
  

  

Abstract— We develop a task-independent predictive 
framework that estimates hip, knee and ankle future behavior 
from sonomyographic sensing of quadriceps musculature. Two 
regression models, support vector regression and Gaussian 
process regression, were trained and tested such that no 
ambulation mode recognition was required. Sonomyography 
features of the anterior thigh musculature were extracted during 
the swing phase of level, incline and stair ambulation tasks as 
inputs to the two models for continuous prediction of the future 
stance phase hip, knee and ankle moments. Next, 
sonomyography features of the anterior thigh musculature were 
extracted during the stance phase and used to predict the 
following swing phase hip, knee and ankle angles. Leave-one-
stride-out cross-validation is used to evaluate this continuous 
prediction framework. Additionally, initial, peak and terminal 
joint moment and angle parameters are extracted from 
trajectories and evaluated. Both regression models were able to 
accurately predict continuous future joint moments and angles, 
as well as initial, peak and terminal value parameters of future 
joint moments and angles. However, the support vector 
regression model required relatively lower computational cost. 
Thus, we recommend the support vector regression model as an 
optimal model for forward prediction of joint mechanics from 
sonomyographic sensing during ambulation. 

Index Terms—Machine Learning for Robot Control, 
Prosthetics and Exoskeletons, Sensor-Based Control 

I. INTRODUCTION 
Wearable robotic assistive devices can generate net 

mechanical power to assist or restore mobility to their users 
[1]. One device objective is to restore a disabled limb’s motor 
function to normal levels [2]. Currently-available technologies 
are commonly used to provide basic functionality, such as 
standing or level-ground walking. Wearable robots can enable 
greater functionality to their users by returning biologically-
accurate torque at to their joints [3]. However, to achieve 
robust control, hierarchical control structures are commonly 
implemented wherein at the highest level an activity mode is 
classified, and subsequently device parameters are adjusted 
based on various reference trajectories within each activity 
mode, as well as specific phases of each mode [4]–[6]. 
Alternatively, volitional and semi-volitional control 
approaches could provide users a greater level of command 
over their device during continuously-varying activities. 
However, volitional control requires a continuous joint-level 
input to direct future continuous joint-level responses—For 
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example estimating future joint angles or moments without the 
requirement of a pre-defined locomotor task label. Semi-
volitional control can be implemented in a variety of ways: one 
possibility is to predict specific parameters related to the 
desired motion that dictate the device output (e.g., quasi-
stiffness, peak joint angle, and terminal joint angle [7], [8]).  

To optimize control schemes during weight-bearing tasks, 
such as stance phase of gait, continuous prediction of joint 
moments or torques (for volitional control), or parameters 
related to joint moment (for semi-volitional control) are 
beneficial to effectively manage the interaction of the foot with 
the ground and provide optimal energy to the user [9]. During 
non-weight-bearing tasks, position-based controllers have 
been proposed as an optimal control strategy to ensure 
flexibility within the device to change position when not 
interacting with the ground [10], [11]. Both volitional and 
semi-volitional control rely on accurate sensing and precise 
mapping to device parameters. Sonomyography, or the 
evaluation of real-time ultrasound imaging of skeletal muscle, 
has been proposed as a high dimensional and localized sensing 
modality for robust control over multiple degree-of-freedom 
robotic prosthetic hands [12]–[14], torque control of an ankle 
exoskeleton [15], [16], and accurate estimation of ambulation 
mode [17], as well as continuous estimation of knee angle [18] 
and hip, knee and ankle moments [19]. However, 
sonomyography has not been evaluated for future prediction 
of continuous trajectories or parameterized features of hip, 
knee and ankle joint kinematics or kinetics during varying 
ambulation tasks. 

