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1. Mathematical details for crossover analysis

1.1 Derivation of the maximum likelihood estimate of crossover frequencies

Let ng, 1, and 1, be the numbers of haplotypes having zero, one, or two recombination breakpoints

on a given chromosome, respectively. Analogously, let cy, c¢1, and ¢, be the probabilities of having zero,

one, or two crossovers on that chromosome. We assume at most two crossovers per chromosome. The

likelihood of data given parameters is

(no 4+ ny + ny)! o 1 12
nO!nlan! 0F1r2

IP(T’IO, nq, i’l2|C(], Cl/CZ) =

where

po=co+c1/2+cy/4
p1=c1/2+c2/2
p2=c2/2

The log-likelihood L(cy, ¢, c3) = InP is thus given by (the difference is up to a constant):

L~mnpln <1—%1—?%> —I—mh(%—l—%)—knzln(%)

Maximizing this function yields

co = (ng—ny+nz)/(ng+ny+ny)
c1 = (2n1 —4ny)/(ng + nq + ny)
¢ = 4ny/ (ng + nq + ny)

(S1)

(52)

(S3)

(54)

However, the data sometimes contained too many recombined individuals (e.g., due to stochastic

sampling error) and ¢y became negative. Then we maximized L along the boundary of the region

c1 +c2 < 1. Since ¢c; > 0 (no crossover is very unlikely), we substituted ¢; = 1 — ¢, into the above

likelihood and maximized it within 0 < ¢, < 1. This approach produced the following adjustment to

the estimate:

Co =
c; = (ng —ny)/(ng + ny)

c5 = 2ny/ (ng + ny)

(S5)



2. Mathematical details for analyzing pupal weight on the Z chromo-
some

2.1 Derivation of R? /R3 for different architectures of pupal weight

First, let’s clarify our notations. The introgressed ancestry fraction on a chromosome (in this case,
the Z chromosome) is denoted as f. Marker ancestry at relative position / (0 <[ < 1) is p;, and it takes

n-marker Z-ancestry

binary values:

1, if introgressed
(S6)

0, if notintrogressed

This setup is sufficient for analyzing the single Z chromosome in backcross females.

Theorem 1 (Statistics under the crossover model). Crossover on the Z chromosome can be approx-
imated by randomly selecting a position as the only crossover. With this model, we have the following

statistics:

Elf] =1/2
Var[f] =1/6

Elp] =1/2
Var[p;| = 1/4 (S7)

Cov(f, ;) = %[1 +21(1 - 1)1

W

1
S ) = —(1 - lzl)

Proof. For these statistics, it is helpful to think about the following probabilities on a backcross female’s

Z chromosome (df is the differential in f):

P(f=0)=P(f=1)=- (Non-recombined)
IP(Introgressed from the right-hand-side with a fraction f) = i df (Recombined) (S8)

1
IP (Introgressed from the left-hand-side with a fraction f) = 1 df (Recombined)

We immediately have E[f], E[p;], Var[f], and Var|p;| from such probabilities. For covariances,

Elppu] = § + 31— [h— b2
1 1 (59)
Blfpl =+ [ faf+5 [0 faf= L3+



These quantities are sufficient to derive the covariances between variables. ]

Definition 1 (The linear polygenic model). For pupal weight W, we define its polygenic model as a
linear function of average introgressed ancestry (f) on the Z chromosome:

W=uaf +w (510)

where « and w are slope and intercept, respectively.

Note: This linear polygenic model will be generalized to nonlinear functions of f when analyzing
ovary dysgenesis (discussed in section 2.3). All results in this section must be understood as the joint

consequences of:
* A specific genotype-phenotype map (e.g., a linear polygenic model or other QTL models)
* A particular crossover process occurring on these butterflies” Z chromosome
* A backcross brood

With these assumptions in mind, we can predict expected patterns of marker-phenotype association.

Theorem 2 (Polygenic model & 1-marker scans). Conditioning on the polygenic model of pupal weight,
we have the following relationship for 1-marker scans:

2
Rl —marker
2

Z—ancestry

2
=g |1 +20- l)] (S11)

[68)
—

Polygenic

Proof. The polygenic model of pupal weight posits that phenotype W is a linear function of f. Thus,

2

the regression power of 1-marker scans R{ ;..

