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Abstract

In mixed multi-view data, multiple sets of diverse features are measured on the same set of
samples. By integrating all available data sources, we seek to discover common group structure
among the samples that may be hidden in individualistic cluster analyses of a single data

view. While several techniques for such integrative clustering have been explored, we propose
and develop a convex formalization that enjoys strong empirical performance and inherits the
mathematical properties of increasingly popular convex clustering methods. Specifically, our
Integrative Generalized Convex Clustering Optimization (iGecco) method employs different
convex distances, losses, or divergences for each of the different data views with a joint convex
fusion penalty that leads to common groups. Additionally, integrating mixed multi-view data is
often challenging when each data source is high-dimensional. To perform feature selection in such
scenarios, we develop an adaptive shifted group-lasso penalty that selects features by shrinking
them towards their loss-specific centers. Our so-called iGecco+ approach selects features from
each data view that are best for determining the groups, often leading to improved integrative
clustering. To solve our problem, we develop a new type of generalized multi-block ADMM
algorithm using sub-problem approximations that more efficiently fits our model for big data
sets. Through a series of numerical experiments and real data examples on text mining and
genomics, we show that iGecco+ achieves superior empirical performance for high-dimensional
mixed multi-view data.
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Introduction

As the volume and complexity of data grows, statistical data integration has gained
increasing attention as it can lead to discoveries which are not evident in analyses of a

single data set. We study a specific data-integration problem where we seek to leverage
common samples measured across multiple diverse sets of features that are of different types
(e.g., continuous, count-valued, categorical, skewed continuous and etc.). This type of data
is often called mixed, multi-view data (Hall and Llinas, 1997; Acar et al., 2011; Lock et

al., 2013; Tang and Allen, 2018; Baker et al., 2019). While many techniques have been
developed to analyze each individual data type separately, there are currently few methods
that can directly analyze mixed multi-view data jointly. Yet, such data is common in many
areas such as electronic health records, integrative genomics, multi-modal imaging, remote
sensing, national security, online advertising, and environmental studies. For example in
genomics, scientists often study gene regulation by exploring only gene expression data, but
other data types, such as short RNA expression and DNA methylation, are all part of the
same gene regulatory system. Joint analysis of such data can give scientists a more holistic
view of the problem they study. But, this presents a major challenge as each individual

data type is high-dimensional (i.e., a larger number of features than samples) with many
uninformative features. Further, each data view can be of a different data type: expression of
genes or short RNAs measured via sequencing is typically count-valued or zero-inflated plus
skewed continuous data whereas DNA methylation data is typically proportion-valued. In
this paper, we seek to leverage multiple sources of mixed data to better cluster the common
samples as well as select relevant features that distinguish the inherent group structure.

We propose a convex formulation which integrates mixed types of data with different data-
specific losses, clusters common samples with a joint fusion penalty and selects informative
features that separate groups. Due to the convex formulation, our methods enjoy strong
mathematical and empirical properties. We make several methodological contributions. First,
we consider employing different types of losses for better handling non-Gaussian data with
Generalized Convex Clustering Optimization (Gecco), which replaces Euclidean distances
in convex clustering with more general convex losses. We show that for different losses,
Gecco’s fusion penalty forms different types of centroids which we call loss-specific centers.
To integrate mixed multi-view data and perform clustering, we incorporate different convex
distances, losses, or divergences for each of the different data views with a joint convex
fusion penalty that leads to common groups; this gives rise to Integrative Generalized
Convex Clustering (iGecco). Further, when dealing with high-dimensional data, practitioners
seek interpretability by identifying important features which can separate the groups. To
facilitate feature selection in Gecco and iGecco, we develop an adaptive shifted group-lasso
penalty that selects features by shrinking them towards their loss-specific centers, leading to
Gecco+ and iGecco+ which performs clustering and variable selection simultaneously. To
solve our problems in a computationally efficient manner, we develop a new general multi-
block ADMM algorithm using sub-problem approximations, and make an optimization
contribution by proving that this new class of algorithms converge to the global solution.
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Related Literature

Our goal is to develop a unified, convex formulation of integrative clustering with feature
selection based on increasingly popular convex clustering methods. Pelckmans et al. (2005);
Lindsten et al. (2011); Hocking et al. (2011) proposed convex clustering which uses a
fusion penalty to achieve agglomerative clustering like hierarchical clustering. This convex
formulation guarantees a global optimal solution, enjoys strong statistical and mathematical
theoretical properties, and often demonstrates superior empirical performance to competing
approaches. Specifically, in literature, Pelckmans et al. (2005); Chi et al. (2017) showed it
yields stable solutions to small perturbations on the data or tuning parameters; Radchenko
and Mukherjee (2017) established clustering consistency by proving the clustering tree
produced by convex clustering consistently estimates the clustering tree produced by

the population procedure for the ¢ penalty case; Tan and Witten (2015) established its

