxiliary solution and the smoothing results
presented in Section 4. We first prove the error estimate for the spatial discretization. The proof of the error
estimate for the time semidiscretization follows the same steps under milder assumptions, see Lemma 5.4 below.

Theorem 5.3. Let vg € M(Q), let vy, € X}l and vgp, € X;}l satisfy (4) and (9), respectively. Then for any
subdomain Qg with Qg C Q and supp vy C Qg there holds

1(0x = vkn) (D) | L= (20) < C(T, Qo) linh?[|voll m(e)»

where Ly, = In T + [Inh| and C(T,S) is a constant that depends on T and Qg and the explicit form can be
traced from the proof.

Proof. As done in the proofs of the smoothing results, we begin by splitting the time interval. To this end let
m be such that % € I5. We introduce a fully discrete auxiliary state 0y, € X,:’_}l, defined by

B(wkns rn) = (U g1y Panm_1)o forall gp, € X7

Note that by definition 9, = 0 on I; U...UI;_1 and it satisfies a discrete problem on I; U. ..Uy, with initial
condition v, -, at time t;5_;. By the triangle inequality, we obtain

(k= vr)(T) || Lo (20) < (v — Drn) (D)l oo (20) + 1 (Okn — vien ) (T) || L= (020)

where for the first term, we obtain with Proposition 5.1 and the semidiscrete parabolic smoothing result of
Lemma 4.10

(v = B ) (T) | Lo (020) < C(T = tin—1, ) bknh? vy, 1l 22()
_N
< O(T = ti-1,Q0)t5 5 Lenh? vl am)-

For the second error term, we observe that the difference 0y, — vi), satisfies a fully discrete parabolic equation
on the intervals I, U ... U Iy for the initial data v, ., — v, 5_,. Hence, the discrete Gagliardo-Nirenberg
inequality (15) and the fully discrete smoothing results of Lemmas 4.6 and 4.8 yield

1 ) 1
[(@kn = vrn)(T) | 2o (920) < Cll(rn = vkn) (DI 720y 1R Ok = vk ) (T)]| £2(q)

_1_N _ _
<O —tmo) 24 Hvk,mq - Ukh,m—1||L2(Q)
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We apply Lemma 5.2 in order to estimate the L2-error of the full discretization at the intermediate point in
time, which yields

[ (@1n — vrn) (T) || Lo (29) < Ctim—1, 2)(T = tin—1)"2~ T lh?||vo ]| pcr-

Since the assumptions on k and m yield % <tm_ < % and % <T—tm1< %, as before we can replace all
quantities involving t7_1 by ones only dependent of T', which concludes the proof. (I

Note that by exactly the same technique, we can also derive the corresponding error estimate for the semidiscrete
problem, which is global in 2 and no constraint on suppwvg is required. This is due to the fact, that the
semidiscrete results of (17) and Lemma 5.1 of [15] hold in this more general setting. There holds the following
result.

Lemma 5.4. Let vg € M(Q) and v and vy, € )?,Z be the very weak and semidiscrete solutions to (3) and (4)
respectively. Then there holds

10 = 0) (7)) < CTVR 0l aacens

with C(T) ~ T~ Cr+i+3),

6. HIGHER ORDER SPACE DISCRETIZATIONS

Our main result from the previous section, Theorem 5.3, was established for piecewise linear finite elements
only and does not require any additional smoothness assumptions on the solutions beyond H? regularity that
is provided by the convexity of the domain. If additional regularity is available, for example,

vl rs ) < CllAY| g
for any v € H}(Q) with Av € H}(Q), then the results of Proposition 5.1 can be extended (with an improved

rate) to the case of quadratic Lagrange finite elements which we will denote by V;? in this section.

Remark 6.1. Since due to Remark 3.4 for each ¢ € (¢1,T], the solution vy to the semidiscrete problem (4)
satisfies vi(t) € HL(Q), one can also show straightforwardly that

Avg(t), 0;Avy(t) € HY(Q) forallt € I,,,, m>2 and AZuy(t) € H}(Q) forallte I,,, m > 3.

Additional regularity is available on special domains, for example on rectangles, right or equilateral triangles.
We make the following assumption of the domain €.

