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Abstract—The advancement of robotic lower-limb assistive 

devices has heightened the need for accurate and continuous 

sensing of user intent. Surface electromyography (EMG) has 

been extensively used to sense muscles, and estimate locomotion 

modes and limb motion. Recently, sonomyography has also been 

investigated as a novel sensing modality. However, the fusion of 

multiple sensing modalities has not been explored for the 

continuous prediction of multiple degrees-of-freedom of the 

lower limb, and during multiple ambulation tasks. In the present 

study, nine able-bodied subjects completed level, incline, decline, 

stair ascent, and stair descent tasks. Motion capture data was 

collected during each task, as well as data from a portable 

ultrasound transducer (aligned in a transverse orientation) on 

the anterior thigh and surface EMG sensors on eight lower-limb 

muscles. Subject-dependent, task-independent Gaussian process 

regression models were implemented for continuous prediction 

of knee and ankle angle and angular velocity during these 

ambulation tasks using three feature sets: (1) surface EMG, (2) 

sonomyography, and (3) sensor fusion of EMG with 

sonomyography. Surprisingly, there were no significant 

differences between sonomyography and sensor fusion-based 

prediction of knee or ankle angle and angular velocity during all 

tasks. However, sonomyography and sensor fusion resulted in 

reduced root mean square error of knee angle prediction during 

all ambulation tasks and knee angular velocity prediction during 

most ambulation tasks compared to surface EMG. Sensor fusion 

improved ankle angle prediction for all walking tasks except 

stair ascent in comparison to surface EMG. Ankle angular 

velocity prediction resulted in the lowest performance, overall. 

Clinical Relevance—This work compares the combination of 

surface electromyography and sonomyography, and each 

modality in isolation, for the continuous prediction of kinematics 

of the knee and ankle during widely-varying ambulatory tasks. 

I. INTRODUCTION 

Limb loss presents a growing clinical problem in the 
United States with more than 1.9 million people currently 
living with the loss of a limb and an estimated two-fold 
increase by 2050 [1]. Furthermore, greater than 30% of people 
who have suffered the loss of a limb are unable to live 
independently and lower-limb loss is consistently associated 
with lower quality of life [2]. Assistive devices aiming to 
restore natural locomotor ability to individuals with lower-
limb loss are crucial for improving the quality of life of these 
individuals. The introduction of assistive devices that contain 
robotic lower-limb joints have the ability to restore additional 
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functionality to individuals with limb loss by increasing the 
amount of assistance provided to the user, and adapting to new 
environments. However, powered assistive devices rely  on 
accurate sensing to enable robust control schemes for safe 
integration into the daily lives of users [3]. Ideally, accurate 
sensing over multiple degrees-of-freedom, such as the knee 
and ankle of a powered transfemoral prostheses. 

Multiple wearable sensing technologies have been 
explored for the detection of user intent, including mechanical 
sensors, neural sensors, and, most recently, imaging sensors. 
Mechanical sensors (e.g., inertial measurement units, pressure 
insoles, and accelerometers) are used for detection of reaction 
forces and limb motion.   In order to sense information that 
precedes limb motion, neural sensors (e.g. surface 
electromyography (EMG)) have been the primary peripheral 
sensing technology evaluated to date [4]–[6]. Surface EMG 
measures muscle activity of superficial muscles via electrodes 
placed over the skin, and therefore cannot access information 
from deep muscle tissue and is susceptible to muscle cross-
talk, resulting in low signal resolution and susceptibility to 
signal noise [7]. To increase the resolution of surface EMG, 
high density surface EMG decomposition has been proposed 
for its ability to analyze individual motor unit discharge in 
multiple muscles simultaneously. However, similar to 
traditional surface EMG, this technology is limited to 
superficial muscles only, and can be more difficult to analyze 
neighboring muscles, as well as more computationally 
expensive [8]. Therefore, researchers have turned to new 
sensing modalities, such as dynamic real-time ultrasound 
imaging of skeletal muscle, or sonomyography, for detection 
of additional muscle features beyond muscle activity from 
both superficial and deep muscle tissue. Both brightness-
modulated (B-mode) and amplitude (A-mode) ultrasound 
imaging features have been correlated with muscle force 
production, contraction, and resulting joint motion [9]–[13]. 
To further improve the individual drawbacks of each of these 
sensing technologies alone, scientists have explored the fusion 
of multiple sensing modalities, such as neuromechanical 
fusion (i.e. surface EMG with mechanical sensors) [14]–[16]. 
Due to the recent introduction of sonomyography for lower-
limb device control applications, the fusion of surface EMG 
with sonomyography is less widely reported [17]. 

