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Abstract: Fundamental knowledge in activity recognition of individuals with motor disorders such
as Parkinson’s disease (PD) has been primarily limited to detection of steady-state/static tasks (e.g.,
sitting, standing, walking). To date, identification of non-steady-state locomotion on uneven terrains
(stairs, ramps) has not received much attention. Furthermore, previous research has mainly relied
on data from a large number of body locations which could adversely affect user convenience and
system performance. Here, individuals with mild stages of PD and healthy subjects performed
non-steady-state circuit trials comprising stairs, ramp, and changes of direction. An offline analysis
using a linear discriminant analysis (LDA) classifier and a Long-Short Term Memory (LSTM) neural
network was performed for task recognition. The performance of accelerographic and gyroscopic
information from varied lower/upper-body segments were tested across a set of user-independent
and user-dependent training paradigms. Comparing the F1 score of a given signal across classifiers
showed improved performance using LSTM compared to LDA. Using LSTM, even a subset of
information (e.g., feet data) in subject-independent training appeared to provide F1 score > 0.8.
However, employing LDA was shown to be at the expense of being limited to using a subject-
dependent training and/or biomechanical data from multiple body locations. The findings could
inform a number of applications in the field of healthcare monitoring and developing advanced
lower-limb assistive devices by providing insights into classification schemes capable of handling
non-steady-state and unstructured locomotion in individuals with mild Parkinson’s disease.

Keywords: activity recognition; classification schemes; non-steady-state locomotion; Parkinson’s
disease

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder of the central nervous system
affecting approximately 40 million people worldwide [1]. PD is characterized by a number
of motor impairments and gait disorders such as tremor, postural instability, bradykinesia
and rigidity [2]. To monitor the progression of the disease and to measure the efficacy
of the treatments, accurate tracking of individual’s motor activities is essential. Current
approaches for evaluating the motor function of individuals with PD are limited to the
observer-based and self-reported methods [3]. In observer-based assessment, patients
are required to travel to a clinic to perform a set of pre-defined tests. The self-reported
approach requires individuals to periodically answer a list of questions about their daily
activities. Although useful and currently applied in clinical practice, such evaluations may
have some limitations. For instance, they are limited to only a few sessions per year and are
costly and inconvenient for both patients and medical providers. They are also subjective
and do not adequately reflect motor activities in a free-living environment [4]. Thus, there
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is a need for developing systems that are convenient and provide quantitative measures of
ambulatory performance.

An activity recognition system could provide clinicians with a quantitative profile of
motor function behavior in natural settings and over prolonged periods of time, which
could further assist them to objectively adapt treatment strategies. Individuals with PD are
more susceptible to fall-related injuries due to postural instability and gait disturbances [5,6].
Real-time monitoring of PD patients’ locomotion could provide important information
about the risk of falls, which could be used subsequently to apply timely interventions and
prevent associated injuries leading to better quality of life [7,8]. Physical activity monitoring
could also complement current approaches for detecting disease-specific predictors such as
tremor, bradykinesia or hyperkinesia [9,10] to distinguish the symptoms during various
locomotor activities. Furthermore, the ability to accurately identify individuals intended
locomotion could help inform the control of assistive devices [11].

While activity recognition has received significant attention, few studies have applied
that specifically to individuals with mobility disorders. In PD, neurological disorders
caused by the disease such as altered gait, tremor, and limited mobility have the potential
to complicate and adversely affect the monitoring of patient’s physical activity. Studies
such as [9,10,12] have reported on activity monitoring of individuals with PD, however
there are limitations that need to be addressed. First, the tasks did not comprehensively
represent the activities of daily living, focusing instead on recognition of static/steady-state
tasks (e.g., walking, sitting, and standing) performed in isolation. Individuals encounter
uneven terrain environments (e.g., stairs and ramps), perform dynamic activities and
transition from one task to another in their home and community. Deficits in task switching
in individuals with mild Parkinson’s disease challenge their ability to unconsciously shift
their attention from one task to another [13,14]. This further emphasizes the significance of
developing task recognition frameworks capable of handling unstructured and non-steady-
state activities. Second, previous studies primarily relied on input data from entire body, or
multiple segments such as trunk, shanks, forearms and thighs [15,16]. Capturing data from
multiple body locations encumbers the patient [17], makes the classification problem more
complicated, and increases computation time [18]. An important consideration in activity
recognition frameworks is to identify the locations of the body providing the best ability to
discriminate between tasks with minimum number of input signals. Furthermore, previous
research has primarily focused on within-subject analysis [10], and the generalizability of
such studies to subject-independent scenarios has been an unanswered question.