 We explore two commonly used supervised machine 
learning approaches in this study. Support vector regression 
(SVR) is a robust non-parametric approach for classification 
and function regression [20]. SVR is effective in high 
dimensional spaces (e.g., high dimensional sonomyography 
data) and use only a subset of training points in the decision 
function, improving memory efficiency and computational 
demand. However, SVR performance can decrease with noisy 
datasets. Previous researchers have utilized SVR for 
generating trajectories for walking humanoid robots, as well 
as to improve myoelectric simultaneous control of multiple 
degrees-of-freedom [21], [22]. Gaussian process regression 
(GPR) is a non-parametric Bayesian approach for solving 
non-linear regression [23], and has demonstrated success for 
modeling nonlinear dynamical systems such as human motion 
[24]. GPR produces probabilistic predictions that account for 
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inherent noise within the input feature set. However, GPR 
requires storage of the entire feature set for prediction, which 
can increase computational demand. The objective of both 
models is to fine tune precision, cost and the kernel regulator 
to optimize the trade-off between model complexity and 
output accuracy. We optimize these models for prediction of 
future continuous hip, knee and ankle joint moments during 
stance and joint angles during swing from sonomyography. 
Additionally, initial, peak and terminal values of the hip, knee 
and ankle moments and angles are predicted during stance and 
swing, respectively.  

The overall objective of this work is to develop and test a 
computational framework for sonomyography as an input to 
GPR and SVR models for both continuous prediction of 
future joint moments and angles, as well as parameters of 
future joint moments and angles. We hypothesize that 
sonomyography will enable accurate prediction of continuous 
joint trajectories via GPR and SVR, but that GPR will result 
in greater accuracy (lower error) for its ability to handle 
noisy datasets in comparison to SVR. Furthermore, we 
hypothesize that the GPR model prediction of joint moment 
and angle trajectories will result in greater accuracy of target 
parameters (namely, initial, peak and terminal values) in 
comparison to the SVR model prediction. In future studies, the 
ability to infer future joint moment and angle trajectories and 
parameters allows time for pre-processing and feature 
extraction, as well as for mapping of control inputs to device 
actuation. Furthermore, it would be beneficial if the input to 
these different control outputs (joint angles and moments) can 
be commanded by the same localized peripheral sensing 
modality (e.g., sonomyography). 

II. METHODS 

A. Data Collection 
 Ten able-bodied subjects (five males, five females) gave 
informed consent prior to participating in this experiment. 
The experimental protocol was approved by the institutional 
review board. Subjects were asked to complete five 
ambulation tasks at a self-selected speed: (1) level walking, 
(2) 10° incline walking, (3) 10° decline walking, (4) stair 
ascent and (5) stair descent. Walking trials were completed on 
a split-belt force-instrumented treadmill (Bertec Corporation) 
for one-minute. Stair trials were completed on a four-step 
staircase, beginning with stair ascent and followed by stair 
descent for five repetitions with a step-over-step alternating 
pattern. 
 During the locomotion experiment, subjects were equipped 
with a 128-element linear array ultrasound transducer affixed 
to the anterior thigh of their non-dominant limb via a custom-
designed holder. The transducer of a handheld and wearable 
ultrasound system (mSonics, Lonshine Technologies Inc.) 
was placed transversely on the anterior thigh to collect real-
time cross-sectional images of the rectus femoris, vastus 
medialis and vastus intermedius muscles with a transmit 
frequency of 7.5 MHz. Prior to the beginning of the 
locomotion experiment, US beam depth was adjusted to 
ensure a clear image from the superficial transducer-skin 

interface to the deep vastus intermedius boundary, balancing 
the effects of spatial resolution with penetration depth. 
 Reflective markers were placed over anatomical landmarks 
for collection of joint kinematic and kinetic data using a ten-
camera motion capture system (VICON Motion Systems, 
Inc.) with a sampling rate of 1000 Hz. Ground reaction force 
data were recorded from force plates within the instrumented 
treadmill with a sampling rate of 100 Hz.  All data were 
recorded to the same computer with time-stamping for 
synchronization of ultrasound, kinematic and kinetic data. 

