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Problem-solving and reasoning involve mental exploration and navigation in sparse
relational spaces. A physical analogue is spatial navigation in structured environments
such as a network of burrows. Recent experiments with mice navigating a labyrinth
show a sharp discontinuity during learning, corresponding to a distinct moment of
“sudden insight” when mice figure out long, direct paths to the goal. This discontinuity
is seemingly at odds with reinforcement learning (RL), which involves a gradual build-
up of a value signal during learning. Here, we show that biologically plausible RL
rules combined with persistent exploration generically exhibit discontinuous learning.
In tree-like structured environments, positive feedback from learning on behavior
generates a “reinforcement wave” with a steep profile. The discontinuity occurs
when the wave reaches the starting point. By examining the nonlinear dynamics
of reinforcement propagation, we establish a quantitative relationship between
the learning rule, the agent’s exploration biases, and learning speed. Predictions
explain existing data and motivate specific experiments to isolate the phenomenon.
Additionally, we characterize the exact learning dynamics of various RL rules for a
complex sequential task.

reinforcement learning | physics of behavior | foraging | navigation

As we walk the streets of a city, we rapidly figure out paths to new spots after visiting
them a few times. For nesting animals, foraging between new locations and their nests in
structured environments is an essential aspect of their survival. Rats constantly navigate
within a complex underground network of burrows to expand their stores of food (1).
Navigating from point A to point B in a structured space requires different strategies
compared to a similar task on a flat, open field. In the latter, navigation often involves
geometric calculations of distances and angles based on celestial cues, compasses, or
landmarks. In a burrow, on the other hand, a rat needs to learn which way to turn at each
intersection and benefits from understanding the relationship between places within the
network.

The relational structure of mazes offers a well-controlled experimental paradigm to
identify biological algorithms for navigating structured environments. Early laboratory
experiments on learning algorithms, and animal behavior at large, involved rats navigating
a maze (2-7). Rats rapidly learn to navigate to a rewarding location within the maze,
which often develops into a habitual action sequence resistant to subsequent changes
such as the addition of a shortcut. These experiments and others led to the hypothesis
that learning entailed the fixation of stimulus—response relationships due to a reward
(6-9). A parallel set of experiments showed that the structure of the maze could be
learned during exploration without any significant reward, termed latent learning (10).
Latent learning presumably proceeds through the formation of a “cognitive map,” which
can be flexibly reused when the animal needs to generalize to a novel situation (11-13).
This dichotomy between behavioral stereotypy and flexibility is analogous to the modern
dichotomy in computational reinforcement learning (RL) between direct and indirect
learning, often implemented using model-free and model-based methods, respectively
(14-16). However, the specific learning algorithms that animals use to navigate and the
circumstances under which one system or the other is employed remain unclear.

Recent developments in deep-learning-based behavioral tracking methods (17-19)
allow for following mice in labyrinthine mazes for extended periods of time. In an
elegant experiment (20), mice were allowed to navigate (in the dark) an unfamiliar maze
structured as a depth-six binary tree (Fig. 14). In each experiment, a mouse moves freely
between a cage (marked as home in Fig. 14) and the maze. Markerless pose estimation
(17) is used to track its movements continuously over 7 h. Ten of the twenty mice were
water-deprived, and a water reward was renewed every 90 s from a port at one end of
the maze (marked as a water droplet in Fig. 14). Results recapitulate the aforementioned
studies: Mice exhibit rapid learning and eventually execute a quick action sequence from
home to the water port. In addition, mice persistently explore the maze with exploration
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learning (RL) algorithms
incrementally reinforce rewarding
actions through accumulated
experience. However, past
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akin to an “aha” moment of
sudden insight. The learning
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discontinuous learning curves is
unclear. We show that the
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learning together with continuous
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learning curves in tree-like
structured environments. We
develop a quantitative theory
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explains existing data and
provides specific testable
predictions.

Author affiliations: @Physics & Informatics Laboratories,
NTT Research, Inc.,, Sunnyvale, CA 94085; PCenter for
Brain Science, Harvard University, Cambridge, MA 02138;
and °NSF-Simons Center for Mathematical and Statistical
Analysis of Biology, Harvard University, Cambridge, MA
02138

Author contributions: G.R. designed research, performed
research, and wrote the paper.

The author declares no competing interest.
This article is a PNAS Direct Submission.

Copyright © 2023 the Author(s). Published by PNAS.
This article is distributed under Creative Commons
Attribution-NonCommercial-NoDerivatives License 4.0
(CC BY-NC-ND).

TEmail: gautam.nallamala@ntt-research.com.

This article contains supporting information online
at http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2215352119/-/DCSupplemental.

Published November 28, 2022.

10f 10


http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2215352119&domain=pdf&date_stamp=2023-01-25
https://orcid.org/0000-0002-1276-9613
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.pnas.org/suppl/doi:10.1073/pnas.2215352119/-/DCSupplemental
https://www.pnas.org/suppl/doi:10.1073/pnas.2215352119/-/DCSupplemental

Downloaded from https://www.pnas.org by 69.120.161.140 on October 25, 2023 from IP address 69.120.161.140.

