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Abstract— We develop a task-independent predictive
framework that estimates hip, knee and ankle future behavior
from sonomyographic sensing of quadriceps musculature. Two
regression models, support vector regression and Gaussian
process regression, were trained and tested such that no
ambulation mode recognition was required. Sonomyography
features of the anterior thigh musculature were extracted during
the swing phase of level, incline and stair ambulation tasks as
inputs to the two models for continuous prediction of the future
stance phase hip, knee and ankle moments. Next,
sonomyography features of the anterior thigh musculature were
extracted during the stance phase and used to predict the
following swing phase hip, knee and ankle angles. Leave-one-
stride-out cross-validation is used to evaluate this continuous
prediction framework. Additionally, initial, peak and terminal
joint moment and angle parameters are extracted from
trajectories and evaluated. Both regression models were able to
accurately predict continuous future joint moments and angles,
as well as initial, peak and terminal value parameters of future
joint moments and angles. However, the support vector
regression model required relatively lower computational cost.
Thus, we recommend the support vector regression model as an
optimal model for forward prediction of joint mechanics from
sonomyographic sensing during ambulation.

Index Terms—Machine Learning for Robot Control,
Prosthetics and Exoskeletons, Sensor-Based Control

I. INTRODUCTION

Wearable robotic assistive devices can generate net
mechanical power to assist or restore mobility to their users
[1]. One device objective is to restore a disabled limb’s motor
function to normal levels [2]. Currently-available technologies
are commonly used to provide basic functionality, such as
standing or level-ground walking. Wearable robots can enable
greater functionality to their users by returning biologically-
accurate torque at to their joints [3]. However, to achieve
robust control, hierarchical control structures are commonly
implemented wherein at the highest level an activity mode is
classified, and subsequently device parameters are adjusted
based on various reference trajectories within each activity
mode, as well as specific phases of each mode [4]-[6].
Alternatively, volitional and semi-volitional control
approaches could provide users a greater level of command
over their device during continuously-varying activities.
However, volitional control requires a continuous joint-level
input to direct future continuous joint-level responses—For
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example estimating future joint angles or moments without the
requirement of a pre-defined locomotor task label. Semi-
volitional control can be implemented in a variety of ways: one
possibility is to predict specific parameters related to the
desired motion that dictate the device output (e.g., quasi-
stiffness, peak joint angle, and terminal joint angle [7], [8]).

To optimize control schemes during weight-bearing tasks,
such as stance phase of gait, continuous prediction of joint
moments or torques (for volitional control), or parameters
related to joint moment (for semi-volitional control) are
beneficial to effectively manage the interaction of the foot with
the ground and provide optimal energy to the user [9]. During
non-weight-bearing tasks, position-based controllers have
been proposed as an optimal control strategy to ensure
flexibility within the device to change position when not
interacting with the ground [10], [11]. Both volitional and
semi-volitional control rely on accurate sensing and precise
mapping to device parameters. Sonomyography, or the
evaluation of real-time ultrasound imaging of skeletal muscle,
has been proposed as a high dimensional and localized sensing
modality for robust control over multiple degree-of-freedom
robotic prosthetic hands [12]-[14], torque control of an ankle
exoskeleton [15], [16], and accurate estimation of ambulation
mode [17], as well as continuous estimation of knee angle [18]
and hip, knee and ankle moments [19]. However,
sonomyography has not been evaluated for future prediction
of continuous trajectories or parameterized features of hip,
knee and ankle joint kinematics or kinetics during varying
ambulation tasks.

We explore two commonly used supervised machine
learning approaches in this study. Support vector regression
(SVR) is a robust non-parametric approach for classification
and function regression [20]. SVR is effective in high
dimensional spaces (e.g., high dimensional sonomyography
data) and use only a subset of training points in the decision
function, improving memory efficiency and computational
demand. However, SVR performance can decrease with noisy
datasets. Previous researchers have utilized SVR for
generating trajectories for walking humanoid robots, as well
as to improve myoelectric simultaneous control of multiple
degrees-of-freedom [21], [22]. Gaussian process regression
(GPR) is a non-parametric Bayesian approach for solving
non-linear regression [23], and has demonstrated success for
modeling nonlinear dynamical systems such as human motion
[24]. GPR produces probabilistic predictions that account for
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inherent noise within the input feature set. However, GPR
requires storage of the entire feature set for prediction, which
can increase computational demand. The objective of both
models is to fine tune precision, cost and the kernel regulator
to optimize the trade-off between model complexity and
output accuracy. We optimize these models for prediction of
future continuous hip, knee and ankle joint moments during
stance and joint angles during swing from sonomyography.
Additionally, initial, peak and terminal values of the hip, knee
and ankle moments and angles are predicted during stance and
swing, respectively.

