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Continuous Prediction of Leg Kinematics During Ambulation using
Peripheral Sensing of Muscle Activity and Morphology
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Abstract—The advancement of robotic lower-limb assistive
devices has heightened the need for accurate and continuous
sensing of user intent. Surface electromyography (EMG) has
been extensively used to sense muscles, and estimate locomotion
modes and limb motion. Recently, sonomyography has also been
investigated as a novel sensing modality. However, the fusion of
multiple sensing modalities has not been explored for the
continuous prediction of multiple degrees-of-freedom of the
lower limb, and during multiple ambulation tasks. In the present
study, nine able-bodied subjects completed level, incline, decline,
stair ascent, and stair descent tasks. Motion capture data was
collected during each task, as well as data from a portable
ultrasound transducer (aligned in a transverse orientation) on
the anterior thigh and surface EMG sensors on eight lower-limb
muscles. Subject-dependent, task-independent Gaussian process
regression models were implemented for continuous prediction
of knee and ankle angle and angular velocity during these
ambulation tasks using three feature sets: (1) surface EMG, (2)
sonomyography, and (3) sensor fusion of EMG with
sonomyography. Surprisingly, there were no significant
differences between sonomyography and sensor fusion-based
prediction of knee or ankle angle and angular velocity during all
tasks. However, sonomyography and sensor fusion resulted in
reduced root mean square error of knee angle prediction during
all ambulation tasks and knee angular velocity prediction during
most ambulation tasks compared to surface EMG. Sensor fusion
improved ankle angle prediction for all walking tasks except
stair ascent in comparison to surface EMG. Ankle angular
velocity prediction resulted in the lowest performance, overall.

Clinical Relevance—This work compares the combination of
surface electromyography and sonomyography, and each
modality in isolation, for the continuous prediction of kinematics
of the knee and ankle during widely-varying ambulatory tasks.

I. INTRODUCTION

Limb loss presents a growing clinical problem in the
United States with more than 1.9 million people currently
living with the loss of a limb and an estimated two-fold
increase by 2050 [1]. Furthermore, greater than 30% of people
who have suffered the loss of a limb are unable to live
independently and lower-limb loss is consistently associated
with lower quality of life [2]. Assistive devices aiming to
restore natural locomotor ability to individuals with lower-
limb loss are crucial for improving the quality of life of these
individuals. The introduction of assistive devices that contain
robotic lower-limb joints have the ability to restore additional
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functionality to individuals with limb loss by increasing the
amount of assistance provided to the user, and adapting to new
environments. However, powered assistive devices rely on
accurate sensing to enable robust control schemes for safe
integration into the daily lives of users [3]. Ideally, accurate
sensing over multiple degrees-of-freedom, such as the knee
and ankle of a powered transfemoral prostheses.

Multiple wearable sensing technologies have been
explored for the detection of user intent, including mechanical
sensors, neural sensors, and, most recently, imaging sensors.
Mechanical sensors (e.g., inertial measurement units, pressure
insoles, and accelerometers) are used for detection of reaction
forces and limb motion. In order to sense information that
precedes limb motion, neural sensors (e.g. surface
electromyography (EMG)) have been the primary peripheral
sensing technology evaluated to date [4]-[6]. Surface EMG
measures muscle activity of superficial muscles via electrodes
placed over the skin, and therefore cannot access information
from deep muscle tissue and is susceptible to muscle cross-
talk, resulting in low signal resolution and susceptibility to
signal noise [7]. To increase the resolution of surface EMG,
high density surface EMG decomposition has been proposed
for its ability to analyze individual motor unit discharge in
multiple muscles simultaneously. However, similar to
traditional surface EMG, this technology is limited to
superficial muscles only, and can be more difficult to analyze
neighboring muscles, as well as more computationally
expensive [8]. Therefore, researchers have turned to new
sensing modalities, such as dynamic real-time ultrasound
imaging of skeletal muscle, or sonomyography, for detection
of additional muscle features beyond muscle activity from
both superficial and deep muscle tissue. Both brightness-
modulated (B-mode) and amplitude (A-mode) ultrasound
imaging features have been correlated with muscle force
production, contraction, and resulting joint motion [9]-[13].
To further improve the individual drawbacks of each of these
sensing technologies alone, scientists have explored the fusion
of multiple sensing modalities, such as neuromechanical
fusion (i.e. surface EMG with mechanical sensors) [14]-[16].
Due to the recent introduction of sonomyography for lower-
limb device control applications, the fusion of surface EMG
with sonomyography is less widely reported [17].