B. Signal Processing 
 Ultrasound imaging is commonly used to visualize 
underlying soft tissue in the body, including skeletal muscle 
during movement [25]. Changes in muscle architecture, such 
as muscle thickness and cross-sectional area, as well as spatial 
changes in intensity of the grayscale ultrasound images have 
previously been correlated with changes in muscle strength 
[26], the onset of muscle contraction [27], [28], muscle force 
production [29] and resulting joint motion [14], [18]. 
Therefore, we extracted image intensity, as well as time-
derivative intensity sonomyography features from each frame 
of ultrasound for prediction of hip, knee and ankle joint 
mechanics. A spatial filter with a 3x3 mm block size was used 
reduce motion artifact and the mean intensity of each block 
was calculated. This resulted in 260 total 3x3 mm blocks of 
mean intensity. The 2-dimensional image array was reshaped 
into 1-dimension by horizontally concatenating each row of 
ultrasound features ranging from superficial to deep tissue. 
Next, the time derivative was taken between each consecutive 
frame of 260 ultrasound features, growing the feature set to 
520 total features of sonomyography for each ultrasound 
frame.  
 Hip, knee and ankle moments and angles were calculated 
using Visual 3D (C-Motion, Inc.) via inverse kinematics and 
dynamics.  Resulting joint moments and angles were low-pass 
filtered to reduce signal noise. Due to the lack of force plates 
in the stairs, ground reaction force data was not captured 
during stair ascent or stair descent and no joint moment data 
could be calculated for these ambulation tasks. Joint angle 
data were available for all five ambulation tasks. Heel strike 
and toe off events were recorded for all ambulation tasks. All 
sonomyography features, joint moment and angle datasets 
were segmented by heel strikes of the ultrasound-equipped 
limb. Next, sonomyography features were z-normalized for 
each subject, then split into separate datasets for stance and 
swing phases of each ambulation task. Hip, knee and ankle 
moments and angles were also split into stance and swing 
phases, respectively. Finally, all stance and swing 
sonomyography features, stance joint moment and swing joint 
angle vectors were resampled to 20 Hz to ensure the all 
vectors were the same length for regression implementation. 

 C. Regression Models 
 Two regression models, SVR and GPR, were evaluated for 
continuous estimation of hip, knee and ankle moments during 
stance, and hip, knee and ankle angles during swing. For a 
detailed explanation of the SVR and GPR models please refer 
to [20] and [23], respectively. For both models, the kernel was 
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optimized to balance overfitting and model complexity. The 
radial basis function kernel was used for SVR, which 
computes the similarity of two points, 𝑋𝑋1 and 𝑋𝑋2, and is 
described by: 

 𝐾𝐾(𝑋𝑋1,𝑋𝑋2) = exp (− ‖𝑋𝑋1−𝑋𝑋2‖2

2𝜎𝜎2
),  (1) 

where 𝜎𝜎 is the variance, and ‖𝑋𝑋1 − 𝑋𝑋2‖ is the Euclidean 
distance between two points 𝑋𝑋1 and 𝑋𝑋2. This kernel is 
beneficial for reducing the complexity of the SVR learning 
problem by reducing the amount of training data stored by the 
model [30]. The rational quadratic kernel was used for GPR, 
which can be described as an infinite sum of radial basis 
function kernels with different characteristic length scales, 𝑙𝑙. 
The rational quadratic kernel is defined as: 

 𝐾𝐾(𝑋𝑋1,𝑋𝑋2) = �1 + ‖𝑋𝑋1−𝑋𝑋2‖
2

2𝛼𝛼𝛼𝛼2
�
−𝛼𝛼

, (2) 

where 𝛼𝛼 is the scale-mixture parameter and must be greater 
than zero [23]. This kernel is beneficial for predicting 
functions that vary smoothly across many length-scales which 
is advantageous for large datasets [31]. 

Sonomyography features from stance were used to train the 
SVR and GPR models for continuous prediction of the 
following swing phase hip, knee and ankle angles; and 
sonomyography features from swing were used to train the 
SVR and GPR models for continuous prediction of the 
subsequent stance phase hip, knee and ankle moment (Fig. 1). 
Both the SVR and GPR models were trained on task-
independent datasets containing sonomyography features 
from strides of all ambulation tasks. Twenty strides of each 
level, incline and decline walking tasks were included in all 
models; and, the maximum number of stair ascent and descent 
strides available (up to twenty) were added to the models for 
joint angle prediction during swing only (due to missing 
ground reaction force data from stair ambulation tasks). 
Transition strides (walk-to-stair/stair-to-walk) were included 
in the stair ascent and stair descent datasets to maximize the 
number of strides available. Leave-one-stride-out cross-
validation was used to minimize over-fitting of the models 
where one stride of each ambulation tasks’ stance and swing 
data was removed from the training dataset for testing, 
looping through all strides such that each stride was the test 
stride once. To compare parameters for semi-volitional 

control structures, initial, peak and terminal joint moments 
and angles were extracted from the model’s prediction of 
future stance and swing, and compared to the measured initial, 
peak and terminal moments and angles. 