In this study, we collected data from both healthy subjects and PD patients performing
a set of unstructured and non-steady state activities. The tasks were designed to challenge
cognitive impairment (e.g., difficulty with set shifting) of the individuals with PD [13,14].
An offline analysis using two commonly used classifiers including a linear discriminant
analysis (LDA) and a Long-Short Term Memory (LSTM) neural network was performed
for task recognition. The generalizability of two user-independent paradigms trained on
healthy subjects and PD patient data to a novel patient was tested. Subsequently, the results
were compared to subject-dependent training. The performance of accelerographic and
gyroscopic data from bilateral foot, forearm, trunk-pelvis, and their fusion were tested
within training paradigms. We hypothesized that a more complex classifier (i.e., LSTM)
would be more appropriate for modeling non-steady-state tasks, and would outperform
LDA. We further hypothesized that collecting data from multiple body locations might not
always be necessary depending on the employed classification algorithm and training data.

2. Methods
2.1. Subjects and Data Collection

Five healthy subjects (4 males, 1 females, age 25.2 ± 2.5 years, height 1.75 ± 0.11 m,
mass 66.8 ± 12.2 kg) and five individuals with early stage PD (2 males, 3 females, age
62.8 ± 3.9 years, height 1.72 ± 0.03 m, mass 77.5 ± 17.88 kg, Hoehn and Yahr stage 1
or 2) participated in the study after providing written informed consent to participate
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in the protocol approved by the Institutional Review Board at The University of Texas
Southwestern Medical Center. Patients did not have a deep brain stimulator implanted
and were medicated with their prescribed dosage at the time of experiments. Sixty-six
reflective markers were attached to anatomical body locations to track 12 body segments
of upper-limb, lower-limb, and trunk (Figure 1B). Upper-limb segments include left and
right forearms and upper arms. Lower-limb segments include left and right thighs, shanks
and feet. Trunk segments includes torso and pelvis [19,20]. A 10-camera optical motion
capture system (Vicon, Motion Systems Ltd., Oxford, UK) was used to capture marker
trajectories at 100 Hz in three-dimensional space. Experimental setup consisted of a “terrain
park” circuit including an over-ground walkway, a four-step staircase with step height of
0.15 m and depth of 0.30 m, a 2.5 m ramp inclined at 10◦, and elevated platforms to connect
the stairs and ramp (Figure 1A). Participants were asked to perform sets of four walking
trials where they alternated starting point (A and B) as well as beginning the trial with
their left leading and right leading leg (Figure 1A). Healthy subjects performed five sets
while using the handrails, and five sets without using the handrails (total of 40 trials per
person). Individuals with PD were asked to walk at their comfortable speed and perform
five trials of the circuit for both left leading and right leading legs in the following orders:
stair ascent-ramp descent and ramp ascent-stair descent (total of 20 trials per person). They
were instructed to walk at a comfortable speed, and to use handrails when desired to
ensure safety.

Figure 1. (A) “Terrain park” circuit setup was comprised of a four-step staircase, a ramp and elevated
platforms. Subjects performed trials of the circuit in the following orders: They started at point A,
performed the locomotion as shown, and stopped at point B. They executed the tasks in the reverse
order in the next trial, starting at point B and ending at point A. Circuit trials were performed for both
the left leading and right leading legs. (B) Sixty-six reflective markers were attached to anatomical
body locations to track 12 body segments of the arms, legs, and torso.

2.2. Signal Processing and Classification Schemes

Accelerographic and gyroscopic information of anatomical body segments including
feet, trunk-pelvis, and forearms were calculated in three-dimensional trajectories and ex-
pressed in local segment coordinate systems using Visual3D (C-Motion, Inc., Germantown,
MD, USA). The tasks included ramp ascent (RA), ramp descent (RD), stair ascent (SA), stair
descent (SD), and level-ground walking (LW). In the training data set, changes of direction
on the elevated platform, level-walking data that followed stair/ramp, and level walking
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preceding stair/ramp (Figure 1A) were all marked as LW. However, level-ground walking
data that preceded and followed stair/ramp were tested separately and labeled as LWp and
LWf respectively. The beginning of each locomotor mode was marked as the last toe-off of
the transitioning leg on the previous terrain. Data were exported to MATLAB (MathWorks,
Natick, MA, USA) for further analysis. In order to classify the locomotor activities of
individuals with PD, the following classification algorithms, training paradigms, and signal
sources were studied.