Features of these sensing technologies can be used as an 
input for either model-based control approaches or model-free 
(e.g. machine learning or artificial intelligence) control 
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approaches. While model-based approaches are beneficial for 
explicitly characterizing the transformation between input 
features to the desired output, these approaches can suffer from 
high computational cost that precludes real-time 
implementation [18]. Therefore, machine learning approaches, 
such as nonlinear regression, Gaussian regression models, 
neural networks, among others, have been proposed for 
mapping the features from surface EMG and sonomyography 
to device outputs, such as limb kinematics and kinetics [17], 
[19], [20]. Additionally, Gaussian process regression models 
have been proposed as alternatives to model-based solutions 
for inverse dynamics estimates of joint torque [21], [22]. 
Previous research demonstrated success in using these 
Gaussian models for continuous estimation of hip, knee and 
ankle moment, as well as knee angular velocity from 
sonomyography alone [23], [24]. However, the ability of these 
models to continuously predict knee and ankle angle and 
angular velocity from features of sonomyography alone, 
surface EMG alone, and the fusion of these two feature sets, 
has not been explored. Understanding these relationships can 
help to inform future integration of wearable sensing into 
powered assistive devices and their control systems.  

The purpose of this study was to use sonomyography of the 
anterior thigh and electromyography sensors placed on various 
muscles of the same limb to continuously predict knee and 
ankle kinematics of able-bodied subjects during five 
ambulatory tasks. Features from both surface EMG and 
sonomyography were extracted individually. Then, the 
features of these two sensing modalities were combined to 
evaluate the prediction performance of sonomyography and 
electromyography, as well as a fused feature set. Because 
ultrasound imaging provides more information (i.e., muscle 
deformation of superficial and deep muscles) about muscle 
contraction in comparison to surface EMG (i.e., activity of 
superficial muscles only), we hypothesized that 
sonomyography features will result in improved regression 

performance for predicting knee and ankle angle and angular 
velocity when compared to surface EMG. However, we 
hypothesized that it would be more difficult to predict ankle 
angle and angular velocity from sonomyography features due 
to imaging muscles that do not span from the ankle joint. 
Furthermore, we hypothesized that the fusion of 
sonomyography with surface EMG would improve the 
regression performance for predicting ankle angle and angular 
velocity due to the unique contribution muscle activity 
information from muscles spanning the ankle. 

II. METHODS 

A. Subjects and Data Collection 

Nine able-bodied subjects, five male and four female, 

completed five ambulation tasks: level walk, 10° incline walk, 

10° decline walk, stair ascent and stair descent. All walking 

trials were completed for one minute at a self-selected pace 

on a split-belt treadmill. Stair trials were completed on a four-

step stair case, beginning with stair ascent followed by stair 

descent with subjects walking in a reciprocal gait pattern at a 

self-selected pace. Stair trials were repeated five times and 

walk-to-stair and stair-to-walk transition strides were 

included in the respective stair analyses. All subjects 

completed an institutional review board approved consent 

process prior to participation.  

All subjects were equipped with ultrasound and surface 

EMG sensors on their left limb. A 128-element linear array 

transducer of a portable, handheld ultrasound scanner 

(mSonics, Lonshine Technologies, Inc) was affixed to the 

anterior thigh of each subject via a custom-designed probe 

holder. The transducer was placed transversely on the thigh at 

approximately half the distance between the anterior superior 

iliac spine and proximal base of the patella to collect grayscale 

images of the rectus femoris, vastus medialis (VM) and vastus 

 

Figure 1.    Sonomyography and Surface Electromyography (EMG) placement on a subject (left). Representative raw and 1-dimensional signals from 

each sensing modality (middle). Representation of sensor fusion feature set (right). 
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intermedius (VI) muscles (Fig. 1, left). Ultrasound images 

were collected with a transmit frequency of 7.5 MHz and a 

dynamic range of 50 dB and were streamed in real-time to the 

lab computer for synchronization with surface EMG and 

kinematic data. 

Eight surface EMG sensors (Shimmer3 EMG Unit, 

Shimmer, Inc.) were placed over eight muscles on the same 

limb as ultrasound. Pre-gelled, self-adhesive electrodes 

(H124SG Covidien, Medtronic Inc.) were placed over the 

belly of the adductor magnus (AM), biceps femoris (BF), 

rectus femoris (RF), vastus lateralis (VL), tensor fascia latae 

(TFL), medial gastrocnemius (MG), tibialis anterior (TA) and 

soleus (SOL) muscles with an inter-electrode distance of 2 cm 

(Fig. 1, left). Surface EMG signals were collected at a 

frequency of 1200 Hz and streamed in real-time to the same 

lab computer as ultrasound.  