D. Model Evaluation and Statistical Methods 
 Root mean square errors (RMSE) were calculated between 
the SVR and GPR model’s predictions of joint moments and 
angles and the measured joint moments and angles. Paired t-
tests were used to compare RMSE from SVR and GPR for 
each joint and ambulation mode (α=0.05). An additional 
goodness of fit metric, adjusted coefficient of determination 
(R2) for nonlinear regression, was calculated for each of the 
SVR and GPR predictions of joint moments and angles in 
comparison to the measured joint moments and angles.  

Initial, peak and terminal joint moment and angle 
parameters were extracted from the SVR and GPR prediction 
of stance and swing. Means and standard deviation (SD) 
absolute differences between parameters from SVR and GPR 
models with the measured initial, peak and terminal joint 
moments and angles were calculated. Paired t-tests were used 
to evaluate a significance between the SVR and GPR 
parameter differences (α=0.05). A significance level of 
p<0.05 was set for all tests.  

III. RESULTS 
Ten able-bodied subjects participated in the locomotion 

experiment for training and testing the predictive framework 
(TABLE I). As hypothesized, both the SVR and GPR models 
resulted in high accuracy of both continuous future prediction 
of hip, knee and ankle moment during stance, as well as hip, 
knee, and ankle angle during swing. Additionally, both 
models resulted in high accuracy of initial, peak and terminal 
parameters of hip, knee and ankle moment during stance, as 
well as hip, knee and ankle angle during swing. However, 
there were inconsistencies between which model performed 
better at varying joint levels and ambulation tasks. 

A. Continuous Prediction of Future Hip, Knee and Ankle 
Mechanics 
 Both the SVR and GPR models were able to predict the 
general trends and variability of hip, knee and ankle moment 

 
Figure 1.  Predictive Control Framework for Swing Phase Joint Angles and Stance Phase Joint Moments. Sonomyography features were extracted during 
stance and fed to support vector regression (SVR) and Gaussian process regression (GPR) models for continuous prediction of future hip, knee and ankle 

angle during swing (top). Sonomyography features were extracted from ultrasound images acquired during swing and fed to SVR and GPR models for 
continuous prediction of the following gait cycle’s hip, knee and ankle moment during stance (bottom). 
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during stance from sonomyography features extracted from 
the previous gait cycle’s swing phase (Fig. 2). Overall, 
averaging across all ambulation modes at each joint, the GPR 
model resulted in reduced RMSE of joint moment prediction 
in comparison to the SVR model, however there were no 
significant differences between the overall joint moment 
RMSEs during stance (TABLE II). The GPR model resulted 
in significantly improved prediction (lower RMSE) compared 
to the SVR models’ prediction of knee and ankle moment 
during level walking and knee moment during decline 
walking.  
 Similarly, the SVR and GPR models trained using 
sonomyography features extracted during stance were able to 
accurately predict the mean and variability of future swing 
hip, knee and ankle joint angles during level, incline, decline, 
stair ascent and stair descent ambulation (Fig. 2). However, 
the SVR model resulted in reduced (or equal) RMSE of future 
swing joint angle prediction averaged across all ambulation 
tasks at each joint, although there were no significant 
differences between the SVR and GPR models. The only 
significant differences between RMSE of the SVR and GPR 
prediction of joint angle were observed when comparing knee 
angle during level walk and ankle angle during stair ascent. In 
both cases, the SVR model significantly improved the angle 
prediction (TABLE II). 

B. Prediction of Future Hip, Knee and Ankle Parameters 
 Initial, peak and terminal values of joint moment during 
stance and joint angle during swing were extracted from the 
continuous predictive models as possible parameters for a 
semi-volitional control framework. Absolute differences 
between parameters extracted from SVR and GPR models 
with the measured parameters during stance and swing were 
calculated (TABLE III). Based on the absolute differences of 
joint parameters, the highest error of joint moment parameter 
estimation was observed during decline walking, while the 
highest error of joint angle parameter estimation occurred 
during stair descent. 