The overall objective of this work is to develop and test a
computational framework for sonomyography as an input to
GPR and SVR models for both continuous prediction of
future joint moments and angles, as well as parameters of
future joint moments and angles. We hypothesize that
sonomyography will enable accurate prediction of continuous
joint trajectories via GPR and SVR, but that GPR will result
in greater accuracy (lower error) for its ability to handle
noisy datasets in comparison to SVR. Furthermore, we
hypothesize that the GPR model prediction of joint moment
and angle trajectories will result in greater accuracy of target
parameters (namely, initial, peak and terminal values) in
comparison to the SVR model prediction. In future studies, the
ability to infer future joint moment and angle trajectories and
parameters allows time for pre-processing and feature
extraction, as well as for mapping of control inputs to device
actuation. Furthermore, it would be beneficial if the input to
these different control outputs (joint angles and moments) can
be commanded by the same localized peripheral sensing
modality (e.g., sonomyography).

II. METHODS

A. Data Collection

Ten able-bodied subjects (five males, five females) gave
informed consent prior to participating in this experiment.
The experimental protocol was approved by the institutional
review board. Subjects were asked to complete five
ambulation tasks at a self-selected speed: (1) level walking,
(2) 10° incline walking, (3) 10° decline walking, (4) stair
ascent and (5) stair descent. Walking trials were completed on
a split-belt force-instrumented treadmill (Bertec Corporation)
for one-minute. Stair trials were completed on a four-step
staircase, beginning with stair ascent and followed by stair
descent for five repetitions with a step-over-step alternating
pattern.

During the locomotion experiment, subjects were equipped
with a 128-element linear array ultrasound transducer affixed
to the anterior thigh of their non-dominant limb via a custom-
designed holder. The transducer of a handheld and wearable
ultrasound system (mSonics, Lonshine Technologies Inc.)
was placed transversely on the anterior thigh to collect real-
time cross-sectional images of the rectus femoris, vastus
medialis and vastus intermedius muscles with a transmit
frequency of 7.5 MHz. Prior to the beginning of the
locomotion experiment, US beam depth was adjusted to
ensure a clear image from the superficial transducer-skin

interface to the deep vastus intermedius boundary, balancing
the effects of spatial resolution with penetration depth.
Reflective markers were placed over anatomical landmarks
for collection of joint kinematic and kinetic data using a ten-
camera motion capture system (VICON Motion Systems,
Inc.) with a sampling rate of 1000 Hz. Ground reaction force
data were recorded from force plates within the instrumented
treadmill with a sampling rate of 100 Hz. All data were
recorded to the same computer with time-stamping for
synchronization of ultrasound, kinematic and kinetic data.

B. Signal Processing

Ultrasound imaging is commonly used to visualize
underlying soft tissue in the body, including skeletal muscle
during movement [25]. Changes in muscle architecture, such
as muscle thickness and cross-sectional area, as well as spatial
changes in intensity of the grayscale ultrasound images have
previously been correlated with changes in muscle strength
[26], the onset of muscle contraction [27], [28], muscle force
production [29] and resulting joint motion [14], [18].
Therefore, we extracted image intensity, as well as time-
derivative intensity sonomyography features from each frame
of ultrasound for prediction of hip, knee and ankle joint
mechanics. A spatial filter with a 3x3 mm block size was used
reduce motion artifact and the mean intensity of each block
was calculated. This resulted in 260 total 3x3 mm blocks of
mean intensity. The 2-dimensional image array was reshaped
into 1-dimension by horizontally concatenating each row of
ultrasound features ranging from superficial to deep tissue.
Next, the time derivative was taken between each consecutive
frame of 260 ultrasound features, growing the feature set to
520 total features of sonomyography for each ultrasound
frame.