link to hierarchical clustering as well as prediction consistency (finite sample bound for

the prediction error); the perfect recovery properties of convex clustering with uniform
weights have been proved by Zhu et al. (2014) for the two-clusters case and Panahi et al.
(2017) for the general &-clusters case while Sun et al. (2021) proved results for general
weighted convex clustering model; and many others have studied other appealing theoretical
properties (Wu et al., 2016; Chi and Steinerberger, 2019). Despite these advantages, convex
clustering has not yet gained widespread popularity due to its intensive computation.
Recently, some proposed fast and efficient algorithms to solve convex clustering and
estimate its regularization paths (Chi and Lange, 2015; Weylandt et al., 2020). Meanwhile,
convex clustering has been extended to biclustering (Chi et al., 2017) and many other
applications (Chi et al., 2018; Choi et al., 2019).

One potential drawback to convex clustering however, is that thus far, it has only been
well-studied employing Euclidean distances between data points and their corresponding
cluster centers. As is well known, the Euclidean metric suffers from poor performance
with data that is highly non-Gaussian such as binary, count-valued, skewed data, or with
data that has outliers. To alleviate the impact of outliers, Wang et al. (2016) studied robust
convex clustering, Sui et al. (2018) investigated convex clustering with metric learning and
Wau et al. (2016) mentioned replacing #5-norm with #;-norm loss function as extensions.

Despite these, however, no one has conducted a general investigation of convex clustering
for non-Gaussian data, let alone studied data integration on mixed data, to the best of our
knowledge. But, many others have proposed clustering methods for non-Gaussian data in
other contexts. One approach is to perform standard clustering procedures on transformed
data (Anders and Huber, 2010; Bullard et al., 2010; Marioni et al., 2008; Robinson and
Oshlack, 2010). But, choosing an appropriate transformation that retains the original cluster
signal is a challenging problem. Another popular approach is to use hierarchical clustering
with specified distance metrics for non-Gaussian data (Choi et al., 2010; Fowlkes and
Mallows, 1983). Closely related to this, Banerjee et al. (2005) studied different clustering
algorithms utilizing a large class of loss functions via Bregman divergences. Yet, the
proposed methods are all extensions of existing clustering approaches and hence inherit
both good and bad properties of those approaches. There has also been work on model-based
clustering, which assumes that data are generated by a finite mixture model; for example
Banfield and Raftery (1993); Si et al. (2013) proposed such a model for the Poisson and
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negative binomial distributions. Still these methods have a non-convex formulation and local
solutions like all model-based clustering methods. We propose to adopt the method similar
to Banerjee et al. (2005) and study convex clustering using different loss functions; hence
our method inherits the desirable properties of convex clustering and handles non-Gaussian
data as well. More importantly, there is currently no literature on data integration using
convex clustering and we achieve this by integrating different types of general convex losses
with a joint fusion penalty.

Integrative clustering, however, has been well-studied in the literature. The most popular
approach is to use latent variables to capture the inherent structure of multiple types of data.
This achieves a joint dimension reduction and then clustering is performed on the joint latent
variables (Shen et al., 2009, 2012, 2013; Mo et al., 2013, 2017; Meng et al., 2015). Similar
in nature to the latent variables approach, matrix factorization methods assume that the data
has an intrinsic low-dimensional representation, with the dimension often corresponding to
the number of clusters (Lock et al., 2013; Hellton and Thoresen, 2016; Zhang et al., 2012;
Chalise and Fridley, 2017; Zhang et al., 2011; Yang and Michailidis, 2015). There are a

few major drawbacks of latent variable or dimension reduction approaches, however. First
it is often hard to directly interpret latent factors or low-dimensional projections. Second,
many of these approaches are based on non-convex formulations yielding local solutions.
And third, choosing the rank of factors or projections is known to be very challenging in
practice and will often impact resulting clustering solutions. Another approach to integrative
clustering is clustering of clusters (COC) which performs cluster analysis on every single
data set and then integrates the primary clustering results into final group assignments using
consensus clustering (Hoadley et al., 2014; Lock and Dunson, 2013; Kirk et al., 2012;
Savage et al., 2013; Wang et al., 2014). This, however, has several potential limitations

as each individual data set might not have enough signal to discern joint clusters or the
individual cluster assignments are too disparate to reach a meaningful consensus. Finally,
others have proposed to use distance-based clustering for mixed types of data by first
defining an appropriate distance metric for mixed data (for example, the Gower distance

by Gower, 1971) and then applying an existing distance-based clustering algorithm such as
hierarchical clustering (Ahmad and Dey, 2007; Ji et al., 2012). Consequently, this method
inherits both good and bad properties of distance-based clustering approaches. Notice that
all of these approaches are either two-step approaches or are algorithmic or non-convex
problems that yield local solutions. In practice, such approaches often lead to unreliable and
unstable results.