2
Z-ancestry’

at position /, relative to the power of regression using

Z-ancestry R is simply the squared correlation coefficient between f and p;:

R} Cov?(py, f) 3{ 2

1-marker 2 P,

—5 e = =—=—1—|—211—l} (S12)
R ooy 7 VarlpVarls] 8| T

O

The above equation shows an artifactual QTL at the center of the Z chromosome (I = 0.5) that

. . 2
maximizes R__ .-



Theorem 3 (1-QTL model & 1-marker scans). Conditioning on a 1-QTL model of pupal weight, where
the single QTL is at position x, we have the following relationship for 1-marker scans:

R%—marker _ § |: 1- |l - x‘ }2 (S13)
R%—ancestry 1-QTL 311+ 2x(1 N x)

Proof. Since the marker at position x contains all phenotypic information, the regression power using
another marker at position / is the squared correlation coefficient between p, and p;, (i.e., p%x,pl). Simi-
larly, the regression power using the Z-ancestry is p%x 2 Thus,

R%—marker — p%}X'pl — Covz(px’ pl) — § |: 1 B |l B x’ :|2 (514)
R%—ancestry p%)x,f p%x,fvar[px]var[pl] 311+ 2x(1 - x)
O]

Theorem 4 (2-QTL model & 1-marker scans). Conditioning on a 2-QTL model of pupal weight, where
the two QTLs are at positions x1 and xp (x1 < x2) with equal additive effects, we have the following
relationship for 1-marker scans:

2 2
lemarker _ % |: 2 — |l — X1| — |l — .X2| (815)
R%famces’cry 2-QTL 3 [1+x(1—x1)+2x2(1—x2)

Proof. Using the same logic as above theorem, this ratio between the two regression powers is

R%—marker _ p%’fl TPxp P
R%—ancestry p fﬂxl +pxy.f

_ [Cov(pw, p1) +Cov(pry, p)]* | Var[f]Var[py, + p]

Var[pl]Var[pxl + sz] [COV(le,f) + COV(pr,f)]Z (S16)
_ Varlf] {Cov(pxl,m + &w(pxz,pz)r
Var[pi] | Cov(px, f) + Cov(pay, f)
2 2—|l-x|—l—x| ]
"3 {1 +x1(1—x1) + x2(1 — xz)}

]

The above 2-QTL/1-marker relationship shows that markers between x; and x; all have the same
predictive power, because 2 — |l — x1| — |l — x| = 2 4+ x1 — x2 is independent of ] when x1 < I < x5.

Below, we derive additional results when more than one markers are used.



Theorem 5 (Polygenic model & n-marker scans). Conditioning on the polygenic model of pupal
weight, and assume that n markers with additive effects are used to fit the genotype-phenotype map, the
relationship between regression powers is:

_ -T - -1 - ,
Ppi.f 1 Opip, ~° Ppy.pi, Ppu,.f
R%—marker _ | Pryf Ppi,.p1, 1 Py, Pr,.f (S17)
R%—ancestry Polygenic : : : K : :
| Ppf || PPy Ppiap, 1 ] | Ppif |

Proof. This relationship is by definition the formula for the coefficient of multiple correlation between

fandp, -, pi,. O

Corollary 1 (Polygenic model & 2-marker scans). This is the explicit formula for Theorem 5 using two

additive markers (n = 2):

R3 _ver _ 6l — b+ - 1)2 +3[1 + 21 (1 — I)][1 + 2L (1 — )]
R2 8 —4[l; — |

Z—ancestry polygenic

(S18)

Equation S18 shows that the two most informative markers under the polygenic model and 2-
marker scans are located near I ~ 0.27 and I, ~ 0.73—about a quarter into the chromosome from
both ends.