Hip, knee and ankle moments and angles were calculated
using Visual 3D (C-Motion, Inc.) via inverse kinematics and
dynamics. Resulting joint moments and angles were low-pass
filtered to reduce signal noise. Due to the lack of force plates
in the stairs, ground reaction force data was not captured
during stair ascent or stair descent and no joint moment data
could be calculated for these ambulation tasks. Joint angle
data were available for all five ambulation tasks. Heel strike
and toe off events were recorded for all ambulation tasks. All
sonomyography features, joint moment and angle datasets
were segmented by heel strikes of the ultrasound-equipped
limb. Next, sonomyography features were z-normalized for
each subject, then split into separate datasets for stance and
swing phases of each ambulation task. Hip, knee and ankle
moments and angles were also split into stance and swing
phases, respectively. Finally, all stance and swing
sonomyography features, stance joint moment and swing joint
angle vectors were resampled to 20 Hz to ensure the all
vectors were the same length for regression implementation.

C. Regression Models

Two regression models, SVR and GPR, were evaluated for
continuous estimation of hip, knee and ankle moments during
stance, and hip, knee and ankle angles during swing. For a
detailed explanation of the SVR and GPR models please refer
to [20] and [23], respectively. For both models, the kernel was
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Predictive Control Framework for Swing Phase Joint Angles and Stance Phase Joint Moments. Sonomyography features were extracted during

stance and fed to support vector regression (SVR) and Gaussian process regression (GPR) models for continuous prediction of future hip, knee and ankle
angle during swing (top). Sonomyography features were extracted from ultrasound images acquired during swing and fed to SVR and GPR models for
continuous prediction of the following gait cycle’s hip, knee and ankle moment during stance (bottom).

optimized to balance overfitting and model complexity. The
radial basis function kernel was used for SVR, which
computes the similarity of two points, X; and X,, and is
described by:

| X1 =X, I?

K (X1, X;) = exp(— 220y, (M

where o is the variance, and || X; — X,]|| is the Euclidean
distance between two points X; and X,. This kernel is
beneficial for reducing the complexity of the SVR learning
problem by reducing the amount of training data stored by the
model [30]. The rational quadratic kernel was used for GPR,
which can be described as an infinite sum of radial basis
function kernels with different characteristic length scales, I.
The rational quadratic kernel is defined as:

K(Xy, X,) = (1 + ||x1—x2||2) “ @)

2ql? ’

where a is the scale-mixture parameter and must be greater
than zero [23]. This kernel is beneficial for predicting
functions that vary smoothly across many length-scales which
is advantageous for large datasets [31].

Sonomyography features from stance were used to train the
SVR and GPR models for continuous prediction of the
following swing phase hip, knee and ankle angles; and
sonomyography features from swing were used to train the
SVR and GPR models for continuous prediction of the
subsequent stance phase hip, knee and ankle moment (Fig. 1).
Both the SVR and GPR models were trained on task-
independent datasets containing sonomyography features
from strides of all ambulation tasks. Twenty strides of each
level, incline and decline walking tasks were included in all
models; and, the maximum number of stair ascent and descent
strides available (up to twenty) were added to the models for
joint angle prediction during swing only (due to missing
ground reaction force data from stair ambulation tasks).
Transition strides (walk-to-stair/stair-to-walk) were included
in the stair ascent and stair descent datasets to maximize the
number of strides available. Leave-one-stride-out cross-
validation was used to minimize over-fitting of the models
where one stride of each ambulation tasks’ stance and swing
data was removed from the training dataset for testing,
looping through all strides such that each stride was the test
stride once. To compare parameters for semi-volitional

control structures, initial, peak and terminal joint moments
and angles were extracted from the model’s prediction of
future stance and swing, and compared to the measured initial,
peak and terminal moments and angles.

D. Model Evaluation and Statistical Methods

Root mean square errors (RMSE) were calculated between
the SVR and GPR model’s predictions of joint moments and
angles and the measured joint moments and angles. Paired t-
tests were used to compare RMSE from SVR and GPR for
each joint and ambulation mode (0=0.05). An additional
goodness of fit metric, adjusted coefficient of determination
(R?) for nonlinear regression, was calculated for each of the
SVR and GPR predictions of joint moments and angles in
comparison to the measured joint moments and angles.

Initial, peak and terminal joint moment and angle
parameters were extracted from the SVR and GPR prediction
of stance and swing. Means and standard deviation (SD)
absolute differences between parameters from SVR and GPR
models with the measured initial, peak and terminal joint
moments and angles were calculated. Paired t-tests were used
to evaluate a significance between the SVR and GPR
parameter differences (0=0.05). A significance level of
p<0.05 was set for all tests.