Comparing initial joint moment parameters, the GPR 
model resulted in a significant reduction in absolute 
difference between the model’s prediction and estimated joint 
moment parameter at the hip during level walking, knee 
during incline walking, and ankle during level and decline 
walking tasks. Comparing differences in peak moment 
prediction, there were significant differences between the 
SVR and GPR prediction of hip moment during incline and 
decline walking, knee during level walking, and ankle during 
incline and decline walking. Additionally, comparing 
terminal joint moment parameters, significant differences 
were observed at the hip during all walking tasks, and at the 

knee and ankle during level walking. There were 
inconsistencies comparing which model (SVR or GPR) 
resulted in the significantly reduced error between predicted 
peak and terminal joint moments and measured peak and 
terminal joint moments. 

Both the SVR and GPR resulted in accurate future 
prediction of initial, peak and terminal joint angles during 
swing of all walking tasks. Comparing initial joint angles, the 
only significant difference was observed at the knee during 
level walking where the GPR model reduced error between 
predicted measured initial knee angle. Comparing peak 
angles, the SVR model consistently resulted in significantly 

TABLE II. ROOT MEAN SQUARE ERROR (RMSE) AND ADJUSTED R2 
COMPARING SUPPORT VECTOR REGRESSION AND GAUSSIAN PROCESS 

REGRESSION ESTIMATES OF HIP, KNEE AND ANKLE MOMENT (TOP) AND 
HIP, KNEE AND ANKLE ANGLE (BOTTOM). 

Stance 
Prediction 

Mean (SD) RMSE Moment 
(Nm/kg) Adjusted R2 

Hip Knee Ankle Hip Knee Ankle 
Support Vector Regression (SVR) 

Level 
Walk 

0.16 
(0.05) 

0.09 
(0.04)a 

0.14 
(0.07)a 0.86 0.84 0.88 

Incline 
Walk 

0.16 
(0.09) 

0.18 
(0.08) 

0.27 
(0.14) 0.94 0.88 0.83 

Decline 
Walk 

0.33 
(0.19) 

0.26 
(0.13)a 

0.12 
(0.06) 0.88 0.83 0.92 

Overall 0.21 
(0.14) 

0.18 
(0.12) 

0.17 
(0.11) 0.89 0.85 0.88 

Gaussian Process Regression (GPR) 
Level 
Walk 

0.12 
(0.05) 

0.08 
(0.04)a 

0.09 
(0.03)a 0.92 0.85 0.95 

Incline 
Walk 

0.20 
(0.12) 

0.19 
(0.10) 

0.21 
(0.12) 0.88 0.86 0.90 

Decline 
Walk 

0.30 
(0.18) 

0.23 
(0.18)a 

0.11 
(0.06) 0.90 0.87 0.93 

Overall 0.20 
(0.14) 

0.17 
(0.11) 

0.14 
(0.10) 0.90 0.95 0.93 

 

Swing 
Prediction 

Mean (SD) RMSE Angle 
(deg) Adjusted R2 

Hip Knee Ankle Hip Knee Ankle 
Support Vector Regression (SVR) 

Level 
Walk 

1.24 
(0.41) 

2.33 
(0.79)a 

0.82 
(0.26) 0.98 0.99 0.96 

Incline 
Walk 

1.91 
(0.71) 

3.03 
(3.04) 

1.53 
(1.66) 0.98 0.96 0.95 

Decline 
Walk 

1.26 
(0.74) 

3.30 
(1.00) 

0.61 
(0.19) 0.92 0.98 0.95 

Stair 
Ascent 

3.57 
(1.28) 

6.06 
(1.82) 

2.75 
(0.74)a 0.96 0.94 0.95 

Stair 
Descent 

2.78 
(0.97) 

11.32 
(4.33) 

5.06 
(1.94) 0.67 0.88 0.83 

Overall 2.15 
(1.24) 

5.20 
(4.15) 

2.15 
(2.01) 0.90 0.95 0.93 

Gaussian Process Regression (GPR) 
Level 
Walk 

1.11 
(0.32) 