Classification Algorithms

• Linear discriminant analysis (LDA)
• Long-short-term memory (LSTM) recurrent neural network. LSTM network parame-

ters were set as follows: batch size = 50, number of epochs = 70, number of layers = 100

Training Paradigms

• Subject independent I: The classifiers were trained on able-bodied data and evaluated
on PD patient’s data.

• Subject independent II: The classifiers were trained on PD patients’ data, leave-one-
subject-out was performed across the patients for model evaluation.

• Subject dependent: Training and testing were performed within trials of each PD
patient’s data using cross-validation.

Signal Sources

• Feet
• Trunk-pelvis
• Forearms
• Signal fusion (combination of feet, trunk-pelvis, and forearms data)

Signals were divided into sliding and overlapping analysis windows of size 500 ms
with 250 ms increment [21]. The classifiers associated each window to one of the locomotor
tasks. To classify the tasks using LDA, six time-domain features including minimum, maxi-
mum, mean, standard deviation, first and last sample of each window were extracted [22].
The six features were computed per window. These features are computationally inexpen-
sive and have functioned relatively well in intent recognition frameworks [23,24]. LSTM
was applied on raw data without employing feature extraction. The number of neurons
in the input layer was adjusted according to the number of input signals. For instance,
for feet, forearms, and trunk-pelvis data, input layer was comprised of 12 neurons as we
utilized bilateral accelerographic and gyroscopic signals in three dimensional trajectories.
For the combination of all signals (signal fusion) input layer had 36 neurons. Parameters
optimized for LSTM include batch size, number of epochs, and number of hidden units.
The optimal value for the parameters were selected not just based on the best outcome but
also considering the computation time needed to reach that outcome. For instance, while
200 epochs often provided better outcomes relative to 70, the improvement was negligible.
Thus, 70 was selected as the optimal number of epochs. Using similar approach, batch size
and the number of hidden units were selected as 50 and 100 respectively. A cross-entropy
cost function was used to compare the predicted value with the real value during each
epoch. Then, Adam optimizer was applied to reduce the loss function values by updating
networks weights [25].

2.3. System Evaluation

The subject-independent paradigms were evaluated as follows: in subject independent
I, classifiers were trained on only able-bodied data and were tested on all the PD patient
data. The results were then averaged across the subjects. In subject independent II, leave-
one-subject-out cross validation was performed across PD patients’ data. Each time, data
from one patient was left out, and the model was trained on the remaining patients’ data.
The one patient data not included in the training step was used to test the performance
of the model. The results were reported as the average across the patients. In subject-
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dependent paradigm, data from the same patient was used in the training and test sets.
Within patient leave-one-trial-out cross validation was performed to evaluate the models.
At each evaluation step, one trial of a given task was excluded from the training set and
was used to test the model.

To evaluate the models, we used F1 score which is the harmonic mean of precision
and recall—Equation (1). The F1 score is typically employed for imbalanced datasets
where some classes have larger number of samples compared to others. In such scenarios
using accuracy as an evaluation metric can be misleading since the majority class could be
classified with high accuracy while the minority class is highly misclassified.

F1 score = 2 × precision × recall
precision + recall

(1)

In Equation (1), precision is the number of correctly classified samples out of total
number of samples classified as the target class. Recall presents correctly classified samples
out of the total samples of the target class. Confusion matrices were also computed to
quantify the classification results of the proposed scenarios. They provide information
about the number of correctly classified as well as misclassified windows across the subjects
during each locomotor task. We performed analysis of variance (ANOVA) with the factors
being classification algorithms, training paradigms, and signal sources. Post-hoc tests were
performed where statistically significant effects were reported (α = 0.05). Tukey’s HSD was
used to find out which specific group’s means (compared with each other) are different.

3. Results

Within each training paradigm, comparing the F1 scores of signal sources showed
improved performance using LSTM relative to LDA. Similarly, subject-dependent out-
performed subject-independent paradigms. However, the differences were not always
statistically significant. Superior performance of LSTM to LDA was most notable in LWp
and when trained on able-bodied data where LDA provided F1 scores ranging 0.19–0.39,
while LSTM significantly increased the outcomes to 0.84–0.9 (p < 0.05) (Tables 1 and 2).
Comparing F1 scores across subject-independent paradigms I and II did not demonstrate
any statistically significant differences (p > 0.05). However, improved performance of
subject-dependent relative to subject-independent paradigms was observed. The signifi-
cant improvement (12–133%) of subject-dependent versus subject-independent training
was most notable when LDA was applied. For instance, F1 scores for the classification
of RA improved from 0.56, 0.67, 0.44, and 0.63 to 0.78, 0.84, 0.79, and 0.92 for the feet,
trunk-pelvis, forearms, and signal fusion respectively using subject-dependent versus
subject-independent I. (p < 0.05). Similar outcomes were obtained comparing subject-
dependent versus subject-independent II (p < 0.05). However, in SD, while the feet signals
in subject-dependent paradigms outperformed that in subject-independent (0.91 versus
0.81 and 0.85) the differences were not statistically significant (p > 0.05).
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Table 1. F1 scores for classification of target locomotor tasks using signals from varying body segments and across different classification algorithms and training
paradigms. values in the parenthesis are standard deviations.