Clustering is known to perform poorly for high-dimensional data as most techniques

are highly sensitive to uninformative features. One common approach is to reduce the
dimensionality of the data via PCA, NMF, or t-SNE before clustering (Ghosh and
Chinnaiyan, 2002; Bernardo et al., 2003; Tamayo et al., 2007). A major limitation of

such approaches is that the resulting clusters are not directly interpretable in terms

of feature importance. To address this, several have proposed sparse clustering for
high-dimensional data. This performs clustering and feature selection simultaneously by
iteratively applying clustering techniques to subsets of features selected via regularization
(Witten and Tibshirani, 2010; Sun et al., 2012; Chang et al., 2014). The approach, however,
is non-convex and is highly susceptible to poor local solutions. Others have proposed
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penalized model-based clustering that selects features (Raftery and Dean, 2006; Wang

and Zhu, 2008; Pan and Shen, 2007). Still, these methods inherit several advantages and
disadvantages of model-based clustering approaches. Moreover, sparse integrative clustering
is relatively under-studied. Shen et al. (2013); Mo et al. (2013) extended iCluster using

a penalized latent variable approach to jointly model multiple omics data types. They
induced sparsity on the latent variable coefficients via regularization. As feature selection

is performed on the latent variables, however, this is less interpretable in terms of selecting
features directly responsible for distinguishing clusters. Recently, and most closely related
to our own work, Wang et al. (2018) proposed sparse convex clustering which adds a
group-lasso penalty term on the cluster centers to shrink them towards zero, thus selecting
relevant features. This penalty, however, is only appropriate for Euclidean distances when
the data is centered; otherwise, the penalty term shrinks towards the incorrect cluster centers.
For feature selection using different distances and losses, we propose an adaptive shifted
group-lasso penalty that will select features by shrinking them towards their appropriate
centroid.

2. Integrative Generalized Convex Clustering with Feature Selection

In this section, we introduce our new methods, beginning with the Gecco and iGecco
and then show how to achieve feature selection via regularization. We also discuss some
practical considerations for applying our methods and develop an adaptive version of our
approaches.

2.1 Generalized Convex Clustering Optimization (Gecco)

In many applications, we seek to cluster data that is non-Gaussian. In the literature, most
do this using different distance metrics other than Euclidean distances (Choi et al., 2010;
Fowlkes and Mallows, 1983; de Souza and De Carvalho, 2004). Some use losses based on
exponential family or deviances closely related to Bregman divergences (Banerjee et al.,
2005).

To account for different types of losses for non-Gaussian data, we propose to replace the
Euclidean distances in convex clustering with more general convex losses; this gives rise to
Generalized Convex Clustering Optimization (Gecco):

n
minimize > f(X,-”Ui|)+y;wiir U;. = Ui g
iml i<y

Here, our data X is an n X p matrix consisting of r observations and p features; U is an 22 x
p centroid matrix with the / row, U; , the cluster centroid attached to point X; The general

loss #(X; ., U; ) refers to a general loss metric that measures dissimilarity between the data
point X; = and assigned centroids U; . We choose one loss type as Zhat is appropriate based
on the data type of X. For example, we use 4 loss in the presence of outliers. || - ||, is the

é—norm of a vector and usually g € {1,2, =} is considered (Hocking et al., 2011). Here we
prefer using the 4-norm in the fusion penalty (g = 2) as it encourages the entire rows of
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similar observations to be fused together simultaneously and is also rotation-invariant; but
one could use 4 or &-norm as well. yis a positive tuning constant and wj;is a nonnegative
weight. When y equals zero, each data point occupies a unique cluster. As y increases, the
fusion penalty encourages some of the rows of the cluster center U to be exactly fused,
forming clusters. When y becomes sufficiently large, all centroids eventually coalesce to

a single cluster centroid, which we define as the loss-specific center associated with #( - ).
Hence y regulates both the cluster assignment and number of clusters, providing a family of
clustering solutions. The weight w;; should be specified by the user in advance and is not a
tuning parameter; we discuss choices of weights for various convex losses in Section 2.5.

Going beyond Euclidean distances, we propose to employ convex distance metrics as well
as deviances associated with exponential family distributions and Bregman divergences,
which are always convex. Interestingly, we show that each of these possible loss functions
shrinks the cluster centers, U, to different loss-specific centers, instead of the mean-based
centroid as in convex clustering with Euclidean distances. For example, one may want

to use least absolute deviations (4-norm or Manhattan distances) for skewed data or for
data with outliers; with this loss, we show that all observations fuse to the median when

y is sufficiently large. We emphasize loss-specific centers here as they will be important
in feature selection in the next section. For completeness, we list common distances and
deviance-based losses, as well as their loss-specific centers X ; respectively in Table 1. (See

Appendix F for all calculations associated with loss-specific centers, and we provide a
formal proof when studying the properties of our approaches in Section 2.4.)