B
o

i

l
=
=
L
Nl
[
Hgtigiigligiigli

e
-
-
L
|
|

]

il
upt
—lTE
=}

B Experiments C Simulations

50 50
© —— water runs . I
A 40 === control runs K L40
2 *  rewards d : 35
R I
30 130 2
+ v
(6]
£ 201 120G
G 101 __t10
Ik s

0 v — = ‘

0 2000 4000 6000 0 5000

Time in maze (sec) Time in maze (steps)

Fig. 1. Discontinuous learning curves in mice experiments and RL simula-
tions. (A) A schematic of the depth-6 binary tree maze used in experiments
(20) and RL simulations. In each episode of the simulation, the agent begins
at home and navigates the directed graph delineated by the maze (red) until
it finds the reward. Three intersections (orange, green, and yellow) that the
mice have to pass through when executing a direct path of length >6 are
marked. (B) The cumulative number of direct paths of length >6 (red) and
acquired rewards (green) from an individual mouse. The rate of direct paths
shows a discontinuity at a distinctive moment (black arrow). The dashed red
line corresponds to length >6 direct paths to control nodes. (C) Same as in
(B) for RL simulations. See S/ Appendix, Fig. S2 for more examples.

biases which are remarkably consistent across rewarded and
unrewarded animals.

Intriguingly, the probability that mice take a direct path of
>6 correct binary choices toward the water port exhibits a sharp
discontinuity, similar to an “aha” moment of sudden insight (Fig.
1B), and persists for the rest of the experiment. This moment can
occur well after the animal acquires reward for the first time,
which distinguishes this phenomenon from one-shot learning.
Discontinuous learning curves have also been measured in a
variety of other behavioral experiments (21). RL algorithms
reinforce correct actions in increments through accumulated
experience. This intuition would suggest that RL-based learning
is presumably incompatible with step-like learning curves. The
availability of the full history of decisions made by mice within the
maze presents a unique opportunity to identify the mechanism
behind step-like learning curves.

In this manuscript, we use numerics and analytical calculations
to rationalize the empirically observed discontinuous learning
curves and identify environmental architectures where we should
generically expect such discontinuities. We present four main
contributions. First, we use inverse RL to decouple and analyze
the influence of reward-based learning on the exploratory
behavior measured in ref. 20. In this setting, we show using
agent-based simulations that persistent exploration combined
with simple RL rules reproduce discontinuous learning. Second,
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we develop a general framework for RL-based sequence learning
on tree-structured relational graphs. We use this framework to
explain why RL algorithms will generically lead to discontinuous
learning curves in such structured environments. Third, we
develop a nonlinear, continuous-time model, which accurately
captures the dynamics of reinforcement propagation in different
exploration regimes. This model extends to commonly used
model-free and model-based variants of RL, whose dynamics
are analytically quantified. Finally, a reanalysis of experimental
data lends further support for the theory and motivates specific
experiments to isolate the phenomenon.

Results

Discontinuous Learning in RL Simulations. We begin by speci-
fying an RL model closely following the experimental setup of
(20) (Fig. 1A). The model is defined by the states (s), how the
state changes when a certain action («) is taken, and the expected
reward for each state—action pair, 7(s, 2). The states determine the
information the agent can use to make a decision. Consistent with
the history dependence of the exploratory behavior measured in
experiments, we assume that the agent knows which specific
intersection it is currently at and where it is coming from. That
is, the states are the directed edges of the graph that delineates
the maze in Fig. 14. When the agent arrives at an intersection
along a certain corridor, it has three choices: It can choose to
continue along either of the two corridors at that intersection or
back where it came from. A fixed reward (r) is delivered in the
corridor leading to water.

Upon finding the reward, the agent is reset at the starting
point (marked in Fig. 14) and the simulation is repeated. This
episodic formulation departs from the experimental setting; we
find that an agent placed in an environment with delayed reward
renewal (as in the experiment) often learns a degenerate policy
which oscillates back and forth at the water port for the rest of
the simulation. Of course, a mouse recognizes that water does
not immediately reappear after it has been consumed (even if it
does not know the precise renewal time) and explores the maze
before eventually returning to the water port. For simplicity, we
have used an episodic formulation instead of explicitly modeling
this time delay.

An RL model is specified by the policy and the learning
rule. We use a modified version of the standard softmax policy
(14), which chooses actions with a log-probability proportional
to their expected long-term reward or value, 4(s, 2), of taking
action « at state s. Specifically, actions are chosen randomly
with probability 7 (as) o e?e(s ) +a:(5 a) up to a normalization
constant. Here, we have split ¢(s, 2) into two terms, ¢¢ (s, ) and
g(s,a). ge is the intrinsic value the agent receives on taking
an action at that state and is kept fixed throughout learning.
g, is the extrinsic value, which is initially set to zero and is
modulated by reward-based learning. Before learning, the agent
makes stochastic exploratory choices based on g, (s, ), which is
presumably set by an innate bias or guided by knowledge external
to the present task. This term is included in our RL model to
explain the observed exploratory behavior of unrewarded and
rewarded mice. As learning progresses, these exploratory choices
are influenced by the reward, which biases the agent toward
rewarding actions (or avoids costly ones). The randomness of the
policy is set by the magnitudes of g; and g,, whereas the influence
of the reward on exploration is set by their ratio.