Assumption 6.2. For every u € H}(Q) with Au € H(Q) there holds uw € H3(Q). Moreover, there exists a
constant C' independent of u such that

[ull 30y < C[VAU| 20

Example 6.3. This assumption holds for example on a rectangle, see Lemma 2.4 of [10]. In this case the
solution u to the elliptic equation

—Au=f inQ
u=0 on 0,

with f € H}(Q) possesses the H3(Q) regularity and the estimate
llull g3y < ClIV fllL2@)
holds. Thus, Assumption 6.2 is satisfied in this case.
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Lemma 6.4. Let Q satisfy Assumption 6.2.
(1) Let u,Au € H}(Q), and A%u € L*(Q2). Then there holds

[ullFrs @) < CllAUl L2 1A% Ul 12 (0)- (18)
et Qg be a subdomain with Qo C Q, let u, Au, A’u € , an u € . en there holds
2) Let Qg b bd h Q Q1 Au, A? HQ d A3 L2(2). Then there hold

[ullrs(aq) < ClA%ul L2 1A | L2(g).-

Proof. (1) For v € HE(Q) with Av € L?(Q) one directly obtains
IVll720) < l0llze @ l1Av] 2 (0)-
Due to Au € H}(Q) and A%u € L?(Q) this inequality can be applied to v = Au leading to
||VAUH%2(Q) < ||AUHL2(Q)||A2UHL2(Q)~

Thus, Assumption 6.2 implies the desired estimate.
(2) Using a higher interior regularity result, see Chapter 6.3, Theorem 2 of [8], we obtain

lullms o) < CU1AU] 3 0) + lullz2(@))-
Since A?u € H(Q2) and A3u € L?(2) we can apply (18) to Au leading to
[Au||Fs ) < ClA%ul| L2 o) [ A%ul| L2 (0

This leads to
[l s 00y < ClIA* ] L2 1A% 0l L2() + Cll AU L2 () 1A% 0] L2(q),
which proves the desired result by [|Adul| 20y < Cl|AT a2 (q) for j =1,2.
O

Complementing the standard error estimates for the Ritz projection in the L? and H' norms, under Assump-
tion 6.2, we also have the following negative norm estimate. Note that even though no H? regularity of the
solution u is used explicitly in the estimates, the duality argument used to prove the result, requires the assump-
tion to hold true for any H} right hand side.

Lemma 6.5. Let u € H}(Q) and Assumption 6.2 hold true. Then it holds
lu— Ryull 1) < Ch?||V(u — Ryu) | r2(0).-
If further u € H?(Q), then it holds
lu— Ryulla-1(0) < Ch*|lull 20y < CR?||Aul| 12 (0.

Proof. The first estimate is proved by a duality argument in Theorem 5.8.3 of [4]. The second estimate then
follows with the standard H! error estimate and H? regularity. O

Under Assumption 6.2 we can establish the main results of this section. We first consider again the case of
L? initial data. The extension to vy € M(Q) then follows analogously to the case of linear finite elements.

Theorem 6.6. Let vy € L*(Q), let v and vy, € X,:’i satisfy (1) and (9), respectively. Then for any subdomain
Qo with Qp C Q there holds

[0 = k1) () [0 (20) < CT. ) (E6h* + 1271 ool g

where £, =In T, d = dist(Qo, Q) and C(T,d) is a constant depending on T and d.
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6.1. Proof of Theorem 6.6

The exact dependence of the constant C' on T' and d is available in the proof of this result. The rest of this
section is devoted to the establishment of the above theorem. The proof for the quadratic case is similar to the
proof for the piecewise linear case, but requires some modifications. As it was done in [15], we split the error as

(’U — ’Ukh)(T) = (’U — Uk)(T) + (’Uk — thk)(T) + (thk — ’Ukh)(T) =: T1 + T2 + T3. (19)

The first time semidiscrete term 73 is already estimated in Theorem 3.8 of [15]. The second term T5 can again
be estimated by the interior pointwise error estimates of Theorem 5.1 of [19],

(v — Ruow)(T)| oo 20) < Cllvn(T) — Xl (@) + Cd™ || (v, — Rpv) (T)| 22 (0 (20)

for any x € V;2, where €, is a subdomain satisfying Qo C Qq C Qq C Q and d = dist(Q, 92;). We note that in
contrast to the linear elements, in the above estimate the logarithmic term is not needed. By the approximation
theory and the Sobolev embedding H?(,) — W3>°(Qy) (see e.g. [2], Thm. 4.12), Lemma 6.4 and the discrete
parabolic smoothing result of Lemma 4.6, we obtain

[0a(T) = Xl (2) < CRlor(T)llws.oo 2y < CH?||o(T) | 115 20
3A2 3 3 3 Ch?