2.2 Integrative Generalized Convex Clustering (iGecco)

In data integration problems, we observe data from multiple sources and would like to

get a holistic understanding of the problem by analyzing all the data simultaneously. In

our framework, we integrate mixed multi-view data and perform clustering by employing
different convex losses for each of the different data views with a joint convex fusion penalty
that leads to common groups. Hence we propose Integrative Generalized Convex Clustering
(1Gecco) which can be formulated as follows:

K K
mini(m)izez:nkfk(x(k)’ U(k)) + yiz<[; wii’\/g; HUE"‘) _ Uf’kl)Hz '

Uk kol

Here, we have K data sources. The k% data view X(® is an n x p; matrix consisting of

nobservations and py features; U is also an n % py matrix and the /% row, Uglf), is

the cluster center associated with the point ng) And, 7 k(Xl(-lf), Ul(-l_()) is the loss function
associated with the % data view. Still, we choose one loss type as ¢ that is appropriate
based on the data type of each view. Each loss function is weighted by 7, which is

fixed by the user in advance. We have found that setting =, to be inversely proportional

to the null deviance evaluated at the loss-specific center, i.e., z; = , performs

1
£px(®), )
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well in practice. The null deviance, ¢ k(X(k), ')Z(k)) refers to the loss function evaluated

at i(k) where each ;% column of f('(k) denotes the loss-specific center ig-k). We employ

this loss function weighting scheme to ensure equal scaling across data sets of different
types. Recall that in generalized linear model (GLM), the likelihood-ratio test statistic,

or the difference between the log-likelihoods, 2 z,”k(X(k), ﬁ(k)) - fk(X(k), Ug)k))), follows a
(k) (k) (k)

x2-distribution. Here U"" is our iGecco estimate while Uy, 7 is the loss-specific center X

(cluster centroid when there is only one cluster). Therefore, the ratio of the two quantities,

o), o) (k) ¢1(k) : :

e, —— 5@ = il (XN, UV should be the same scale for each data view 4. Finally,
£x(®), %))

notice that we employ a joint convex fusion penalty on all of the UX)’s; this incorporates

information from each of the data sources and enforces the same group structure amongst

the shared observations. Similar to convex clustering, our joint convex fusion penalty

encourages the differences in the rows of concatenated centroids (U(l). . .U(K)) to be shrunk

towards zero, inducing a clustering behavior. Specifically, it forces the group structure of the

th

1 row of U to be the same for all & data views. Note the joint convex fusion penalty can

u)| |
be also written as O e . We say that subject 7and 7 “belong to the same cluster
i. i 2
if U,({() = UEK ), for all £. Hence, due to this joint convex fusion penalty, the common group

structure property always holds. We study our methods further and prove some properties in
Section 2.4.

2.3 Feature Selection: Gecco+ and iGecco+

In high dimensions, it is important to perform feature selection both for clustering purity
and interpretability. Recently, Wang et al. (2018) proposed sparse convex clustering by
imposing a group-lasso-type penalty on the cluster centers which achieves feature selection
by shrinking noise features towards zero. This penalty, however, is only appropriate for
Euclidean distances when the data is centered; otherwise, the penalty term shrinks towards
the incorrect cluster centers. For example, the median is the cluster center with the 4 or
Manhattan distances. Thus, to select features in this scenario, we need to shrink them
towards the median, and we should enforce “sparsity” with respect to the median and not the
origin. To address this, we propose adding a shifted group-lasso-type penalty which forces
cluster center U.;to shrink towards the appropriate loss-specific center X; for each feature.

Both the cluster fusion penalty and this new shifted-group-lasso-type feature selection
penalty will shrink towards the same loss-specific center.

To facilitate feature selection with the adaptive shifted group-lasso penalty for one data
type, our Generalized Convex Clustering Optimization with Feature Selection (Gecco+t) is
formulated as follows:

J Mach Learn Res. Author manuscript; available in PMC 2021 November 05.
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p
mmlmlzer X VUi + ;w,, Ui =Ur ||+ Oth;Cj”UU_fj' Lufl,-

Again, U is an nx p matrix and X, is the loss-specific center for the ™ feature introduced in

Table 1. The tuning parameter a controls the number of informative features and the feature
weight ¢; is a user input which plays an important role to adaptively penalize the features.

(We discuss choices of ¢; in Section 2.5.2 when we introduce the adaptive version of our

method.) When a is small, all features are selected and contribute to defining the cluster
centers. When a grows sufficiently large, all features coalesce at the same value, the loss-
specific center X ;, and hence no features are selected and contribute towards determining

the clusters. Another way of interpreting this is that the fusion penalty exactly fuses some
of the rows of the cluster center U, hence determining groups of rows. On the other hand,
the shifted group-lasso penalty shrinks whole columns of U towards their loss-specific
centers, thereby essentially removing the effect of uninformative features. Selected features
are then columns of U that are not shrunken to their loss-specific centers, U ; # X; - 1,,.