This split between intrinsic and extrinsic rewards allows
us to examine in silico the influence of a learning rule on
natural behavior. We first determine g, from the behavior of

pnas.org


https://www.pnas.org/lookup/doi/10.1073/pnas.2215352119#supplementary-materials

Downloaded from https://www.pnas.org by 69.120.161.140 on October 25, 2023 from IP address 69.120.161.140.

unrewarded mice in experiments using maximum entropy inverse
RL (MaxEnt IRL 22, 23, ST Appendix, Fig. S14). MaxEnt IRL
finds the maximum entropy policy and the associated reward
function that best explain observed behavioral trajectories (see
Methods and SI Appendix for a brief overview of MaxEnt IRL).
Next, we enable learning by specifying a biologically plausible
temporal-differences learning rule (14, 24-27). Specifically, ¢, is
updated using the learning rule:

where

g:(s, a) = q,(s, a) + o6,
8§ = r — q,(s, a), at the goal state,

8§ =v{g:(sS, )z — ¢-(s a), otherwise. [1]

8 is the reward prediction error, and the expectation above
is with respect to the policy the agent uses at the next state
(s). The discount factor y, which takes values between 0 and
1, is commonly used to introduce an effective time horizon
and regularize the value function. Since our stochastic policy
implicitly regularizes the value, we set y = 1 throughout this
paper. By comparing the best fit 4 values obtained from MaxEnt
IRL for rewarded and unrewarded mice, we estimate the reward
as r & 2 (SI Appendix, Fig. S1 C and D). The remaining
free parameter, a, scales the rate of learning. Similar to the
learning curves from experiments shown in Fig. 1B, we track
the cumulative number of rewards acquired by the agent and the
cumulative number of long direct paths (length >6) to the goal
from distant locations in the maze.

Simulated RL agents exhibit rapid learning similar to those
observed in experiments. Importantly, the rate of taking a long
direct path deviates discontinuously from the default rate (i.e.,
as expected from pure exploration) at a distinctive moment
during learning, reproducing the “sudden insight” phenomenon
observed in experiments (Fig. 1C). This phenomenon is repro-
duced during reruns with variability comparable to the variability
observed across mice in experiments (S Appendix, Fig. S2A).
Fitting the rate of direct paths using a logistic function, we find
that the transition can be localized to within fewer than three

trials in about half of the runs (S Appendix, Fig. S2B).

Goal-Oriented Navigation on Tree-Like Relational Graphs. To
identify the mechanism that underpins the sharp transition
in learning, we now develop a framework for goal-oriented
navigation on tree-like relational graphs. We use this framework
to reproduce the discontinuous learning phenomenon, develop
a mathematical theory that captures the learning dynamics, and
highlight the essential ingredients that lead to the phenomenon.

In this task, the agent traverses a relational graph (a directed
graph whose edge labels specify the action or relationship between
two states) from a fixed starting point to a goal where it receives
a reward (Fig. 24). We track its progress in finding the direct
path (highlighted in Fig. 24) by accumulating experience across
multiple episodes. We wish to consider graphs that capture the
core features of a structured environment such as roads on a
university campus or abstract knowledge graphs (28). Specifically,
we require 1) discrete decision points and choices; 2) the graph is
sparse; namely, the number of paths of comparable length to the
direct path is small (unlike a Manhattan-like grid); and 3) long,
branching side paths which lead to dead ends.

A large class of graphs that satisfy the above three require-
ments and are yet sufficiently simple to allow for an in-depth
quantitative analysis are tree-structured graphs (Fig. 24), which
include the maze architecture from the experiments. Simulating
an RL agent in a balanced ternary tree (Fig. 2B), we find a sharp
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discontinuity in the rate of taking the direct path from the start to
the goal. Examining the dynamics of reinforcement propagation
shows that the reinforcement signal primarily propagates along
the direct path (Fig. 2B) and that the discontinuity occurs
precisely when the reinforcement signal reaches the start (Movie
S1). In contrast, an RL agent in a Manhattan-like 6 x 6 grid
leads to diffuse propagation of the reinforcement signal and a
smooth learning curve (Fig. 2C and Movie S2). In ST Appendix,
Fig. 83 and Movies S3 and S§4, we present the learning curves for
four additional architectures: a binary tree where the length of the
corridors agent is explicitly modeled, a binary tree where the agent
is allowed to reverse its direction, and two random graphs with
different sparsities. We observe discontinuous learning curves for
all of these architectures except for the dense random graph,
highlighting that the task structure plays a role in whether
discontinuous learning curves are observed.

The structure of tree-like graphs enables us to identify elements
of the graph topology and learning dynamics that lead to
discontinuous learning. The key insight is that the full complexity
of sequence learning on a tree-like graph can be reduced
to analyzing the learning dynamics on a simpler linear track
with side paths represented as single nodes, as shown in Fig.
3A. Specifically, recall that for tree-like graphs, the side paths
necessarily lead to dead ends. On encountering a dead end, the
agent will turn back and eventually reencounter the direct path.
The agent’s movements in a side path can thus be represented as
a single node noting that if the agent goes in, it will surely return
back. When the agent returns back from the side path, it can
either choose to go toward or away from the goal.

We emphasize two points that allow this simplification. First,
even though we have used a single node with reflecting boundaries
to represent the side paths (Fig. 34), an agent may spend a
considerable amount of time exploring each of these side paths.
Since the time spent within the side path does not influence
reinforcement propagation on the direct path, we can safely
assume that the agent spends a single step on the side path.
Note that the discontinuity in learning is sharper if we suppose
that the agent spends longer than a single step in each side path.
Second, as long as the side path is sufficiently long, it is unlikely
that the reinforcement signal will propagate through the entire
side path and bias the agent to go into the side path. Therefore,
we may ignore the details of the dynamics within the side path
and assume that the g, value of going into the side path remains
at zero. It is important to note that the agent may still learn to
turn toward the goal when exiting a side path.