Features of these sensing technologies can be used as an
input for either model-based control approaches or model-free
(e.g. machine learning or artificial intelligence) control
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approaches. While model-based approaches are beneficial for
explicitly characterizing the transformation between input
features to the desired output, these approaches can suffer from
high computational cost that precludes real-time
implementation [18]. Therefore, machine learning approaches,
such as nonlinear regression, Gaussian regression models,
neural networks, among others, have been proposed for
mapping the features from surface EMG and sonomyography
to device outputs, such as limb kinematics and kinetics [17],
[19], [20]. Additionally, Gaussian process regression models
have been proposed as alternatives to model-based solutions
for inverse dynamics estimates of joint torque [21], [22].
Previous research demonstrated success in using these
Gaussian models for continuous estimation of hip, knee and
ankle moment, as well as knee angular velocity from
sonomyography alone [23], [24]. However, the ability of these
models to continuously predict knee and ankle angle and
angular velocity from features of sonomyography alone,
surface EMG alone, and the fusion of these two feature sets,
has not been explored. Understanding these relationships can
help to inform future integration of wearable sensing into
powered assistive devices and their control systems.

The purpose of this study was to use sonomyography of the
anterior thigh and electromyography sensors placed on various
muscles of the same limb to continuously predict knee and
ankle kinematics of able-bodied subjects during five
ambulatory tasks. Features from both surface EMG and
sonomyography were extracted individually. Then, the
features of these two sensing modalities were combined to
evaluate the prediction performance of sonomyography and
electromyography, as well as a fused feature set. Because
ultrasound imaging provides more information (i.e., muscle
deformation of superficial and deep muscles) about muscle
contraction in comparison to surface EMG (i.e., activity of
superficial muscles only), we hypothesized that
sonomyography features will result in improved regression

performance for predicting knee and ankle angle and angular
velocity when compared to surface EMG. However, we
hypothesized that it would be more difficult to predict ankle
angle and angular velocity from sonomyography features due
to imaging muscles that do not span from the ankle joint.
Furthermore, we hypothesized that the fusion of
sonomyography with surface EMG would improve the
regression performance for predicting ankle angle and angular
velocity due to the unique contribution muscle activity
information from muscles spanning the ankle.

II. METHODS

A. Subjects and Data Collection

Nine able-bodied subjects, five male and four female,
completed five ambulation tasks: level walk, 10° incline walk,
10° decline walk, stair ascent and stair descent. All walking
trials were completed for one minute at a self-selected pace
on a split-belt treadmill. Stair trials were completed on a four-
step stair case, beginning with stair ascent followed by stair
descent with subjects walking in a reciprocal gait pattern at a
self-selected pace. Stair trials were repeated five times and
walk-to-stair and stair-to-walk transition strides were
included in the respective stair analyses. All subjects
completed an institutional review board approved consent
process prior to participation.

All subjects were equipped with ultrasound and surface
EMG sensors on their left limb. A 128-element linear array
transducer of a portable, handheld ultrasound scanner
(mSonics, Lonshine Technologies, Inc) was affixed to the
anterior thigh of each subject via a custom-designed probe
holder. The transducer was placed transversely on the thigh at
approximately half the distance between the anterior superior
iliac spine and proximal base of the patella to collect grayscale
images of the rectus femoris, vastus medialis (VM) and vastus
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Figure 1.

Sonomyography and Surface Electromyography (EMG) placement on a subject (left). Representative raw and 1-dimensional signals from

each sensing modality (middle). Representation of sensor fusion feature set (right).
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intermedius (VI) muscles (Fig. 1, left). Ultrasound images
were collected with a transmit frequency of 7.5 MHz and a
dynamic range of 50 dB and were streamed in real-time to the
lab computer for synchronization with surface EMG and
kinematic data.

