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FULLY DISCRETE POINTWISE SMOOTHING ERROR ESTIMATES FOR
MEASURE VALUED INITIAL DATA

Dmitriy Leykekhman1, Boris Vexler2 and Jakob Wagner3

Abstract. In this paper we analyze a homogeneous parabolic problem with initial data in the space
of regular Borel measures. The problem is discretized in time with a discontinuous Galerkin scheme of
arbitrary degree and in space with continuous finite elements of orders one or two. We show parabolic
smoothing results for the continuous, semidiscrete and fully discrete problems. Our main results are
interior 𝐿∞ error estimates for the evaluation at the endtime, in cases where the initial data is supported
in a subdomain. In order to obtain these, we additionally show interior 𝐿∞ error estimates for 𝐿2 initial
data and quadratic finite elements, which extends the corresponding result previously established by
the authors for linear finite elements.
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1. Introduction

In this work we discuss smoothing properties of the fully discrete approximation of the homogeneous parabolic
problem

𝜕𝑡𝑣 −∆𝑣 = 0 in 𝐼 × Ω,
𝑣 = 0 on 𝐼 × 𝜕Ω,

𝑣(0) = 𝑣0 in Ω,
(1)

where Ω ⊂ R𝑁 , 𝑁 = 2, 3 is a bounded, convex, polygonal/polyhedral domain, and 𝐼 = (0, 𝑇 ] a bounded time
interval. In particular we are interested in pointwise error estimates in the case when the initial condition 𝑣0 is
a regular Borel measure 𝑣0 ∈ ℳ(Ω) supported in some subdomain Ω0 such that Ω0 ⊂ Ω, for example a linear
combination of Dirac delta functions, 𝑣0 =

∑︀
𝑗 𝛽𝑗𝛿𝑥𝑗

. Our main result of this paper establishes the fully discrete
error estimate of the form

‖(𝑣 − 𝑣𝑘ℎ)(𝑇 )‖𝐿∞(Ω0) ≤ 𝐶(Ω0, 𝑇 )
(︀
𝑘2𝑟+1 + ℓ𝑘ℎℎ

𝑠+1
)︀
‖𝑣0‖ℳ(Ω). (2)
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Here 𝑟 ≥ 0 is the order of time discretization, 𝑠 = 1, 2 is the order of the space discretization, and ℓ𝑘ℎ is a
logarithmic term that depends on the mesh size ℎ and the maximum time step 𝑘. In order to simplify the
presentation, we assume that 𝑣0 is supported in the same subdomain Ω0, in which the 𝐿∞ error is estimated,
wheareas in general, two different subdomains could be chosen. We would like to point out that the piecewise
linear case 𝑠 = 1 does not require any additional smoothness assumptions beyond regularity results available
on convex domains Ω. The higher order convergence of 𝑠 = 2 requires some additional smoothness assumptions,
which are available for example on rectangular domains (cf. Sect. 6). In this case, the logarithmic term ℓ𝑘ℎ only
depends on 𝑘.

The above problem is classical and many important results are available in the literature. The 𝐿2 theory for
a uniform time partition is well presented in the classical textbook of Thomée [20]. Extensions to variable time
steps are available in Eriksson et al. [7]. The 𝐿1 → 𝐿∞ stability results, are technically more difficult and one
of the first papers in this direction was the work of Schatz et al. [18], where such results were established in two
space dimensions for piecewise linear elements and strongly A-stable single step methods with uniform time
steps. The sharpest result in the case of smooth domains and uniform time steps was obtained by A. Hansbo
in [9].

In our previous paper [15], for piecewise linear space discretizations on a convex polygonal/polyhedral domain
Ω and 𝑣0 ∈ 𝐿2(Ω), we have obtained

‖(𝑣 − 𝑣𝑘ℎ)(𝑇 )‖𝐿∞(Ω0) ≤ 𝐶(𝑇 )
(︀
𝑘2𝑟+1 + ℓ𝑘ℎℎ

2
)︀
‖𝑣0‖𝐿2(Ω) ,

with explicit form of the constant 𝐶(𝑇 ). Such results were required for obtaining sharp results in initial data
estimation of the parabolic problems from final time observation [15]. However, in order to extend the results to
the situation when the final time observation is taken at a finite number of points [14], which is more relevant
in applications, we require the results of the form (2). This yields an error estimate for the adjoint state,
which satisfies a backwards-in-time problem, with a final time condition given by a measure supported in the
observation points. Since these points are fixed, this support is contained in a proper subdomain, and hence
the assumptions for (2) are satisfied. In summary, the main contribution of our paper is the establishment of
fully discrete error estimates (2) for Galerkin methods on potentially highly varying time partitions and quasi-
uniform meshes on convex polygonal/polyhedral domains, without any additional smoothness assumptions in
the case of piecewise linear case and with additional smoothness assumptions in the case of quadratic elements.

The rest of the paper is organized as follows. In Section 2, we review the notion of very weak solutions for
parabolic homogeneous problems with initial data given in the space of regular Borel measures. In Section 3, we
discuss space-time discretization schemes and introduce the semidiscrete and fully discrete Galerkin solutions
to (1). In Section 4, we review and show continuous and discrete smoothing estimates for the continuous,
semidiscrete and fully discrete solutions. Our main result will be the pointwise fully discrete error estimate for
initial data in ℳ(Ω), see Theorem 5.3, which we establish in Section 5. Finally, in Section 6 we extend our main
result to a higher order space discretization.

2. Very weak solutions and regularity

We begin by introducing the proper setup for the existence and regularity of the solution with measure valued
initial data. Throughout this work, we use standard notations 𝐿𝑝(Ω), 𝑊 𝑘,𝑝(Ω), 𝑊 𝑘,𝑝

0 (Ω) for the Lebesque and
Sobolev spaces and abbreviate them by 𝐻𝑘(Ω), 𝐻𝑘

0 (Ω), in case 𝑝 = 2. The 𝐿2(Ω) inner product will be denoted
by (·, ·)Ω. We denote the Bochner spaces of 𝑊 𝑘,𝑝(Ω) valued, 𝑞−integrable functions over the time interval 𝐼
by 𝐿𝑞(𝐼;𝑊 𝑘,𝑝(Ω)), and denote by (·, ·)𝐼×Ω the inner product on 𝐿2(𝐼;𝐿2(Ω)) ∼= 𝐿2(𝐼 × Ω). The space ℳ(Ω)
of regular Borel measures can be identified with the dual space of 𝐶0(Ω) := {𝑣 ∈ 𝐶(Ω̄) : 𝑣|𝜕Ω = 0}, i.e. it
holds ℳ(Ω) ∼= (𝐶0(Ω))*. The norm on ℳ(Ω) is then given as ‖𝜇‖ℳ(Ω) := sup0 ̸=𝑣∈𝐶0(Ω)

⟨𝑣,𝜇⟩
‖𝑣‖𝐶0(Ω)

. Note that

this norm is equivalent to the total variation norm |𝜇|(Ω) = 𝜇+(Ω) + 𝜇−(Ω), where 𝜇 = 𝜇+ − 𝜇− is the Jordan
decomposition of 𝜇 ∈ℳ(Ω). With theses notations fixed, we can state the very weak formulation of (1).



FULLY DISCRETE POINTWISE SMOOTHING ERROR ESTIMATES 3093

Definition 2.1. Let 𝑣0 ∈ ℳ(Ω) be given. A function 𝑣 ∈ 𝐿1(𝐼 × Ω) is called a very weak solution to the heat
equation (1), if

−
∫︁

𝐼×Ω

(︂
𝜕𝜙

𝜕𝑡
+ ∆𝜙

)︂
𝑣 𝑑𝑥 𝑑𝑡 =

∫︁
Ω

𝜙(0) 𝑑𝑣0 for all 𝜙 ∈ Φ𝑇 , (3)

where the space Φ𝑇 of all test functions is given by

Φ𝑇 = {𝜙 ∈ Φ : 𝜙(𝑇 ) = 0 in Ω} with Φ =
{︀
𝜙 ∈ 𝐿2(𝐼;𝐻1

0 (Ω)) : 𝜕𝑡𝜙+ ∆𝜙 ∈ 𝐿∞(𝐼 × Ω) ∧ 𝜙(𝑇 ) ∈ 𝐿2(Ω)
}︀
.

With this definition, we have the following result (see [5], Lem. 2.2):

Theorem 2.2. For a given 𝑣0 ∈ℳ(Ω), there exists a unique solution 𝑣 in the sense of (3). The solution 𝑣 lies
in the space 𝐿𝑟(𝐼;𝑊 1,𝑝

0 (Ω)) for any 𝑝, 𝑟 ∈ [1, 2) with 2
𝑟 + 𝑁

𝑝 > 𝑁 + 1, with the estimate

‖𝑣‖𝐿𝑟(𝐼;𝑊 1,𝑝
0 (Ω)) ≤ 𝐶𝑟,𝑝 ‖𝑣0‖ℳ(Ω) .

Moreover, 𝑣 ∈ 𝐶([0, 𝑇 ];𝑊−1,𝑝(Ω)), making the evaluation 𝑣(𝑡) well defined at any 𝑡 ∈ [0, 𝑇 ], and in addition
𝑣(𝑇 ) ∈ 𝐿2(Ω) with

‖𝑣(𝑇 )‖𝐿2(Ω) ≤ 𝐶𝑇 ‖𝑣0‖ℳ(Ω) .

For any 𝜙 ∈ Φ there holds∫︁
Ω

𝜙(𝑇 )𝑣(𝑇 )−
∫︁

(0,𝑇 )×Ω

(𝜕𝑡𝜙+ ∆𝜙) 𝑣 𝑑𝑥 𝑑𝑡 =
∫︁

Ω

𝜙(0) 𝑑𝑣0.

In the second estimate of the above theorem, the constant 𝐶𝑇 depends on 𝑇 . We shall make this dependence
more explicit in Lemma 4.2. For the error analysis below, we will require the following result.

Lemma 2.3. Let 𝜏 ∈ (0, 𝑇 ) and let 𝑣1 be the very weak solution of the heat equation on the subinterval (0, 𝜏)
in the sense of (3). Let 𝑣2 be the weak solution of the heat equation on the subinterval (𝜏, 𝑇 ) with initial data
𝑣1(𝜏) ∈ 𝐿2(Ω). Then 𝑣 defined as

𝑣(𝑡) =
{︂
𝑣1(𝑡) 𝑡 ∈ (0, 𝜏 ]
𝑣2(𝑡) 𝑡 ∈ (𝜏, 𝑇 )

is the very weak solution in the sense of (3).

Proof. The proof is straightforward. �

3. Discretization

In this section we describe the semidiscrete and fully discrete finite element discretizations of the homogeneous
equation (1) and present smoothing type error estimates. To discretize the problem, we use continuous Lagrange
finite elements of order 𝑠 ≥ 1 in space and discontinuous Galerkin methods of order 𝑟 ≥ 0 in time.

3.1. Time discretization

To be more precise, we partition 𝐼 = (0, 𝑇 ] into subintervals 𝐼𝑚 = (𝑡𝑚−1, 𝑡𝑚] of length 𝑘𝑚 = 𝑡𝑚 − 𝑡𝑚−1,
where 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑀−1 < 𝑡𝑀 = 𝑇 . The maximal and minimal time steps are denoted by 𝑘 = max𝑚 𝑘𝑚

and 𝑘min = min𝑚 𝑘𝑚, respectively. We impose the following conditions on the time mesh (as in [12] or [16]):

(i) There are constants 𝑐, 𝛽 > 0 independent on 𝑘 such that

𝑘min ≥ 𝑐𝑘𝛽 .
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(ii) There is a constant 𝜅 > 0 independent on 𝑘 such that for all 𝑚 = 1, 2, . . . ,𝑀 − 1

𝜅−1 ≤ 𝑘𝑚

𝑘𝑚+1
≤ 𝜅.

(iii) It holds 𝑘 ≤ 𝑇
2𝑟+2 .