Subject Independent I Subject Independent II Subject Dependent

Signal
Source LDA LSTM LDA LSTM LDA LSTM

Feet Trunk-
Pelvis Forearms Fusion Feet Trunk-

Pelvis Forearms Fusion Feet Trunk-
Pelvis Forearms Fusion Feet Trunk-

Pelvis Forearms Fusion Feet Trunk-
Pelvis Forearms Fusion Feet Trunk-

Pelvis Forearms Fusion

RA 0.56
(0.07)

0.67
(0.05)

0.44
(0.08)

0.63
(0.07)

0.87
(0.1)

0.87
(0.18)

0.85
(0.1)

0.86
(0.11)

0.61
(0.08)

0.68
(0.1)

0.46
(0.21)

0.78
(0.11)

0.89
(0.07)

0.77
(0.31)

0.73
(0.21)

0.91
(0.07)

0.78
(0.09)

0.84
(0.09)

0.79
(0.08)

0.92
(0.06)

0.94
(0.06)

0.98
(0.03)

0.97
(0.03)

0.99
(0.02)

RD 0.69
(0.08)

0.62
(0.15)

0.42
(0.22)

0.78
(0.1)

0.94
(0.04)

0.95
(0.05)

0.68
(0.2)

0.95
(0.03)

0.70
(0.04)

0.64
(0.17)

0.50
(0.17)

0.70
(0.12)

0.85
(0.14)

0.89
(0.16)

0.76
(0.19)

0.95
(0.03)

0.81
(0.07)

0.82
(0.06)

0.82
(0.06)

0.90
(0.06)

1.00
(0.01)

0.96
(0.05)

0.97
(0.03)

0.99
(0.01)

SA 0.79
(0.08)

0.79
(0.08)

0.57
(0.13)

0.91
(0.08)

0.92
(0.04)

0.62
(0.35)

0.84
(0.1)

0.92
(0.01)

0.79
(0.12)

0.52
(0.32)

0.40
(0.18)

0.74
(0.25)

0.86
(0.08)

0.73
(0.34)

0.67
(0.22)

0.85
(0.08)

0.94
(0.05)

0.88
(0.06)

0.86
(0.08)

0.95
(0.06)

0.98
(0.03)

0.94
(0.08)

0.95
(0.05)

0.98
(0.03)

SD 0.81
(0.1)

0.60
(0.33)

0.41
(0.15)

0.90
(0.06)

0.96
(0.02)

0.94
(0.07)

0.74
(0.17)

0.95
(0.03)

0.85
(0.04)

0.60
(0.27)

0.64
(0.04)

0.68
(0.35)

0.92
(0.05)

0.90
(0.05)

0.64
(0.18)

0.91
(0.1)

0.91
(0.04)

0.90
(0.04)

0.85
(0.05)

0.93
(0.04)

1.00
(0.01)

0.98
(0.02)

0.99
(0.02)

0.99
(0.01)

LWp 0.39
(0.23)

0.19
(0.22)

0.32
(0.19)

0.39
(0.25)

0.90
(0.04)

0.84
(0.21)

0.84
(0.09)

0.90
(0.06)

0.55
(0.22)

0.59
(0.27)

0.58
(0.19)

0.60
(0.37)

0.83
(0.12)

0.77
(0.33)

0.76
(0.1)

0.91
(0.05)

0.65
(0.17)

0.66
(0.17)

0.60
(0.13)

0.91
(0.05)

0.90
(0.1)

0.92
(0.11)

0.82
(0.25)

0.95
(0.07)

LWf 0.62
(0.12)

0.89
(0.03)

0.57
(0.09)

0.80
(0.07)

0.92
(0.05)

0.92
(0.03)

0.82
(0.1)

0.92
(0.05)

0.59
(0.22)

0.74
(0.15)

0.59
(0.2)

0.74
(0.16)

0.89
(0.07)

0.88
(0.08)

0.77
(0.13)

0.91
(0.06)

0.78
(0.09)

0.87
(0.04)

0.83
(0.05)

0.92
(0.04)

1.00
(0.0)

0.98
(0.02)

0.99
(0.01)

0.99
(0.01)

Table 2. Confusion matrices for classification of target locomotor tasks using signals from varying body segments and across different classification algorithms and
training paradigms. The number of correctly classified windows for the target transitions are shown in bold. Non bold values are indicative of misclassification.