The agent’s exploration biases (specified by g¢) play an impor-
tant role in determining the qualitative character of the learning
dynamics. A key parameter is the probability of continuing
toward the goal along the direct path whose corresponding ¢
value we denote ¢ (Fig. 2B). We have assumed a homogeneous
¢ for simplicity. The discontinuous learning phenomenon is still
observed if this assumption is relaxed (see for example Fig. 1C
where the empirically derived g, values are heterogeneous). By
varying &, we examine how the agent’s initial exploration and
learning dynamics depend on the agent’s bias toward taking
the correct actions. When ¢® > 1, the agent continues on the
direct path for long stretches and rapidly reaches the goal. In
this trivial case, the graph effectively reduces to a linear track
without side paths that stretches from the starting point to the
goal. In the opposite limit, ¢™* >> 1, correct actions along the
direct path are rare. To make progress, the agent would have to
take constant detours toward the goal through side paths, whose

probability is set by the corresponding value g, = ¢’ (Fig. 34).
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Fig.2. Reinforcementwaves during sequence learning on relational graphs. (A) We consider a task where the agent traverses the directed edges of a relational
graph to navigate from start (green) to goal (red). The direct path from start to goal is highlighted in red. (B and C) A discontinuous learning curve for a balanced
ternary tree and a smooth learning curve for a Manhattan-like 6 x 6 grid. In all simulations, we use a standard softmax policy (e = 0) with @« = 0.1,r = 5. The
colors show the gy value of the best action at each state (directed edge). The gray edges have maximum gr value less than 1073,

Clearly, if the probability of going toward the goal both along
the direct path and through side paths is small (e, e7f > 1),
the agent is very unlikely to make it to the goal. Thus, whether
the agent makes any learning progress whatsoever will depend
on the exploration biases. We find that for large graphs, the
exploration statistics display three sharply delineated regimes
depending on the net probability of going toward the goal vs.
back toward the start (S Appendix). If this net probability is
negative, the “cautious” agent constantly returns to the starting
point and does not learn the task. When the net probability is
positive, the “adventurous” agent on average ventures closer to the
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goal. The marginal case of zero net probability leads to diffusive
exploration.

The Mechanistic Basis of Discontinuous Learning Curves. We
now examine the learning dynamics generated by the rule Eq.
1, beginning with RL simulations on the reduced architecture
shown in Fig. 34 followed by a theoretical analysis. Since actions
that lead the agent away from the goal are never reinforced during
learning, only the g, values for continuing along the direct
path toward the goal (g,) and turning toward the goal when
exiting the side path (g,,) at each intersection 7 should be tracked
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Fig.3. Wave-like reinforcement propagation during sequence learning on treelike graphs. (A) An equivalent representation of the tree-structured graph in Fig.
2A highlighting the direct path and the possible branches into side paths at each intersection along the direct path. Note that while each side path is shown
as a single node with reflecting boundaries, these represent long detours which will lead to a dead end, forcing the agent to turn back and eventually return
to the direct path. The exploration biases ¢, £/, ¢”, and the corresponding reward-modulated biases qn, g}, g, for the three cases of going toward the goal on
the direct path (Left), toward the goal from the side path (Middle) and away from goal on the direct path (Right) are shown. (B) The learned values gn and gy, for
three snapshots showing the propagation of the reinforcement wave. (C) An illustration showing the discontinuity in the probability of a direct path and the
rate of rewards. The discontinuity occurs the moment the wave hits the starting point (Movie S5). (D) The speed of the wave for a range of . Smaller ¢ values

correspond to more difficult tasks.

(We use n = 0 and n = N for the goal and start respectively,
see Fig. 3A). Fig. 3B shows ¢, and g/, at three time points (in
units of 1/« episodes), highlighting the wave-like propagation
of the value, ¢, (Movie S5). The learning curves show a sharp
discontinuity (Movie S5 and Fig. 3C), which occurs precisely
when this wave reaches the starting point. Total learning time
is determined by the wave’s speed, which we measure as the
number of intersections on the direct path the wave crosses every
1/a episode. Tracking the half-maximum of g, we find that the
wave travels at a constant speed, v (Movie S5). Simulations across

PNAS 2023 Vol. 119 No.49 e2215352119

a range of € show the speed saturating at v = 1 for ¢ 2 1, which
decreases to zero with decreasing & (Fig. 3D), hinting at distinct
regimes. The factors that determine the speed and profile of the
wave will be discussed in the following section.

The origin of discontinuous learning and “reinforcement
waves” can be intuitively understood by examining how learning
operates at each intersection. We highlight three factors: 1) The
correct action at an intersection is reinforced only if the action at
the subsequent intersection is reinforced, implying that the chain
of reinforcement has to travel backward from the goal; 2) When

https://doi.org/10.1073/pnas.2215352119
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an intersection is sufficiently reinforced, the probability of the
correct action at that intersection increases by a large factor as
long as the reward is sufficiently large (¢ T¢ > 1). Since the
rate of traveling directly from start to goal is the product of the
probabilities of taking the correct action at each intersection, this
rate will increase rapidly when the wave reaches the start, and
3) if the agent is unlikely to take the correct action at a certain
intersection (¢~ % > 1 for that action), reinforcement is applied
through a few rare events until the intrinsic bias is overcome,
gr + ge > 0. Since the probability of taking the correct action in
turn increases rapidly with reinforcement, the learning curve for
taking the correct action at each intersection will appear step-like.

The first factor emphasizes why we should expect the rein-
forcement signal to propagate backward from the goal to the
starting point. The second factor highlights the fact that the
observable (i.e., the probability of taking the direct path) is a
steep, nonlinear function of the underlying dynamical variables.
The third point explains why the wave front has a steep profile
(Fig. 3C). Put together, these three factors imply that when the
task is nontrivial, the wave of reinforcement marches backward
from the goal, reinforcing correct actions, one intersection at a
time with step-like learning at each intersection. The observed
discontinuous transition in learning occurs when the wave reaches
the starting point.