These selected features, then, exhibit differences across the clusters determined by the fusion
penalty. Clearly, sparse convex clustering of Wang et al. (2018) is a special case of Gecco+
using Euclidean distances with centered data. Our approach using both a row and column
penalty is also reminiscent of convex biclustering (Chi et al., 2017) which uses fusion
penalties on both the rows and columns to achieve checker-board-like biclusters.

Building upon integrative generalized convex clustering in Section 2.2 and our proposed
feature selection penalty above, our Integrative Generalized Convex Clustering Optimization
with Feature Selection (iGecco+) is formulated as follows:

mlmmlzeZﬂkfk(X( ’U(k)) + )/Zw Z IIUE"C) — U(k)ll

vk k= i< K

K Pk . K

-4
Kl

Again, U is an n x pr matrix and 925 ) is the loss- specific center for the /# feature for

Lall, -

k™ data view. By construction, iGecco+ directly clusters mixed multi-view data and selects
features from each data view simultaneously. Similarly, adaptive choice of Cj-k) gives rise to

adaptive iGecco+ which will be discussed in Section 2.5.2. Detailed discussions on practical
choices of tuning parameters and weights can be also found in Section 2.5.

2.4 Properties

In this section, we develop some properties of our methods, highlighting several advantages
of our convex formulation. Corresponding proofs can be found in Section A of the
Appendix.
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Define the objective function in (1) as F,,_(U) where U = (U(l)...U(K)). Then due to

convexity, we have the following properties. First, any minimizer achieves a global solution.

Proposition 1 (Global solution) If §, is convex for all k, then any minimizer of F, o(U), U%,

is a global minimizer. If ¢}, is strictly convex for all k, then U* is unique.

Our method is continuous with respect to data, tuning parameters and input parameters.

Proposition 2 (Continuity with respect to data, tuning and input parameters) The global

minimizer Uy, ;. ¢.X(r, @) of iGecco+ exists and depends continuously on the data, X, tuning

parameters y and a, the weight matrix w; the loss weight my, and the feature weight Q’Ek).
When tuning parameters are sufficiently large, all U’s coalesce to the loss-specific centers.

Proposition 3 (Loss-specific center) DefineX = (i(l)-ni(m) where each j column of X

equals the loss-specific center J’:’S»k). Suppose each observation corresponds to a node in a
graph with an edge between nodes 1 and j whenever w;; > 0. If this graph is fully connected,
then F,_(U) is minimized by the loss-specific centerX when y is sufficiently large or a is

sufficiently large.

Remark. As Gecco, Gecco+ and iGecco are special cases of iGeccot, it is easy to show that
all of our properties hold for these methods as well.

These properties illustrate some important advantages of our convex clustering approaches.
Specifically, many other widely used clustering methods are known to suffer from poor local
solutions, but any minimizer of our problem will achieve a global solution. Additionally,
we show that iGecco+ is continuous with respect to the data, tuning parameters, and other
input parameters. Together, these two properties are very important in practice and illustrate
that the global solution of our method remains stable to small perturbations in the data and
input parameters. Stability is a desirable property in practice as one would question the
validity of a clustering result that can change dramatically with small changes to the data

or parameters. Importantly, most popular clustering methods such as k-means, hierarchical
clustering, model-based clustering, or low-rank based clustering, do not enjoy these same
stability properties.

Finally in Proposition 3, we verify that when the tuning parameters are sufficiently large, full
fusion of all observations to the loss-specific centers is achieved. Hence, our methods indeed
behave as intended, achieving joint clustering of observations. We illustrate this property

in Figure 1 where we apply Gecco+ to the authors data set (described fully in Section

4). Here, we illustrate how our solution, U(y, @), changes as a function of y and a. This
so-called “cluster solution path” begins with each observation as its own cluster center when
y is small and stops when all observations are fused to the loss-specific center when y is
sufficiently large. In between, we see that observations are fusing together as y increases.
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Similarly, when a is small, all features are selected and as a increases, some of the features
get fused to their loss-specific center.

2.5 Practical Considerations and Adaptive iGecco+

In this section, we discuss some practical considerations for applying our method to real
data. In the iGecco+ problem, z;, wand {; are user-specific fixed inputs while y and a are

tuning parameters; y controls the number of clusters while a controls the number of features
selected. We discuss choosing user-specific inputs such as weights as well as how to select
tuning parameters. In doing so, we introduce an adaptive version of our method as well.