The semidiscrete space 𝑋𝑟
𝑘 for the case 𝑣0 ∈ 𝐿2(Ω) is taken as

𝑋𝑟
𝑘 =

{︀
𝜙𝑘 ∈ 𝐿2(𝐼;𝐻1

0 (Ω))
⃒⃒
𝜙𝑘|𝐼𝑚 ∈ P𝑟(𝐼𝑚;𝐻1

0 (Ω)), 𝑚 = 1, 2, . . . ,𝑀
}︀
,

where P𝑟(𝐼𝑚;𝑉 ) is the space of polynomial functions of degree 𝑟 in time on 𝐼𝑚 with values in a Banach space 𝑉 .
However, for the semidiscrete formulation of (1) with measure valued initial data 𝑣0 ∈ℳ(Ω) to be well defined,
at initial time the test functions 𝜙𝑘 need to be in 𝐶0(Ω). Since for 𝑁 ≥ 2 the space 𝐻1

0 (Ω) is not embedded in
the space of continuous functions, we need to modify the spaces of trial and test functions, as

̃︀𝑋𝑟
𝑘 =

{︁
𝜙𝑘 ∈ 𝐿2(𝐼 × Ω) : 𝜙𝑘|𝐼𝑚 ∈ P𝑟(𝐼𝑚;𝑊 1,𝑝

0 (Ω)), 𝑚 = 1, 2, . . . ,𝑀
}︁

and ̂︀𝑋𝑟
𝑘 =

{︁
𝜙𝑘 ∈ 𝐿2(𝐼 × Ω) : 𝜙𝑘|𝐼𝑚 ∈ P𝑟(𝐼𝑚;𝑊 1,𝑝′

0 (Ω)), 𝑚 = 1, 2, . . . ,𝑀
}︁
,

for some 2𝑁
𝑁+2 < 𝑝 < 𝑁

𝑁−1 and 2𝑁
𝑁−2 > 𝑝′ > 𝑁 the dual exponent satisfying 1

𝑝 + 1
𝑝′ = 1. In this setting,

the embedding 𝑊 1,𝑝′

0 (Ω) →˓ 𝐶0(Ω), yields that ⟨𝑣0, 𝜙+
𝑘,0⟩ is well defined for all test functions 𝜙𝑘 ∈ ̂︀𝑋𝑟

𝑘 , while
every trial function 𝑣𝑘 ∈ ̃︀𝑋𝑟

𝑘 satisfies 𝑣𝑘(𝑡) ∈ 𝑊 1,𝑝
0 (Ω) →˓ 𝐿2(Ω) for every 𝑡 ∈ 𝐼. With these spaces, the dG(𝑟)

semidiscrete (in time) solution 𝑣𝑘 of (1) for 𝑣0 ∈ℳ(Ω) is given by 𝑣𝑘 ∈ ̃︀𝑋𝑟
𝑘 that satisfies

𝐵(𝑣𝑘, 𝜙𝑘) =
⟨
𝑣0, 𝜙

+
𝑘,0

⟩
for all 𝜙𝑘 ∈ ̂︀𝑋𝑟

𝑘 . (4)

Here the bilinear form 𝐵(·, ·) is defined by

𝐵(𝑤,𝜙) =
𝑀∑︁

𝑚=1

⟨𝜕𝑡𝑤,𝜙⟩𝐼𝑚×Ω + (∇𝑤,∇𝜙)𝐼×Ω +
𝑀∑︁

𝑚=2

([𝑤]𝑚−1, 𝜙
+
𝑚−1)Ω + (𝑤+

0 , 𝜙
+
0 )Ω, (5)

where ⟨·, ·⟩𝐼𝑚×Ω is the duality product between 𝐿2(𝐼𝑚;𝑊−1,𝑝(Ω)) and 𝐿2(𝐼𝑚;𝑊 1,𝑝′

0 (Ω)). In the above definition
we use the usual notation for functions with possible discontinuities at the nodes 𝑡𝑚:

𝑤+
𝑚 = lim

𝜀→0+
𝑤(𝑡𝑚 + 𝜀), 𝑤−𝑚 = lim

𝜀→0+
𝑤(𝑡𝑚 − 𝜀), [𝑤]𝑚 = 𝑤+

𝑚 − 𝑤−𝑚.

Remark 3.1. Note that whenever 𝑣0 ∈ 𝐿2(Ω) the formulation (4) is equivalent to searching 𝑣𝑘 ∈ 𝑋𝑟
𝑘 , satisfying

𝐵(𝑣𝑘, 𝜙𝑘) =
(︁
𝑣0, 𝜙

+
𝑘,0

)︁
Ω

for all 𝜙𝑘 ∈ 𝑋𝑟
𝑘 . (6)

Remark 3.2. Since we are dealing with a homogeneous parabolic problem with constant coefficients, the
discontinuous Galerkin method actually coincides with subdiagonal Padé approximations and one can use, for
example, a rational representation of the semidiscrete solution. While it is more convenient for our analysis to
use the definition based on the bilinear form 𝐵(·, ·), this rational expression allows us to show wellposedness of
the semidiscrete problem.

Theorem 3.3. Let 𝑣0 ∈ℳ(Ω). Then the semidiscrete problem (4) has a unique solution 𝑣𝑘 ∈ ̃︀𝑋𝑟
𝑘 .
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Proof. It is sufficient to show the claim on the first time interval. Let {𝜑𝑗 : 𝑗 = 0, . . . , 𝑟} denote a basis of
P𝑟(𝐼1; R). It is well known, that in the setting of (6), there exist polynomials 𝑃𝑗(𝑧), 𝑗 = 0, . . . , 𝑟 and 𝑄(𝑧) of
degrees 𝑟 and 𝑟+1, respectively, such that the variational formulation is equivalent to the rational representation

𝑣𝑘|𝐼1 =
𝑟∑︁

𝑗=0

𝜑𝑗
𝑃𝑗(−𝑘1∆)
𝑄(−𝑘1∆)

𝑣0,

see [11], Section 4.1 of [13]. Here 𝑄(𝑧) corresponds to the denominator of the subdiagonal (𝑟, 𝑟 + 1) Padé
approximation of 𝑒−𝑧. The polynomial 𝑄(𝑧) posesses 𝑟 + 1 complex zeroes 𝜉𝑛 ∈ C, 𝑛 = 1, . . . , 𝑟 + 1. These all
satisfy 𝑅𝑒(𝜉𝑛) < 0, and thus 𝜉𝑛 ∈ 𝜌(−𝑘1∆), i.e., they are contained in the resolvent set of −𝑘1∆, see Theorem 1.1
of [17]. This implies that the operators (𝜉𝑛 + 𝑘1∆)−1 : 𝐿2(Ω) → 𝐻1

0 (Ω), are well defined. By Theorem 8 of [21]
and the fact that the (𝑟, 𝑟 + 1) Padé approximation is of order 2𝑟 + 1, we know that the zeroes 𝜉𝑛 of 𝑄(𝑧) are
pairwise distinct. Hence for the coefficients of 𝑣𝑘|𝐼1 , there holds a partial fraction decomposition, and for some
𝑐𝑗,𝑛 ∈ C, 𝑗 = 0, . . . , 𝑟, 𝑛 = 1, . . . , 𝑟 + 1 we have the representation

𝑣𝑘|𝐼1 =
𝑟∑︁

𝑗=0

𝜑𝑗

𝑟+1∑︁
𝑛=1

𝑐𝑗,𝑛(𝜉𝑛 + 𝑘1∆)−1𝑣0. (7)

By the elliptic theory, we can show, that (𝜉𝑛 + 𝑘1∆)−1 : ℳ(Ω) →𝑊 1,𝑝
0 (Ω), are well defined, which implies that

(7) holds also true for 𝑣0 ∈ ℳ(Ω). To show wellposedness of the elliptic problems, we employ the following
construction. For any 𝜇 ∈ ℳ(Ω), due to Corollary 2.7 of [6], there exists a unique solution 𝑢𝜇 ∈ 𝑊 1,𝑝

0 (Ω) with
2𝑁

𝑁+2 < 𝑝 < 𝑁
𝑁−1 to

𝑘1(∇𝑢𝜇,∇𝑣)Ω = ⟨𝜇, 𝑣⟩ for all 𝑣 ∈𝑊 1,𝑝′

0 (Ω).

By the embedding 𝑊 1,𝑝
0 (Ω) →˓ 𝐿2(Ω), it holds (𝜉𝑛 + 𝑘1∆)−1𝑢𝜇 ∈ 𝐻1

0 (Ω). From this, we can construct (𝜉𝑛 +
𝑘1∆)−1𝜇 via 𝜉𝑛(𝜉𝑛 + 𝑘1∆)−1𝑢𝜇 − 𝑢𝜇 ∈𝑊 1,𝑝

0 (Ω), which concludes the proof. �

Remark 3.4. Due to Remark 3.1, the semidiscrete problem for 𝑣0 ∈ ℳ(Ω), can equivalently be formulated
using 𝐻1

0 (Ω) for test and trial functions on the intervals 𝐼𝑚, 𝑚 = 2, . . . ,𝑀 , instead of using the spaces ̃︀𝑋𝑟
𝑘 ,
̂︀𝑋𝑟

𝑘

defined above. By definition, it holds 𝑣−𝑘,1 ∈𝑊
1,𝑝
0 (Ω) →˓ 𝐿2(Ω), hence on subsequent intervals, the solution lies

in 𝑋𝑟
𝑘 . This construction of spaces was pursued in [15].

Rearranging the terms in (5), we obtain an equivalent (dual) expression for 𝐵:

𝐵(𝑤,𝜙) = −
𝑀∑︁

𝑚=1

⟨𝑤, 𝜕𝑡𝜙⟩𝐼𝑚×Ω + (∇𝑤,∇𝜙)𝐼×Ω −
𝑀−1∑︁
𝑚=1

(𝑤−𝑚, [𝜙]𝑚)Ω + (𝑤−𝑀 , 𝜙−𝑀 )Ω. (8)

Notice that for the very weak solution 𝑣 to (3) and the semidiscrete solution 𝑣𝑘 ∈ ̃︀𝑋𝑟
𝑘 to (4) we have the following

orthogonality property:
𝐵(𝑣 − 𝑣𝑘, 𝜙𝑘) = 0 for all 𝜙𝑘 ∈ ̂︀𝑋𝑟

𝑘 ,

which can be shown by splitting 𝑣 at 𝑡1 according to Lemma 2.3, using the weak formulation on (𝑡1, 𝑇 ] and a
density argument on 𝐼1 to show, that the very weak solution can be tested with semidiscrete functions 𝜙𝑘 ∈ ̂︀𝑋𝑟

𝑘 .
Next we define the fully discrete approximation scheme.

3.2. Space discretization

For some ℎ0 > 0 and ℎ ∈ (0, ℎ0] let 𝒯 denote a quasi-uniform triangulation of Ω with mesh size ℎ, i.e.
𝒯 = {𝜏} is a partition of Ω into cells (triangles or tetrahedrons) 𝜏 of diameter ℎ𝜏 and measure |𝜏 | such that for
ℎ = max𝜏 ℎ𝜏 ,

ℎ𝜏 ≤ ℎ ≤ 𝐶|𝜏 | 1
𝑁 , for all 𝜏 ∈ 𝒯 ,
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hold. Let 𝑉 𝑠
ℎ ⊂ 𝐻1

0 (Ω) be the usual space of conforming piecewise polynomial finite elements of degree 𝑠. We
define the following three operators to be used in the sequel: the discrete Laplacian ∆ℎ : 𝑉 𝑠

ℎ → 𝑉 𝑠
ℎ , defined by

(−∆ℎ𝑣ℎ, 𝑤ℎ)Ω = (∇𝑣ℎ,∇𝑤ℎ)Ω for all 𝑣ℎ, 𝑤ℎ ∈ 𝑉 𝑠
ℎ ,

the 𝐿2 projection 𝑃ℎ : 𝐿2(Ω) → 𝑉 𝑠
ℎ , defined by

(𝑃ℎ𝑣, 𝑤ℎ)Ω = (𝑣, 𝑤ℎ)Ω for all 𝑤ℎ ∈ 𝑉 𝑠
ℎ ,

and the Ritz projection 𝑅ℎ : 𝐻1
0 (Ω) → 𝑉 𝑠

ℎ , defined by

(∇𝑅ℎ𝑣,∇𝑤ℎ)Ω = (∇𝑣,∇𝑤ℎ)Ω for all 𝑤ℎ ∈ 𝑉 𝑠
ℎ .

To obtain the fully discrete approximation of (1) we consider the space-time finite element space

𝑋𝑟,𝑠
𝑘,ℎ = { 𝑣𝑘ℎ ∈ 𝑋𝑟

𝑘 | 𝑣𝑘ℎ|𝐼𝑚
∈ P𝑟(𝐼𝑚;𝑉 𝑠

ℎ ), 𝑚 = 1, 2, . . . ,𝑀 } .

We define a fully discrete cG(𝑠)dG(𝑟) approximation 𝑣𝑘ℎ ∈ 𝑋𝑟,𝑠
𝑘,ℎ of (1) by

𝐵(𝑣𝑘ℎ, 𝜙𝑘ℎ) =
⟨
𝑣0, 𝜙

+
𝑘ℎ,0

⟩
for all 𝜙𝑘ℎ ∈ 𝑋𝑟,𝑠

𝑘,ℎ. (9)

Similarly to the time semidiscretization, we have the following orthogonality relation for the semidiscrete solution
𝑣𝑘 to (4) and the fully discrete solution 𝑣𝑘ℎ ∈ 𝑋𝑟,𝑠

𝑘,ℎ to (9):

𝐵(𝑣𝑘 − 𝑣𝑘ℎ, 𝜙𝑘ℎ) = 0 for all 𝜙𝑘ℎ ∈ 𝑋𝑟,𝑠
𝑘,ℎ. (10)

Existence of a unique solution 𝑣𝑘ℎ is shown, e.g., in [20]. At the end of this section, we would like to introduce the
following truncation argument, which we will use often in our proofs. For 𝑤𝑘, 𝜙𝑘 ∈ 𝑋𝑟

𝑘 , we let 𝑤̃𝑘 = 𝜒(𝑡𝑚̃,𝑇 ]𝑤𝑘

and 𝜙𝑘 = 𝜒(𝑡𝑚̃,𝑇 ]𝜙𝑘, where 𝜒(𝑡𝑚̃,𝑇 ] is the characteristic function on the interval (𝑡𝑚̃, 𝑇 ], for some 1 ≤ 𝑚̃ ≤ 𝑀 ,
i.e. 𝑤̃𝑘 = 0 on 𝐼1 ∪ · · · ∪ 𝐼𝑚̃ for some 𝑚̃ and 𝑤̃𝑘 = 𝑤𝑘 on the remaining time intervals. Then from (5), we have
the identity

𝐵(𝑤̃𝑘, 𝜙𝑘) = 𝐵(𝑤𝑘, 𝜙𝑘) + (𝑤−𝑘,𝑚̃, 𝜙
+
𝑘,𝑚̃)Ω. (11)

The same identity holds of course for fully discrete functions 𝑤𝑘ℎ, 𝜙𝑘ℎ ∈ 𝑋𝑟,𝑠
𝑘,ℎ.

4. Parabolic smoothing

In this section we review and establish smoothing properties of the continuous and discrete solutions, which
are essential for the establishment of our main results.