A Nonlinear, Continuous-Time Model Accurately Captures the
Dynamics of Reinforcement Propagation. This intuitive picture
can be made mathematically precise by examining the effects of
the learning rule, Eq. 1, on ¢, and ¢,. We summarize the results
here; refer SI Appendix for full details. When o < 1, we find
that their expected change, §,, g,,, over 1/a episodes is given by

Qn = MUn (%—1%—1 - qn))
Gy = 1 (On-14-1 = 4,,). 2]

where 1, and p/, are the average number of times per episode
the agent crosses intersection 7 through the direct path or the
side path, respectively, and o, is the probability of continuing
along the direct path at intersection 7. In general, , and u,
depend on the transition probabilities and thus the values at
every intersection in the graph. The analysis is made tractable by
noticing, first, that the ratio 1,/ i, is determined by the relative
probability of taking the correct action at intersection 7 through
the direct path vs. the side path. Second, no learning occurs
outside of the front and bulk of the wave. Finally, learning at the
front of the wave happens only when subsequent intersections
are already sufficiently reinforced, which implies that the agent
is likely to go directly to the goal immediately after crossing the
front. Thus, in each episode, the intersection at the wave’s front
is crossed just once on average, i, + t, = 1. This relation
combined with the expression for w,/u, fixes w, u),. The
gn> q,,’s obtained from numerical integration of Eq. 2 are in
excellent agreement with the ones from full-scale RL simulations
(Fig. 44). An analysis of Eq. 2 reveals two qualitatively distinct
regimes of wave propagation with ¢® 3> 1 and ¢7° > 1 as their
asymptotic limits. We term these the expanding and marching
regimes, respectively. Maze architectures that could exhibit these
two regimes are illustrated in Fig. 4 Band C.

The expanding regime (¢° > 1) corresponds to the trivial case
where the agent is likely to traverse straight from the starting
point to the goal. Eq. 2 leads to linear dynamics in this regime,
which can be solved exactly. We find ¢,(¢) = rP(n, t), where
P(n, t) is the regularized lower incomplete gamma function. For
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large 7, the half-maximum is at 71/, = #, which explains the
speed v = 1 observed in simulations for ¢ 2 1, and the width of
the profile expands with time as /7.

In the marching regime (¢7% > 1), the negative ¢ leads
to qualitatively different, nontrivial dynamics. Any step on the
direct path that has previously been reinforced beyond |¢| is more
likely to be traversed. When the reinforcement wave reaches an
intersection p on the direct path that is yet to be reinforced to
le|, the reinforcement of that step occurs through rare events
until g, =~ |e|. Meanwhile, the direct path for » < p is
rapidly reinforced. The rare events at p combined with rapid
reinforcement for # < p lead to a bottleneck at p and a steep
wave profile. Once g, reaches ||, it is subsequently reinforced
rapidly and g+ in turn begins to be slowly reinforced through
rare events. Thus, the wave “marches” forward reinforcing one
step at a time. Computing the duration 7 it takes to march one
step will let us estimate the speed of the wave, v = t71.

The duration 7 can be calculated by examining the nonlinear
dynamics in the front (z = p) and bulk (z < p) of the wave
(81 Appendix). The full dynamics in the bulk play a role as the
reinforcement received at the intersection 7 = p depends on the
temporal dynamics of g,—1, which in turn depends on g,—>, and
so on. However, it can be shown that the dynamics in the bulk
are linear and exhibit self-similarity with period 7. Exploiting
a conservation equation that results from these properties, we
compute the wave speed as

T T e — [3]

r+elel —1

which is in excellent agreement with the speed measured in RL
simulations (Fig. 4D). The wave profile in the bulk is given by
gu—1(t) = r— B(r — qu(2)), where B = =t W(—1¢7") and
W (x) is the Lambert W function. Most of the learning ata certain
intersection occurs in S1/o episodes (Fig. 4E). Since the wave
speed is less than one in the marching regime, each intersection is
almost fully reinforced before the wave marches to the next one,
thus quantifying the aforementioned intuitive argument that a
step-like learning curve is observed at each intersection.

The results are summarized in Fig. 4F, which depicts the
expanding and marching regimes in addition to the “stalled”
regime corresponding to the exploration parameters where
learning is largely absent.

Other Learning Rules Lead to Reinforcement Waves with Al-
tered Speeds and Profiles. Common variants of the SARSA rule
(14) in Eq. 1 also lead to discontinuous learning via reinforcement
waves, highlighting the generality of the phenomenon. A detailed
analysis of each of these variants is presented in SI Appendix,
which we summarize here.

We find that Watkins’ Q-learning, which uses a slightly
modified version of the rule Eq. 1, leads to largely similar wave
speeds and profiles. The advantage of Q-learning is that the g,
values can be learned off-policy, i.e., the agent’s behavior is not
necessarily derived from the learned ¢, values. To decouple the
influence of learning on behavior, we use Q-learning together
with an explorative agent that disregards the learned ¢, values.
We find expanding waves irrespective of the exploration bias,
suggesting that expanding waves are the “default” dynamics
without feedback in the structured environments considered
here. Feedback due to learning leads to traveling waves with
steeper profiles as observed in the marching regime. Both Q-
learning and SARSA learn values from local updates, which
constrains the wave speed to be at most one.

pnas.org


https://www.pnas.org/lookup/doi/10.1073/pnas.2215352119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2215352119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2215352119#supplementary-materials

Downloaded from https://www.pnas.org by 69.120.161.140 on October 25, 2023 from IP address 69.120.161.140.