Subject Independent I Subject Independent II Subject Dependent

RA RD SA SD LW RA RD SA SD LW RA RD SA SD LW

Fe
et

LD
A

RA 284 0 73 0 16 301 0 26 0 46 365 0 0 0 8
RD 10 289 0 68 40 15 333 0 40 19 3 391 2 4 7
SA 24 0 308 0 1 45 0 269 1 18 14 1 316 0 2
SD 0 9 0 275 0 0 11 0 272 1 0 6 0 275 3

LWp 69 92 12 4 88 29 100 4 3 129 57 73 11 1 123
LWf 261 40 49 60 408 210 105 33 45 425 135 93 12 44 534

LS
TM

RA 301 0 13 0 59 316 0 0 0 57 368 0 5 0 0
RD 0 373 0 6 28 0 340 1 3 63 0 404 0 2 1
SA 5 0 300 0 28 7 0 266 0 60 2 0 330 0 1
SD 0 0 0 273 11 0 1 1 256 26 0 0 0 284 0

LWp 3 4 14 0 244 13 18 1 1 232 36 1 1 0 227
LWf 11 4 0 10 793 1 6 4 4 803 0 0 0 0 818
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Table 2. Cont.

Subject Independent I Subject Independent II Subject Dependent

RA RD SA SD LW RA RD SA SD LW RA RD SA SD LW

Tr
un

k-
pe

lv
is LD

A

RA 319 0 41 0 13 307 0 21 0 45 352 0 7 0 14
RD 5 277 0 90 35 6 301 0 65 35 8 357 0 15 27
SA 75 1 255 0 2 103 1 158 0 71 18 1 312 0 2
SD 0 108 0 176 0 0 104 0 180 0 0 16 0 267 1

LWp 152 55 10 6 42 16 55 28 5 161 34 29 65 2 135
LWf 27 64 4 18 705 87 90 20 43 578 57 69 0 31 661

LS
TM

RA 349 0 0 0 24 272 2 40 0 59 364 3 0 0 6
RD 0 380 0 2 25 0 382 1 2 22 0 398 0 2 7
zSA 102 0 153 0 78 81 0 194 0 58 0 0 316 0 17
SD 0 8 0 272 4 0 64 0 203 17 0 0 0 275 9

LWp 25 4 0 0 236 26 9 6 0 224 7 15 26 0 217
LWf 1 7 0 27 783 1 37 10 17 753 0 0 0 1 817

Fo
re

ar
m

s

LD
A

RA 228 4 27 0 114 228 0 77 0 68 344 0 12 0 17
RD 1 195 0 145 66 17 218 2 113 57 7 373 0 15 12
SA 161 0 166 0 6 143 1 158 0 31 21 2 307 0 3
SD 0 99 0 174 11 0 55 0 225 4 0 16 0 264 4

LWp 96 100 2 10 57 14 62 20 16 153 42 59 56 1 107
LWf 173 6 31 203 405 129 71 126 57 435 80 59 8 59 612

LS
TM

RA 327 0 14 0 32 258 16 12 0 87 369 0 1 0 3
RD 0 212 0 56 139 4 317 0 10 76 6 397 0 2 2
SA 7 0 265 0 61 53 0 203 1 76 2 0 325 0 6
SD 0 0 0 211 73 0 57 0 173 54 0 0 0 277 7

LWp 6 4 11 0 244 12 9 35 1 208 14 6 22 0 223
LWf 62 1 4 14 737 32 46 4 84 652 0 2 0 0 816
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Table 2. Cont.

Subject Independent I Subject Independent II Subject Dependent

RA RD SA SD LW RA RD SA SD LW RA RD SA SD LW

Fu
si

on

LD
A

RA 324 0 25 0 24 330 0 5 0 38 370 0 0 0 3
RD 28 277 0 25 77 6 332 0 19 50 2 378 1 7 19
SA 12 0 316 0 5 46 1 232 0 54 10 0 317 0 6
SD 0 2 0 281 1 0 73 0 206 5 0 5 0 277 2

LWp 150 14 8 1 92 24 54 7 1 179 21 10 6 1 227
LWf 139 11 10 38 620 89 91 12 40 586 28 40 8 33 709