4.1. Smoothing estimates for the continuous problem

It is well known that homogeneous parabolic problems have a strong smoothing effect. In particular, for 𝑣0 ∈
𝐿2(Ω), the solution 𝑣 to the problem (1) has the following smoothing property, see Chapter 1, Equation (1.14)
of [3]

‖𝜕𝑙
𝑡𝑣(𝑡)‖𝐿2(Ω) + ‖(−∆)𝑙𝑣(𝑡)‖𝐿2(Ω) ≤

𝐶

𝑡𝑙
‖𝑣0‖𝐿2(Ω) 𝑡 > 0, 𝑙 = 0, 1, . . . . (12)

Remark 4.1. In many situations it is sufficient to have smoothing type estimates in 𝐿2 norms and the corre-
sponding smoothing results, for example in 𝐿𝑝 norms, can obtained by the Gagliardo-Nirenberg inequality

‖𝑔‖𝐿𝑝(𝐵) ≤ 𝐶 ‖𝑔‖𝛼
𝐻2(𝐵) ‖𝑔‖

1−𝛼
𝐿2(𝐵) , 2 ≤ 𝑝 ≤ ∞, for 𝛼 =

𝑁

4
− 𝑁

2𝑝
,
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which holds for any subdomain 𝐵 ⊂ Ω fulfilling the cone condition (in particular for 𝐵 = Ω) and for all
𝑔 ∈ 𝐻2(𝐵), see Theorem 3 of [1]. In particular, for 𝑝 = ∞ on convex domains, we have

‖𝑔‖𝐿∞(Ω) ≤ 𝐶 ‖∆𝑔‖
𝑁
4

𝐿2(Ω) ‖𝑔‖
1−𝑁

4
𝐿2(Ω) , for 𝑔 ∈ 𝐻2(Ω) ∩𝐻1

0 (Ω). (13)

Thus using (13) and the smoothing estimates (12) for 𝑣0 ∈ 𝐿2(Ω), we immediately obtain

‖𝑣(𝑡)‖𝐿∞(Ω) ≤
𝐶

𝑡
𝑁
4
‖𝑣0‖𝐿2(Ω) 𝑡 > 0. (14)

Using a duality argument and the smoothing estimates, this result can be easily extended to the case 𝑣0 ∈ℳ(Ω).
First we derive the explicit time dependence of the constant occuring in the estimate of Theorem 2.2.

Lemma 4.2. Let 𝑣0 ∈ℳ(Ω) and 𝑣 be the very weak solution of (1). Then

‖𝑣(𝑡)‖𝐿2(Ω) ≤
𝐶

𝑡
𝑁
4
‖𝑣0‖ℳ(Ω) 𝑡 > 0.

Proof. We will establish the result for 𝑡 = 𝑇 . Define 𝑦 to be the solution to the dual problem⎧⎪⎨⎪⎩
−𝜕𝑡𝑦 −∆𝑦 = 0 in 𝐼 × Ω

𝑦 = 0 on 𝐼 × 𝜕Ω
𝑦(𝑇 ) = 𝑣(𝑇 ) in Ω.

Then (14) applied to 𝑦 yields 𝑦(0) ∈ 𝐶0(Ω) and we have the estimate

‖𝑣(𝑇 )‖2𝐿2(Ω) = (𝑣(𝑇 ), 𝑦(𝑇 ))Ω = ⟨𝑣0, 𝑦(0)⟩ ≤ 𝐶 ‖𝑣0‖ℳ(Ω) ‖𝑦(0)‖𝐿∞(Ω) ≤ 𝐶𝑇−
𝑁
4 ‖𝑣0‖ℳ(Ω) ‖𝑣(𝑇 )‖𝐿2(Ω).

Canceling ‖𝑣(𝑇 )‖𝐿2(Ω) gives the result. �

Corollary 4.3. Let 𝑣0 ∈ℳ(Ω) and 𝑣 be the very weak solution of (1). Then

‖𝜕𝑙
𝑡𝑣(𝑡)‖𝐿2(Ω) + ‖(−∆)𝑙𝑣(𝑡)‖𝐿2(Ω) ≤

𝐶

𝑡𝑙+
𝑁
4
‖𝑣0‖ℳ(Ω) 𝑡 > 0, 𝑙 = 0, 1, . . . .

Proof. This is a direct consequence of Theorem 2.2, Lemma 2.3 and the above smoothing result. The time
dependency of the constant can be seen, by fixing 𝑡 ∈ (0, 𝑇 ) and setting 𝜏 = 𝑡

2 in Lemma 2.3. Then by

Lemma 4.2, we have
⃦⃦
𝑣
(︀

𝑡
2

)︀⃦⃦
𝐿2(Ω)

≤ 𝐶
(︀

2
𝑡

)︀𝑁
4 ‖𝑣0‖ℳ(Ω). By (12), it also holds

‖𝜕𝑙
𝑡𝑣(𝑡)‖𝐿2(Ω) + ‖(−∆)𝑙𝑣(𝑡)‖𝐿2(Ω) ≤

𝐶

(𝑡− 𝑡
2 )𝑙

⃦⃦⃦⃦
𝑣

(︂
𝑡

2

)︂⃦⃦⃦⃦
𝐿2(Ω)

≤ 𝐶

𝑡𝑙+
𝑁
4
‖𝑣0‖ℳ(Ω) .

�

By applying the Gagliardo-Nirenberg inequality (13), we immediately obtain:

Corollary 4.4. Let 𝑣0 ∈ℳ(Ω) and 𝑣 be the very weak solution of (1). Then

‖𝑣(𝑡)‖𝐿∞(Ω) ≤
𝐶

𝑡
𝑁
2
‖𝑣0‖ℳ(Ω), 𝑡 > 0.
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4.2. Smoothing estimates for the discrete solutions

For the time discontinuous Galerkin solutions, both the semidiscrete and the fully discrete, similar smoothing
type estimates also hold (see [13], Thms. 3,4,5,10 and [15], Lem. 3.2 for general 𝐿𝑝 norms, cf. also [7], Thm. 5.1
for the case of the 𝐿2 norm).

Lemma 4.5. Let 𝑣𝑘 ∈ 𝑋𝑟
𝑘 and 𝑣𝑘ℎ ∈ 𝑋𝑟,𝑠

𝑘,ℎ be the semidiscrete and fully discrete solutions of (4) and (9),
respectively, with 𝑣0 ∈ 𝐿2(Ω). Then, there exists a constant 𝐶 independent of 𝑘 and ℎ such that

‖𝑣𝑘‖𝐿∞(𝐼;𝐿2(Ω)) ≤ 𝐶‖𝑣0‖𝐿2(Ω) and ‖𝑣𝑘ℎ‖𝐿∞(𝐼;𝐿2(Ω)) ≤ 𝐶‖𝑣0‖𝐿2(Ω).

Lemma 4.6. Let 𝑣𝑘 ∈ 𝑋𝑟
𝑘 and 𝑣𝑘ℎ ∈ 𝑋𝑟,𝑠

𝑘,ℎ be the semidiscrete and fully discrete solutions of (4) and (9),
respectively, with 𝑣0 ∈ 𝐿2(Ω). Then, there exists a constant 𝐶 independent of 𝑘 and ℎ such that

sup
𝑡∈𝐼𝑚

‖𝜕𝑡𝑣𝑘(𝑡)‖𝐿2(Ω) + sup
𝑡∈𝐼𝑚

‖∆𝑣𝑘(𝑡)‖𝐿2(Ω) + 𝑘−1
𝑚 ‖[𝑣𝑘]𝑚−1‖𝐿2(Ω) ≤

𝐶

𝑡𝑚
‖𝑣0‖𝐿2(Ω),

sup
𝑡∈𝐼𝑚

‖𝜕𝑡𝑣𝑘ℎ(𝑡)‖𝐿2(Ω) + sup
𝑡∈𝐼𝑚

‖∆ℎ𝑣𝑘ℎ(𝑡)‖𝐿2(Ω) + 𝑘−1
𝑚 ‖[𝑣𝑘ℎ]𝑚−1‖𝐿2(Ω) ≤

𝐶

𝑡𝑚
‖𝑣0‖𝐿2(Ω),

for 𝑚 = 1, 2, . . . ,𝑀 . For 𝑚 = 1 the jump term is understood as [𝑣𝑘]0 = 𝑣+
𝑘,0 − 𝑣0 and [𝑣𝑘ℎ]0 = 𝑣+

𝑘ℎ,0 − 𝑃ℎ𝑣0.

The above estimates immediately imply the following stability result.

Corollary 4.7. Under the assumptions of Lemma 4.6, we have

𝑀∑︁
𝑚=1

(︁
‖𝜕𝑡𝑣𝑘‖𝐿1(𝐼𝑚;𝐿2(Ω)) + ‖∆𝑣𝑘‖𝐿1(𝐼𝑚;𝐿2(Ω)) + 𝑘𝑚‖∆𝑣+

𝑘,𝑚‖𝐿2(Ω) + ‖[𝑣𝑘]𝑚−1‖𝐿2(Ω)

)︁
≤ 𝐶 ln

𝑇

𝑘
‖𝑣0‖𝐿2(Ω)

and

𝑀∑︁
𝑚=1

(︁
‖𝜕𝑡𝑣𝑘ℎ‖𝐿1(𝐼𝑚;𝐿2(Ω))+‖∆ℎ𝑣𝑘ℎ‖𝐿1(𝐼𝑚;𝐿2(Ω))+𝑘𝑚‖∆ℎ𝑣

+
𝑘ℎ,𝑚‖𝐿2(Ω)+‖[𝑣𝑘ℎ]𝑚−1‖𝐿𝑝(Ω)

)︁
≤ 𝐶 ln

𝑇

𝑘
‖𝑣0‖𝐿2(Ω).

For sufficiently many time steps, applying Lemma 4.6 iteratively, we have the following result.

Lemma 4.8. Let 𝑣𝑘 ∈ 𝑋𝑟
𝑘 and 𝑣𝑘ℎ ∈ 𝑋𝑟,𝑠

𝑘,ℎ be the semidiscrete and fully discrete solutions of (4) and (9),
respectively, with 𝑣0 ∈ 𝐿2(Ω). Then, for any 𝑚 ∈ {1, 2, . . .𝑀}, any 𝑙 ≤ 𝑚, there hold

sup
𝑡∈𝐼𝑚

‖𝜕𝑡(−∆)𝑙−1𝑣𝑘(𝑡)‖𝐿2(Ω) + sup
𝑡∈𝐼𝑚

‖(−∆)𝑙𝑣𝑘(𝑡)‖𝐿2(Ω) + 𝑘−1
𝑚 ‖[(−∆)𝑙−1𝑣𝑘]𝑚−1‖𝐿2(Ω) ≤

𝐶

𝑡𝑙𝑚
‖𝑣0‖𝐿2(Ω)

and

sup
𝑡∈𝐼𝑚

‖𝜕𝑡(−∆ℎ)𝑙−1𝑣𝑘ℎ(𝑡)‖𝐿2(Ω) + sup
𝑡∈𝐼𝑚

‖(−∆ℎ)𝑙𝑣𝑘ℎ(𝑡)‖𝐿2(Ω) + 𝑘−1
𝑚 ‖[(−∆ℎ)𝑙−1𝑣𝑘ℎ]𝑚−1‖𝐿2(Ω) ≤

𝐶

𝑡𝑙𝑚
‖𝑣0‖𝐿2(Ω),

provided 𝑘 ≤ 𝑡𝑚

𝑙+1 .

Using the continuous (13) and the discrete version of the Gagliardo-Nirenberg inequality, namely

‖𝜒‖𝐿∞(Ω) ≤ 𝐶‖∆ℎ𝜒‖
𝑁
4

𝐿2(Ω)‖𝜒‖
1−𝑁

4
𝐿2(Ω), for all 𝜒 ∈ 𝑉 𝑠

ℎ , (15)

which for example was established for smooth domains in Lemma 3.3 of [9], but the proof is valid for convex
domains as well, we immediately obtain the following smoothing result.
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Corollary 4.9. Under the assumptions of Lemmas 4.5 and 4.6 for all 𝑚 = 1, 2, . . . ,𝑀 , we have

sup
𝑡∈𝐼𝑚

‖𝑣𝑘(𝑡)‖𝐿∞(Ω) ≤
𝐶

𝑡
𝑁/4
𝑚

‖𝑣0‖𝐿2(Ω) and sup
𝑡∈𝐼𝑚

‖𝑣𝑘ℎ(𝑡)‖𝐿∞(Ω) ≤
𝐶

𝑡
𝑁/4
𝑚

‖𝑣0‖𝐿2(Ω).

Similarly to the continuous case, using a duality argument, the above smoothing results can be extended to
𝑣0 ∈ℳ(Ω).

Lemma 4.10. Let 𝑣0 ∈ ℳ(Ω), and let 𝑣𝑘 ∈ ̃︀𝑋𝑟
𝑘 and 𝑣𝑘ℎ ∈ 𝑋𝑟,𝑠

𝑘,ℎ be the semidiscrete and the fully discrete
solutions of (4) and (9) respectively. For any 𝑚 ∈ {1, 2, . . .𝑀}, there hold

‖𝑣𝑘(𝑡𝑚)‖𝐿2(Ω) + ‖𝑣𝑘ℎ(𝑡𝑚)‖𝐿2(Ω) ≤
𝐶

𝑡
𝑁
4

𝑚

‖𝑣0‖ℳ(Ω).