>

4]
= —
g 10+ e=42 -—-
g —— simulations
*3 —— numerics
< () 1_o0coee0e0000090e000000e0 S-5-0-5-0-05-5-00500
(%)
(0] .,
3
[
> 104 Q 0 _ : 44
\ e=-2 H
g *JW%U}_!_&%&D\__#DL goal
= od g
£ 01, , , : : AI\ start
0 10 20 30 40 50 start !
Distance from goal (n) '
D E F ) .
-------- 5] 1.
1.0 AYBBEES R [ 105
7/ ! .;
—~ /A ,/B _____ / g
& ey (.e) 10 g =
i o (10,1) = s e o =
e N 1 = 05 = -
805 /B8 (25.1) S § w 0 05:,:,_
o N .
wn /’ é A (50.1) 5 ? stalled n
i, > (10,2 | feeoee- 3
B === theory 004
T T - 0t— T T -5 .
0.0 _ 3 z 5 0 3 0_5 5 5 0.0

ax no. of episodes
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taking the correct action, o(e + gn) = 1/2. Note that learning at this intersection is localized to < 1/« episodes. (F) The distinct learning regimes for a range of
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An alternative class of models build a model of the environ-
ment from experience, similar to a cognitive map, and update
the values offline by sampling from the model (planning). We
consider Dyna-Q, which implements a simple version of this
general idea. Specifically, Dyna-Q first learns a model of future
states and rewards for every state—action pair it encounters during
the task. At each step, it samples 7, state-action—state—reward
transitions from the model and updates their corresponding
values. We show that Dyna-Q applied to our setting leads to
the same behavior as Eq. 1 with an enhanced learning rate
(1 + mp)a. Intuitively, when the agent plans, learning, which
otherwise occurs only through physical exploration, is sped up
due to mental exploration. However, since both physical and
mental exploration employ the same search process, the result is
a simple scaling of the learning rate.

Another common variant with nonlocal updates is SARSA
combined with eligibility traces, which are an efficient, biolog-
ically plausible mechanism for enhancing learning speed when
rewards are sparse (14, 29). Instead of updating the value of
the current state—action pair, eligibility traces effectively use the
current reward prediction error to also update the £ most recent
state—action pairs. The exact learning dynamics can be calculated
(81 Appendix) and are qualitatively similar to the SARSA case.
In the expanding regime, eligibility traces scale the wave speed
by a factor 1 + 4. The speed in the marching regime has a
nontrivial, sublinear relationship with & (5] Appendix, Fig. S4B),
which can be computed from the theory using a self-consistent
equation (8! Appendix). Intuitively, the speed increases with £
since the front of the wave receives reinforcement from the

PNAS 2023 Vol. 119 No.49 e2215352119

intersection 1 + k steps along the direct path, which has a
larger value compared to the subsequent intersection. In the
limit # — 00, we show that the speed converges to a maximum
voo = 7/(le] + el = 1).

The theoretical predictions for the various learning rules are
verified in simulations (87 Appendix, Figs. S4 and S5).

Experimental Tests

In addition to reproducing the discontinuous learning curves
observed in experiments, the theory provides predictions which
can be immediately tested by reanalyzing the data from ref. 20.
Specifically, note that the learning curves in Fig. 1B correspond
to the number of direct paths greater than a certain length,
namely, six. If the discontinuity in the learning curves is due
to a reinforcement wave, this discontinuity should occur at a
later time for direct paths beginning from farther nodes. This
prediction should be contrasted with an alternative mechanism
where sudden insight corresponds to the singular moment when
the mouse has figured out the global structure of the environment
and uses this knowledge to find direct paths from distant sections
of the maze. The experimental data lend support for the former
hypothesis, which shows that the discontinuity is delayed for
longer direct paths (Fig. 54). The time delay between these
discontinuities provides an estimate of the wave speed. The
smaller rate of taking direct paths for longer paths observed in
Fig. 54 can also be explained in our framework. The reward
(estimated as r & 2 previously) is not sufficiently large to fully
overcome the stochastic, exploratory drive of the agent, leading to
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predicts that the reinforcement wave reaches locations further away from the
goal at later times. Shown here is the cumulative number of direct paths of
lengths atleast6,8,10,and 12 in orange, red, pink, and purple, respectively for
two mice. The dashed lines are direct paths to control nodes. (B) Stochasticity
in exploration and learning dynamics can lead to the wave reaching different
intersections at different moments during learning. Shown here are direct
paths of length >6 from three distinct intersections in the maze (marked in
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a significantly smaller probability of taking a longer direct path.
This decreasing probability provides an estimate for the range of
wave propagation, Npnge. The theory predicts that Niapge and
the speed of wave propagation should increase with increasing
reward for e~ > 1, which can be tested in future experiments.
An intriguing possibility is to observe the transition in speed
from the expanding to marching regimes by manipulating the
exploration biases, for example, by modifying the inclinations of
the T-junctions in a complex maze (as illustrated in Fig. 4 Band
C) or manipulating the number of branches at each intersection.

A potentially important confounding factor for observing a
single, distinct discontinuity in the learning curves is when
multiple paths of length comparable to the direct path are
available. The speed at which the wave propagates along these
competing paths depends on a number of factors, including their
number, lengths, and the exploration statistics within each path.
If a competing path is fully reinforced earlier than the direct
path, it can interfere with learning the direct path. Multiple paths
can explain the variability observed in experimental trajectories.
Indeed, the learning curves in Figs. 1B and 2C effectively average
over all direct paths of certain lengths. If paths of similar lengths
from distant nodes exhibit discontinuities with only slight delays,
the averaged curve will appear smoother than when each path is
observed separately. Consistent with this intuition, considering
paths from specific locations in the experiment highlights the
variability across mice in which of these paths contributes most
to the discontinuity (Fig. 5B).