III. RESULTS

Ten able-bodied subjects participated in the locomotion
experiment for training and testing the predictive framework
(TABLE I). As hypothesized, both the SVR and GPR models
resulted in high accuracy of both continuous future prediction
of hip, knee and ankle moment during stance, as well as hip,
knee, and ankle angle during swing. Additionally, both
models resulted in high accuracy of initial, peak and terminal
parameters of hip, knee and ankle moment during stance, as
well as hip, knee and ankle angle during swing. However,
there were inconsistencies between which model performed
better at varying joint levels and ambulation tasks.

A. Continuous Prediction of Future Hip, Knee and Ankle
Mechanics

Both the SVR and GPR models were able to predict the
general trends and variability of hip, knee and ankle moment
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TABLEI MEAN AND STANDARD DEVIATION (SD) PARTICIPANT
CHARACTERISTICS.
Participant Characteristic Mean (SD)
Age (years) 29.5 (10.6)

Level Walk Speed (m/s) 0.8 (0.1)

Incline Walk Speed (m/s) 0.6 (0.1)

Decline Walk Speed (m/s) 0.6 (0.1)

Number of Stair Ascent Strides (#) 9.4 (3.5)

Number of Stair Descent Strides (#) 9.3(5.7)

during stance from sonomyography features extracted from
the previous gait cycle’s swing phase (Fig. 2). Overall,
averaging across all ambulation modes at each joint, the GPR
model resulted in reduced RMSE of joint moment prediction
in comparison to the SVR model, however there were no
significant differences between the overall joint moment
RMSEs during stance (TABLE II). The GPR model resulted
in significantly improved prediction (lower RMSE) compared
to the SVR models’ prediction of knee and ankle moment
during level walking and knee moment during decline
walking.

Similarly, the SVR and GPR models trained using
sonomyography features extracted during stance were able to
accurately predict the mean and variability of future swing
hip, knee and ankle joint angles during level, incline, decline,
stair ascent and stair descent ambulation (Fig. 2). However,
the SVR model resulted in reduced (or equal) RMSE of future
swing joint angle prediction averaged across all ambulation
tasks at each joint, although there were no significant
differences between the SVR and GPR models. The only
significant differences between RMSE of the SVR and GPR
prediction of joint angle were observed when comparing knee
angle during level walk and ankle angle during stair ascent. In
both cases, the SVR model significantly improved the angle
prediction (TABLE II).

B. Prediction of Future Hip, Knee and Ankle Parameters

Initial, peak and terminal values of joint moment during
stance and joint angle during swing were extracted from the
continuous predictive models as possible parameters for a
semi-volitional control framework. Absolute differences
between parameters extracted from SVR and GPR models
with the measured parameters during stance and swing were
calculated (TABLE III). Based on the absolute differences of
joint parameters, the highest error of joint moment parameter
estimation was observed during decline walking, while the
highest error of joint angle parameter estimation occurred
during stair descent.

Comparing initial joint moment parameters, the GPR
model resulted in a significant reduction in absolute
difference between the model’s prediction and estimated joint
moment parameter at the hip during level walking, knee
during incline walking, and ankle during level and decline
walking tasks. Comparing differences in peak moment
prediction, there were significant differences between the
SVR and GPR prediction of hip moment during incline and
decline walking, knee during level walking, and ankle during
incline and decline walking. Additionally, comparing
terminal joint moment parameters, significant differences
were observed at the hip during all walking tasks, and at the

TABLE II. ROOT MEAN SQUARE ERROR (RMSE) AND ADJUSTED R?
COMPARING SUPPORT VECTOR REGRESSION AND GAUSSIAN PROCESS
REGRESSION ESTIMATES OF HIP, KNEE AND ANKLE MOMENT (TOP) AND
Hip, KNEE AND ANKLE ANGLE (BOTTOM).