LS
TM

RA 304 0 6 0 63 341 0 1 0 31 373 0 0 0 0
RD 0 389 0 2 16 0 384 0 2 21 0 403 0 2 2
SA 6 0 298 0 29 23 0 254 0 56 0 0 330 0 3
SD 0 0 0 274 10 0 0 0 262 22 0 0 0 284 0

LWp 11 4 5 0 245 4 5 3 0 253 11 12 8 0 234
LWf 1 15 2 15 785 9 8 4 17 780 1 1 0 0 816
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In RA, using subject-independent paradigms with LDA did not result in accurate
recognition (F1 score < 0.8) (Table 1). RA was highly misclassified as SA and LW (Table 2).
In order for RA to be detected relatively accurate (F1 score ≥ 0.8), utilizing LSTM in subject-
independent paradigms appeared to be necessary. Within subject-independent paradigms,
signal fusion provided the highest performance (F1 score = 0.91) when LSTM was trained
on PD patients data, although there was not a statistically significant difference between
signal fusion and feet data (p > 0.05). Training LSTM on able-bodied data provided F1 scores
of 0.85–0.87 for this task, and no significant differences across signal sources were observed
(p > 0.05). RA was best classified using the subject-dependent paradigm and LSTM, where
all signal sources provided very accurate outcomes (F1 score = 0.94–0.97). Similar results
were obtained for RD, where using LDA with subject-independent paradigms did not
provide accurate detection of the locomotion (F1 score < 0.8) (Table 1). RD was highly
confused with SD and LW (Table 2). However, using LSTM and signal fusion in these
paradigms improved F1 scores to from 0.78 and 0.7 in subject-independent I and II to 0.95
in subject-dependent (p < 0.05). In subject-dependent paradigms, LDA appeared to provide
relatively accurate outcomes using all signal sources (F1 score = 0.81–0.9) for classification
of RD, and LSTM led to a highly accurate recognition (F1 score = 0.96–1).

F1 scores of below 0.8 were reported for SA using LDA with subject-independent
paradigms except when signal fusion with able-bodied training data were employed (F1
score = 0.91) (Table 1). SA was mostly confused with RA and LW (Table 2). However, LSTM
led to F1 scores of 0.85–0.92 for feet and signal fusion. In subject-dependent paradigm, both
LDA and LSTM appeared to provide improved outcomes for all signal sources relative to
subject-independent paradigms. However, the differences were not always statistically
significant. For instance, signal fusion appeared to provide comparable outcomes in subject-
independent I relative to subject-independent (i.e., 0.91 versus 0.95) for classification of SA
(p > 0.05). In SD, only a few signal sources provided relatively accurate (F1 score ≥ 0.8)
classification of this task using LDA and subject-independent paradigms (Table 1). SD was
highly confused with RD (Table 2). Applying LSTM, however, led to F1 scores of 0.91–0.96
using feet, trunk-pelvis, and signal fusion. SD was best classified when subject-dependent
training data was employed (F1 score = 0.85–1). Using LDA with subject-independent
paradigms resulted in a very poor recognition of LWp (F1 score = 0.19–0.6). Even in subject-
dependent training all signal sources except signal fusion demonstrated relatively low F1
scores (0.6–0.66) using LDA. LWp was mostly misclassified as RA/RD (Table 2). However,
applying LSTM significantly improved the outcomes to 0.82–0.95 (p < 0.05). Higher F1
scores were obtained for LWf compared to LWp in most cases, with LSTM outperforming
LDA in all training paradigms. Best outcomes were achieved when LSTM was used with
subject-dependent training data where F1 scores of 0.98–1 were reported.

Signals from the forearms had poor task generalization relative to that of trunk-pelvis
and feet. The inferior performance of forearms signals was more noticeable when LDA
was utilized (Table 1). This could be due to the significantly smaller degrees of forearms
movement and decreased ranges of motion compared to feet and trunk-pelvis [26,27]. A
small amount of forearms movement presents low inter-class variability, posing a more
difficult problem especially for a linear classifier [28].

4. Discussion

Locomotion identification strategies have the potential to be complicated by Parkinson
associated gait disturbances such as slowed movements, rigidity, tremor, and postural
instability which could affect the generalizability of the outcomes obtained in healthy
subjects to patient populations. Reduced self-regulating mechanisms could highly challenge
patient transitions from one task to another throughout the course of disease [13,14,29,30],
and negatively impact the detection of non-steady-state locomotor tasks. Identifying
reliable sources of information, appropriate training data, and classification algorithms
could significantly improve system outcomes and patient convenience [31]. Therefore,
the purpose of this study was to introduce a framework for continuous classification of
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non-steady-state activities of individuals with PD and investigate the benefits of different
classification schemes for an accurate user intent recognition. Activity classification is
essential for a complete ambulatory assessment of Parkinson related symptoms. For
example, when it is combined with monitoring of tremor and bradykinesia, the symptoms
during stair ambulation can be distinguished from that of walking [9]. It also enables
the complete analysis of motor symptoms. For instance, to compute step length or to
determine the ON and OFF states of PD patients during different activities, the activity
should be classified first [32]. Moreover, according to previous research, posture transitions
are associated with the risk of falls in PD patients [33]. Such framework can be used to
detect and analyze the patterns of posture transition during transitions from one terrain to
another to mitigate the risk of falls in this group of patients.