Subjects’ kinematic data were collected during all 

ambulation trials in a motion capture laboratory equipped 

with a ten-camera Vicon system (Vicon Motion Systems, 

Inc.) and recorded to the same computer as ultrasound and 

surface EMG at a sampling rate of 100 Hz (C-Motion, Inc.). 

Forty-two reflective markers were placed over anatomical 

landmarks on the bilateral feet, shanks, and thighs, as well as 

trunk and pelvis. Knee and ankle kinematic data were 

calculated in Visual 3D via inverse kinematics, and a custom 

MATLAB program was created to enable real-time recording 

and time stamping of data for synchronization. 

B. Sonomyography and Surface EMG Feature Generation 

Ultrasound imaging can be used to visualize muscle 
motion by the rapidly changing image intensity of muscle 
tissue. Previous research demonstrated mean image intensity 
features and temporal intensity features are useful for 
estimation of knee kinematics from sonomyography [23]–
[26]. Therefore, both mean intensity and temporal intensity 
features were included in feature arrays from ultrasound 
images of the anterior thigh muscles during all ambulation 
tasks. The image sequence from each trial was split by heel 
strikes to create an ultrasound image sequence for each stride. 
A spatial filter with a block size of 3x3 mm was used to extract 
mean intensity of each 3x3 mm block. Then, this 2-dimension 
array of 260 mean image intensity features was rearranged into 
1-dimension by horizontal concatenating rows of features 
ranging from superficial to deep image features. The temporal 
features were created by taking the time derivative of each 
feature set between consecutive frames. Finally, the mean 
intensity and temporal intensity features were combined to 
create a single sonomyography feature set consisting of 520 
features per frame (260 mean intensity + 260 temporal 
intensity) (Fig. 1, middle). 

Six time-domain features were extracted from sliding 
windows of each of the eight signals of surface EMG [25], 
[27]. The sliding windows consisted of 200 ms windows with 
a 50 ms overlap, such that features were continuously 
extracted from EMG signals at a rate of 20 Hz. The six features 
included: mean absolute value, number of slope sign changes, 
number of zero crossings, waveform length, and the first two 
coefficients of a fourth-order autoregressive model. Features 
from all eight muscles were combined to create a single EMG-

based feature set consisting of 48 features per window (Figure 
1, middle). 

A third feature set was created to evaluate the combination 
of sonomyography with surface EMG features for the 
continuous prediction of knee and ankle kinematics. All 
sonomyography features were resampled to match the 20 Hz 
sampling rate of the sliding windows of EMG features prior to 
combining the two feature sets. This third feature set consists 
of the 48 EMG features followed by the 520 sonomyography 
features and will be referred to as the “fusion set” (Fig. 1, 
right).  

C. Estimation of Joint Kinematics and Model Evaluation 

Each of the three feature sets were used to train and test a 
subject-dependent Gaussian process regression (GPR) model 
with a quadratic kernel for continuous prediction of knee and 
ankle angle and angular velocity. The GPR model is a 
nonparametric, Bayesian approach for solving nonlinear 
regression [21]. An instance of a single response variable 𝑦𝑖 , 
given an input and latent variable 𝑓(𝑥𝑖) for each observation 
𝑥𝑖, can be modeled by the following probabilistic equation: 

𝑃(𝑦𝑖|𝑓(𝑥𝑖), 𝑥𝑖) ~ 𝑁(𝑦𝑖|ℎ(𝑥𝑖)
𝑇𝛽 + 𝑓(𝑥𝑖), 𝜎2),  (1) 

Where ℎ(𝑥𝑖) is a basis function that transforms the original 
feature vector in 𝑅𝐷 into a set of new feature vector in 𝑅𝑃,  𝛽 
is a p-by-1 vector of basis function coefficients and 𝜎2 is the 
error variance [21].  

We chose this model based off of previous work 
demonstrating success for prediction of knee kinematics 
during level, incline and decline walking [24], [28]. All 
subject-dependent GPR models were trained on a combined 
dataset containing strides from all five ambulation tasks.  
Leave-one-stride-out cross-validation was utilized and looped 
through all strides, such that each stride was the test stride 
once.  