Proof. Let 𝑚 = 1, 2, . . . ,𝑀 , and define 𝑦𝑘 ∈ ̂︀𝑋𝑟
𝑘 to be the semidiscrete solution of the backward problem

𝐵(𝜓𝑘, 𝑦𝑘) = (𝜓−𝑘,𝑚, 𝑣𝑘(𝑡𝑚))Ω, ∀𝜓𝑘 ∈ ̃︀𝑋𝑟
𝑘 ,

where the right hand side is well defined, due to the assumptions on ̃︀𝑋𝑟
𝑘 , yielding 𝑣𝑘(𝑡𝑚) ∈ 𝐿2(Ω). Since for

this dual problem, the test functions are taken from the weaker space ̃︀𝑋𝑟
𝑘 , choosing 𝜓𝑘 = 𝑣𝑘 ∈ ̃︀𝑋𝑟

𝑘 , and using
Corollary 4.9 for the backward problem, we have

‖𝑣𝑘(𝑡𝑚)‖2𝐿2(Ω) = 𝐵(𝑣𝑘, 𝑦𝑘) =
⟨
𝑣0, 𝑦

+
𝑘,0

⟩
≤ ‖𝑣0‖ℳ(Ω)‖𝑦𝑘(0)‖𝐿∞(Ω) ≤

𝐶

𝑡
𝑁/4
𝑚

‖𝑣0‖ℳ(Ω)‖𝑣𝑘(𝑡𝑚)‖𝐿2(Ω).

Canceling, we obtain the result for the time semidiscrete solution 𝑣𝑘. The argument for the fully discrete solution
𝑣𝑘ℎ is almost identical. �

From Lemma 4.8, we can obtain the following result

Lemma 4.11. Let 𝑣𝑘 ∈ ̃︀𝑋𝑟
𝑘 and 𝑣𝑘ℎ ∈ 𝑋𝑟,𝑠

𝑘,ℎ be the semidiscrete and the fully discrete solutions of (4) and (9)
respectively. Let 𝑚 ∈ {1, 2, . . .𝑀} large enough and 𝑙 ≤ 𝑚, such that 𝑘 ≤ min{ 𝑡𝑚

4 ,
𝑡𝑚

2(𝑙+1)}, then there hold

sup
𝑡∈𝐼𝑚

‖𝜕𝑡(−∆)𝑙−1𝑣𝑘(𝑡)‖𝐿2(Ω) + sup
𝑡∈𝐼𝑚

‖(−∆)𝑙𝑣𝑘(𝑡)‖𝐿2(Ω) + sup
𝑡∈𝐼𝑚

𝑘−1
𝑚 ‖[(−∆)𝑙−1𝑣𝑘]𝑚−1‖𝐿2(Ω) ≤

𝐶

𝑡
𝑙+ 𝑁

4
𝑚

‖𝑣0‖ℳ(Ω)

and

sup
𝑡∈𝐼𝑚

‖𝜕𝑡(−∆ℎ)𝑙−1𝑣𝑘ℎ(𝑡)‖𝐿2(Ω)+ sup
𝑡∈𝐼𝑚

‖(−∆ℎ)𝑙𝑣𝑘ℎ(𝑡)‖𝐿2(Ω)+ sup
𝑡∈𝐼𝑚

𝑘−1
𝑚 ‖[(−∆ℎ)𝑙−1𝑣𝑘ℎ]𝑚−1‖𝐿2(Ω) ≤

𝐶

𝑡
𝑙+ 𝑁

4
𝑚

‖𝑣0‖ℳ(Ω).

Proof. We will only establish semidiscrete smoothing estimates for measure valued initial data, the analysis for
the fully discrete solution is similar. Combining Lemma 4.8 with Lemma 4.10, gives us for all 𝑚 > 𝑚̃+ 𝑙:

sup
𝑡∈𝐼𝑚

‖𝜕𝑡(−∆)𝑙−1𝑣𝑘(𝑡)‖𝐿2(Ω) + sup
𝑡∈𝐼𝑚

‖(−∆)𝑙𝑣𝑘(𝑡)‖𝐿2(Ω) + 𝑘−1
𝑚 ‖[(−∆)𝑙−1𝑣𝑘]𝑚−1‖𝐿2(Ω)

≤ 𝐶

(𝑡𝑚 − 𝑡𝑚̃)𝑙
‖𝑣𝑘(𝑡𝑚̃)‖𝐿2Ω) ≤

𝐶

(𝑡𝑚 − 𝑡𝑚̃)𝑙 𝑡
𝑁
4

𝑚̃

‖𝑣0‖ℳ(Ω) .

For fixed 𝑡𝑚 with 𝑚 large enough such that 𝑘 ≤ min{ 𝑡𝑚

4 ,
𝑡𝑚

2(𝑙+1)} we apply the above argument to 𝑡𝑚̃ such that
𝑡𝑚

2 ∈ (𝑡𝑚̃−1, 𝑡𝑚̃]. By the requirements on 𝑘 we obtain on the one hand that there are at least 𝑙 timesteps between
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𝑡𝑚̃ and 𝑡𝑚, which allows us to use the smoothing estimate of Lemma 4.8 for the specified 𝑙. On the other hand,
we obtain

𝑡𝑚 − 𝑡𝑚̃ ≥ 𝑡𝑚
2
− 𝑘 ≥ 𝑡𝑚

2
− 𝑡𝑚

4
=
𝑡𝑚
4

yielding (𝑡𝑚 − 𝑡𝑚̃)−𝑙 ≤ 4𝑙 1
𝑡𝑙𝑚
.

The choice 𝑡𝑚

2 ≤ 𝑡𝑚̃ gives 𝑡−
𝑁
4

𝑚̃ ≤ 2
𝑁
4 𝑡
−𝑁

4
𝑚 , which allows us to eliminate 𝑡𝑚̃ in the final bound and obtain

sup
𝑡∈𝐼𝑚

‖𝜕𝑡(−∆)𝑙−1𝑣𝑘(𝑡)‖𝐿2(Ω) + sup
𝑡∈𝐼𝑚

‖(−∆)𝑙𝑣𝑘(𝑡)‖𝐿2(Ω) + 𝑘−1
𝑚 ‖[(−∆)𝑙−1𝑣𝑘]𝑚−1‖𝐿2(Ω) ≤ 𝐶(𝑙, 𝑁)𝑡−𝑙−𝑁

4
𝑚 ‖𝑣0‖ℳ(Ω) .

�

5. Smoothing type error estimates

First we review smoothing results with the initial data in 𝐿2(Ω) and then extend the corresponding results
to ℳ(Ω).

5.1. Review of pointwise smoothing error estimates for 𝑣0 ∈ 𝐿2(Ω)

In [15], we have established the following pointwise fully discrete error estimate.

Proposition 5.1. Let 𝑣0 ∈ 𝐿2(Ω), let 𝑣 and 𝑣𝑘ℎ ∈ 𝑋𝑟,1
𝑘,ℎ satisfy (1) and (9), respectively. Then for any subdo-

main Ω0 with Ω0 ⊂ Ω there holds

‖(𝑣 − 𝑣𝑘ℎ)(𝑇 )‖𝐿∞(Ω0) ≤ 𝐶(𝑇,Ω0)
(︀
ℓ𝑘ℎℎ

2 + 𝑘2𝑟+1
)︀
‖𝑣0‖𝐿2(Ω) ,

where ℓ𝑘ℎ = ln 𝑇
𝑘 + |lnℎ| and 𝐶(𝑇,Ω0) is a constant that depends on 𝑇 and Ω0 and the explicit form can be

traced from the proof.

The proof of the above result was based on the following splitting of the error

(𝑣 − 𝑣𝑘ℎ)(𝑇 ) = (𝑣 − 𝑣𝑘)(𝑇 ) + (𝑅ℎ𝑣𝑘 − 𝑣𝑘ℎ)(𝑇 ) + (𝑣𝑘 −𝑅ℎ𝑣𝑘)(𝑇 ). (16)

Then each term was treated separately. The first error term was estimated in Theorem 3.8 of [15] by

‖(𝑣 − 𝑣𝑘)(𝑇 )‖𝐿∞(Ω) ≤ 𝐶(𝑇 )𝑘2𝑟+1 ‖𝑣0‖𝐿2(Ω) , (17)

with 𝐶(𝑇 ) ∼ 𝑇−(2𝑟+1+ 𝑁
4 ). The above estimate follows from (see [15], Lem. 7.2)⃦⃦
(−∆)𝑗(𝑣 − 𝑣𝑘)(𝑇 )

⃦⃦
𝐿2(Ω)

≤ 𝐶𝑗(𝑇 )𝑘2𝑟+1 ‖𝑣0‖𝐿2(Ω) , 𝑗 = 0, 1, . . . .

The second error term in (16) satisfies,

‖(𝑅ℎ𝑣𝑘 − 𝑣𝑘ℎ)(𝑇 )‖𝐿∞(Ω) ≤ 𝐶(𝑇 ) ln
𝑇

𝑘
ℎ2 ‖𝑣0‖𝐿2(Ω) ,

which followed from (see [15], Lem. 8.2–8.3)

‖(−∆ℎ)𝑗(𝑅ℎ𝑣𝑘 − 𝑣𝑘ℎ)(𝑇 )‖𝐿2(Ω) ≤ 𝐶𝑗(𝑇 ) ln
𝑇

𝑘
ℎ2 ‖𝑣0‖𝐿2(Ω) , 𝑗 = 0, 1,

and the discrete Gagliardo-Nirenberg inequality (15). Here, we point out that the treatment of the first and the
second terms of (16) do not require the condition Ω0 ⊂ Ω, they are global in nature. Finally, the estimate of
the last term in (16) follows from the interior elliptic error estimate (cf. [19])

‖(𝑣𝑘 −𝑅ℎ𝑣𝑘)(𝑇 )‖𝐿∞(Ω0) ≤ 𝐶(𝑇,Ω0)|lnℎ|ℎ2 ‖𝑣0‖𝐿2(Ω) .
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5.2. Pointwise smoothing error estimates for 𝑣0 ∈ ℳ(Ω)

We now turn towards proving the pointwise error estimate for measure valued initial data. To this end, first
recall that in Lemma 5.1 of [15] we have shown the following 𝐿2 error estimate for parabolic problems with
initial data in ℳ(Ω), where for the spatial estimate we impose a condition on the support of 𝑣0.

Lemma 5.2. Let 𝑣0 ∈ ℳ(Ω) with supp 𝑣0 ⊂ Ω0 for some subdomain Ω0 ⊂ Ω0 ⊂ Ω and let 𝑣, 𝑣𝑘 ∈ ̃︀𝑋𝑟
𝑘 and

𝑣𝑘ℎ ∈ 𝑋𝑟,1
𝑘,ℎ the continuous, semidiscrete and fully discrete solutions to (1), (4) and (9) respectively. Then there

hold the estimates

‖(𝑣 − 𝑣𝑘)(𝑇 )‖𝐿2(Ω) ≤ 𝐶(𝑇 )𝑘2𝑟+1‖𝑣0‖ℳ(Ω)

‖(𝑣𝑘 − 𝑣𝑘ℎ)(𝑇 )‖𝐿2(Ω) ≤ 𝐶(Ω0, 𝑇 )ℓ𝑘ℎℎ
2‖𝑣0‖ℳ(Ω),

where ℓ𝑘ℎ = ln 𝑇
𝑘 + |lnℎ| and 𝐶(𝑇,Ω0) is a constant that depends on 𝑇 and Ω0 and the explicit form can be

traced from the proof.

Our main result can now be obtained directly by introducing an auxiliary solution and the smoothing results
presented in Section 4. We first prove the error estimate for the spatial discretization. The proof of the error
estimate for the time semidiscretization follows the same steps under milder assumptions, see Lemma 5.4 below.

Theorem 5.3. Let 𝑣0 ∈ ℳ(Ω), let 𝑣𝑘 ∈ ̃︀𝑋𝑟
𝑘 and 𝑣𝑘ℎ ∈ 𝑋𝑟,1

𝑘,ℎ satisfy (4) and (9), respectively. Then for any
subdomain Ω0 with Ω0 ⊂ Ω and supp 𝑣0 ⊂ Ω0 there holds

‖(𝑣𝑘 − 𝑣𝑘ℎ)(𝑇 )‖𝐿∞(Ω0) ≤ 𝐶(𝑇,Ω0)ℓ𝑘ℎℎ
2‖𝑣0‖ℳ(Ω),

where ℓ𝑘ℎ = ln 𝑇
𝑘 + |lnℎ| and 𝐶(𝑇,Ω0) is a constant that depends on 𝑇 and Ω0 and the explicit form can be

traced from the proof.

Proof. As done in the proofs of the smoothing results, we begin by splitting the time interval. To this end let
𝑚̃ be such that 𝑇

2 ∈ 𝐼𝑚̃. We introduce a fully discrete auxiliary state 𝑣𝑘ℎ ∈ 𝑋𝑟,1
𝑘,ℎ, defined by

𝐵(𝑣𝑘ℎ, 𝜙𝑘ℎ) = (𝑣−𝑘,𝑚̃−1, 𝜙
+
𝑘ℎ,𝑚̃−1)Ω for all 𝜙𝑘ℎ ∈ 𝑋𝑟,1

𝑘,ℎ.