Our first hypothesis regarding better performance of LSTM relative to LDA was
supported. Within subject-independent paradigms, using a given signal source data
with LSTM outperformed LDA in different locomotor tasks. This was especially notable
in LWp where LDA resulted in poor task detection (F1 score = 0.19–0.6) while LSTM
remarkably improved the outcomes (F1 score = 0.76–0.91). When the locomotion involves
combinations of non-steady-state activities (e.g., circuit trials in this study), defining the
exact boundaries of non-isolated tasks becomes very challenging. In such scenarios, a given
task will have biomechanical characteristics of both the previous and the next activity [34]
which could negatively impact the performance of task classification approaches. This
is especially reflected when the duration of the task is short, so there is not enough time
for biomechanical signals to be adjusted to the ongoing task rather than pervious or
next mode. For instance, in this study, level ground turns before and after the single
step on the elevated platform (Figure 1A) were marked as level walking during classifier
training. These tasks have dominant biomechanical characteristics of the following and
the preceding uneven terrains. Learning such complex patterns in the training data and
distinguishing between level walking and other modes would be difficult problems for
a linear classifier. High misclassification rates are indicative of the same fact (Table 2).
According to our findings, models with non-linear decision boundaries (e.g., LSTM) could
be more appropriate for modeling non-steady-state locomotion especially in complex
datasets such as subject-independent paradigms. LSTM networks can capture long-term
temporal dependencies [35], allowing taking full advantage of the motion information
contained in the training data. Approaches that can exploit the temporal dependencies
in time-series data present the optimal choice for modelling human movement captured
with sensor data [36]. This temporal characteristic of the LSTM architecture and its long-
term dependences make it a solid candidate to extract temporal features from our motion
data explaining its improved performance relative to LDA for modeling non-steady-state
locomotion especially in complex datasets such as subject-independent paradigms.

Falls are common in people with PD patients and restrict participation in daily activi-
ties. Terrain characteristics is one of the major factors that contribute to falls in PD patients
According to [37,38], at the time of the fall, patients were either walking on a ramp, stairs, a
slope or that they had transitioned from one surface to another. Accurate understanding
and analysis of circumstances of falls could provide insights for improved functionality of
assistive technologies and activity monitoring systems in such circumstance. In subject-
independent paradigms, the number of signal sources providing relatively accurate (F1
score ≥ 0.8) recognition appeared to be higher using LSTM compared to LDA (Table 1).
For example, using LDA for detection of RA, RD and LWp resulted in F1 scores < 0.8
for all signal sources. Similar results were observed for SA, SD, and LWf where only a
few signal sources provided relatively accurate outcomes. However, when LSTM was
applied, at least two/three signal sources reached F1 scores of 0.8–0.95. This could suggest
higher flexibility in selecting input signal’s location using LSTM compared to LDA. The
results also support the second hypothesis, highlighting the fact that using a more complex
classification algorithm could provide simpler alternatives to collecting data from multiple
body locations. From a practical standpoint, this could improve computational complexity,



Appl. Sci. 2022, 12, 4682 11 of 14

patient convenience, and instrumentation cost by eliminating the need for sensorizing
multiple body segments [39,40]. For instance, feet signals demonstrated comparable perfor-
mance to signal fusion in all locomotor tasks when LSTM was applied (p > 0.05), suggesting
feet inertial data as the optimal input information that could properly function across a
range of activities with minimal instrumentation.

Statistically significant differences were observed between subject-dependent training
relative to subject-independent paradigms in most cases when LDA was applied. The lower
accuracy of subject-independent paradigms may be indicative of biomechanical differences
between healthy subjects and PD patients [41] as well as across PD patients [42,43]. This
could result in high intra-class variations posing a difficult problem for a linear classifier [28].
However, LSTM appeared to generalize better to such differences. Using LSTM led to
achieving more comparable outcomes for subject-independent and subject-dependent
paradigms (p > 0.05). For instance, comparing feet/signal fusion outcomes using LSTM
across training paradigms did not reveal any statistically significant differences between
subject-independent and subject-dependent training. This implies that LSTM could allow
building subject-independent activity recognition systems. Unlike subject dependent,
subject independent paradigms, are flexible enough to be applied on different users without
the need of retraining the model for each person. This would be of higher benefit in
individuals with PD where training the system for each user could be inconvenient due
to large number of tasks and increased risk of falls, stumbles and injuries during some
activities (e.g., non-steady-state transitions).