3. Mathematical details for analyzing ovary dysgenesis on the Z chro-

mosome

The same notation near Equation S6 is used throughout this subsection. In pupal weight analysis,
the polygenic model posits that weight is a linear function of introgressed ancestry fraction on the Z
chromosome (i.e., W and f are perfectly linearly correlated, ignoring noise). Since the expected ovary
phenotypes in D(DB) females and Heliconius females are nonlinear with respect to f, we now consider

a generalized polygenic model, where the expected phenotype V is a continuous function of f:

V=23(f) (519)

When g is a linear function, we recover the polygenic model for pupal weight. If ¢ is a nonlinear func-
tion, it corresponds to global epistasis on Z-linked introgression. Moreover, we assume more generally
that crossover positions are distributed along the chromosomal axis following a probability density
function:

c(l) (The distribution of single crossover positions), (S20)



Apart from this general assumption, we still assume that each chromosome pair per meiosis has one

and only one crossover.

3.1 Artifactual QTL in 1-marker scans when the architecture is polygenic

The regression power of a 1-marker scan using the marker at position I against phenotype V is

R2 Covz(pl, V)

T-marker = Var[p Var[V] (521)

Since Var[p;] = 1/4 and Var|[V] is independent of /, the magnitude of R? on different markers

1—marker

depends only on Cov(p;, V).

Theorem 6 (Covariance between p; and V). Let h(f) = g(1 — f) — g(f). The covariance between p;
and V is given by the following formula:

Cov(p, V) = [ +/1l c(1—f df+/ f] (522)

Proof. First, we have

Blpl =5, BV = 15(0)+ 3s() + [ s(etdf+; [ s0-fe(fdf 29

The expectation of the product variable p;V is

E[p,V] = 4/ df+4/ (1= fe(f)df (S24)

Thus,

Cov(p, V) = {s) =g+ [ gt =N — (et - Har+ [ lgt= - (e o

(S25)
It is thus natural to define h(f) = g(1 — f) — g(f), which measures the level of asymmetry of the
function g(f) with respect to f = 1/2. This yields the final result. O

Theorem 7 (The existence of artifactual QTL in 1-marker scans). Suppose the polygenic model is
true, and crossover positions are distributed according to c(l). In that case, the necessary and sufficient
condition for a non-zero association between a marker and a trait in a backcross brood is that g(f) is a

reflectionally asymmetric function with respect to f = 1/2. (Example: Figure S12A-F)

Note. For simplicity, “with respect to” is written as “w.r.t.”

Proof. The equivalent statement of the theorem is:



i)Cov(p;, V) =0foralll <« ii)g(f)issymmetricw.rt. f=1/2.

Proving ii) = i) is straightforward because a symmetric g(f) means h(f) = 0, so Cov(p;, V) = 0.
To prove i) = ii), since Cov(p;, V) = 0, we have

0=0,Cov(p;, V) = %{—[g(l) —8(1=Dle(l) +[g(1 =1) =g(D)]e()} (S26)

Thus, g(I) = g(1 — 1), and g is symmetric w.r.t. position f = 0.5.

Finally, take the contrapositive statement to get the original theorem:
i) Cov(p;, V) #0forsome! <« ii)g(f)isasymmetricw.rt. f =1/2.
O

If crossover positions are uniformly distributed along the chromosome (e.g., Papilio males), we have

2

¢(I) = 1. Then, the expected regression power Ry

will always be a symmetric function w.r.t. [ =

2
1—marker

0.5, because Cov(p;, V) = Cov(pi_;, V). Thus, all properties of R can be discussed assuming

that [ < 1/2. Next, we give a sufficient condition for the existence of a unique peak of R%_ marker at the

chromosome center under uniform crossovers.

2

I —marker at the chromosome center for

Theorem 8 (A sufficient condition for a unique peak of R

uniform crossovers). If h(f) is a continuous function and has no zeros in 0 < f < 1/2, then there is a

unique peak for RS __ . at the chromosome center (I = 1/2). (Examples: Figure $12C,D)
Proof. Again, note that RZ | is proportional to Cov?(p;, V) by a constant factor, so we only need to

prove the existence of a unique peak for Cov?(p;, V) at I = 1/2. Second, h(f) is anti-symmetric w.r.t.
f =1/2.1f r < 1/2, the first integral in Equation 522 is:

[ nprar= [ npar 527)
0 B 0

Thus, )
1
Cov?(p, V) = g [1O)+2 [ h() ] (<28)