Eight surface EMG sensors (Shimmer3 EMG Unit,
Shimmer, Inc.) were placed over eight muscles on the same
limb as ultrasound. Pre-gelled, self-adhesive electrodes
(H124SG Covidien, Medtronic Inc.) were placed over the
belly of the adductor magnus (AM), biceps femoris (BF),
rectus femoris (RF), vastus lateralis (VL), tensor fascia latae
(TFL), medial gastrocnemius (MG), tibialis anterior (TA) and
soleus (SOL) muscles with an inter-electrode distance of 2 cm
(Fig. 1, left). Surface EMG signals were collected at a
frequency of 1200 Hz and streamed in real-time to the same
lab computer as ultrasound.

Subjects’ kinematic data were collected during all
ambulation trials in a motion capture laboratory equipped
with a ten-camera Vicon system (Vicon Motion Systems,
Inc.) and recorded to the same computer as ultrasound and
surface EMG at a sampling rate of 100 Hz (C-Motion, Inc.).
Forty-two reflective markers were placed over anatomical
landmarks on the bilateral feet, shanks, and thighs, as well as
trunk and pelvis. Knee and ankle kinematic data were
calculated in Visual 3D via inverse kinematics, and a custom
MATLAB program was created to enable real-time recording
and time stamping of data for synchronization.

B. Sonomyography and Surface EMG Feature Generation

Ultrasound imaging can be used to visualize muscle
motion by the rapidly changing image intensity of muscle
tissue. Previous research demonstrated mean image intensity
features and temporal intensity features are useful for
estimation of knee kinematics from sonomyography [23]-
[26]. Therefore, both mean intensity and temporal intensity
features were included in feature arrays from ultrasound
images of the anterior thigh muscles during all ambulation
tasks. The image sequence from each trial was split by heel
strikes to create an ultrasound image sequence for each stride.
A spatial filter with a block size of 3x3 mm was used to extract
mean intensity of each 3x3 mm block. Then, this 2-dimension
array of 260 mean image intensity features was rearranged into
1-dimension by horizontal concatenating rows of features
ranging from superficial to deep image features. The temporal
features were created by taking the time derivative of each
feature set between consecutive frames. Finally, the mean
intensity and temporal intensity features were combined to
create a single sonomyography feature set consisting of 520
features per frame (260 mean intensity + 260 temporal
intensity) (Fig. 1, middle).

Six time-domain features were extracted from sliding
windows of each of the eight signals of surface EMG [25],
[27]. The sliding windows consisted of 200 ms windows with
a 50 ms overlap, such that features were continuously
extracted from EMG signals at a rate of 20 Hz. The six features
included: mean absolute value, number of slope sign changes,
number of zero crossings, waveform length, and the first two
coefficients of a fourth-order autoregressive model. Features
from all eight muscles were combined to create a single EMG-

TABLE L. MEAN AND STANDARD DEVIATION (SD) PARTICIPANT
CHARACTERISTICS (N=9).
Subject Characteristic Mean (SD)
Age (years) 29.9 (11.2)
Height (m) 1.72 (0.11)
Weight (kg) 65.8 (10.4)
Ultrasound Penetration Depth (cm) 6.0 (0.6)
Level Walk Speed (m/s) 0.79 (0.15)
Incline Walk Speed (m/s) 0.64 (0.11)
Decline Walk Speed (m/s) 0.62 (0.11)
# of Stair Ascent Strides 7.8 (2.4)
# of Stair Descent Strides 9.6 (3.4)

based feature set consisting of 48 features per window (Figure
1, middle).

A third feature set was created to evaluate the combination
of sonomyography with surface EMG features for the
continuous prediction of knee and ankle kinematics. All
sonomyography features were resampled to match the 20 Hz
sampling rate of the sliding windows of EMG features prior to
combining the two feature sets. This third feature set consists
of the 48 EMG features followed by the 520 sonomyography
features and will be referred to as the “fusion set” (Fig. 1,
right).