Note that by definition 𝑣𝑘ℎ ≡ 0 on 𝐼1∪ . . .∪ 𝐼𝑚̃−1 and it satisfies a discrete problem on 𝐼𝑚̃∪ . . .∪ 𝐼𝑀 with initial
condition 𝑣−𝑘,𝑚̃−1 at time 𝑡𝑚̃−1. By the triangle inequality, we obtain

‖(𝑣𝑘 − 𝑣𝑘ℎ)(𝑇 )‖𝐿∞(Ω0) ≤ ‖(𝑣𝑘 − 𝑣𝑘ℎ)(𝑇 )‖𝐿∞(Ω0) + ‖(𝑣𝑘ℎ − 𝑣𝑘ℎ)(𝑇 )‖𝐿∞(Ω0),

where for the first term, we obtain with Proposition 5.1 and the semidiscrete parabolic smoothing result of
Lemma 4.10

‖(𝑣𝑘 − 𝑣𝑘ℎ)(𝑇 )‖𝐿∞(Ω0) ≤ 𝐶(𝑇 − 𝑡𝑚̃−1,Ω0)ℓ𝑘ℎℎ
2‖𝑣−𝑘,𝑚̃−1‖𝐿2(Ω)

≤ 𝐶(𝑇 − 𝑡𝑚̃−1,Ω0)𝑡−
𝑁
4

𝑚̃−1ℓ𝑘ℎℎ
2‖𝑣0‖ℳ(Ω).

For the second error term, we observe that the difference 𝑣𝑘ℎ − 𝑣𝑘ℎ satisfies a fully discrete parabolic equation
on the intervals 𝐼𝑚̃ ∪ . . . ∪ 𝐼𝑀 for the initial data 𝑣−𝑘,𝑚̃−1 − 𝑣−𝑘ℎ,𝑚̃−1. Hence, the discrete Gagliardo-Nirenberg
inequality (15) and the fully discrete smoothing results of Lemmas 4.6 and 4.8 yield

‖(𝑣𝑘ℎ − 𝑣𝑘ℎ)(𝑇 )‖𝐿∞(Ω0) ≤ 𝐶‖(𝑣𝑘ℎ − 𝑣𝑘ℎ)(𝑇 )‖
1
2
𝐿2(Ω)‖∆ℎ(𝑣𝑘ℎ − 𝑣𝑘ℎ)(𝑇 )‖

1
2
𝐿2(Ω)

≤ 𝐶(𝑇 − 𝑡𝑚̃−1)−
1
2−

𝑁
4 ‖𝑣−𝑘,𝑚̃−1 − 𝑣−𝑘ℎ,𝑚̃−1‖𝐿2(Ω)
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We apply Lemma 5.2 in order to estimate the 𝐿2-error of the full discretization at the intermediate point in
time, which yields

‖(𝑣𝑘ℎ − 𝑣𝑘ℎ)(𝑇 )‖𝐿∞(Ω0) ≤ 𝐶(𝑡𝑚̃−1,Ω0)(𝑇 − 𝑡𝑚̃−1)−
1
2−

𝑁
4 ℓ𝑘ℎℎ

2‖𝑣0‖ℳ(Ω).

Since the assumptions on 𝑘 and 𝑚̃ yield 𝑇
4 ≤ 𝑡𝑚̃−1 ≤ 𝑇

2 and 𝑇
2 ≤ 𝑇 − 𝑡𝑚̃−1 ≤ 3𝑇

4 , as before we can replace all
quantities involving 𝑡𝑚̃−1 by ones only dependent of 𝑇 , which concludes the proof. �

Note that by exactly the same technique, we can also derive the corresponding error estimate for the semidiscrete
problem, which is global in Ω and no constraint on supp 𝑣0 is required. This is due to the fact, that the
semidiscrete results of (17) and Lemma 5.1 of [15] hold in this more general setting. There holds the following
result.

Lemma 5.4. Let 𝑣0 ∈ ℳ(Ω) and 𝑣 and 𝑣𝑘 ∈ ̃︀𝑋𝑟
𝑘 be the very weak and semidiscrete solutions to (3) and (4)

respectively. Then there holds

‖(𝑣 − 𝑣𝑘)(𝑇 )‖𝐿∞(Ω) ≤ 𝐶(𝑇 )𝑘2𝑟+1‖𝑣0‖ℳ(Ω),

with 𝐶(𝑇 ) ∼ 𝑇−(2𝑟+1+ 𝑁
2 ).

6. Higher order space discretizations

Our main result from the previous section, Theorem 5.3, was established for piecewise linear finite elements
only and does not require any additional smoothness assumptions on the solutions beyond 𝐻2 regularity that
is provided by the convexity of the domain. If additional regularity is available, for example,

|𝑣|𝐻3(Ω) ≤ 𝐶‖∆𝑣‖𝐻1
0 (Ω)

for any 𝑣 ∈ 𝐻1
0 (Ω) with ∆𝑣 ∈ 𝐻1

0 (Ω), then the results of Proposition 5.1 can be extended (with an improved
rate) to the case of quadratic Lagrange finite elements which we will denote by 𝑉 2

ℎ in this section.

Remark 6.1. Since due to Remark 3.4 for each 𝑡 ∈ (𝑡1, 𝑇 ], the solution 𝑣𝑘 to the semidiscrete problem (4)
satisfies 𝑣𝑘(𝑡) ∈ 𝐻1

0 (Ω), one can also show straightforwardly that

∆𝑣𝑘(𝑡), 𝜕𝑡∆𝑣𝑘(𝑡) ∈ 𝐻1
0 (Ω) for all 𝑡 ∈ 𝐼𝑚, 𝑚 ≥ 2 and ∆2𝑣𝑘(𝑡) ∈ 𝐻1

0 (Ω) for all 𝑡 ∈ 𝐼𝑚, 𝑚 ≥ 3.

Additional regularity is available on special domains, for example on rectangles, right or equilateral triangles.
We make the following assumption of the domain Ω.

Assumption 6.2. For every 𝑢 ∈ 𝐻1
0 (Ω) with ∆𝑢 ∈ 𝐻1

0 (Ω) there holds 𝑢 ∈ 𝐻3(Ω). Moreover, there exists a
constant 𝐶 independent of 𝑢 such that

‖𝑢‖𝐻3(Ω) ≤ 𝐶‖∇∆𝑢‖𝐿2(Ω).

Example 6.3. This assumption holds for example on a rectangle, see Lemma 2.4 of [10]. In this case the
solution 𝑢 to the elliptic equation

−∆𝑢 = 𝑓 in Ω
𝑢 = 0 on 𝜕Ω,

with 𝑓 ∈ 𝐻1
0 (Ω) possesses the 𝐻3(Ω) regularity and the estimate

‖𝑢‖𝐻3(Ω) ≤ 𝐶‖∇𝑓‖𝐿2(Ω)

holds. Thus, Assumption 6.2 is satisfied in this case.
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Lemma 6.4. Let Ω satisfy Assumption 6.2.

(1) Let 𝑢,∆𝑢 ∈ 𝐻1
0 (Ω), and ∆2𝑢 ∈ 𝐿2(Ω). Then there holds

‖𝑢‖2𝐻3(Ω) ≤ 𝐶‖∆𝑢‖𝐿2(Ω)‖∆2𝑢‖𝐿2(Ω). (18)

(2) Let Ω0 be a subdomain with Ω0 ⊂ Ω, let 𝑢,∆𝑢,∆2𝑢 ∈ 𝐻1
0 (Ω), and ∆3𝑢 ∈ 𝐿2(Ω). Then there holds

‖𝑢‖2𝐻5(Ω0)
≤ 𝐶‖∆2𝑢‖𝐿2(Ω)‖∆3𝑢‖𝐿2(Ω).

Proof. (1) For 𝑣 ∈ 𝐻1
0 (Ω) with ∆𝑣 ∈ 𝐿2(Ω) one directly obtains

‖∇𝑣‖2𝐿2(Ω) ≤ ‖𝑣‖𝐿2(Ω)‖∆𝑣‖𝐿2(Ω).

Due to ∆𝑢 ∈ 𝐻1
0 (Ω) and ∆2𝑢 ∈ 𝐿2(Ω) this inequality can be applied to 𝑣 = ∆𝑢 leading to

‖∇∆𝑢‖2𝐿2(Ω) ≤ ‖∆𝑢‖𝐿2(Ω)‖∆2𝑢‖𝐿2(Ω).

Thus, Assumption 6.2 implies the desired estimate.
(2) Using a higher interior regularity result, see Chapter 6.3, Theorem 2 of [8], we obtain

‖𝑢‖𝐻5(Ω0) ≤ 𝐶(‖∆𝑢‖𝐻3(Ω) + ‖𝑢‖𝐿2(Ω)).

Since ∆2𝑢 ∈ 𝐻1
0 (Ω) and ∆3𝑢 ∈ 𝐿2(Ω) we can apply (18) to ∆𝑢 leading to

‖∆𝑢‖2𝐻3(Ω) ≤ 𝐶‖∆2𝑢‖𝐿2(Ω)‖∆3𝑢‖𝐿2(Ω).

This leads to
‖𝑢‖2𝐻5(Ω0)

≤ 𝐶‖∆2𝑢‖𝐿2(Ω)‖∆3𝑢‖𝐿2(Ω) + 𝐶‖∆𝑢‖𝐿2(Ω)‖∆2𝑢‖𝐿2(Ω),

which proves the desired result by ‖∆𝑗𝑢‖𝐿2(Ω) ≤ 𝐶‖∆𝑗+1𝑢‖𝐿2(Ω) for 𝑗 = 1, 2.
�

Complementing the standard error estimates for the Ritz projection in the 𝐿2 and 𝐻1 norms, under Assump-
tion 6.2, we also have the following negative norm estimate. Note that even though no 𝐻3 regularity of the
solution 𝑢 is used explicitly in the estimates, the duality argument used to prove the result, requires the assump-
tion to hold true for any 𝐻1

0 right hand side.

Lemma 6.5. Let 𝑢 ∈ 𝐻1
0 (Ω) and Assumption 6.2 hold true. Then it holds

‖𝑢−𝑅ℎ𝑢‖𝐻−1(Ω) ≤ 𝐶ℎ2‖∇(𝑢−𝑅ℎ𝑢)‖𝐿2(Ω).

If further 𝑢 ∈ 𝐻2(Ω), then it holds

‖𝑢−𝑅ℎ𝑢‖𝐻−1(Ω) ≤ 𝐶ℎ3‖𝑢‖𝐻2(Ω) ≤ 𝐶ℎ3‖∆𝑢‖𝐿2(Ω).

Proof. The first estimate is proved by a duality argument in Theorem 5.8.3 of [4]. The second estimate then
follows with the standard 𝐻1 error estimate and 𝐻2 regularity. �

Under Assumption 6.2 we can establish the main results of this section. We first consider again the case of
𝐿2 initial data. The extension to 𝑣0 ∈ℳ(Ω) then follows analogously to the case of linear finite elements.

Theorem 6.6. Let 𝑣0 ∈ 𝐿2(Ω), let 𝑣 and 𝑣𝑘ℎ ∈ 𝑋𝑟,2
𝑘,ℎ satisfy (1) and (9), respectively. Then for any subdomain

Ω0 with Ω0 ⊂ Ω there holds

‖(𝑣 − 𝑣𝑘ℎ)(𝑇 )‖𝐿∞(Ω0) ≤ 𝐶(𝑇, 𝑑)
(︀
ℓ𝑘ℎ

3 + 𝑘2𝑟+1
)︀
‖𝑣0‖𝐿2(Ω) ,

where ℓ𝑘 = ln 𝑇
𝑘 , 𝑑 = dist(Ω0, 𝜕Ω) and 𝐶(𝑇, 𝑑) is a constant depending on 𝑇 and 𝑑.
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6.1. Proof of Theorem 6.6

The exact dependence of the constant 𝐶 on 𝑇 and 𝑑 is available in the proof of this result. The rest of this
section is devoted to the establishment of the above theorem. The proof for the quadratic case is similar to the
proof for the piecewise linear case, but requires some modifications. As it was done in [15], we split the error as

(𝑣 − 𝑣𝑘ℎ)(𝑇 ) = (𝑣 − 𝑣𝑘)(𝑇 ) + (𝑣𝑘 −𝑅ℎ𝑣𝑘)(𝑇 ) + (𝑅ℎ𝑣𝑘 − 𝑣𝑘ℎ)(𝑇 ) =: 𝑇1 + 𝑇2 + 𝑇3. (19)

The first time semidiscrete term 𝑇1 is already estimated in Theorem 3.8 of [15]. The second term 𝑇2 can again
be estimated by the interior pointwise error estimates of Theorem 5.1 of [19],

‖(𝑣𝑘 −𝑅ℎ𝑣𝑘)(𝑇 )‖𝐿∞(Ω0) ≤ 𝐶‖𝑣𝑘(𝑇 )− 𝜒‖𝐿∞(Ω𝑑) + 𝐶𝑑−𝑁/2‖(𝑣𝑘 −𝑅ℎ𝑣𝑘)(𝑇 )‖𝐿2(Ω), (20)

for any 𝜒 ∈ 𝑉 2
ℎ , where Ω𝑑 is a subdomain satisfying Ω0 ⊂ Ω𝑑 ⊂ Ω𝑑 ⊂ Ω and 𝑑 = dist(Ω0, 𝜕Ω𝑑). We note that in

contrast to the linear elements, in the above estimate the logarithmic term is not needed. By the approximation
theory and the Sobolev embedding 𝐻5(Ω𝑑) →˓𝑊 3,∞(Ω𝑑) (see e.g. [2], Thm. 4.12), Lemma 6.4 and the discrete
parabolic smoothing result of Lemma 4.6, we obtain

‖𝑣𝑘(𝑇 )− 𝜒‖𝐿∞(Ω𝑑) ≤ 𝐶ℎ3‖𝑣𝑘(𝑇 )‖𝑊 3,∞(Ω𝑑) ≤ 𝐶ℎ3‖𝑣𝑘(𝑇 )‖𝐻5(Ω𝑑)

≤ 𝐶ℎ3‖∆2𝑣𝑘(𝑇 )‖
1
2
𝐿2(Ω)‖∆

3𝑣𝑘(𝑇 )‖
1
2
𝐿2(Ω) ≤

𝐶ℎ3

𝑇
5
2
‖𝑣0‖𝐿2(Ω).