2.53 
(0.77)a 

0.84 
(0.27) 0.98 0.99 0.96 

Incline 
Walk 

1.95 
(0.73) 

3.37 
(4.04) 

1.41 
(1.24) 0.98 0.94 0.95 

Decline 
Walk 

1.17 
(0.66) 

3.58 
(1.30) 

0.62 
(0.31) 0.93 0.98 0.93 

Stair 
Ascent 

3.71 
(1.32) 

7.13 
(1.97) 

2.86 
(1.09)a 0.85 0.91 0.93 

Stair 
Descent 

2.81 
(0.92) 

11.87 
(4.46) 

5.13 
(2.15) 0.68 0.86 0.82 

Overall 2.15 
(1.30) 

5.70 
(4.48) 

2.17 
(2.06) 0.91 0.94 0.92 

a. Significant difference (p<0.05) between RMSE of SVR and GPR prediction of joint trajectory 

TABLE I. MEAN AND STANDARD DEVIATION (SD) PARTICIPANT 
CHARACTERISTICS. 

Participant Characteristic Mean (SD)  
Age (years) 29.5 (10.6) 

Level Walk Speed (m/s) 0.8 (0.1) 
Incline Walk Speed (m/s) 0.6 (0.1) 
Decline Walk Speed (m/s) 0.6 (0.1) 

Number of Stair Ascent Strides (#) 9.4 (3.5) 
Number of Stair Descent Strides (#) 9.3 (5.7) 
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reduced error between predicted and measured angle at the 
hip joint during stair ascent, and at the knee and ankle joints 
during decline walking and stair ascent. Lastly, comparing 
terminal angle differences between predictive model and 
measured angle, the GPR model significantly reduced hip 
angle error during incline walking while the SVR model 
significantly reduced knee angle error during level walking 
and stair descent.  

C. Computational Time 
All signal processing, extraction of sonomyography 

features and implementation of the SVR and GPR models 
were completed offline on a single CPU (Intel(R) Core i7-
7700 at 3.60 GHz). Mean (SD) time to extract features from 
a single frame of ultrasound was 19.4 (4.9) msec. Mean (SD) 
time to train and test the SVR models for stance prediction 

were 103.2 (8.2) and 1.6 (0.4) msec, respectively. Mean (SD) 
time to train and test the GPR models for stance prediction 
were and 843.9 (72.8) and 2.0 (0.8) msec, respectively. Mean 
(SD) time to train and test the SVR models for swing 
prediction were 98.0 (6.3) and 1.7 (0.5) msec, respectively. 
Mean (SD) time to train and test the GPR models for swing 
prediction were 1906.7 (161.1) and 3.6 (1.5) msec, 
respectively.  

IV. DISCUSSION 
We developed a task-independent predictive framework for 

control of powered hip, knee and ankle joints using 
sonomyography features of the anterior thigh and two forward 
regression models. Surprisingly, there were few significant 
differences in performance when comparing the SVR and 
GPR models. Thus, we recommend the SVR model as an 

 

Figure 3.  Hip, Knee and Ankle Moments During Stance and Hip, Knee and Ankle Angles During Swing of Five Ambulation Tasks. Stance phase joint 
moments were predicted from SVR and GPR models trained on sonomyography features collected during the previous stride’s swing phase. Swing phase joint 

angles were predicted from SVR models trained on sonomyography features collected during stance. Box plots display median, interquartile ranges and 
outliers. Standard deviations of measured joint moments and angles displayed in shaded regions for each ambulation mode. SVR and GPR mean (N=10) 

predictions joint moments and joint angles of shown as solid (GPR) and dashed lines (SVR). 
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optimal model due to its relatively lower computational cost. 
The present results are promising for future work integrating 
sonomyography into control systems of powered multiple 
degree-of-freedom lower-limb exoskeletons and protheses.  

Previous researchers have tested volitional control 
architectures for either continuous position control [8], [32], 
[33] or torque control [34], [35] for single degree-of-freedom 
actuated limbs (e.g., knee or ankle) based on mechanical and/ 
or electromyography sensors. Additionally, sonomyography 
was used for prediction of ankle dorsiflexion moment for 
potential control of an ankle exoskeleton or functional 
electrical stimulation system [15]. This is the first study, to 
our knowledge, to evaluate sonomyography as an input for 
future control of multiple signal outputs (joint moment and 
angle) and for multiple degrees-of-freedom (hip, knee and 
ankle). These results can guide future work that integrates 
these control schemes into next-generation hardware systems, 
e.g., [8], [36]. 