<Ch’||A Uk(T)”Lz(Q)HA vk(T)”L2(Q) < —

T2

||UO||L2(Q)~

The pollution term || (vx — Ruvg)(T)||p2() from (20), can be estimated using global elliptic estimates in L?
norm, Lemmas 6.4 and 4.11 as

1 1 Ch3
[(vk = Ruvi) (D)l 220y < Ch*lor(T)l| s () < CR | Avg(T)[| 22 A% 0k (D) 22y < 7 llvollzz@-

Thus,
l(vx — Ruor) (T) | L= (20) < C(T, Q)1 ||voll L2 (0.

and it remains to estimate the last term T3 of (19). As done in Lemmas 8.2-8.3 of [15], this will be achieved by
estimating

1(=An) (Rpvk — vkn) (D)l 12(0),  §=0,1, (21)

and the discrete Gagliardo-Nirenberg inequality (15). The proof of the above estimates was facilitated by the
following technical lemma, see Lemma 8.1 of [15].

Lemma 6.7. Let vg € L*(Q), let v, € XI and vgp, € X;’hl satisfy (4) and (9), respectively. There exists a
constant C' independent of k, h, and T such that

_ T
1AL (Pook — vn) (T) | L2() < Ch®In 2 llvollzzoy-

In order to prove Theorem 6.6 we thus first extend Lemma 6.7 to quadratic finite elements in space, in order to
estimate the terms of (21).

Lemma 6.8. Let v, € X; and vp, € X,:i be the semidiscrete and fully discrete solutions of (4) and (9),
respectively for vg € L?(2). Then there exists a constant C independent of h,k and T such that

_ . T
1A% (Prok = vkn) (T) || 220y < Ch* In EHUOHL?(Q)-



FULLY DISCRETE POINTWISE SMOOTHING ERROR ESTIMATES 3105

Proof. Let zyp, € X,:i be the solution to a dual problem with zp,(7T) = A;Z(thk —vpp)(T), i.e.

B(Xh» zkn) = (Xen(T), A, 2 (Pav, — v )(T)) - for all  xp € X,:jf,
Choosing xxn = A;Q(thk — vgp), and using the Galerkin orthogonality (10) of vy and vp, we obtain
Z = ||A}:2(Ph’l)k—’Ukh)(T)H%z(Q) = B(A;z(Ph’Uk—’Ukh), zkh) = B(thk—vk;“ A;zzkh) = B(thk—vk, Afzkh).

Note, that since 2y, is piecewise polynomial in time, with values in V;2, for every ¢ € I, it holds A;Qz'kh(t) eV?
and for every t € I\ {to,t1,...,tar} it holds GtAgzzkh(t) € V;2. Using the dual representation of B, given in
(8), and the definition P, all L?(Q) inner products vanish, and it holds

Z = (V(Pyog — k), V(A 2260)) 1xa-

In this inner product, we can replace v, by its Ritz projection Rpv, and obtain after applying the definitions
of Ay, P, and the duality pairing

Z = (V(Pyor — Rpvog), VA, 2260)) 1xa = —(Prhvk — Ruvk, Ay 2in) rxa = — (v — Ryvi, A} 26n) 1x0

< /1 1(vr = Riow) (8) |- () |1 A 200 () | 113 () -
The second term in the integral for each fixed ¢, can be estimated as follows,

”A}jlzkh(t)”ilé(ﬂ) S C (VA;lzkh(t),VAglzkh(t))Q

=-C (Zkh(t), A;lzkh(t))g
< Cllzen ()l L2 1A, 26n (8] 20
< Cllzen(®) 2@ 1AL  2kn () 120

yielding ||A,:1zkh(t)||Hé(Q) < Cllzkn ()] 22(q) for almost all £. Using this estimate together with Lemma 6.5, we
get

Z < Ch?’/||A’Uk(t)||L2(Q)szh(t)||L2(Q) dt < Ch3||AUk||L1(I;L2(Q))||ZthL°°(I;L2(Q))-
I

Using Corollary 4.7, we finally obtain
3 T 3 T —2
Z<Ch ].nE||UOHL2(Q)||Zkh(T)||L2(Q) < Ch’In EH’UO”L2(Q)HAh (Prug —’Ukh)(T)HL2(Q).