Average root mean square error (RMSE) of the GPR 
prediction of knee and ankle angle and angular velocity 
compared to the measured knee and ankle angle and angular 
velocity from inverse kinematics was calculated for each of the 
three feature sets (sonomyography, surface EMG, and fusion). 
A one-way analysis of variance (ANOVA) (α=0.05) was used 
to establish a significant difference between the RMSE from 
each of the three feature sets for each walking task. Subsequent 
multiple comparisons t-test were performed with Tukey-

TABLE I.  MEAN AND STANDARD DEVIATION (SD) PARTICIPANT 

CHARACTERISTICS (N = 9). 

Subject Characteristic Mean (SD) 

Age (years) 29.9 (11.2) 

Height (m) 1.72 (0.11) 

Weight (kg) 65.8 (10.4) 

Ultrasound Penetration Depth (cm) 6.0 (0.6) 

Level Walk Speed (m/s) 0.79 (0.15) 

Incline Walk Speed (m/s) 0.64 (0.11) 

Decline Walk Speed (m/s) 0.62 (0.11) 

# of Stair Ascent Strides 7.8 (2.4) 

# of Stair Descent Strides 9.6 (3.4) 
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Kramer corrections to assess statistical significance of each 
group. In addition to the RMSE, the coefficient of 
determination (R2) was calculated as a “goodness of fit” metric 
between each of the sensing modalities prediction of knee and 
ankle kinematics with the measured kinematics. 

III. RESULTS  

Fifteen level, incline and decline strides, as well as the 
maximum available strides for stair ascent and stair descent 
were included in the training and testing datasets for each GPR 
model (additional subject characteristics given in Table I). 
Some stair strides were removed from the dataset due to 
kinematic marker error. Features from sonomyography as well 
as sensor fusion features significantly reduced the overall 
average RMSE of knee and ankle angular velocity and angle 
prediction in comparison to features from surface EMG only 
(Table II). However, there was no significant difference of 
RMSE between features from sensor fusion and 
sonomyography only for knee and ankle angle and angular 
velocity. 

A.  Continuous Prediction of Knee Kinematics 

 In general, for all sensing modalities during all ambulation 

tasks, the GPR model more accurately predicted knee angle 

in comparison to knee angular velocity (R2 values, Fig. 2A). 

Sensor fusion features as well as sonomyography features 

alone significantly reduced RMSE of knee angle prediction in 

comparison to surface EMG features during all ambulation 

tasks, however there were no significant differences between 

sensor fusion and sonomyography-based predictions of knee 

angle (Table II, top section).  The tasks with the lowest RMSE 

for knee angle prediction within each sensing modality (and 

greatest R2 values) were incline and decline walk, while the 

tasks with the greatest RMSE for knee angle prediction (and 

lowest R2 values) within each sensing modality were the stair 

ascent and descent tasks. 

 Conversely, sensor fusion significantly reduced RMSE of 

knee angular velocity prediction in comparison to surface 

EMG-based prediction during all ambulation tasks, while 

sonomyography only reduced RMSE of incline walk, stair 

ascent and stair descent. Within each sensing modality, the 

task with the lowest RMSE (and greatest R2 values) for knee 

angular velocity prediction was incline walk, while the task 

with the greatest RMSE (and lowest R2 values) for knee 

angular velocity prediction was stair descent.  

B.  Continuous Prediction of Ankle Kinematics 

 Similar to GPR prediction of knee kinematics, for all 

sensing modalities during all ambulation tasks, the GPR 

model more accurately predicted ankle angle in comparison 

to ankle angular velocity (R2 values, Fig. 2B).  Sensor fusion 

significantly reduced RMSE of ankle angle prediction of level 

walk, incline walk, decline walk and stair descent compared 

to surface-EMG based prediction of ankle angle. 

Additionally, sonomyography sensing alone significantly 

reduced RMSE of ankle angle prediction incline walk, decline 

walk and stair descent tasks in comparison to surface-EMG. 

There were no significant differences between 

sonomyography alone and sensor fusion for prediction of 

ankle angle during any ambulation task. Within each sensing 

modality, the task with the lowest RMSE (and greatest R2 

values) for ankle angle prediction was level walk, while the 

task with the greatest RMSE for ankle angle prediction was 

stair descent. However, the task with the lowest R2 values for 

ankle angle prediction was stair ascent. 