By anti-symmetry, #(1/2) = 0. Since h(f) is continuous and has no zeros in 0 < f < 1/2, h(f) does not
switch signin 0 < f < 1/2. Thus, if 1(0) > 0, the integrand in the previous equation will be positive,

2
and [h(O) +2 fé h(f) df] is an increasing function of lup to! = 1/2. If 1(0) < 0, the integrand will be
2
negative, and [h(O) +2 fol h(f)d f] is still an increasing function of /. If #(0) = 0, h(f) will always be

positive or negative, and the same result holds. Thus, Cov?(p;, V) is an increasing function of I when
0 <1 <1/2,and by symmetry of Cov(p;, V), Cov?(p;, V) has a unique maximum at [ = 1/2. O



For ovary dysgenesis in Papilio D(DB) females, since more normal phenotypes are suppressed in
backcrosses when the Z chromosome is not recombined in ancestry, we may assume that #(0) = g(1) —
¢(0) = 0. Then,

Co(p, V) = 3¢ | [ ) dfr
Var(p)] = & 52
varv) = 1 [l5(9) s ar [ [ lstr) - sonar]

Without loss of generality, define §(f) = g(f) — g(0), and so i(f) = h(f). The regression power can

thus be expressed as

Rl = | [T000r] /L2 [ 005~ [ [510f] ) (530

3.2 Artifactual epistatic QTL in 2-marker scans when the architecture is polygenic

To investigate the statistical interaction between a pair of markers to predict a trait, it is conventional

to work with binary ancestry defined as

(S31)

1, if introgressed
—1, if not introgressed

Note that this representation does not change any prior results assuming additivity among markers.
For two markers at positions /; and I, we assume that /; < I. The following statistics are associated

with the crossover model with the new ancestry representation:

1)

E[py,pi,] =1 —/l c(f)df
! (S32)

Var[py, p1,] = Z/IIZZC(f) df — [/lllz c(f) df}2

Let the average magnitude of g(f) be:
1
g§= /0 g(f)df (S33)

Then, we have the covariance between p;, p;, and V as follows.

10



Theorem 9 (Covariance between py, p;, and V). Let H(f) = g(f) + (1 — f) — 28. The covariance
between py, p1, and V' is given by the following formula:

Covlpyp V) =3 [ [HO)+ [ @) ax—211()| e() af (534

Proof. First, we arrange terms into the form of ¢(f) + g(1 — f):

Elp V] = 330+ 350+ 5 ([ + [ = [)senar+5 ([ + [ = [7)sa-nenas
~ 1 [s+50) (/“+/lz—/lz) [g(f)+g(1—f)16(f)df]
:H +( —2/) ]+<1—/11126(f)df)§
ElppEV] = [1- ["etnar] |3 <o>+§+}1 [ et af]
(S35)
Thus,
Cov(ppn, V) = Elpyp, V] — Elp, pr,|E[V]
- 1HO) ["etar+ / H(e(naf [Cepar—g [ 39
1 [ 1O+ [ et ax— 20100 et ap
[

Theorem 10 (The existence of artifactual interacting QTL pairs in 2-marker scans). Suppose the
polygenic model is true, and crossover positions are distributed according to c¢(1). In that case, the necessary
and sufficient condition for a non-zero interaction between a pair of markers is that g(f) is a rotationally
asymmetric function with respect to the point (1/2, f(1/2)) by a degree of 180°. Examples: Figure S14.

Proof. The logic is similar to the proof of Theorem 7. Take the derivative w.r.t. either /1 or /5 of the above

covariance, we get:

1
0 = 9,Cov(py,p1,, V] = 1 { —l—/ x)dx —2H(lp) | c(l2) (S37)

Since ¢(I,) cannot be zero for all I, we have

H(L) = 5 (0) + E/o H(x)c(x)dx = Const. (S38)

11



This implies that ¢(f) + g(1 — f) = Const. This relationship indicates that g is a rotationally symmetric
function w.r.t. the point (1/2,¢(1/2)) by a degree of 180°. Conversely, if g is rotationally symmetric,
H(f) =0, so the integrand becomes zero, and covariance is globally zero. O

12



Figure S1: Confocal imaging of ovary phenotypes in Papilio. Scale bar=200um. Left column: Hoechst
(DNA); Middle column: WGA (membrane); Right column: Phalloidin (actin filaments). (A-C) Pheno-
type Normal in pure individuals. (D-F) Phenotype Normal in F; DB hybrids. (G-I) Phenotype Empty
in F; BD hybrids.