Canceling || A} %(Pyvg — vkn) (1)l 22() gives the result. O
Using this auxiliary result, we can prove the next lemmas estimating Rpvi — vgp.

Lemma 6.9. Let v, € X and vy, € X,:i be the semidiscrete and fully discrete solutions of (4) and (9),
respectively for vg € L?(Q2). There exists a constant C independent of k,h, and T such that

1 1

T
| (Rhox — vkn) (T)| 2y < CB? (Tg + T3) In —[lvollz2()-

Proof. Let yip, € X,:i be the solution to a dual problem with ygp(T) = (Rpve — vin) (T), i.e yrp € X,Z,QI satisfies

B(@kh, Ykn) = (@rn(T), (Rpvr — vgn)(T))  for all gy € Xlﬁr
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To simplify notation, we define ¢y := Rpvi — vpp € X,:?7 We introduce vfzkh S X,Zi to be zeroon I U...U Iy

and 1/~th = Ygp on Iz41 U... Iy for m chosen such that % € I. Analogously we define g;,. Choosing &kh as
test function in the definition of yy;, and transfering the cutoff from one argument to the other, by (11), we get

| (Rnvr = ven) (T)172(0) = B(Wkn, yin)
= B(Ykh, Urn) + (1/);:h7m,y;h7m)
= B(Rpvk — Vkh, kn) + ((thk,m - Ukh,rh)iayz—h,m>

= B(Rpvi — Vk, Jkh) + ((thk,m - vkh,m)_7y;jh7m)
=Ji + Jo.
Here we also have used the Galerkin orthogonality (10) with respect to the bilinear form B. By the definition

of the Ritz projection the terms (V(Rpvg — vk), Vikn); o vanish from the form B, such that the remaining
terms in J; are

M M
_ - - - -
Jy=— g (Rhvk — Vi, OsYkh) I, xQ — g (Brvg = Vg [Uk]m) — (Rh”k,m - vkvm,ykmm)
m=m-+1 m=m-+1

IN

M
[ Rrvi — vkl Lo (1. 7):L2(02)) <|8tykh||L1(I;L2(Q)) + Z I Tyrnlmll 2 0) + ||y;fh,m|L2(Q)> ,

m=1

where we used the dual form of B(-,-) and Holders inequality in space and time to estimate the terms. Applying
Corollary 4.7, gives
M
+ T
10vynllcrcrzz ) + D Mywnlmllzz () + 195 mllp20) < Cln 7 1 Bnv = ven ) (T) | 2 -

m=1

Note that yxp is a solution to a dual problem and we use yi,(T') as bound. Using the L? error estimate for the
Ritz projection, together with the estimate (18) of Lemma 6.4, we obtain for any t € (t5—1, 7]

1 1
I(Ruvr = va) ()| 22y < Ch?[lon(t) || sy < CH?[[Avk(t)]| 720 1A% 0k (B 172 -

Using the smoothing results of Lemma 4.8, we obtain

1 1
sup [[(Ruor, — ) (@)l z2 () < CR° sup || Avg(t)]1 22 ) 1A% 0k ()] 720
te(tm—1,T] te(tm—1,T]
h3 h3
< C—llvollz2) < C—5llvollL2(o)-
2 T3

m

(22)

In the last step, we used the estimate ti < % which holds true, since ¢,; was chosen such that % € I, and

thus, % < t. Combining these results gives the proposed estimate for Jy:

T
J1 < CﬁlflEHvon(Q)H(thk — ven) (1) || L2(0)-

To estimate J> we insert an artificial zero by adding and subtracting vy 5,

J2 = (Rnvkam = Vkhoi) > Yinm) = (BaVkan — ki) s Uinm) T (Vkom = Vknn) ™ Yin.m) = J21 + Joa.
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The term Jo; can be estimated with (22), the discrete smoothing result of Lemma 4.8 applied to ||y}, allz @)
and the special choice of m:

Jor < sup [[(Ruvk — ox) ()|l 2 |0 22 @)
te(trn laT)

h3
< C ||Uo||L2(Q)||ykh( Mz < CEH%HLZ(Q)H(thk —vkn) (1) || L2(0)-

m

To estimate Jyo we use Lemma 6.8 by using ¢, as artificial endtime. Here it is of importance, that the derived
constant does not depend on the endtime, since we need to replace tz by T later. This can only be done, when
the explicit dependence of the result of Lemma 6.8 on the endtime is known. We thus get after inserting the L2
projection operator:

Ja2 = (Phok.m — Vkhm) ™ Ynm)
= (A, (thk = Vkhoam) A%Lyl—:h,ﬁl)

<AL (Pavkm — vknm) Iz @) 1A% 05 22 @)

h3
< € (%) ol 71 =) D)l

In the last step, we have used Lemma 6.8 for ||A,?(Pyvg,m — Ukh,m) " ||22(0) and the discrete smoothing result
of Lemma 4.8 for ||Aiy,jh7m||Lz(Q). Since ygp, is a solution to a backwards problem, we use ﬁ, instead of i
We now replace all occurrences of t,; by T. As before, we use % € Iz yielding t; < % + k. For fine enough
time discretizations (i.e. 2 > k) we have

T—ts;>T—

no|

—k>T—

no|
e
|

thus giving Tft <C % To estimate the logarithmic term, we use the following consideration: Let x € R such

that x > 2. Then it holds z + 1 < 22. With the monotonicity of the logarithm we obtain In(z + 1) < In(2?) =
21n(x). Applying this to the logarithmic term, while using ¢ < £ 5 +k and 7 > 2, yields

tn L+k T T T
< = — < — )< —.
ln(k> In ( 3 > ln(2k+l>_21n<2k>_21n(k)

This gives a bound for Js2, depending on the final time 7',

3 T
Jag < Oﬁ In EHUOHLQ(Q)H(thk = ven) (1) 220
Dividing all considered terms by ||(Rrvr — vrn)(T)| 12(q) gives the proposed estimate. O

We now show a similar result for the discrete Laplacian.

Lemma 6.10. Let vy, € X] and vk, € X,:Z be the semidiscrete and fully discrete solutions of (4) and (9),
respectively. Then there exists a constant independent of k, h, and T such that

1 1 T
I8 (Rt = v)(Dllay < O 5 + 21z ) n ool
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Proof. Let ygp € X,:i be the solution to a dual problem with yin(T) = Ap (Rpvg — vgn) (1), i€ yrn € X,Zi
satisfies

B(okn, yen) = (0en(T), Ap(Rpvr, — vgn)(T))  for all  ppp, € X/ZZ%-

As in the previous lemma, in order to simplify notation, we define ¥y := Rpvr — vgn € X2 We introduce
P pily k,h
ikh € X,Zi to be zero on [y U...U I and 1/~th = Ygp on Ij1 U ... Iy for m chosen such that % € I5. We

define i, analogously. Choosing Ap ks as test function in the definition of yxy, and transfering the cutoff from
the first argument of B to the second, by applying (11), we get

1AL (Ryvr = vkn) (T2 () = B(Antwn, yin)
(k> Anyin)
(Vrh, Anbrn) + (%Zh,mv Ahyljh,m)

B
B
B(Rpvk, — Vikh, ApGkn) + ((thk,m = Vkh,m) Ahy;jh,m>
B

(Rhvk — Uk, Angkn) + ((thk,m = Ukhm) Ahyl—:h,m)
J1+ Js.

Here we have used the Galerkin orthogonality (10) with respect to the bilinear form B. By the definition of
the Ritz projection the terms (V(Rpvr — vg), VAhgkh),mXQ vanish from the form B, such that the remaining
terms of J; are

M M
Ji= Y (Ou(Ruvr —vk), Anyin)ruxa + Y ([Rrvk = Oklm, Anyi, -
m=r-+1 m=m+1

Applying Holder’s inequality in space and time gives

M
Tv < N0 (Ruvk = vi) | L (e 2@ 1 ARYRR | L (1o iz + D IRAOK = Oklml| 220 | 2083 ol 2 (0)-

m=m+1

Introducing an artificial factor 1 as k, - k' in the sum allows us to extract the term
MaXm<m< M {k;LIH[thk — 'Uk]m||L2(Q)} out of the sum. This gives

Ju<_max [0y (Rhvk = vr)ll oo (15220 1ARYERN L1 (00,922 (92))

m<m<M

M
4+ max {km1||[thkvk]m||L2(Q)}< Z km”Ahyl_:h,mle(Q))'

m=m-+1

Using Corollary 4.7 and the L? error estimate for the Ritz projection for the other terms, gives the following
estimate,

_ T
Ji < Ch? (mgnn?%(M |0vvkc |l Loe (1,512 (02)) + aax {km1||[vk]m||H3(Q))}> In —[|An(Brvk — vkn)(T) 22 (0)-