Stance Mean (SD&\JRH?//{;})E Moment Adjusted R?
Prediction Hip Knee Ankle Hip | Knee | Ankle
Support Vector Regression (SVR)
{;:Zli (8:(1)2) (g.i())f)a ((?f(};‘)a 086 | 084 | 088
Walke | 0 | oo | o | 0% | o | om
Wk | 01 | oy | 0o | 0% | o8 | o2
Overall (g:ﬂ) (g:}g) (g:ﬂ) 089 | 085 | 088
Gaussian Process Regression (GPR)
I\ﬁﬁ: (8:(1;) (g.k())f)a (8_‘839)a 0.92 0.85 0.95
Wtk | @19 | ©10) | o1 | 0% | 08 | 0%
Dv?z:}::e (8:?2) (((>).'12 g)a (gﬁéé) 0.90 0.87 0.93
Overall (gig) (gﬂ) (g}g) 0.90 0.95 0.93
Swing Mean (SD()dl:;\;[SE Angle Adjusted R?
Prediction Hip Knee Ankle Hip | Knee | Ankle
Support Vector Regression (SVR)
I\;sf:ﬁ: ((1):5411) ((37393)« (852) 0.98 0.99 0.96
I{I;:I?(e ((1):% é:gi) (}:22) 0.98 0.96 0.95
Watk | @7 | don | oo | 09 | 09 | 08
;t?;;t 5;;) (?:gg) (5_‘775)3 0.96 0.94 0.95
Di?cuernt ((2):;% (141.5332) (?:(9)46;) 0.67 | 088 | 083
Overall (33) (Zﬁg) é:(l)i) 090 | 095 | 093
Gaussian Process Regression (GPR)
I\;Ve:lel: (ééé) (g.'7573)a (8252;‘;) 0.98 0.99 0.96
Is;:.llie ((1):32) (22(3)1) (}:‘2‘1) 0.98 0.94 0.95
Walk | @66 | (a0 | oo | 09 | 0% | 0m
itfiﬂt (g;) (Z:é;) (12 ﬁg)a 0.85 0.91 0.93
Di?cuernt ((zigé) (141.21867) éﬁiﬁ) 068 | 086 | 082
Overall (i;g) (izg) (5(1)2) 0.91 0.94 0.92

a. Significant difference (p<0.05) between RMSE of SVR and GPR prediction of joint trajectory

knee and ankle during level walking. There were
inconsistencies comparing which model (SVR or GPR)
resulted in the significantly reduced error between predicted
peak and terminal joint moments and measured peak and
terminal joint moments.

Both the SVR and GPR resulted in accurate future
prediction of initial, peak and terminal joint angles during
swing of all walking tasks. Comparing initial joint angles, the
only significant difference was observed at the knee during
level walking where the GPR model reduced error between
predicted measured initial knee angle. Comparing peak
angles, the SVR model consistently resulted in significantly
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Hip, Knee and Ankle Moments During Stance and Hip, Knee and Ankle Angles During Swing of Five Ambulation Tasks. Stance phase joint

moments were predicted from SVR and GPR models trained on sonomyography features collected during the previous stride’s swing phase. Swing phase joint
angles were predicted from SVR models trained on sonomyography features collected during stance. Box plots display median, interquartile ranges and
outliers. Standard deviations of measured joint moments and angles displayed in shaded regions for each ambulation mode. SVR and GPR mean (N=10)
predictions joint moments and joint angles of shown as solid (GPR) and dashed lines (SVR).

reduced error between predicted and measured angle at the
hip joint during stair ascent, and at the knee and ankle joints
during decline walking and stair ascent. Lastly, comparing
terminal angle differences between predictive model and
measured angle, the GPR model significantly reduced hip
angle error during incline walking while the SVR model
significantly reduced knee angle error during level walking
and stair descent.

C. Computational Time

All signal processing, extraction of sonomyography
features and implementation of the SVR and GPR models
were completed offline on a single CPU (Intel(R) Core i7-
7700 at 3.60 GHz). Mean (SD) time to extract features from
a single frame of ultrasound was 19.4 (4.9) msec. Mean (SD)
time to train and test the SVR models for stance prediction

were 103.2 (8.2) and 1.6 (0.4) msec, respectively. Mean (SD)
time to train and test the GPR models for stance prediction
were and 843.9 (72.8) and 2.0 (0.8) msec, respectively. Mean
(SD) time to train and test the SVR models for swing
prediction were 98.0 (6.3) and 1.7 (0.5) msec, respectively.
Mean (SD) time to train and test the GPR models for swing
prediction were 1906.7 (161.1) and 3.6 (1.5) msec,
respectively.

IV. DISCUSSION

We developed a task-independent predictive framework for
control of powered hip, knee and ankle joints using
sonomyography features of the anterior thigh and two forward
regression models. Surprisingly, there were few significant
differences in performance when comparing the SVR and
GPR models. Thus, we recommend the SVR model as an
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TABLEIIl. MEAN (SD) DIFFERENCES BETWEEN PREDICTED AND MEASURED STANCE HiP, KNEE AND ANKLE MOMENT PARAMTERS (TOP) AND
SWING HIP, KNEE AND ANKLE ANGLE PARAMETERS (BOTTOM).