Additional experiments designed similar to our setting in Fig.
2A will provide crucial data to resolve sources of variability.
Specifically, our analysis suggests examining direct paths between
two specific start and goal locations in an episodic setting or
equivalent. This will ensure that the measured learning curves do
not reflect contributions from different locations in the maze
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and highlight the passage of the wave along the direct path
between these two nodes. Further, learning via reinforcement
is not necessarily monotonic in the experimental setup of ref. 20,
which makes it challenging to infer the progression of learning at
each intersection directly from data. For example, if the animal
samples the water port when reward is absent, the resulting
reinforcement can be negative, which leads to unlearning of the
path toward the reward. This nonmonotonicity is absent in an
episodic setting and will lead to a clearer interpretation of the
learning curves at each intersection.

Discussion

The discontinuous learning phenomenon observed in complex
mazes and other learning tasks clashes with the intuition that
RL-based algorithms make learning progress by incrementally
reinforcing rewarding actions. Here, we have shown that a
standard biologically plausible RL rule consistently reproduces
this phenomenon in simulations designed to reflect maze exper-
iments and more generally during goal-oriented navigation in
large, tree-like relational graphs. In such environments, the value
signal propagates as a steep, traveling reinforcement wave, which
sequentially reinforces correct actions along the path toward the
goal. Sudden insight occurs the moment the wave reinforces
all the correct actions along the main path. Discontinuous
learning curves arise due to a combination of the effectively one-
dimensional task structure in tree-like structured environments,
the local propagation of reinforcement, and the positive feedback
of reinforcement on behavior. These factors together with the
agent’s innate exploration biases determine the dynamics of wave-
like reinforcement propagation, including its speed and profile.
The exploration biases play an important role as they determine
whether any learning occurs in the first place (the stalled regime),
and, if learning does progress, whether the learning dynamics are
limited by the learning rule (expanding regime) or due to the
low probability of taking the correct action (marching regime).
While common model-free and model-based variants of the
RL rule may enhance the learning speed and alter the wave’s
profile, the qualitative characteristics of wave propagation are
preserved.

Whether and under what contexts animals learn correct actions
directly from experience or indirectly through a learned model
of the environment is a long-standing debate. The aha moment
observed in the experiments of ref. 20 would naively appear
to support the latter hypothesis. We have shown here that
existing experimental data are consistent with the propagation of
a reinforcement wave (Fig. 5), and thus, RL-based direct learning
cannot be ruled out. Further experiments should reveal and
verify the generality of the discontinuous learning phenomenon.
The framework presented in this manuscript should help guide
specific experiments to delineate direct and indirect learning (see
Experimental Tests for further discussion).

We emphasize that the backward propagation of reinforcement
arises as a straightforward consequence of the local RL rule
applied in an environment where the goal state is the sole source
of reward. However, as illustrated in Fig. 2C and S Appendix,
Fig. S3D, not all graph architectures will display discontinuous
learning under these RL rules. We have shown that the topology
of large tree-like mazes (with appropriate exploration biases)
supports discontinuous learning, but we expect to observe the
phenomenon more generally if the graph satisfies certain notions
of “sparsity” (SI Appendix, Fig. S3C). This is because the sharp

transition in learning is most salient in highly complex mazes

pnas.org


https://www.pnas.org/lookup/doi/10.1073/pnas.2215352119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2215352119#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2215352119#supplementary-materials

Downloaded from https://www.pnas.org by 69.120.161.140 on October 25, 2023 from IP address 69.120.161.140.

where the direct path is nontrivial and paths other than the
direct path are present but are poor solutions.

Competing paths lead to additional complexity, analogous
to when a multitude of local minima compete with the global
solution in nonconvex optimization problems. Easily accessible
competing paths which are of comparable length to the direct
path may lead to nontrivial exclusion effects, effectively average
out the learning curves, and amplify variability due to minor
differences in exploration biases across animals. Sudden, delayed
improvements in generalization performance have been recently
observed when neural networks are trained to solve small algorith-
mic tasks, a phenomenon that has been termed “grokking” (30).
Preliminary theoretical work (31) suggests that the task structure
imposes highly specific constraints on the representations that
can achieve perfect generalization, and “sudden insight” occurs
when these constraints are fulfilled. This work and ours suggest
that nontrivial constraints on good solutions imposed due to
task structure might play an important role in the emergence of
sudden learning phenomena.

Our analysis provides a complete characterization of the
learning dynamics of various RL rules for a nontrivial sequential
decision-making task, which is currently lacking. A key challenge
in the theoretical analysis of RL algorithms is the feedback
of learning on behavior, which makes the data distribution
inherently nonstationary. In our setting, the nonstationarity is
reflected by the dynamics of the wave during learning. We
have shown that the front of the wave effectively acts as an
absorbing boundary, which simplifies the analysis considerably.
The learning speed is determined by the number of times the
learning rule updates the value at the nose of the wave. Since this
number itself depends on the value at the nose, the dynamics
are nonlinear. In turn, since the value of the subsequent action
depends on the value of the later actions within the bulk, the
full interactions between the nose and the bulk of the wave will
influence learning speed. We show that the learning speed cannot
exceed a certain value due to the locality of the learning rule.
Relaxing the locality constraint using eligibility traces enhances
the learning speed by widening the value differential between the
unreinforced action and the distal action from which it receives
reinforcement. A model-based method which uses planning scales
up the speed simply by scaling up the number of times it updates
each action rather than due to a qualitative change in how
reinforcement is propagated.