The pollution term ‖(𝑣𝑘 − 𝑅ℎ𝑣𝑘)(𝑇 )‖𝐿2(Ω) from (20), can be estimated using global elliptic estimates in 𝐿2

norm, Lemmas 6.4 and 4.11 as

‖(𝑣𝑘 −𝑅ℎ𝑣𝑘)(𝑇 )‖𝐿2(Ω) ≤ 𝐶ℎ3‖𝑣𝑘(𝑇 )‖𝐻3(Ω) ≤ 𝐶ℎ3‖∆𝑣𝑘(𝑇 )‖
1
2
𝐿2(Ω)‖∆

2𝑣𝑘(𝑇 )‖
1
2
𝐿2(Ω) ≤

𝐶ℎ3

𝑇
3
2
‖𝑣0‖𝐿2(Ω).

Thus,
‖(𝑣𝑘 −𝑅ℎ𝑣𝑘)(𝑇 )‖𝐿∞(Ω0) ≤ 𝐶(𝑇,Ω0)ℎ3‖𝑣0‖𝐿2(Ω),

and it remains to estimate the last term 𝑇3 of (19). As done in Lemmas 8.2–8.3 of [15], this will be achieved by
estimating

‖(−∆ℎ)𝑗(𝑅ℎ𝑣𝑘 − 𝑣𝑘ℎ)(𝑇 )‖𝐿2(Ω), 𝑗 = 0, 1, (21)

and the discrete Gagliardo-Nirenberg inequality (15). The proof of the above estimates was facilitated by the
following technical lemma, see Lemma 8.1 of [15].

Lemma 6.7. Let 𝑣0 ∈ 𝐿2(Ω), let 𝑣𝑘 ∈ 𝑋̃𝑟
𝑘 and 𝑣𝑘ℎ ∈ 𝑋𝑟,1

𝑘ℎ satisfy (4) and (9), respectively. There exists a
constant 𝐶 independent of 𝑘, ℎ, and 𝑇 such that

‖∆−1
ℎ (𝑃ℎ𝑣𝑘 − 𝑣𝑘ℎ)(𝑇 )‖𝐿2(Ω) ≤ 𝐶ℎ2 ln

𝑇

𝑘
‖𝑣0‖𝐿2(Ω).

In order to prove Theorem 6.6 we thus first extend Lemma 6.7 to quadratic finite elements in space, in order to
estimate the terms of (21).

Lemma 6.8. Let 𝑣𝑘 ∈ 𝑋𝑟
𝑘 and 𝑣𝑘ℎ ∈ 𝑋𝑟,2

𝑘,ℎ be the semidiscrete and fully discrete solutions of (4) and (9),
respectively for 𝑣0 ∈ 𝐿2(Ω). Then there exists a constant 𝐶 independent of ℎ,𝑘 and 𝑇 such that

‖∆−2
ℎ (𝑃ℎ𝑣𝑘 − 𝑣𝑘ℎ) (𝑇 )‖𝐿2(Ω) ≤ 𝐶ℎ3 ln

𝑇

𝑘
‖𝑣0‖𝐿2(Ω).
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Proof. Let 𝑧𝑘ℎ ∈ 𝑋𝑟,2
𝑘,ℎ be the solution to a dual problem with 𝑧𝑘ℎ(𝑇 ) = ∆−2

ℎ (𝑃ℎ𝑣𝑘 − 𝑣𝑘ℎ)(𝑇 ), i.e.

𝐵(𝜒𝑘ℎ, 𝑧𝑘ℎ) =
(︀
𝜒𝑘ℎ(𝑇 ),∆−2

ℎ (𝑃ℎ𝑣𝑘 − 𝑣𝑘ℎ)(𝑇 )
)︀

for all 𝜒𝑘ℎ ∈ 𝑋𝑟,2
𝑘,ℎ.

Choosing 𝜒𝑘ℎ = ∆−2
ℎ (𝑃ℎ𝑣𝑘 − 𝑣𝑘ℎ), and using the Galerkin orthogonality (10) of 𝑣𝑘 and 𝑣𝑘ℎ, we obtain

𝒵 := ‖∆−2
ℎ (𝑃ℎ𝑣𝑘−𝑣𝑘ℎ)(𝑇 )‖2𝐿2(Ω) = 𝐵(∆−2

ℎ (𝑃ℎ𝑣𝑘−𝑣𝑘ℎ), 𝑧𝑘ℎ) = 𝐵(𝑃ℎ𝑣𝑘−𝑣𝑘ℎ,∆−2
ℎ 𝑧𝑘ℎ) = 𝐵(𝑃ℎ𝑣𝑘−𝑣𝑘,∆−2

ℎ 𝑧𝑘ℎ).

Note, that since 𝑧𝑘ℎ is piecewise polynomial in time, with values in 𝑉 2
ℎ , for every 𝑡 ∈ 𝐼, it holds ∆−2

ℎ 𝑧𝑘ℎ(𝑡) ∈ 𝑉 2
ℎ

and for every 𝑡 ∈ 𝐼 ∖ {𝑡0, 𝑡1, . . . , 𝑡𝑀} it holds 𝜕𝑡∆−2
ℎ 𝑧𝑘ℎ(𝑡) ∈ 𝑉 2

ℎ . Using the dual representation of 𝐵, given in
(8), and the definition 𝑃ℎ, all 𝐿2(Ω) inner products vanish, and it holds

𝒵 = (∇(𝑃ℎ𝑣𝑘 − 𝑣𝑘),∇(∆−2
ℎ 𝑧𝑘ℎ))𝐼×Ω.

In this inner product, we can replace 𝑣𝑘 by its Ritz projection 𝑅ℎ𝑣𝑘 and obtain after applying the definitions
of ∆ℎ, 𝑃ℎ and the duality pairing

𝒵 = (∇(𝑃ℎ𝑣𝑘 −𝑅ℎ𝑣𝑘),∇(∆−2
ℎ 𝑧𝑘ℎ))𝐼×Ω = −(𝑃ℎ𝑣𝑘 −𝑅ℎ𝑣𝑘,∆−1

ℎ 𝑧𝑘ℎ)𝐼×Ω = −(𝑣𝑘 −𝑅ℎ𝑣𝑘,∆−1
ℎ 𝑧𝑘ℎ)𝐼×Ω

≤
∫︁

𝐼

‖(𝑣𝑘 −𝑅ℎ𝑣𝑘)(𝑡)‖𝐻−1(Ω)‖∆−1
ℎ 𝑧𝑘ℎ(𝑡)‖𝐻1

0 (Ω) 𝑑𝑡.

The second term in the integral for each fixed 𝑡, can be estimated as follows,

‖∆−1
ℎ 𝑧𝑘ℎ(𝑡)‖2𝐻1

0 (Ω) ≤ 𝐶
(︀
∇∆−1

ℎ 𝑧𝑘ℎ(𝑡),∇∆−1
ℎ 𝑧𝑘ℎ(𝑡)

)︀
Ω

= −𝐶
(︀
𝑧𝑘ℎ(𝑡),∆−1

ℎ 𝑧𝑘ℎ(𝑡)
)︀
Ω

≤ 𝐶‖𝑧𝑘ℎ(𝑡)‖𝐿2(Ω)‖∆−1
ℎ 𝑧𝑘ℎ(𝑡)‖𝐿2(Ω)

≤ 𝐶‖𝑧𝑘ℎ(𝑡)‖𝐿2(Ω)‖∆−1
ℎ 𝑧𝑘ℎ(𝑡)‖𝐻1

0 (Ω),

yielding ‖∆−1
ℎ 𝑧𝑘ℎ(𝑡)‖𝐻1

0 (Ω) ≤ 𝐶‖𝑧𝑘ℎ(𝑡)‖𝐿2(Ω) for almost all 𝑡. Using this estimate together with Lemma 6.5, we
get

𝒵 ≤ 𝐶ℎ3

∫︁
𝐼

‖∆𝑣𝑘(𝑡)‖𝐿2(Ω)‖𝑧𝑘ℎ(𝑡)‖𝐿2(Ω) 𝑑𝑡 ≤ 𝐶ℎ3‖∆𝑣𝑘‖𝐿1(𝐼;𝐿2(Ω))‖𝑧𝑘ℎ‖𝐿∞(𝐼;𝐿2(Ω)).

Using Corollary 4.7, we finally obtain

𝒵 ≤ 𝐶ℎ3 ln
𝑇

𝑘
‖𝑣0‖𝐿2(Ω)‖𝑧𝑘ℎ(𝑇 )‖𝐿2(Ω) ≤ 𝐶ℎ3 ln

𝑇

𝑘
‖𝑣0‖𝐿2(Ω)‖∆−2

ℎ (𝑃ℎ𝑣𝑘 − 𝑣𝑘ℎ)(𝑇 )‖𝐿2(Ω).

Canceling ‖∆−2
ℎ (𝑃ℎ𝑣𝑘 − 𝑣𝑘ℎ)(𝑇 )‖𝐿2(Ω) gives the result. �

Using this auxiliary result, we can prove the next lemmas estimating 𝑅ℎ𝑣𝑘 − 𝑣𝑘ℎ.

Lemma 6.9. Let 𝑣𝑘 ∈ 𝑋𝑟
𝑘 and 𝑣𝑘ℎ ∈ 𝑋𝑟,2

𝑘,ℎ be the semidiscrete and fully discrete solutions of (4) and (9),
respectively for 𝑣0 ∈ 𝐿2(Ω). There exists a constant 𝐶 independent of 𝑘,ℎ, and 𝑇 such that

‖ (𝑅ℎ𝑣𝑘 − 𝑣𝑘ℎ) (𝑇 )‖𝐿2(Ω) ≤ 𝐶ℎ3

(︂
1
𝑇 2

+
1
𝑇

3
2

)︂
ln
𝑇

𝑘
‖𝑣0‖𝐿2(Ω).

Proof. Let 𝑦𝑘ℎ ∈ 𝑋𝑟,2
𝑘,ℎ be the solution to a dual problem with 𝑦𝑘ℎ(𝑇 ) = (𝑅ℎ𝑣𝑘 − 𝑣𝑘ℎ) (𝑇 ), i.e 𝑦𝑘ℎ ∈ 𝑋𝑟,2

𝑘,ℎ satisfies

𝐵(𝜙𝑘ℎ, 𝑦𝑘ℎ) = (𝜙𝑘ℎ(𝑇 ), (𝑅ℎ𝑣𝑘 − 𝑣𝑘ℎ)(𝑇 )) for all 𝜙𝑘ℎ ∈ 𝑋𝑟,2
𝑘,ℎ.
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To simplify notation, we define 𝜓𝑘ℎ := 𝑅ℎ𝑣𝑘 − 𝑣𝑘ℎ ∈ 𝑋𝑟,2
𝑘,ℎ. We introduce 𝜓𝑘ℎ ∈ 𝑋𝑟,2

𝑘,ℎ to be zero on 𝐼1 ∪ . . .∪ 𝐼𝑚̃
and 𝜓𝑘ℎ = 𝜓𝑘ℎ on 𝐼𝑚̃+1 ∪ . . . 𝐼𝑀 for 𝑚̃ chosen such that 𝑇

2 ∈ 𝐼𝑚̃. Analogously we define 𝑦𝑘ℎ. Choosing 𝜓𝑘ℎ as
test function in the definition of 𝑦𝑘ℎ and transfering the cutoff from one argument to the other, by (11), we get

‖ (𝑅ℎ𝑣𝑘 − 𝑣𝑘ℎ) (𝑇 )‖2𝐿2(Ω) = 𝐵(𝜓𝑘ℎ, 𝑦𝑘ℎ)

= 𝐵(𝜓𝑘ℎ, 𝑦𝑘ℎ) +
(︁
𝜓−𝑘ℎ,𝑚̃, 𝑦

+
𝑘ℎ,𝑚̃

)︁
= 𝐵(𝑅ℎ𝑣𝑘 − 𝑣𝑘ℎ, 𝑦𝑘ℎ) +

(︁
(𝑅ℎ𝑣𝑘,𝑚̃ − 𝑣𝑘ℎ,𝑚̃)−, 𝑦+

𝑘ℎ,𝑚̃

)︁
= 𝐵(𝑅ℎ𝑣𝑘 − 𝑣𝑘, 𝑦𝑘ℎ) +

(︁
(𝑅ℎ𝑣𝑘,𝑚̃ − 𝑣𝑘ℎ,𝑚̃)−, 𝑦+

𝑘ℎ,𝑚̃

)︁
= 𝐽1 + 𝐽2.

Here we also have used the Galerkin orthogonality (10) with respect to the bilinear form 𝐵. By the definition
of the Ritz projection the terms (∇(𝑅ℎ𝑣𝑘 − 𝑣𝑘),∇𝑦𝑘ℎ)𝐼𝑚×Ω vanish from the form 𝐵, such that the remaining
terms in 𝐽1 are

𝐽1 = −
𝑀∑︁

𝑚=𝑚̃+1

(𝑅ℎ𝑣𝑘 − 𝑣𝑘, 𝜕𝑡𝑦𝑘ℎ)𝐼𝑚×Ω −
𝑀∑︁

𝑚=𝑚̃+1

(𝑅ℎ𝑣
−
𝑘,𝑚 − 𝑣−𝑘,𝑚, [𝑦𝑘ℎ]𝑚)−

(︁
𝑅ℎ𝑣

−
𝑘,𝑚̃ − 𝑣−𝑘,𝑚̃, 𝑦

+
𝑘ℎ,𝑚̃

)︁

≤ ‖𝑅ℎ𝑣𝑘 − 𝑣𝑘‖𝐿∞((𝑡𝑚̃−1,𝑇 );𝐿2(Ω))

(︃
‖𝜕𝑡𝑦𝑘ℎ‖𝐿1(𝐼;𝐿2(Ω)) +

𝑀∑︁
𝑚=1

‖[𝑦𝑘ℎ]𝑚‖𝐿2(Ω) + ‖𝑦+
𝑘ℎ,𝑚̃‖𝐿2(Ω)

)︃
,

where we used the dual form of 𝐵(·, ·) and Hölders inequality in space and time to estimate the terms. Applying
Corollary 4.7, gives

‖𝜕𝑡𝑦𝑘ℎ‖𝐿1(𝐼;𝐿2(Ω)) +
𝑀∑︁

𝑚=1

‖[𝑦𝑘ℎ]𝑚‖𝐿2(Ω) + ‖𝑦+
𝑘ℎ,𝑚̃‖𝐿2(Ω) ≤ 𝐶 ln

𝑇

𝑘
‖(𝑅ℎ𝑣𝑘 − 𝑣𝑘ℎ)(𝑇 )‖𝐿2(Ω).