13



Figure S2: Confocal imaging of ovary phenotypes in Papilio (continued). Scale bar=200um. Left col-
umn: Hoechst (DNA); Middle column: WGA (membrane); Right column: Phalloidin (actin filaments).
(A-C) Phenotype Diminished (only in backcross individuals). (D-F) Phenotype Jammed (only in back-
cross individuals).

14



0.0 0.125 0.25 0.375 0.5

Figure S3: Kinship among individuals in Papilio after correcting for misplaced individuals in the pedi-
gree. The horizontal axis contains family information (each “FXX” is a single family), and the vertical
axis shows individual identifiers.
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Figure S4: Inferred de novo marker order against the corrected reference genome of Papilio bianor
shows good collinearity except for chromosome 14. Vertical lines in gray represent boundaries between
PacBio scaffolds. Some chromosomal ends appear to have recombination suppressed (large blocks of
unordered markers).
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Figure S5: Inferred paternal haplotypes among all backcross individuals on chromosomes 1-10 in Pa-
pilio. Blue curves show the recombination probability of each marker to the left end of each chro-
mosome. Yellow curves show the recombination probability of each marker to the right end of each
chromosome. Red curves are linkage maps measured in cM.
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Figure S6: Inferred paternal haplotypes among all backcross individuals on chromosomes 11-20 in
Papilio. Blue curves show the recombination probability of each marker to the left end of each chro-
mosome. Yellow curves show the recombination probability of each marker to the right end of each
chromosome. Red curves are linkage maps measured in cM.
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Figure S7: Inferred paternal haplotypes among all backcross individuals on chromosomes 21-Z in Pa-
pilio. Blue curves show the recombination probability of each marker to the left end of each chro-
mosome. Yellow curves show the recombination probability of each marker to the right end of each
chromosome. Red curves are linkage maps measured in cM.
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Figure S8: One-marker scans of pupal weight in Papilio on the Z chromosome by r/qtl2. (A,B) LOD
scores on the Z chromosome. (C) Peaks identified by r/qtl2 and their confidence intervals (CI) at the

95% level.
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Figure S9: Expected results of 1-marker scans with the polygenic model versus 2-QTL models that best
tit the observed curves in Papilio pupal weight. (A) In D(DB) females, the polygenic model can better
fit 1-marker scans. For the best 2-QTL model, the relative locations of the two QTLs are 0.21 and 0.74.
(B) In B(BD) females, the fully polygenic model is worse at fitting 1-marker scans than the best 2-QTL
model. For the best 2-QTL model, the relative locations of the two QTLs are 0.23 and 0.73.

21



A D(DB) B B(BD)

0.7 0.7
a a
= 0.6 = 0.6
C - C [
o 9 9 R,
5 05 & G &
2 g 2 0> 8
o I o [
R 0.4 % O 0.4 &
s 0.3 s 0.3
0 5 10 15 0 5 10 15
Marker-1 position (Mb) Marker-1 position (Mb)