C. Estimation of Joint Kinematics and Model Evaluation

Each of the three feature sets were used to train and test a
subject-dependent Gaussian process regression (GPR) model
with a quadratic kernel for continuous prediction of knee and
ankle angle and angular velocity. The GPR model is a
nonparametric, Bayesian approach for solving nonlinear
regression [21]. An instance of a single response variable y;,
given an input and latent variable f(x;) for each observation
x;, can be modeled by the following probabilistic equation:

Pl f(x;), x) ~ N lh(x)"B + f(x),02), (1)

Where h(x;) is a basis function that transforms the original
feature vector in R” into a set of new feature vector in RY, f
is a p-by-1 vector of basis function coefficients and ¢ is the
error variance [21].

We chose this model based off of previous work
demonstrating success for prediction of knee kinematics
during level, incline and decline walking [24], [28]. All
subject-dependent GPR models were trained on a combined
dataset containing strides from all five ambulation tasks.
Leave-one-stride-out cross-validation was utilized and looped
through all strides, such that each stride was the test stride
once.

Average root mean square error (RMSE) of the GPR
prediction of knee and ankle angle and angular velocity
compared to the measured knee and ankle angle and angular
velocity from inverse kinematics was calculated for each of the
three feature sets (sonomyography, surface EMG, and fusion).
A one-way analysis of variance (ANOVA) (0=0.05) was used
to establish a significant difference between the RMSE from
each of the three feature sets for each walking task. Subsequent
multiple comparisons t-test were performed with Tukey-
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Kramer corrections to assess statistical significance of each
group. In addition to the RMSE, the -coefficient of
determination (R?) was calculated as a “goodness of fit” metric
between each of the sensing modalities prediction of knee and
ankle kinematics with the measured kinematics.

III. RESULTS

Fifteen level, incline and decline strides, as well as the
maximum available strides for stair ascent and stair descent
were included in the training and testing datasets for each GPR
model (additional subject characteristics given in Table I).
Some stair strides were removed from the dataset due to
kinematic marker error. Features from sonomyography as well
as sensor fusion features significantly reduced the overall
average RMSE of knee and ankle angular velocity and angle
prediction in comparison to features from surface EMG only
(Table II). However, there was no significant difference of
RMSE between features from sensor fusion and
sonomyography only for knee and ankle angle and angular
velocity.

A. Continuous Prediction of Knee Kinematics

In general, for all sensing modalities during all ambulation
tasks, the GPR model more accurately predicted knee angle
in comparison to knee angular velocity (R? values, Fig. 2A).
Sensor fusion features as well as sonomyography features
alone significantly reduced RMSE of knee angle prediction in
comparison to surface EMG features during all ambulation
tasks, however there were no significant differences between
sensor fusion and sonomyography-based predictions of knee
angle (Table 11, top section). The tasks with the lowest RMSE
for knee angle prediction within each sensing modality (and
greatest R? values) were incline and decline walk, while the
tasks with the greatest RMSE for knee angle prediction (and
lowest R? values) within each sensing modality were the stair
ascent and descent tasks.

TABLE IL

Conversely, sensor fusion significantly reduced RMSE of
knee angular velocity prediction in comparison to surface
EMG-based prediction during all ambulation tasks, while
sonomyography only reduced RMSE of incline walk, stair
ascent and stair descent. Within each sensing modality, the
task with the lowest RMSE (and greatest R? values) for knee
angular velocity prediction was incline walk, while the task
with the greatest RMSE (and lowest R? values) for knee
angular velocity prediction was stair descent.

B.  Continuous Prediction of Ankle Kinematics

Similar to GPR prediction of knee kinematics, for all
sensing modalities during all ambulation tasks, the GPR
model more accurately predicted ankle angle in comparison
to ankle angular velocity (R? values, Fig. 2B). Sensor fusion
significantly reduced RMSE of ankle angle prediction of level
walk, incline walk, decline walk and stair descent compared
to surface-EMG based prediction of ankle angle.
Additionally, sonomyography sensing alone significantly
reduced RMSE of ankle angle prediction incline walk, decline
walk and stair descent tasks in comparison to surface-EMG.
There were no significant differences between
sonomyography alone and sensor fusion for prediction of
ankle angle during any ambulation task. Within each sensing
modality, the task with the lowest RMSE (and greatest R?
values) for ankle angle prediction was level walk, while the
task with the greatest RMSE for ankle angle prediction was
stair descent. However, the task with the lowest R? values for
ankle angle prediction was stair ascent.