2.5.1 CHoice oF WEIGHTs AND TuNING PARAMETERS—In practice, a good choice of fusion
weights w;;has been shown to enhance both computational efficiency and clustering quality
of convex clustering (Chi and Lange, 2015). It has been empirically demonstrated that

using weights inversely proportional to the distances yields superior clustering performance;
this approach is widely adopted in practice. Further, setting many of the weights to zero
helps reduce computation cost. Considering these two, the most common weights choice for
convex clustering is to use K-nearest-neighbors method with a Gaussian kernel. Specifically,
the weight between the sample pair (4, ) is set as w;; = I ,kjexp(—d)d(Xi X)), where lf‘j
equals 1 if observation jis among observation 7’s x nearest neighbors or vice versa,

and 0 otherwise. However, this choice of weights based on Euclidean distances may not
work well for non-Gaussian data in Gecco(+) or for mixed data in iGecco(+). To account
for different data types and better measure the similarity between observations, we still
adopt K-nearest-neighbors method with an exponential kernel, but further extend this by
employing appropriate distance metrics for specific data types in the exponential kernel. In
particular, for weights in Gecco and Gecco+, we suggest using the same distance functions
or deviances in the loss function of Gecco and Gecco+. For weights in iGecco and iGecco+,
the challenge is that we need to employ a distance metric which measures mixed types

of data. In this case, the Gower distance, which is a distance metric used to measure

the dissimilarity of two observations measured in different data types (Gower, 1971),

can address our problem. To be specific, the Gower distance between observation 7and

IX%{) - Xl(.,kj)l

g

refers to the Gower distance between observation 7and 7 for feature jin data view k and

’ . K Pk
i overall is defined as d(X; ,X; ) = Zk - ZJ - 1d§§}/21{(: 1 Pk Where d,(,k; =

Rﬁk) = max;, i/IX,(;-C) - XE{?I is the range of feature jin data view k. In the literature, Gower
distance has been commonly used as distance metrics for clustering mixed types of data
(Wangchamhan et al., 2017; Hummel et al., 2017; Akay and Yiiksel, 2018) and shown

to yield superior performance than other distance metrics (Ali and Massmoudi, 2013; dos

Santos and Zarate, 2015).

Alternatively, we also propose and explore using stochastic neighbor embedding weights
based on symmetrized conditional probabilities (Maaten and Hinton, 2008). These

have been shown to yield superior performance in high-dimensions and if there are
potential outliers. Specifically, the symmetrized conditional probabilities are defined
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_ Pjlithij

exp(—pd(X; ,X; )
as pij 2n

Lk # iexp(—pd(X; || Xk |)

wij=1 ,kj - pij Where I ,kj still equals 1 if observation ;is among observation 7’s x nearest

. We propose to use the weights

, Where pji =

neighbors or vice versa, and 0 otherwise. Again, we suggest using distance metrics
appropriate for specific data types or the Gower distance for mixed data. In empirical
studies, we experimented with both weight choices and found that stochastic neighbor
embedding weights tend to work better in high-dimensional settings and if there are outliers.
Hence, we recommend these and employed them in our empirical investigations in Section 4
and 5.

Estimating the number of clusters in a data set is always challenging. Going beyond, we
have two tuning parameters in our iGecco+ problem; y controls the number of clusters while
a controls the number of features selected. Current literature for tuning parameter selection
for convex clustering mainly focuses on stability selection (Wang, 2010; Fang and Wang,
2012), hold-out validation (Chi et al., 2017) and information criterion (Tan and Witten,
2015). We first adopt the stability selection based approach for tuning parameter selection
and follow closely the approach described in the work of Wang (2010); Fang and Wang
(2012). We choose stability selection based approach because 1) its selection consistency has
been established and ii) Wang et al. (2018) adopted similar approach for tuning parameter
selection and demonstrated strong empirical performance. However, stability selection is
often computationally intensive in practice. To address this, we further explore information
criterion based approaches like the Bayesian information criterion (BIC). We explain full
details of both approaches in Appendix J and demonstrate empirical results when the
number of clusters and features are not fixed but estimated based on the data.

2.5.2 AopapTive GEcco+ AND IGEcco+ To WEIGHT FEATURES—Finally, we consider how
to specify the feature weights, ¢; used in the shifted group-lasso penalty. While employing
these weights are not strictly necessary, we have found, as did Wang et al. (2018), that
like the fusion weights, well-specified ¢;’s can both improve performance and speed up

computation. But unlike the fusion weights where we can use the pairwise distances, we
don’t have prior information on which features may be relevant in clustering. Thus, we
propose to use an adaptive scheme that first fits the iGecco+ with no feature weights and
uses this initial estimate to define feature importance for use in weights. This is similar to
many adaptive approaches in the literature (Zou, 2006; Wang et al., 2018).