Note that 𝑦𝑘ℎ is a solution to a dual problem and we use 𝑦𝑘ℎ(𝑇 ) as bound. Using the 𝐿2 error estimate for the
Ritz projection, together with the estimate (18) of Lemma 6.4, we obtain for any 𝑡 ∈ (𝑡𝑚̃−1, 𝑇 ]

‖(𝑅ℎ𝑣𝑘 − 𝑣𝑘)(𝑡)‖𝐿2(Ω) ≤ 𝐶ℎ3‖𝑣𝑘(𝑡)‖𝐻3(Ω) ≤ 𝐶ℎ3‖∆𝑣𝑘(𝑡)‖
1
2
𝐿2(Ω)‖∆

2𝑣𝑘(𝑡)‖
1
2
𝐿2(Ω).

Using the smoothing results of Lemma 4.8, we obtain

sup
𝑡∈(𝑡𝑚̃−1,𝑇 ]

‖(𝑅ℎ𝑣𝑘 − 𝑣𝑘)(𝑡)‖𝐿2(Ω)) ≤ 𝐶ℎ3 sup
𝑡∈(𝑡𝑚̃−1,𝑇 ]

‖∆𝑣𝑘(𝑡)‖
1
2
𝐿2(Ω)‖∆

2𝑣𝑘(𝑡)‖
1
2
𝐿2(Ω)

≤ 𝐶
ℎ3

𝑡
3
2
𝑚̃

‖𝑣0‖𝐿2(Ω) ≤ 𝐶
ℎ3

𝑇
3
2
‖𝑣0‖𝐿2(Ω).

(22)

In the last step, we used the estimate 1
𝑡𝑚̃

≤ 2
𝑇 which holds true, since 𝑡𝑚̃ was chosen such that 𝑇

2 ∈ 𝐼𝑚̃, and
thus, 𝑇

2 ≤ 𝑡𝑚̃. Combining these results gives the proposed estimate for 𝐽1:

𝐽1 ≤ 𝐶
ℎ3

𝑇
3
2

ln
𝑇

𝑘
‖𝑣0‖𝐿2(Ω)‖(𝑅ℎ𝑣𝑘 − 𝑣𝑘ℎ)(𝑇 )‖𝐿2(Ω).

To estimate 𝐽2 we insert an artificial zero by adding and subtracting 𝑣−𝑘,𝑚̃,

𝐽2 = ((𝑅ℎ𝑣𝑘,𝑚̃ − 𝑣𝑘ℎ,𝑚̃)−, 𝑦+
𝑘ℎ,𝑚̃) = ((𝑅ℎ𝑣𝑘,𝑚̃ − 𝑣𝑘,𝑚̃)−, 𝑦+

𝑘ℎ,𝑚̃) + ((𝑣𝑘,𝑚̃ − 𝑣𝑘ℎ,𝑚̃)−, 𝑦+
𝑘ℎ,𝑚̃) := 𝐽21 + 𝐽22.
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The term 𝐽21 can be estimated with (22), the discrete smoothing result of Lemma 4.8 applied to ‖𝑦+
𝑘ℎ,𝑚̃‖𝐿2(Ω)

and the special choice of 𝑚̃:

𝐽21 ≤ sup
𝑡∈(𝑡𝑚̃−1,𝑇 )

‖(𝑅ℎ𝑣𝑘 − 𝑣𝑘)(𝑡)‖𝐿2(Ω))‖𝑦+
𝑘ℎ,𝑚̃‖𝐿2(Ω)

≤ 𝐶
ℎ3

𝑡
3
2
𝑚̃

‖𝑣0‖𝐿2(Ω)‖𝑦𝑘ℎ(𝑇 )‖𝐿2(Ω) ≤ 𝐶
ℎ3

𝑇
3
2
‖𝑣0‖𝐿2(Ω)‖(𝑅ℎ𝑣𝑘 − 𝑣𝑘ℎ)(𝑇 )‖𝐿2(Ω).

To estimate 𝐽22 we use Lemma 6.8 by using 𝑡𝑚̃ as artificial endtime. Here it is of importance, that the derived
constant does not depend on the endtime, since we need to replace 𝑡𝑚̃ by 𝑇 later. This can only be done, when
the explicit dependence of the result of Lemma 6.8 on the endtime is known. We thus get after inserting the 𝐿2

projection operator:

𝐽22 = ((𝑃ℎ𝑣𝑘,𝑚̃ − 𝑣𝑘ℎ,𝑚̃)−, 𝑦+
𝑘ℎ,𝑚̃)

= (∆−2
ℎ (𝑃ℎ𝑣𝑘,𝑚̃ − 𝑣𝑘ℎ,𝑚̃)−,∆2

ℎ𝑦
+
𝑘ℎ,𝑚̃)

≤ ‖∆−2
ℎ (𝑃ℎ𝑣𝑘,𝑚̃ − 𝑣𝑘ℎ,𝑚̃)−‖𝐿2(Ω)‖∆2

ℎ𝑦
+
𝑘ℎ,𝑚̃‖𝐿2(Ω)

≤ 𝐶 ln
(︂
𝑡𝑚̃
𝑘

)︂
‖𝑣0‖𝐿2(Ω)

ℎ3

(𝑇 − 𝑡𝑚̃)2
‖(𝑅ℎ𝑣𝑘 − 𝑣𝑘ℎ)(𝑇 )‖𝐿2(Ω).

In the last step, we have used Lemma 6.8 for ‖∆−2
ℎ (𝑃ℎ𝑣𝑘,𝑚̃ − 𝑣𝑘ℎ,𝑚̃)−‖𝐿2(Ω) and the discrete smoothing result

of Lemma 4.8 for ‖∆2
ℎ𝑦

+
𝑘ℎ,𝑚̃‖𝐿2(Ω). Since 𝑦𝑘ℎ is a solution to a backwards problem, we use 1

𝑇−𝑡𝑚̃
, instead of 1

𝑡𝑚̃
.

We now replace all occurrences of 𝑡𝑚̃ by 𝑇 . As before, we use 𝑇
2 ∈ 𝐼𝑚̃ yielding 𝑡𝑚̃ ≤ 𝑇

2 + 𝑘. For fine enough
time discretizations (i.e. 𝑇

4 > 𝑘) we have

𝑇 − 𝑡𝑚̃ ≥ 𝑇 − 𝑇

2
− 𝑘 ≥ 𝑇 − 𝑇

2
− 𝑇

4
=
𝑇

4
,

thus giving 1
𝑇−𝑡𝑚̃

≤ 𝐶 1
𝑇 . To estimate the logarithmic term, we use the following consideration: Let 𝑥 ∈ R such

that 𝑥 > 2. Then it holds 𝑥+ 1 ≤ 𝑥2. With the monotonicity of the logarithm, we obtain ln(𝑥+ 1) ≤ ln(𝑥2) =
2 ln(𝑥). Applying this to the logarithmic term, while using 𝑡𝑚̃ ≤ 𝑇

2 + 𝑘 and 𝑇
2𝑘 > 2, yields

ln
(︂
𝑡𝑚̃
𝑘

)︂
≤ ln

(︃
𝑇
2 + 𝑘

𝑘

)︃
= ln

(︂
𝑇

2𝑘
+ 1
)︂
≤ 2 ln

(︂
𝑇

2𝑘

)︂
≤ 2 ln

(︂
𝑇

𝑘

)︂
.

This gives a bound for 𝐽22, depending on the final time 𝑇 ,

𝐽22 ≤ 𝐶
ℎ3

𝑇 2
ln
𝑇

𝑘
‖𝑣0‖𝐿2(Ω)‖(𝑅ℎ𝑣𝑘 − 𝑣𝑘ℎ)(𝑇 )‖𝐿2(Ω).

Dividing all considered terms by ‖(𝑅ℎ𝑣𝑘 − 𝑣𝑘ℎ)(𝑇 )‖𝐿2(Ω) gives the proposed estimate. �

We now show a similar result for the discrete Laplacian.

Lemma 6.10. Let 𝑣𝑘 ∈ 𝑋𝑟
𝑘 and 𝑣𝑘ℎ ∈ 𝑋𝑟,2

𝑘,ℎ be the semidiscrete and fully discrete solutions of (4) and (9),
respectively. Then there exists a constant independent of 𝑘, ℎ, and 𝑇 such that

‖∆ℎ(𝑅ℎ𝑣𝑘 − 𝑣𝑘ℎ)(𝑇 )‖𝐿2(Ω) ≤ 𝐶ℎ3

(︂
1
𝑇 3

+
1
𝑇

5
2

)︂
ln
𝑇

𝑘
‖𝑣0‖𝐿2(Ω).
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Proof. Let 𝑦𝑘ℎ ∈ 𝑋𝑟,2
𝑘,ℎ be the solution to a dual problem with 𝑦𝑘ℎ(𝑇 ) = ∆ℎ (𝑅ℎ𝑣𝑘 − 𝑣𝑘ℎ) (𝑇 ), i.e 𝑦𝑘ℎ ∈ 𝑋𝑟,2

𝑘,ℎ

satisfies
𝐵(𝜙𝑘ℎ, 𝑦𝑘ℎ) = (𝜙𝑘ℎ(𝑇 ),∆ℎ(𝑅ℎ𝑣𝑘 − 𝑣𝑘ℎ)(𝑇 )) for all 𝜙𝑘ℎ ∈ 𝑋𝑟,2

𝑘,ℎ.

As in the previous lemma, in order to simplify notation, we define 𝜓𝑘ℎ := 𝑅ℎ𝑣𝑘 − 𝑣𝑘ℎ ∈ 𝑋𝑟,2
𝑘,ℎ. We introduce

𝜓𝑘ℎ ∈ 𝑋𝑟,2
𝑘,ℎ to be zero on 𝐼1 ∪ . . . ∪ 𝐼𝑚̃ and 𝜓𝑘ℎ = 𝜓𝑘ℎ on 𝐼𝑚̃+1 ∪ . . . 𝐼𝑀 for 𝑚̃ chosen such that 𝑇

2 ∈ 𝐼𝑚̃. We
define 𝑦𝑘ℎ analogously. Choosing ∆ℎ𝜓𝑘ℎ as test function in the definition of 𝑦𝑘ℎ, and transfering the cutoff from
the first argument of 𝐵 to the second, by applying (11), we get

‖∆ℎ (𝑅ℎ𝑣𝑘 − 𝑣𝑘ℎ) (𝑇 )‖2𝐿2(Ω) = 𝐵(∆ℎ𝜓𝑘ℎ, 𝑦𝑘ℎ)

= 𝐵(𝜓𝑘ℎ,∆ℎ𝑦𝑘ℎ)

= 𝐵(𝜓𝑘ℎ,∆ℎ𝑦𝑘ℎ) +
(︁
𝜓−𝑘ℎ,𝑚̃,∆ℎ𝑦

+
𝑘ℎ,𝑚̃

)︁
= 𝐵(𝑅ℎ𝑣𝑘 − 𝑣𝑘ℎ,∆ℎ𝑦𝑘ℎ) +

(︁
(𝑅ℎ𝑣𝑘,𝑚̃ − 𝑣𝑘ℎ,𝑚̃)−,∆ℎ𝑦

+
𝑘ℎ,𝑚̃

)︁
= 𝐵(𝑅ℎ𝑣𝑘 − 𝑣𝑘,∆ℎ𝑦𝑘ℎ) +

(︁
(𝑅ℎ𝑣𝑘,𝑚̃ − 𝑣𝑘ℎ,𝑚̃)−,∆ℎ𝑦

+
𝑘ℎ,𝑚̃

)︁
= 𝐽1 + 𝐽2.

Here we have used the Galerkin orthogonality (10) with respect to the bilinear form 𝐵. By the definition of
the Ritz projection the terms (∇(𝑅ℎ𝑣𝑘 − 𝑣𝑘),∇∆ℎ𝑦𝑘ℎ)𝐼𝑚×Ω vanish from the form 𝐵, such that the remaining
terms of 𝐽1 are

𝐽1 =
𝑀∑︁

𝑚=𝑚̃+1

(𝜕𝑡(𝑅ℎ𝑣𝑘 − 𝑣𝑘),∆ℎ𝑦𝑘ℎ)𝐼𝑚×Ω +
𝑀∑︁

𝑚=𝑚̃+1

([𝑅ℎ𝑣𝑘 − 𝑣𝑘]𝑚,∆ℎ𝑦
+
𝑘ℎ,𝑚).