 Sensor fusion significantly reduced the RMSE of ankle 

angular velocity prediction during stair descent only in 

comparison to surface EMG-based prediction of ankle 

angular velocity. There were no significant differences 

between sonomyography and surface EMG-based prediction 

of ankle angular velocity. Within sensing modalities, the task  

TABLE II.  MEAN AND STANDARD DEVIATION (SD) ROOT MEAN SQUARE ERROR (RMSE) OF SURFACE ELECTROMYOGRAPHY (EMG)  

SONOMYOGRAPHY, AND SENSOR FUSION INFORMED GAUSSIAN PROCESS REGRESSION MODEL PREDICTION OF KNEE KINEMATICS. 

 Mean (SD) Root Mean Square Error 

 
Angle (deg) Angular Velocity (deg/s) 

Ambulation 

Task 

Sensing Modality 
Ambulation 

Task 

Sensing Modality 

 Surface EMG Sonomyography 
Sensor 

Fusion 
Surface EMG Sonomyography 

Sensor 

Fusion 

K
n

ee
 

Level Walk 7.24 (1.80) a,b 4.73 (1.25) 3.77 (0.81) Level Walk 89.81 (22.36) b 67.33 (22.56) 64.57 (19.03) 

Incline Walk 6.60 (1.11) a,b 4.03 (1.39) 3.22 (0.91) Incline Walk 48.84 (7.54) a,b 35.93 (14.58) 27.61 (9.13) 

Decline Walk 6.88 (1.71) a,b 4.97 (1.10) 3.94 (1.03) Decline Walk 61.56 (9.71) b 53.12 (14.00) 45.37 (11.22) 

Stair Ascent 11.87 (1.61) a,b 8.56 (1.56) 7.63 (1.56) Stair Ascent 90.21 (29.35) a,b 62.77 (10.78) 55.20 (13.59) 

Stair Descent 14.49 (3.27) a,b 8.25 (2.95) 7.67 (2.57) Stair Descent 109.12 (23.87) a,b 72.41 (21.90) 67.12 (16.00) 

Overall 

Average 
10.49 (2.15) a,b 6.11 (1.65) 5.25 (1.38) 

Overall 

Average 
79.91 (18.57) a,b 58.31 (16.76) 51.97 (13.79) 

A
n

k
le

 

Level Walk 3.01 (0.87) b 2.55 (0.57) 2.21 (0.47) Level Walk 46.51 (12.84) 45.90 (10.30) 41.36 (8.11) 

Incline Walk 4.50 (1.07) a,b 2.66 (0.91) 2.29 (0.70) Incline Walk 41.99 (10.31) 36.64 (10.11) 33.32 (8.07) 

Decline Walk 3.68 (1.23) a,b 2.34 (0.68) 2.17 (0.55)  Decline Walk 42.31 (8.20)  42.52 (7.91) 40.14 (7.59) 

Stair Ascent 5.97 (2.31)  4.36 (1.27) 3.95 (1.54) Stair Ascent 57.89 (16.02) 50.19 (10.78) 46.83 (9.93) 

Stair Descent 7.68 (2.40) a,b 4.83 (1.75) 4.36 (1.54) Stair Descent 82.13 (14.41) b 67.31 (14.37) 65.25 (10.65) 

Overall 

Average 
4.97 (1.58) a,b 3.35 (1.04) 3.00 (0.96) 

Overall 

Average 
54.16 (12.36) b 48.51 (10.70) 45.38 (8.87) 

 a. Significant difference (p<0.05) between RMSE of surface EMG and sonomyography sensing.   

b. Significant difference (p<0.05) between RMSE of surface EMG and sensor fusion. 
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Figure 3.    Measured vs. Predicted (A) Knee and (B) Ankle Kinematics During Level Walk,  Incline Walk, Decline Walk, Stair Ascent and Stair Descent as 
a Function of the Gait Cycle. Knee and ankle angle and angular velocity were measured using inverse kinematics; means are displayed in solid gray lines 

with standard deviations displayed in shaded regions. Predicted knee and ankle angle and angular velocity were estimated from Gaussian processes 

regression models trained with features from sonomyography, surface electromyography and sensor fusion. Coefficients of determination (R2) are 
calculated between the predicted kinematics from the respective sensing modality and the measured values. Dashed vertical line signifies average transition 

from stance to swing phase of gait. 
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with the lowest RMSE (and greatest R2 values) of ankle 

angular velocity prediction was incline walk, while the task 

with the greatest RMSE (and lowest R2 values) for ankle 

angular velocity prediction was stair descent. 

C.  Computational Cost 

All signal processing, extraction of sensing features and 

implementation of the GPR model was completed on a single 

CPU (Intel(R) Core i7-7700 at 3.60 GHz). Average 

computational speed for training and testing the GPR model 

with each of the three feature sets are displayed in Table III.  