Our adaptive iGecco+ approach is given in Algorithm 1; this applies to adaptive Gecco+ as
a special case as well. We assume that the number of clusters (or a range of the number
of clusters) is known a priori. We begin by fitting iGecco+ with a = 1 and uniform feature

weights g“Ek) = 1. We then find the ) which gives the desired number of clusters, yielding

the initial estimate, ﬁ(k). (We provide alternative adaptive iGecco+ Algorithm 17 when the
number of clusters is not known in Appendix J.) Next, similar to the adaptive approaches by
Zou (2006); Wang et al. (2018), we use this initial estimate to adaptively weight features by

proposing the following weights: §§-k) = 1/||ﬁ(§) - )?E-k) ~Ipll,- (To avoid numerical issues, we

add €=0.01 to the denominator.) These weights place a large penalty on noise features as
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~(k) . o . .
||U(, j) - xS-k) -1y, is close to zero in this case. Note, compared with sparse convex clustering

where the authors defined feature weights ¢; by solving a convex clustering problem with

feature penalty a = 0, we propose to fit iGecco+ with feature penalty a = 1 first and

then update the feature weights adaptively. We find this weighting scheme works well in
practice as it shrinks noise features more and hence penalizes more on those features. Such
with-penalty initialization for adaptive weights has also been proposed in literature (Zhou

et al., 2009; Fan et al., 2009; van de Geer et al., 2011). We also notice that noise features
impact the distances used in the fusion weights as well. Hence, we suggest updating the
distances adaptively by using the selected features to better measure the similarities between
observations. To this end, we propose a new scheme to compute weighted Gower distances.
First, we scale the features within each data view so that informative features in different
data views contribute equally and on the same scale. Then, we employ the inverse of zy,

i.e., the null deviance, to weight the distances from different data types, resulting in an
aggregated and weighted Gower distance, d(X; ,X; ) as further detailed in Algorithm 1.
Note that if the clustering signal from one particular data type is weak and there are few
informative features for this data type, then our weighting scheme will down-weight this
entire data type in the weighted Gower distance. In practice, our adaptive iGeccot scheme
works well as evidenced in our empirical investigations in the next sections.

Algorithm 1

Adaptive iGeccot

k
1. Fit iGecco+ with @ = 1, C§ ) = 1 and a sequence of y.

)

2. Find y which gives desired number of clusters; Get the estimate U

~(k =(k ~
3. Update the feature weights {5 ) = 1/||U(. j) - xE-k) . ln||2

and fusion weights @ij = Ifjexp(—¢8(Xi ., X)), where

K Pk ||ﬁ(k')—55(‘k) 1,
dX; Xy )= LA e S U ()
( .o .)— ﬁ(k) ~(k) 1 Tk ii’j.
=1 j:lmalel 'j—xj n||2

4. Fit adaptive iGecco+ with §, W and a sequence of y and a; Find optimal y and a which give desired number of
clusters and features.

Note that Algorithm 1 for adaptive iGecco+ assumes desired number of clusters and
features. (Panahi et al. (2017); Sun et al. (2021) proved that perfect recovery can be
guaranteed for the general case of g-clusters for convex clustering. To yield exact g desired
number of clusters, Weylandt et al. (2020) suggested back-tracking in practice.) We provide
the alternative adaptive iGecco+ (Algorithm 17) in Appendix J when the number of clusters
or features are not known a priori but estimated from the data.

3. iGecco+ Algorithm

In this section, we introduce our algorithm to solve iGecco+, which can be easily extended
to Gecco, Geccot and iGecco. We first propose a simple, but rather slow ADMM algorithm
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as a baseline approach. To save computation cost, we further develop a new multi-block
ADMM-type procedure using inexact one-step approximation of the sub-problems. Our
algorithm is novel from optimization perspective as we extend the multi-block ADMM to a
higher number of blocks and combine it with the literature related to inexact-solve ADMM
with sub-problem approximations, which often results in major computational savings.

3.1 Full ADMM to Solve iGecco+ (Naive Algorithm)

Given the shifted group-lasso and fusion penalties along with general losses, developing an
optimization routine for iGeccot method is less straight-forward than convex clustering or
sparse convex clustering. In this section, we propose a simple ADMM algorithm to solve
iGecco+ as a baseline algorithm and point out its drawbacks.

The most common approach to solve problems with more than two non-smooth functions is
via multi-block ADMM (Lin et al., 2015; Deng et al., 2017), which decomposes the original
problem into several smaller sub-problems and solves them in parallel at each iteration.
Chen et al. (2016) established a sufficient condition for the convergence of three-block
ADMM. We develop a multi-block ADMM approach to fit our problem for certain types of
losses and prove its convergence.

We first recast iGecco+ problem (1) as the equivalent constrained optimization problem:

%Wlllvllllz
lEe

P1(V;w)

K
minimize E ﬂkfk(X(k)’ U(k)) +7

K Pk
ZZ (k)5 (k) _ (k)
+a SN0 =55 1,11
U(k)’vk_l k_]j_lj lJ J 2

subject to D[U(l)u-U(K)] —v=o.