In specifying our model, we have made certain simplifications
that do not capture the full complexity of animal learning. First,
we have considered a discretized model of the state and action
spaces. While this is a standard approximation, animals use
continuous spatial representations and motor control. Standard
computational RL rules, such as Eq. 1, have been fruitfully
extended to deal with continuous state and action spaces, for
instance, using function approximation and policy gradient
methods (14). Biologically plausible variants of these extensions
have been proposed (32), including for mental exploration
in simple mazes (33). We expect the core intuition behind
discontinuous learning to hold even for a more realistic model
with continuous state and action spaces. A detailed analysis of
RL dynamics for a model which takes these various factors into
account is beyond the scope of current work (see SI Appendix,
Fig. S34 and Movie S3 for preliminary results). Second, we
have assumed that the animal has a unique representation of
each corridor in the maze from the outset. Of course, this
representation would have to be learned before the animal can
assign and update the value of taking different actions at each
corridor (34). Our results should still apply if the timescale
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for “mapping” the environment is faster than the timescale for
RL. The hierarchical structure of neural network-based function
approximators enables simultaneous learning of representations
and values (35), but the timescales on which these processes
operate in animals are unknown and presumably much shorter.
An exciting future direction is to extend our framework to spatial
navigation tasks with other graph topologies or when learning
of proper actions is intertwined with the learning of continuous
state representations.

Materials and Methods

Extracting Exploration Statistics from Data and Hyperparameters for RL
simulations. We use MaxEnt IRL (see S/ Appendix for a brief introduction) to
infer the exploration biases of unrewarded mice. As discussed in the Results
section, the state space was chosen as the directed edges of the graph that
delineate the maze in experiments, where the root of the tree corresponds
to "home." We pooled trajectories from all unrewarded mice, set y = 0.8,
and split the trajectories to length T = 12 (T should be at least the effective
horizon ~ (1—)~1 = 5and choosing a large T slows inference). The choice
of  was motivated by the analysis in ref. 20, which showed that a variable
length Markovian model typically chooses < 5 previous states to predict mice
behavior. The g, values are obtained from maximum likelihood estimation,
specifically, from log p, o (s, a) after optimizing for 4 (S/ Appendix). Note that
dueto normalization, the g, values are determined only up to a constantadditive
term for each state.

To estimate r, we apply the above procedure to both unrewarded and
rewarded mice. We calculate the difference between rewarded and unrewarded
animalsin the differences of the correctaction’s g value and the effective g values

of the other two incorrect ones [note . (s, A) = log (ZaeA ed(s "))]. A

subset of these values is shown in S/ Appendix, Fig. S1, which shows that the
correct actions leading to the reward have a value differential of ~ 2. Since
the values of actions close to the reward after learning saturate at r, the value
differential is an estimate of the reward, r & 2. To ensure that this estimate is
not significantly influenced by the habitual paths that go directly from home to
goal, we repeat the above procedure excluding these paths (S/ Appendix, Fig.
S1). The estimate decreases slightly to r & 1.5. In the RL simulations of the
depth-6 binary tree maze, we use r = 2 and @ = 0.33.

Setup and Notation for the RL Framework for Navigation on
Tree-Structured Graphs. A tree-structured graph can be cast as a linear track
withside paths, asarguedin the Results sectionandillustrated in Figs. 24 and 3A.
The linear track consists of N — 1 nodes on the direct path,n = 1,2,..., N—1.
The agent starts each episode at node n = N, and the reward is at the goal
node n = 0. In addition to these nodes, the nodes fromn = 1to N — 1 each
have a side path, which we label as 1y, 2y, ..., (N — 1)p. The state space of
the Markov decision process is the set of directed edges that connect the various
nodes and the side paths as shown in Fig. 2B. In other words, both the agent's
location in the graph and the direction in which it is headed matter. We denote
(nq, ny) as the directed edge from nq to ny.

The transition dynamics P(s'|s, a) are deterministic (Note, however, that the
policy 7 (als) is stochastic). At each directed edge, the agent can choose to go
along the directed edges emanating from its current node, except for turning
back, e.g., thetransition (41, n) — (n, n4 1) isdisallowed. This simplifying
assumption does not affect the results as the agent can effectively turn back by
going into a side path and retuming (n + 1,n) — (n,ny) — (np, n) —
(n, n+ 1).The episode begins with the agent at the directed edge (N, N — 1).
The directed edge pointing toward the goal node, (1, 0), is an absorbing state,
i.e., the agent receives a reward r and the episode ends once the agent traverses
that edge. We impose reflecting conditions at edges going into the side paths
(n, np) and the start node (N — 1, N).

The agent receives identical intrinsic exploration rewards at every intersection
on the direct path. There are three directed edges leading to any node n, and we
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thus consider three cases at each node. These three cases are shown pictorially in
Fig. 2B. Since the agent can take two actions at each step and the policy depends
only on differences of g values, we specify the g values for only one of the actions.
Note that g values for both actions are taken into account in the agent-based RL
simulations throughout the paper. For the purposes of the theoretical analysis
discussed in the S/ Appendix, it suffices to track the g value for only one of the
actionsas the g value for the otheraction is almost never reinforced. The notation
used for the three cases is introduced (see also Fig. 2B).

1. theagentis on the direct path and going toward the goal, (n + 1, n): for the
action corresponding to the agent continuing toward the goal (n + 1, n) —
(n,n—1),wedenote ¢ = ¢, gr = q.

2. the agent is on the side path n, and going toward n, (ny, n): for the action
corresponding to the agent turning toward the goal (ny, n) — (n,n — 1),
we denote gz = &/, qr = ¢l).
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