Stance Initial Moment Difference (Nm/kg) Peak Moment Difference (Nm/kg) Terminal Moment Difference (Nm/kg)
Prediction Hip Knee Ankle Hip \ Knee Ankle Hip \ Knee \ Ankle
Support Vector Regression (SVR)

Level Walk 0.07 (0.04) 0.01 (0.02) 0.05 (0.03)* | 0.13(0.04) | 0.10(0.08)* | 0.22(0.04) | 0.14(0.02)* | 0.05(0.02)* | 0.04 (0.00)*
Incline Walk 0.03 (0.03) 0.02 (0.00) 0.02 (0.00) | 0.08 (0.05)* | 0.23(0.12) | 0.48(0.23)* | 0.15(0.11)* | 0.13(0.07) 0.12 (0.06)
Decline Walk 0.06 (0.00) 0.00 (0.01) | 0.05(0.01)* | 0.20(0.06)* | 0.32(0.14) | 0.08 (0.04)* | 0.20 (0.11)* | 0.10 (0.05) | 0.14 (0.04)

Overall 0.06 (0.02) 0.01 (0.01) 0.04 (0.01) | 0.14 (0.05) | 0.22 (0.11) | 0.26 (0.10) | 0.16 (0.08) 0.09 (0.05) 0.10 (0.03)

Gaussian Process Regression (GPR)

Level Walk 0.01 (0.00) 0.03 (0.00) 0.00 (0.01) | 0.17(0.02) | 0.14 (0.06) [ 0.12(0.03) | 0.08(0.03) | 0.00(0.00) [ 0.06 (0.00)
Incline Walk 0.05 (0.02) 0.00 (0.00) 0.04 (0.01) } 0.21(0.11) | 0.27 (0.10) | 0.39(0.21) | 0.13 (0.08) 0.11 (0.06) 0.13 (0.04)
Decline Walk 0.06 (0.02) 0.06 (0.01) 0.01 (0.00) | 0.31(0.07) | 0.37(0.07) | 0.12(0.05) | 0.18(0.12) 0.08 (0.06) 0.15 (0.03)

Overall 0.04 (0.02) 0.03 (0.01) 0.02 (0.01) | 0.23 (0.07) | 0.26 (0.11) | 0.21 (0.10) | 0.13(0.08) | 0.06 (0.04) | 0.12 (0.02)

. o Initial Angle Difference (deg) Peak Angle Difference (deg) Terminal Angle Difference (deg)

Swing Prediction Hip \ Knee Ankle Hip Knee \ Ankle Hip | Knee | Ankle
Support Vector Regression (SVR)

Level Walk 0.43(0.04) | 1.46(0.24)* | 0.14(0.05) | 1.78 (1.22) 0.08 (0.58) 0.90 (0.74) | 0.25(1.19) | 0.59 (0.63)* | 0.39 (0.58)
Incline Walk 0.08 (0.32) | 2.04(0.33) | 0.29(0.13) | 3.12(033) | 0.84(0.23) | 1.33(0.04) | 1.29 (0.80)* | 4.44 (1.73) | 0.73 (0.41)
Decline Walk 0.90 (0.61) | 1.22(0.04) | 0.02(0.08) | 1.74(1.37) | 5.54(0.43)* | 0.26 (0.13)* | 0.40(0.55) | 0.74(0.81) | 0.03 (0.30)
Stair Ascent 0.58 (1.29) | 9.84(1.89) | 1.70 (1.28) | 6.89 (0.90)* | 3.42 (1.80)* | 5.00 (1.43)* | 0.192.75) | 4.21(3.08) | 0.87 (0.77)
Stair Descent 0.86 (2.62) | 3.75(1.80) | 2.99 (0.86) | 3.34(1.43) | 24.98(1.28) | 8.16(0.68) | 0.47 (1.56) | 0.47 (0.11)* | 0.78 (1.24)

Overall 0.57 (0.98) | 3.66 (0.86) | 1.03 (0.48) | 3.37 (1.05) 6.97 (0.87) | 3.13(0.60) | 0.52 (1.37) | 2.09 (1.27) | 0.56 (0.66)
Gaussian Process Regression (GPR)