Volitional control is ideal for providing the user full 
autonomy over the robotic assistive device, and we expect 
could be essential for non-cyclic activities. To date, many 
volitional control systems employed in research settings rely 
on activity mode detection [37]–[40]. The introduction of task 
independence within the control system increases flexibility 
and could allow for control of the limb during unknown or 
unstructured lower-extremity tasks. Semi-volitional control 
can offer many of the same benefits (e.g., increased 
maneuverability, task-independent control, etc.), while also 
reducing the amount of data storage required, and utilizing 
established control methods, such as torque control and 
minimum jerk control [8], [35], [36]. For example, given the 
initial, peak and terminal values for either joint moment 

during stance or joint angle during swing, the continuous 
trajectory can be produced by minimum jerk optimization. 

There are some limitations of the present work. Online 
evaluation is required to confirm performance of the 
predictive framework. However, previous research has 
established a correlation between offline and online 
performance of intent recognition [40], [41]. Also, these 
experiments involved able-bodied subjects, and should be 
extended to include people with mobility limitations and 
lower-limb loss during additional lower-extremity tasks. 
Furthermore, more complex models, could prove to be 
advantageous. 

V. CONCLUSION 
This work developed and tested a task-independent 

predictive framework consisting of multiple forward models 
for volitional and semi-volitional control of hip, knee and 
ankle joints of assistive devices using sonomyography of the 
anterior thigh. Both SVR and GPR models resulted in high 
accuracy of volitional control trajectories and semi-volitional 
parameters for the hip, knee and ankle joint moments during 
stance and joint angles during swing. However, the SVR 
model required less computational time, which is beneficial 
for real-time implementation. The ability to infer future joint 
moment and angle trajectories and parameters in a task-
independent framework has many benefits: increased 
flexibility of the control algorithm, as well as additional time 
for pre-processing and feature extraction, and mapping of 
control inputs to device actuation. These results are promising 
to improve the mobility and overall quality of life of user of 
assistive technologies. 

 TABLE III.  MEAN (SD) DIFFERENCES BETWEEN PREDICTED AND MEASURED STANCE HIP, KNEE AND ANKLE MOMENT PARAMTERS (TOP) AND 
SWING HIP, KNEE AND ANKLE ANGLE PARAMETERS (BOTTOM). 

Stance 
Prediction 

Initial Moment Difference (Nm/kg) Peak Moment Difference (Nm/kg) Terminal Moment Difference (Nm/kg) 
Hip Knee Ankle Hip Knee Ankle Hip Knee Ankle 

Support Vector Regression (SVR) 
Level Walk 0.07 (0.04)a 0.01 (0.02) 0.05 (0.03)a 0.13 (0.04) 0.10 (0.08)a 0.22 (0.04) 0.14 (0.02)a 0.05 (0.02)a 0.04 (0.00)a 

Incline Walk 0.03 (0.03) 0.02 (0.00)a 0.02 (0.00) 0.08 (0.05)a 0.23 (0.12) 0.48 (0.23)a 0.15 (0.11)a 0.13 (0.07) 0.12 (0.06) 
Decline Walk 0.06 (0.00) 0.00 (0.01) 0.05 (0.01)a 0.20 (0.06)a 0.32 (0.14) 0.08 (0.04)a 0.20 (0.11)a 0.10 (0.05) 0.14 (0.04) 

Overall 0.06 (0.02) 0.01 (0.01) 0.04 (0.01) 0.14 (0.05) 0.22 (0.11) 0.26 (0.10) 0.16 (0.08) 0.09 (0.05) 0.10 (0.03) 
Gaussian Process Regression (GPR) 