Figure S10: Results of 2-marker regression on pupal weight in Papilio. Model prediction powers are
nearly identical between the additive model (W ~ p;, + p;,) and the full model with an extra epistasis
term (W ~ py, + pi, + p,p,)- Thus, epistasis adds little information to predicting pupal weight in
backcrosses.
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Figure S11: Z chromosome ancestry haplotypes in D(DB) females and Heliconius backcrosses. (A,B)
Z chromosome haplotypes in D(DB) females associated with phenotype Normal. This phenotype is
associated with Z chromosomes recombined in either direction. Gray: inherited from P. dehaanii; Red:
inherited from P. bianor. (C) Z chromosome haplotypes in Heliconius backcross females grouped by
ovary stages (larger=more normal). Gray: inherited from H. pardalinus butleri; Red: inherited from H.
p. sergestus.
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Figure S12: Different reflectional symmetry of ¢(f) leads to different results of 1-marker scans. The
uneven distribution of R? does not reflect an uneven distribution of phenotypic effects, because the
model is fully polygenic. Simulated using 10* backcross individuals with uniform crossover positions.
(A,B) A reflectionally symmetric g(f) w.r.t. f = 0.5 produces no marker-phenotype association in 1-
marker scans. (C,D) A reflectionally asymmetric g(f) satisfying Theorem 8, i.e., no zeros in h(f) when
0 < f < 1/2, produces a unique peak at the chromosome center. (E,F) A reflectionally asymmetric g(f)
violating conditions in Theorem 8 can produce multiple peaks in 1-marker scans, but the shape of R? is
still symmetric w.r.t. [ =1/2.
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Figure S13: Ovary phenotypes in D(DB) females partitioned by the Z-chromosome ancestry fraction.
(A) Ovary phenotypes in D(DB) females are well described by the Z-chromosome ancestry fraction.
Sample dots represent one round of phenotype assignment for individuals with ambiguous pheno-
types. (B) LOD scores of defective ovary phenotypes in D(DB) females using 1-marker scans. The Z
chromosome is significantly associated with phenotypes Diminished and Jammed. This significant as-
sociation is predicted by the polygenic model, because there is a strong reflectional asymmetry in g(f)
when the phenotype occurs only when the Z chromosome has little introgression (Diminished) or with
nearly full introgression (Jammed).
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Figure S14: Different rotational symmetry of g(f) leads to different results of 2-marker scans. The
heatmap contains two genotype-phenotype models. The “Pairwise interaction only” model uses the
regression V ~ 1+ py, p;,, while the “Full model” includes additive terms: V' ~ 1+ p;, + p, + p1,p1,-
The uneven distribution of R? does not reflect an uneven distribution of phenotypic effects, because the
model is fully polygenic. Simulated using 10* backcross individuals with uniform crossover positions.
(A,B) A rotationally symmetric g( f) w.r.t. the function center produces no interaction between markers.
(C-F) A rotationally asymmetric g(f) w.r.t. the function center produces interaction between markers.
If the function is also reflectionally symmetric (panels C and D), there will be no additive effects, so the
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Figure S15: Two narrow regions of major effects control ovary dysgenesis in maternally bianor hybrids.
(A) Phenotype Empty is dominantly controlled by Locus E on the Z chromosome. The LOD plot shows
both the score for the canonical Empty phenotype as well as the score when we include a few ambigu-
ous individuals that are classified as Empty. (B) If the Z chromosome is purely bianor, introgression on
Locus R from dehaanii suppresses abnormal phenotypes.
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Figure S16: Average sequence divergence (Dxy) between parental P. dehaanii and P. bianor used in the
experiment. Each data point is estimated for 50kb non-overlapping chromosomal windows.
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Table S1: Summary of locus E and locus R in Papilio

Locus Chromosome Position (Mb) LOD  95% Confidence interval (Mb)
E (canonical+ambiguous) Z 12.18279 40.12502 [11.64904, 12.25411]
E (canonical) Z 11.45892 45.56313 [11.37611 12.25411]
R 8 0.366353 4.875207 [0.005916 0.784124]
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Table S2: The ratio of genetic variance between male and female pupal weight among backcross indi-
viduals in Papilio

Cross direction D(DB) B(BD)

Vg,Male/ Vg,Female 0.37 0.23
95% Confidence interval of V, ratio  (0.18,0.62) (0.05, 0.46)

30



	Mathematical details for crossover analysis
	Derivation of the maximum likelihood estimate of crossover frequencies

	Mathematical details for analyzing pupal weight on the Z chromosome
	Derivation of R2n-marker/R2Z-ancestry for different architectures of pupal weight

	Mathematical details for analyzing ovary dysgenesis on the Z chromosome
	Artifactual QTL in 1-marker scans when the architecture is polygenic
	Artifactual epistatic QTL in 2-marker scans when the architecture is polygenic