Sensor fusion significantly reduced the RMSE of ankle
angular velocity prediction during stair descent only in
comparison to surface EMG-based prediction of ankle
angular velocity. There were no significant differences
between sonomyography and surface EMG-based prediction
of ankle angular velocity. Within sensing modalities, the task

MEAN AND STANDARD DEVIATION (SD) ROOT MEAN SQUARE ERROR (RMSE) OF SURFACE ELECTROMYOGRAPHY (EMG)

SONOMYOGRAPHY, AND SENSOR FUSION INFORMED GAUSSIAN PROCESS REGRESSION MODEL PREDICTION OF KNEE KINEMATICS.

Mean (SD) Root Mean Square Error
Angle (deg) Angular Velocity (deg/s)
Ambulation Sensing Modality < Ambulation Sensing Modality <
Task . ensor Task . ensor
Surface EMG | Sonomyography Fusion Surface EMG | Sonomyography Fusion
Level Walk 7.24 (1.80) *° 4.73 (1.25) 3.77 (0.81) Level Walk 89.81 (22.36)® 67.33 (22.56) 64.57 (19.03)
Incline Walk 6.60 (1.11) *® 4.03 (1.39) 3.22(0.91) Incline Walk 48.84 (7.54) 35.93 (14.58) 27.61 (9.13)
g Decline Walk 6.88 (1.71) b 4.97 (1.10) 3.94 (1.03) Decline Walk 61.56 (9.71)° 53.12 (14.00) 4537 (11.22)
g Stair Ascent 11.87 (1.61) = 8.56 (1.56) 7.63 (1.56) Stair Ascent 90.21 (29.35) b 62.77 (10.78) 55.20 (13.59)
Stair Descent 14.49 (3.27) 8.25 (2.95) 7.67 (2.57) Stair Descent | 109.12 (23.87) 72.41 (21.90) 67.12 (16.00)
Overall 10.49 (2.15) = 6.1 (1.65) 5.25(1.38) Overall 79.91 (18.57) * 58.31 (16.76) 51.97 (13.79)
Average Average
Level Walk 3.01(0.87)" 2.55(0.57) 2.21(0.47) Level Walk 46.51 (12.84) 45.90 (10.30) 41.36 (8.11)
Incline Walk 4.50 (1.07) = 2.66 (0.91) 2.29 (0.70) Incline Walk 41.99 (10.31) 36.64 (10.11) 33.32(8.07)
) Decline Walk 3.68 (1.23) *b 2.34 (0.68) 2.17 (0.55) Decline Walk 4231 (8.20) 42.52 (7.91) 40.14 (7.59)
E Stair Ascent 5.97 (2.31) 4.36 (1.27) 3.95(1.54) Stair Ascent 57.89 (16.02) 50.19 (10.78) 46.83 (9.93)
Stair Descent 7.68 (2.40) b 4.83 (1.75) 436 (1.54) Stair Descent 82.13 (14.41)° 67.31 (14.37) 65.25 (10.65)
Overall 4.97 (1.58) * 3.35 (1.04) 3.00 (0.96) Overall 54.16 (12.36)® 48.51 (10.70) 4538 (8.87)
Average Average

a. Significant difference (p<0.05) between RMSE of surface EMG and sonomyography sensing.
b. Significant difference (p<0.05) between RMSE of surface EMG and sensor fusion.
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with the lowest RMSE (and greatest R? values) of ankle
angular velocity prediction was incline walk, while the task
with the greatest RMSE (and lowest R? values) for ankle
angular velocity prediction was stair descent.

C. Computational Cost

All signal processing, extraction of sensing features and
implementation of the GPR model was completed on a single
CPU (Intel(R) Core i7-7700 at 3.60 GHz). Average
computational speed for training and testing the GPR model
with each of the three feature sets are displayed in Table III.