Applying Hölder’s inequality in space and time gives

𝐽1 ≤ ‖𝜕𝑡(𝑅ℎ𝑣𝑘 − 𝑣𝑘)‖𝐿∞((𝑡𝑚̃,𝑇 );𝐿2(Ω))‖∆ℎ𝑦𝑘ℎ‖𝐿1((𝑡𝑚̃,𝑇 );𝐿2(Ω)) +
𝑀∑︁

𝑚=𝑚̃+1

‖[𝑅ℎ𝑣𝑘 − 𝑣𝑘]𝑚‖𝐿2(Ω)‖∆ℎ𝑦
+
𝑘ℎ,𝑚‖𝐿2(Ω).

Introducing an artificial factor 1 as 𝑘𝑚 · 𝑘−1
𝑚 in the sum allows us to extract the term

max𝑚̃≤𝑚≤𝑀

{︀
𝑘−1

𝑚 ‖[𝑅ℎ𝑣𝑘 − 𝑣𝑘]𝑚‖𝐿2(Ω)

}︀
out of the sum. This gives

𝐽1 ≤ max
𝑚̃≤𝑚≤𝑀

‖𝜕𝑡(𝑅ℎ𝑣𝑘 − 𝑣𝑘)‖𝐿∞(𝐼𝑚;𝐿2(Ω))‖∆ℎ𝑦𝑘ℎ‖𝐿1((𝑡𝑚̃,𝑇 );𝐿2(Ω))

+ max
𝑚̃≤𝑚≤𝑀

{︀
𝑘−1

𝑚 ‖[𝑅ℎ𝑣𝑘 − 𝑣𝑘]𝑚‖𝐿2(Ω)

}︀(︃ 𝑀∑︁
𝑚=𝑚̃+1

𝑘𝑚‖∆ℎ𝑦
+
𝑘ℎ,𝑚‖𝐿2(Ω)

)︃
.

Using Corollary 4.7 and the 𝐿2 error estimate for the Ritz projection for the other terms, gives the following
estimate,

𝐽1 ≤ 𝐶ℎ3

(︂
max

𝑚̃≤𝑚≤𝑀
‖𝜕𝑡𝑣𝑘‖𝐿∞(𝐼𝑚;𝐻3(Ω)) + max

𝑚̃≤𝑚≤𝑀

{︀
𝑘−1

𝑚 ‖[𝑣𝑘]𝑚‖𝐻3(Ω))

}︀)︂
ln
𝑇

𝑘
‖∆ℎ(𝑅ℎ𝑣𝑘 − 𝑣𝑘ℎ)(𝑇 )‖𝐿2(Ω).

Similar to the previous lemma, by the estimate (18) of Lemma 6.4 and Remark 6.1, yielding 𝜕𝑡∆𝑣𝑘(𝑡) ∈ 𝐻1
0 (Ω)

for 𝑡 ∈ (𝑡𝑚̃−1, 𝑇 ], we obtain

‖𝜕𝑡𝑣𝑘(𝑡)‖𝐻3(Ω) ≤ 𝐶‖𝜕𝑡∆𝑣𝑘(𝑡)‖
1
2
𝐿2(Ω)‖𝜕𝑡∆2𝑣𝑘(𝑡)‖

1
2
𝐿2(Ω).



FULLY DISCRETE POINTWISE SMOOTHING ERROR ESTIMATES 3109

Taking the supremum over (𝑡𝑚̃−1, 𝑇 ] and using Lemma 4.8 then yields

max
𝑚̃≤𝑚≤𝑀

‖𝜕𝑡𝑣𝑘(𝑡)‖𝐿∞(𝐼𝑚;𝐻3(Ω)) ≤ 𝐶 max
𝑚̃≤𝑚≤𝑀

‖𝜕𝑡∆𝑣𝑘(𝑡)‖
1
2
𝐿∞(𝐼𝑚;𝐿2(Ω))

⃦⃦
𝜕𝑡∆2𝑣𝑘(𝑡)

⃦⃦ 1
2

𝐿∞(𝐼𝑚;𝐿2(Ω))

≤ 𝐶
1

𝑡
5
2
𝑚̃

‖𝑣0‖𝐿2(Ω) ≤ 𝐶
1
𝑇

5
2
‖𝑣0‖𝐿2(Ω).

Applying the same arguments, using ∆𝑣𝑘(𝑡) ∈ 𝐻1
0 (Ω) for 𝑡 ∈ (𝑡𝑚̃−1, 𝑇 ), and Lemma 4.8 gives

max
𝑚̃≤𝑚≤𝑀

{︀
𝑘−1

𝑚 ‖[𝑣𝑘]𝑚‖𝐻3(Ω)

}︀
≤ max

𝑚̃≤𝑚≤𝑀

{︂
𝑘−1

𝑚

(︀
‖Δ[𝑣𝑘]𝑚‖𝐿2(Ω)‖Δ

2[𝑣𝑘]𝑚‖𝐿2(Ω)

)︀ 1
2

}︂
≤ 𝐶

1

𝑡
5
2
𝑚̃

‖𝑣0‖𝐿2(Ω) ≤ 𝐶
1

𝑇
5
2
‖𝑣0‖𝐿2(Ω).

Summarizing all above results yields the final bound for 𝐽1:

𝐽1 ≤ 𝐶ℎ3 1
𝑇

5
2

ln
𝑇

𝑘
‖𝑣0‖𝐿2(Ω)‖∆ℎ(𝑅ℎ𝑣𝑘 − 𝑣𝑘ℎ)(𝑇 )‖𝐿2(Ω).

To estimate 𝐽2 we insert an artificial zero like before by adding and subtracting 𝑣−𝑘,𝑚̃:

𝐽2 = ((𝑅ℎ𝑣𝑘,𝑚̃ − 𝑣𝑘ℎ,𝑚̃)−, Δℎ𝑦+
𝑘ℎ,𝑚̃) = ((𝑅ℎ𝑣𝑘,𝑚̃ − 𝑣𝑘,𝑚̃)−, Δℎ𝑦+

𝑘ℎ,𝑚̃) + ((𝑣𝑘,𝑚̃ − 𝑣𝑘ℎ,𝑚̃)−, Δℎ𝑦+
𝑘ℎ,𝑚̃) := 𝐽21 + 𝐽22.

The term 𝐽21 can be estimated similarly to the previous lemma, applying (22), the discrete smoothing result
of Lemma 4.8 for ‖∆ℎ𝑦

+
𝑘ℎ,𝑚̃‖𝐿2(Ω) and using the special choice of 𝑚̃:

𝐽21 ≤ sup
𝑡∈(𝑡𝑚̃−1,𝑇 )

‖(𝑅ℎ𝑣𝑘 − 𝑣𝑘)(𝑡)‖𝐿2(Ω)‖∆ℎ𝑦
+
𝑘ℎ,𝑚̃‖𝐿2(Ω)

≤ 𝐶
ℎ3

𝑡
3
2
𝑚̃

‖𝑣0‖𝐿2(Ω)
1

𝑇 − 𝑡𝑚̃
‖𝑦𝑘ℎ(𝑇 )‖𝐿2(Ω)

≤ 𝐶
ℎ3

𝑇
5
2
‖𝑣0‖𝐿2(Ω)‖∆ℎ(𝑅ℎ𝑣𝑘 − 𝑣𝑘ℎ)(𝑇 )‖𝐿2(Ω).

We estimate 𝐽22 by replacing 𝑣𝑘,𝑚̃ with its 𝐿2-projection:

𝐽22 = ((𝑃ℎ𝑣𝑘,𝑚̃ − 𝑣𝑘ℎ,𝑚̃)−,∆ℎ𝑦
+
𝑘ℎ,𝑚̃)

= (∆−2
ℎ (𝑃ℎ𝑣𝑘,𝑚̃ − 𝑣𝑘ℎ,𝑚̃)−,∆3

ℎ𝑦
+
𝑘ℎ,𝑚̃)

≤ ‖∆−2
ℎ (𝑃ℎ𝑣𝑘,𝑚̃ − 𝑣𝑘ℎ,𝑚̃)−‖𝐿2(Ω)‖∆3

ℎ𝑦
+
𝑘ℎ,𝑚̃‖𝐿2(Ω)

≤ 𝐶
ℎ3

(𝑇 − 𝑡𝑚̃)3
ln
(︂
𝑡𝑚̃
𝑘

)︂
‖𝑣0‖𝐿2(Ω)‖∆ℎ(𝑅ℎ𝑣𝑘 − 𝑣𝑘ℎ)(𝑇 )‖𝐿2(Ω).

In the last step, we have used Lemma 6.8 for ‖∆−2
ℎ (𝑃ℎ𝑣𝑘,𝑚̃−𝑣𝑘ℎ,𝑚̃)−‖𝐿2(Ω) and the discrete smoothing result of

Lemma 4.8 for ‖∆3
ℎ𝑦

+
𝑘ℎ,𝑚̃‖𝐿2(Ω). Since 𝑦𝑘ℎ is the solution to a problem backward in time, we use 1

𝑇−𝑡𝑚̃
instead

of 1
𝑡𝑚̃

in the application of this result. Analogously to the previous lemma, we can replace the terms involving
𝑡𝑚̃ by ones dependent only of 𝑇 because of the special choice of 𝑡𝑚̃, thus giving the final bound for 𝐽22,

𝐽22 ≤ 𝐶
ℎ3

𝑇 3
ln
𝑇

𝑘
‖𝑣0‖𝐿2(Ω)‖∆ℎ(𝑅ℎ𝑣𝑘 − 𝑣𝑘ℎ)(𝑇 )‖𝐿2(Ω).

Dividing all considered terms by ‖∆ℎ(𝑅ℎ𝑣𝑘 − 𝑣𝑘ℎ)(𝑇 )‖𝐿2(Ω) gives the proposed estimate. �

Combining Lemmas 6.9 and 6.10 with the discrete Gagliardo-Nirenberg inequality (15) gives the following result:
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Corollary 6.11. Let 𝑣𝑘 ∈ 𝑋𝑟
𝑘 and 𝑣𝑘ℎ ∈ 𝑋𝑟,2

𝑘,ℎ be the semidiscrete and fully discrete solutions of of (1) with
𝑣0 ∈ 𝐿2(Ω). Then there exists a constant independent of 𝑘 and ℎ such that

‖(𝑅ℎ𝑣𝑘 − 𝑣𝑘ℎ)(𝑇 )‖𝐿∞(Ω) ≤ 𝐶ℎ3 ln
𝑇

𝑘

(︂
1
𝑇 3

+
1
𝑇

5
2

)︂𝑁
4
(︂

1
𝑇 2

+
1
𝑇

3
2

)︂(1−𝑁
4 )
‖𝑣0‖𝐿2(Ω).

This result now allows us to estimate the final term 𝑇3 of (19) and thus proves Theorem 6.6.

6.2. Estimates for (𝑣 − 𝑣𝑘ℎ)(𝑇 ) with 𝑣0 ∈ ℳ(Ω)

Now that we have established Theorem 6.6 for 𝑣0 ∈ 𝐿2(Ω), following exactly the proof of Theorem 5.3, and
using the Assumption 6.2, we can establish

Theorem 6.12. Let Ω0 be a subdomain with Ω0 ⊂ Ω, 𝑣0 ∈ ℳ(Ω) with supp 𝑣0 ⊂ Ω0. Let 𝑣 and 𝑣𝑘ℎ ∈ 𝑋𝑟,2
𝑘,ℎ

satisfy (1) and (9), respectively. In addition, let Ω be such that Assumption 6.2 holds.

‖(𝑣 − 𝑣𝑘ℎ)(𝑇 )‖𝐿∞(Ω0) ≤ 𝐶(𝑇,Ω0)
(︀
ℓ𝑘ℎ

3 + 𝑘2𝑟+1
)︀
‖𝑣0‖ℳ(Ω),

where ℓ𝑘 = ln 𝑇
𝑘 , 𝑑 = dist(Ω0, 𝜕Ω) and 𝐶(𝑇, 𝑑) is a constant depending on 𝑇 and 𝑑.
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[18] A.H. Schatz, V.C. Thomée and L.B. Wahlbin, Maximum norm stability and error estimates in parabolic finite element equa-
tions. Comm. Pure Appl. Math. 33 (1980) 265–304.

[19] A.H. Schatz and L.B. Wahlbin, Interior maximum norm estimates for finite element methods. Math. Comput. 31 (1977)
414–442.

[20] V. Thomée, Galerkin finite element methods for parabolic problems, 2nd edition. In Vol. 25 of Springer Series in Computational
Mathematics. Springer-Verlag, Berlin (2006).



FULLY DISCRETE POINTWISE SMOOTHING ERROR ESTIMATES 3111

[21] G. Wanner, E. Hairer and S.P. Nørsett, Order stars and stability theorems. BIT Numer. Math. 18 (1978) 475–489.

Please help to maintain this journal in open access!

This journal is currently published in open access under the Subscribe to Open model
(S2O). We are thankful to our subscribers and supporters for making it possible to
publish this journal in open access in the current year, free of charge for authors and
readers.

Check with your library that it subscribes to the journal, or consider making a personal donation to
the S2O programme by contacting subscribers@edpsciences.org.

More information, including a list of supporters and financial transparency reports,
is available at https://edpsciences.org/en/subscribe-to-open-s2o.

mailto:subscribers@edpsciences.org
https://edpsciences.org/en/subscribe-to-open-s2o

	Introduction
	Very weak solutions and regularity
	Discretization
	Time discretization
	Space discretization

	Parabolic smoothing
	Smoothing estimates for the continuous problem
	Smoothing estimates for the discrete solutions

	Smoothing type error estimates
	Review of pointwise smoothing error estimates for v0L2()
	Pointwise smoothing error estimates for v0M()

	Higher order space discretizations
	Proof of Theorem 6.6
	Estimates for (v-vkh)(T) with v0M()

	References