IV. DISCUSSION 

Fusion of sonomyography and electromyography 

improved the GPR model’s accuracy of knee and ankle angle 

and angular velocity prediction in comparison to 

sonomyography and surface EMG alone. Surprisingly, there 

were no significant differences between sensor fusion and 

sonomyography sensing alone when comparing the GPR 

model’s prediction of any of the knee or ankle kinematics. As 

hypothesized, both sensor fusion and sonomyography 

features alone resulted in significantly reduced RMSE of knee 

angle prediction from the GPR models for all ambulation 

tasks in comparison to surface EMG features. Additionally, 

sensor fusion resulted in significantly reduced RMSE of ankle 

angle prediction during all tasks, while sonomyography alone 

resulted in significantly improved RMSE of ankle angle 

prediction during most (incline walk, stair ascent, stair 

descent) tasks in comparison to surface EMG. In general, for 

all sensing modalities, stair ambulation resulted in the greatest 

RMSE and lowest R2. This can likely be attributed to the 

reduced number of stair strides available for training the GPR 

models as well as increased variability of the stair kinematics 

due to inclusion of both the transition and steady state strides. 

For both joints, angular velocity proved more difficult for the 

GPR model to predict. Sensor fusion improved knee angular 

velocity prediction during all ambulation tasks, and 

sonomyography alone resulted in significantly reduced 

RMSE of knee angular velocity prediction during most 

ambulation tasks (incline walk, stair ascent, stair descent) in 

comparison to surface EMG features. 

One explanation as to why angular velocity was more 

difficult to predict compared to the respective joint’s angle 

during all walking tasks is due to the increase in input noise 

of the angular velocity signal. GPR models make two 

assumptions about noise in datasets: the input to the model is 

noise-free and the output of the model have constant-variance 

Gaussian noise [29]. Therefore, due to the potential for noise 

in both the input (sonomyography and surface EMG features), 

as well as the output (angular velocity) during these 

ambulation tasks, other non-linear regression models could 

potentially be more beneficial for predicting angular velocity 

of the knee and ankle. 

The present results confirm previous findings that 

sonomyography can be used to accurately predict knee 

angular velocity during walking tasks [24], and extend these 

findings to knee angular velocity, as well as ankle angle and 

angular velocity. As expected, the performance of ankle 

kinematic prediction decreased in comparison to knee 

kinematic prediction. However, the addition of surface EMG 

sensing to sonomyography did not significantly improve the 

performance relative to sonomyography alone, indicating that 

sonomyography of the anterior thigh may be sufficient for 

estimating distal ankle angle. Although there was no 

significant improvement when comparing sonomyography 

alone to sensor fusion, there are potential benefits of including 

surface EMG that are unforeseen by this study design, such as 

generalizability to new tasks and ability for users to improve 

upon learned tasks. Given that surface EMG is a purely neural 

signal, with additional practice, it has been suggested that 

users may be able to “strengthen” the neural signal and learn 

to create and reproduce unique surface EMG contraction 

patterns that improve prediction [30]. 

There are limitations of the present study that justify future 

work. This study evaluates the three sensing modalities for 

three steady-state walking tasks as well as two stair tasks that 

include transition strides, however additional walking tasks at 

varying speeds and inclines, as well as non-cyclical 

movements could be evaluated. Additionally, these results 

should be extended to people with mobility limitations such 

as lower-limb loss. However, similar research in the upper-

limb confirms sonomyography translates from able-bodied 

subjects to individuals with upper-limb loss, thus we expect a 

similar outcome in individuals with lower-limb loss.[10]. 

Finally, additional work is required to further minimize the 

size of ultrasound sensing technology and evaluate online 

performance of sonomyography for continuous prediction of 

joint kinematics. 

V. CONCLUSION 

This work evaluated three sensing modalities (surface 

EMG, sonomyography and sensor fusion) for the continuous 

prediction of knee and ankle angle and angular velocity. 

Sonomyography significantly improved the predictive 

performance of the GPR models for knee angle and angular 

velocity in comparison to surface EMG. However, there were 

no significant differences between sensing modalities for 

ankle angle and angular velocity during most ambulation 

tasks. The addition of surface EMG features to 

sonomyography did not significantly improve kinematic 

prediction results for either joint. These results support the 

translation of sonomyography and electromyography for 

continuous prediction of kinematics of multi- degrees-of-

freedom assistive robotics. 
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