IV. DISCUSSION

Fusion of sonomyography and electromyography
improved the GPR model’s accuracy of knee and ankle angle
and angular velocity prediction in comparison to
sonomyography and surface EMG alone. Surprisingly, there
were no significant differences between sensor fusion and
sonomyography sensing alone when comparing the GPR
model’s prediction of any of the knee or ankle kinematics. As
hypothesized, both sensor fusion and sonomyography
features alone resulted in significantly reduced RMSE of knee
angle prediction from the GPR models for all ambulation
tasks in comparison to surface EMG features. Additionally,
sensor fusion resulted in significantly reduced RMSE of ankle
angle prediction during all tasks, while sonomyography alone
resulted in significantly improved RMSE of ankle angle
prediction during most (incline walk, stair ascent, stair
descent) tasks in comparison to surface EMG. In general, for
all sensing modalities, stair ambulation resulted in the greatest
RMSE and lowest R2. This can likely be attributed to the
reduced number of stair strides available for training the GPR
models as well as increased variability of the stair kinematics
due to inclusion of both the transition and steady state strides.
For both joints, angular velocity proved more difficult for the
GPR model to predict. Sensor fusion improved knee angular
velocity prediction during all ambulation tasks, and
sonomyography alone resulted in significantly reduced
RMSE of knee angular velocity prediction during most
ambulation tasks (incline walk, stair ascent, stair descent) in
comparison to surface EMG features.

One explanation as to why angular velocity was more
difficult to predict compared to the respective joint’s angle
during all walking tasks is due to the increase in input noise
of the angular velocity signal. GPR models make two
assumptions about noise in datasets: the input to the model is
noise-free and the output of the model have constant-variance
Gaussian noise [29]. Therefore, due to the potential for noise
in both the input (sonomyography and surface EMG features),
as well as the output (angular velocity) during these
ambulation tasks, other non-linear regression models could
potentially be more beneficial for predicting angular velocity
of the knee and ankle.

The present results confirm previous findings that
sonomyography can be used to accurately predict knee
angular velocity during walking tasks [24], and extend these
findings to knee angular velocity, as well as ankle angle and
angular velocity. As expected, the performance of ankle

TABLE III. AVERAGE COMPUTATIONAL TIME.

. Mean Time (s)
Regression Model ;

Train Test

Surface Electromyography 6.45 0.001

Sonomyography 6.21 0.004

Sensor Fusion 24.16 0.005

kinematic prediction decreased in comparison to knee
kinematic prediction. However, the addition of surface EMG
sensing to sonomyography did not significantly improve the
performance relative to sonomyography alone, indicating that
sonomyography of the anterior thigh may be sufficient for
estimating distal ankle angle. Although there was no
significant improvement when comparing sonomyography
alone to sensor fusion, there are potential benefits of including
surface EMG that are unforeseen by this study design, such as
generalizability to new tasks and ability for users to improve
upon learned tasks. Given that surface EMG is a purely neural
signal, with additional practice, it has been suggested that
users may be able to “strengthen” the neural signal and learn
to create and reproduce unique surface EMG contraction
patterns that improve prediction [30].

There are limitations of the present study that justify future
work. This study evaluates the three sensing modalities for
three steady-state walking tasks as well as two stair tasks that
include transition strides, however additional walking tasks at
varying speeds and inclines, as well as non-cyclical
movements could be evaluated. Additionally, these results
should be extended to people with mobility limitations such
as lower-limb loss. However, similar research in the upper-
limb confirms sonomyography translates from able-bodied
subjects to individuals with upper-limb loss, thus we expect a
similar outcome in individuals with lower-limb loss.[10].
Finally, additional work is required to further minimize the
size of ultrasound sensing technology and evaluate online
performance of sonomyography for continuous prediction of
joint kinematics.

V. CONCLUSION

This work evaluated three sensing modalities (surface
EMG, sonomyography and sensor fusion) for the continuous
prediction of knee and ankle angle and angular velocity.
Sonomyography significantly improved the predictive
performance of the GPR models for knee angle and angular
velocity in comparison to surface EMG. However, there were
no significant differences between sensing modalities for
ankle angle and angular velocity during most ambulation
tasks. The addition of surface EMG features to
sonomyography did not significantly improve kinematic
prediction results for either joint. These results support the
translation of sonomyography and electromyography for
continuous prediction of kinematics of multi- degrees-of-
freedom assistive robotics.
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