Level Walk 0.05(0.14) | 0.60 (0.04) | 0.11(0.24) | 197097 | 151042 | 0.77(0.89) | 0.14(0.96) | 1.76 (1.08) | 0.37 (0.94)
Incline Walk 0.35(0.30) | 2.10(1.20) | 0.01(0.13) | 3.37(0.03) 2.56 (0.86) 2.43(0.26) | 0.03(0.96) | 4.81(1.80) | 0.19(0.21)
Decline Walk 0.41(0.37) | 0.56(0.09) | 0.41(0.06) | 1.79 (1.51) 6.57 (0.60) 0.69 (0.21) | 0.49(0.84) 1.75 (0.46) | 0.12(0.59)
Stair Ascent 0.33(1.58) | 10.68 (1.23) | 1.31(1.23) | 7.94(0.80) | 849(1.93) | 584(1.42) | 130(1.12) | 3.41(1.22) | 0.56 (0.57)
Stair Descent 0.82(2.45) | 4.13(1.72) | 4.00(0.24) | 4.31(2.01) | 25.64(0.54) | 8.53(0.69) | 0.04 (1.57) | 6.34(0.56) | 0.62 (0.14)

Overall 0.39 (0.97) | 3.61(0.86) | 1.17(0.38) | 3.88(1.06) | 8.95(0.87) | 3.65(0.69) | 0.40 1.09) | 3.61(1.02) | 0.37 (0.49)

a. Significant difference (p<0.05) from paired t-tests comparing absolute value differences of SVR or GPR prediction of joint parameter and measured joint parameter. Absolute differences were calculated
as the absolute value of predicted joint parameters subtracted from measured joint parameters. Overall differences were averaged across all tasks for each joint.

optimal model due to its relatively lower computational cost.
The present results are promising for future work integrating
sonomyography into control systems of powered multiple
degree-of-freedom lower-limb exoskeletons and protheses.

Previous researchers have tested volitional control
architectures for either continuous position control [8], [32],
[33] or torque control [34], [35] for single degree-of-freedom
actuated limbs (e.g., knee or ankle) based on mechanical and/
or electromyography sensors. Additionally, sonomyography
was used for prediction of ankle dorsiflexion moment for
potential control of an ankle exoskeleton or functional
electrical stimulation system [15]. This is the first study, to
our knowledge, to evaluate sonomyography as an input for
future control of multiple signal outputs (joint moment and
angle) and for multiple degrees-of-freedom (hip, knee and
ankle). These results can guide future work that integrates
these control schemes into next-generation hardware systems,
e.g., [8], [36].

Volitional control is ideal for providing the user full
autonomy over the robotic assistive device, and we expect
could be essential for non-cyclic activities. To date, many
volitional control systems employed in research settings rely
on activity mode detection [37]-[40]. The introduction of task
independence within the control system increases flexibility
and could allow for control of the limb during unknown or
unstructured lower-extremity tasks. Semi-volitional control
can offer many of the same benefits (e.g., increased
maneuverability, task-independent control, etc.), while also
reducing the amount of data storage required, and utilizing
established control methods, such as torque control and
minimum jerk control [8], [35], [36]. For example, given the
initial, peak and terminal values for either joint moment

during stance or joint angle during swing, the continuous
trajectory can be produced by minimum jerk optimization.

There are some limitations of the present work. Online
evaluation is required to confirm performance of the
predictive framework. However, previous research has
established a correlation between offline and online
performance of intent recognition [40], [41]. Also, these
experiments involved able-bodied subjects, and should be
extended to include people with mobility limitations and
lower-limb loss during additional lower-extremity tasks.
Furthermore, more complex models, could prove to be
advantageous.

V.CONCLUSION

This work developed and tested a task-independent
predictive framework consisting of multiple forward models
for volitional and semi-volitional control of hip, knee and
ankle joints of assistive devices using sonomyography of the
anterior thigh. Both SVR and GPR models resulted in high
accuracy of volitional control trajectories and semi-volitional
parameters for the hip, knee and ankle joint moments during
stance and joint angles during swing. However, the SVR
model required less computational time, which is beneficial
for real-time implementation. The ability to infer future joint
moment and angle trajectories and parameters in a task-
independent framework has many benefits: increased
flexibility of the control algorithm, as well as additional time
for pre-processing and feature extraction, and mapping of
control inputs to device actuation. These results are promising
to improve the mobility and overall quality of life of user of
assistive technologies.
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