Neural networks (e.g., LSTM) can receive raw data with minimum pre-processing,
alleviating the need for manual feature engineering, thus could minimize engineering
bias. Frequency or time-domain features [22,44] used in conventional machine learning
algorithms (e.g., LDA) are problem-specific, and do not generalize well to other problems.
For instance, the optimum feature set could vary depending on the target activity. How-
ever, conventional algorithms are usually mathematically simple and computationally
inexpensive, and do not require large amount of training data. Nonetheless, in this study,
employing a mathematically simple classification algorithm such as LDA was shown to
be at the expense of being limited to using a training paradigms with lower variability
(e.g., subject-dependent) and/or instrumenting multiple body locations. Continuous task
classification implemented in this study has the capability to classify data as they are being
captured, which is crucial in the context of developing task monitoring scenarios and
assistive technologies. In individuals with robotic orthosis/exoskeleton, it would increase
the intuitiveness/volitional behavior of the device and enables smooth transitions between
locomotor activities. Continuous classification would also allow adaptive assistance [45],
predicting fall risks and intervening on these risks to mitigate falls [46]. The reduced levels
of flexibility to adapt to new tasks and difficulty in performing transitions in individuals
with PD [29,30] further highlights the advantages of developing such frameworks for
tracking characteristics of transitional periods as well as to track steady-state progress.

The study has some limitations. We considered the toe-off event during the transi-
tion period as the initiation of the upcoming task. Toe-off could be a relatively accurate
approximation of the task initiation where it occurs close to the physical transition point.
However, toe-offs occurred at greater distances may negatively impact the outcomes, since
a large portion of the gait cycle labeled as the upcoming locomotor task is still within
the previous mode. This could result in high misclassification rates especially during the
transition period. In future studies, the problem could be addressed by either modifying
task separation events, or separating data into steady-state and transitional periods, and
performing separate evaluation for each state [47]. Another limitation of this study is
that we used motion capture data and not the data from the actual wearable IMU sensors.
Real-world issues associated with the physical wearable sensors such as difficulties with
aligning the sensors [48], and inherent bias and drift errors in actual IMUs [49] may affect
system performance, and thus should be taken into consideration in future studies. While
PD patients did not experience freezing of gait during the experiments, their mechanics
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(joint kinematics) were observed to be different from control subjects [50]. We also observed
some “festination” and unilateral loss of arm swing (a form of automatic motion) which is
called bradykinesia. While these people did have observable differences, the purpose of
this study was not to quantify it. However, disease associated symptoms such as tremor
and bradykinesia could be more severe in patients with higher stages of the PD, which may
deteriorate the performance of classification algorithms especially in subject independent
scenarios. Further, a small sample of subjects participated in this study. Future research
should investigate the effects of using data from varied levels of disease severity and a
larger subject pool to accommodate for the potential across-subject variabilities. For LDA,
we selected features based on previous research for intent recognition frameworks. The
selected features are computationally inexpensive and have functioned relatively well
for intent recognition [23,24]. Neural networks (e.g., LSTM) learn features themselves
alleviating the need for manual feature engineer. We attempted to demonstrate this as an
advantage of such models in minimizing engineering bias. Feature engineering approaches
are problem specific and thus one set of features might not generalize well across all the
target activities. Thus, optimal features could significantly vary from one task to another
which negatively impacts the transition of such approaches into clinical setting by making
them task dependent.

5. Conclusions

We introduced a task recognition framework for tracking relatively unstructured
locomotor activities in individuals with mild PD. Our results demonstrated that, models
with non-linear decision boundaries (e.g., LSTM) could be more appropriate relative to
linear classifiers (e.g., LDA) for modeling non-steady-state locomotion. LSTM could provide
simpler alternatives (e.g., feet data) to collecting data from multiple locations improving
user convenience and system’s computational complexity for its eventual clinical use. The
model could also allow building subject-independent activity recognition systems that
are flexible enough to be applied on different users without the need of retraining the
model each time. These findings could provide insights into designing activity recognition
frameworks for healthcare monitoring and lower-limb assistive devices improving system
efficacy and user convenience without sacrificing accuracy.
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