Level Walk 0.01 (0.00) 0.03 (0.00) 0.00 (0.01) 0.17 (0.02) 0.14 (0.06) 0.12 (0.03) 0.08 (0.03) 0.00 (0.00) 0.06 (0.00) 
Incline Walk 0.05 (0.02) 0.00 (0.00) 0.04 (0.01) 0.21 (0.11) 0.27 (0.10) 0.39 (0.21) 0.13 (0.08) 0.11 (0.06) 0.13 (0.04) 
Decline Walk 0.06 (0.02) 0.06 (0.01) 0.01 (0.00) 0.31 (0.07) 0.37 (0.07) 0.12 (0.05) 0.18 (0.12) 0.08 (0.06) 0.15 (0.03) 

Overall 0.04 (0.02) 0.03 (0.01) 0.02 (0.01) 0.23 (0.07) 0.26 (0.11) 0.21 (0.10) 0.13 (0.08) 0.06 (0.04) 0.12 (0.02) 
 

Swing Prediction Initial Angle Difference (deg) Peak Angle Difference (deg) Terminal Angle Difference (deg) 
Hip Knee Ankle Hip Knee Ankle Hip Knee Ankle 

Support Vector Regression (SVR) 
Level Walk 0.43 (0.04) 1.46 (0.24)a 0.14 (0.05) 1.78 (1.22) 0.08 (0.58) 0.90 (0.74) 0.25 (1.19) 0.59 (0.63)a 0.39 (0.58) 

Incline Walk 0.08 (0.32) 2.04 (0.33) 0.29 (0.13) 3.12 (0.33) 0.84 (0.23) 1.33 (0.04) 1.29 (0.80)a 4.44 (1.73) 0.73 (0.41) 
Decline Walk 0.90 (0.61) 1.22 (0.04) 0.02 (0.08) 1.74 (1.37) 5.54 (0.43)a 0.26 (0.13)a 0.40 (0.55) 0.74 (0.81) 0.03 (0.30) 
Stair Ascent 0.58 (1.29) 9.84 (1.89) 1.70 (1.28) 6.89 (0.90)a 3.42 (1.80)a 5.00 (1.43)a 0.19 (2.75) 4.21 (3.08) 0.87 (0.77) 
Stair Descent 0.86 (2.62) 3.75 (1.80) 2.99 (0.86) 3.34 (1.43) 24.98 (1.28) 8.16 (0.68) 0.47 (1.56) 0.47 (0.11)a 0.78 (1.24) 

Overall 0.57 (0.98) 3.66 (0.86) 1.03 (0.48) 3.37 (1.05) 6.97 (0.87) 3.13 (0.60) 0.52 (1.37) 2.09 (1.27) 0.56 (0.66) 
Gaussian Process Regression (GPR) 

Level Walk 0.05 (0.14) 0.60 (0.04) 0.11 (0.24) 1.97 (0.97) 1.51 (0.42) 0.77 (0.89) 0.14 (0.96) 1.76 (1.08) 0.37 (0.94) 
Incline Walk 0.35 (0.30) 2.10 (1.20) 0.01 (0.13) 3.37 (0.03) 2.56 (0.86) 2.43 (0.26) 0.03 (0.96) 4.81 (1.80) 0.19 (0.21) 
Decline Walk 0.41 (0.37) 0.56 (0.09) 0.41 (0.06) 1.79 (1.51) 6.57 (0.60) 0.69 (0.21) 0.49 (0.84) 1.75 (0.46) 0.12 (0.59) 
Stair Ascent 0.33 (1.58) 10.68 (1.23) 1.31 (1.23) 7.94 (0.80) 8.49 (1.93) 5.84 (1.42) 1.30 (1.12) 3.41 (1.22) 0.56 (0.57) 
Stair Descent 0.82 (2.45) 4.13 (1.72) 4.00 (0.24) 4.31 (2.01) 25.64 (0.54) 8.53 (0.69) 0.04 (1.57) 6.34 (0.56) 0.62 (0.14) 

Overall 0.39 (0.97) 3.61 (0.86) 1.17 (0.38) 3.88 (1.06) 8.95 (0.87) 3.65 (0.69) 0.40 (1.09) 3.61 (1.02) 0.37 (0.49) 
a. Significant difference (p<0.05) from paired t-tests comparing absolute value differences of SVR or GPR prediction of joint parameter and measured joint parameter. Absolute differences were calculated 

as the absolute value of predicted joint parameters subtracted from measured joint parameters. Overall differences were averaged across all tasks for each joint. 
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