Similar to the previous lemma, by the estimate (18) of Lemma 6.4 and Remark 6.1, yielding 9; Av(t) € Hg ()
for t € (tp—1,T], we obtain

|0 vi () ||H3(Q) < O|0;Avy(t) HEZ(Q) ||atA2vk(t) Hz2(g)'
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Taking the supremum over (t7_1,7] and using Lemma 4.8 then yields

1
_max [kt (1,m30)) < C oax, 10 A (t )||Loo(1 e [0 820 1, 1200

< C?H’UO”LQ(Q) < C =
12 T2

m

Applying the same arguments, using Avg(t) € H}(Q) for t € (tz5-1,T), and Lemma 4.8 gives

m<m m< (Q)-

max {km ||[’Uk]mHH3(Q)} < ma><( {k;zl (||A[Uk]m||L2(Q)HAQ[W]mHH(Q)) } < C*HUOHL?(Q
Summarizing all above results yields the final bound for Ji:
3 1 T
J1 <Ch 7T In —[lvoll 2 (@) [ An (Bave — vkn)(T) 22 ()
2
To estimate J> we insert an artificial zero like before by adding and subtracting v, . :

J2 = ((Rhk,m — Vkh,m) > Ahy;jh@) = ((Rhvk,m — Vkm) Ahy;jh@) + ((Vkym — Ykh,m) Ahy;:rh,m) = Ja1 + J22.

The term Ja; can be estimated similarly to the previous lemma, applying (22), the discrete smoothing result
of Lemma 4.8 for ||Any;, 1 l22() and using the special choice of 7

Jo < sup [[(Ravk — vik) (8] L2 1A 22 (@)
te(tm—1,T)

h3 1
< Cllvollz2 (@) —— lymn (D)l L2 (0)
t2 m

m

h3
< Cgllvollzz@ I An(Rnvs = ven) (D]l 2(0)-

We estimate Joz by replacing vy 7 with its L2-projection:

Jog = ((thk m Ukh,rh)ia Ahyg_hﬁl)
= (A, (thk = Vkhan) Aiyzjh,m)
< A2 (Phvk,m — Vkhom) ||L2(Q)||A?zyljh,fn”lf2(9)
h3

t..
Om 8 (l?) l[voll 22 @) | An (Brve = ven)(T)l| 22 ()

IN

In the last step, we have used Lemma 6.8 for || A} *(Pyvk,m — Vkhm)~ || 22(0) and the discrete smoothing result of
Lemma 4.8 for ||Ahykh allz2(Q)- Since yrp is the solution to a problem backward in time, we use Tjt,;L instead
of % in the application of this result. Analogously to the previous lemma, we can replace the terms involving
t by ones dependent only of T because of the special choice of t;, thus giving the final bound for Js,

T
Jog < Cﬁ In EHUO”LZ(Q)HAh(Rh")k = ven) (1) 22 (o)

Dividing all considered terms by [|Ap(Rpvr — ven)(T)||L2(q) gives the proposed estimate. O

Combining Lemmas 6.9 and 6.10 with the discrete Gagliardo-Nirenberg inequality (15) gives the following result:
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Corollary 6.11. Let v, € X[ and vgp, € X,Zi be the semidiscrete and fully discrete solutions of of (1) with

Vo

€ L?(Q2). Then there exists a constant independent of k and h such that

N N
T/1 1N\ T/ 1 1\0F)
3
||(thk - Ukh)(T)||L°°(Q) < Ch’In E (Tg + T3> (TQ + T3> HUO”L2(Q)~

This result now allows us to estimate the final term T3 of (19) and thus proves Theorem 6.6.

6.2. Estimates for (v — vgp)(T) with vg € M(Q)

Now that we have established Theorem 6.6 for vy € L?(f2), following exactly the proof of Theorem 5.3, and

using the Assumption 6.2, we can establish

Theorem 6.12. Let Qg be a subdomain with Qy C Q, vg € M(Q) with suppvy C Q. Let v and vy, € X,:i
satisfy (1) and (9), respectively. In addition, let Q be such that Assumption 6.2 holds.

(v = vn) (D)l oo (20) < C(T,Q0) (€rh® + E* 1) Jlvollme),

where fy, = In %, d = dist(Qp, 0) and C(T,d) is a constant depending on T and d.
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