Recently, Weylandt et al. (2020) derived the ADMM for convex clustering in matrix form
and we adopt similar approach. We index a centroid pair by / = (11, [) with /] < I, define the

set of edges over the non-zero weights e = {I = (I1,/p): w; > 0}, and introduce a new variable

v=[vlh) . vE)] e rlEXZPk where VEI.{) = Ugf) - Ug) to account for the difference

between the two centroids. Hence V() is a matrix containing the pairwise differences
between connected rows of UX) and the constraint is equivalent to pu® — v = o for

all ;D e RIEIX 7 s the directed difference matrix corresponding to the non-zero fusion
weights. We give general-form multi-block ADMM (Algorithm 2) to solve iGecco+. Here

proxp(.)(x) = argminz%”x - z||% + h(z) is the proximal mapping of function A. Also, the

superscript in U in Algorithm 2 refers to the & data view; we omit iteration counter
indices in all iGecco+ algorithm for notation purposes and use the most recent values of the
updates. The dual variable is denoted by AW,
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Algorithm 2

General multi-block algorithm for iGecco+

while not converged do

forallk =1, -+, K do

k

2 Pk
vk = argmin kX0, 0) + 2pU - VO 4 AB 4 azj = 0y =0 1,0,

J
end for

V = proxy/,py( - ;W)([DU(l) + AW pu® 4 A(K)])

A® Z AK) L pu® —vK)y for allk

end while

Notice that, in Algorithm 2, there is no closed-form analytical solution for the UK sub-
problem for general losses. Typically, at each iteration of Algorithm 2, we need to apply

an inner optimization routine, which requires a nested iterative solver, to solve the U®
sub-problem until full convergence. In the next section, we seek to speed up this algorithm
by using U sub-problem approximations. But, first we propose two different approaches to
fully solve the U®) sub-problem based on specific loss types and then use these to develop

a one-step update to solve the sub-problem approximately with guaranteed convergence. For
the V sub-problem, one can easily show that it has a closed-form analytical solution for each
iteration, as given in Algorithm 2.

3.2 iGecco+ Algorithm

We have introduced Algorithm 2, a simple baseline ADMM approach to solve iGecco+. In
this section, we consider different ways to solve the U®) sub-problem in Algorithm 2. First,
based on specific loss types (differentiable or non-differentiable), we propose two different
algorithms to solve the U sub-problem to full convergence. These approaches, however,
are rather slow for general losses as there is no closed-form solution which requires another
nested iterative solver. To address this and in connection with current literature on variants
of ADMM with sub-problem approximations, we propose iGecco+ algorithm, a multi-block
ADMM algorithm which solves the sub-problems approximately by taking a single one-step
update. We prove convergence of this general class of algorithms, a novel result in the
optimization literature.

3.2.1 DirrerenTIABLE CASE—When the loss 4 is differentiable, we consider solving

the U sub-problem with proximal gradient descent, which is often used when the
objective function can be decomposed into a differentiable and a non-differentiable function.
While there are many other possible optimization routines to solve the U sub-problem,

we choose proximal gradient descent as there is existing literature proving convergence

of ADMM algorithms with approximately solved sub-problems using proximal gradient
descent (Liu et al., 2013; Lu et al., 2016). We will discuss in detail how to approximately
solve the sub-problem by taking a one-step approximation in Section 3.2.3. Based upon
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this, we propose Algorithm 3, which solves the U®) sub-problem by running full iterative

(k)

. , 0. )y _ Y
proximal gradient descent to convergence. Here Po(U"7; &\*/) = ZJ - lg“ i ||U’ j [| 5

Algorithm 3

U sub-problem for differentiable loss 4 (proximal gradient):

while not converged do

UO = prox, - gpy( . iHUR = XE g - 12, v 2, x0), 00 4 pDT@UR - v 4 AR 4 XE

end while

In Algorithm 3 and typically in general (proximal gradient) descent algorithms, we need

to choose an appropriate step size s to ensure convergence. Usually we employ a fixed

step size by computing the Lipschitz constant as in the squared error loss case; but in our
method, it is hard to compute the Lipschitz constant for most of our general losses. Instead,
we suggest using backtracking line search procedure proposed by Beck and Teboulle (2009);
Parikh et al. (2014), which is a common way to determine step size with guaranteed
convergence in optimization. Further, we find decomposing the U® sub-problem to py
separate ) sub-problems brings several advantages such as 1) better convergence property

J
)

(than updating U®’s all together) due to adaptive step size for each U(‘ ; sub-problem and

ii) less computation cost by solving each in parallel. Hence, in this case, we propose to use

k)

proximal gradient for each separate U(. / sub-problem. To achieve this, we assume that the

loss is elementwise, which is satisfied by every deviance-based loss. Last, as mentioned,
there are many other possible ways to solve the U® sub-problem than proximal gradient,
such as ADMM. We find that when the loss function is squared Euclidean distances or

the loss function has a Hessian matrix that can be upper bounded by a fixed matrix, using
ADMM approach saves more computation. We provide all implementation details discussed
above in Section C of the Appendix.

3.2.2 NoN-DIFFERENTIABLE CASE—When the loss 4 is non-differentiable, we can no longer
adopt the proximal gradient method to solve the U%) sub-problem as the objective is now a
sum of more than one separable non-smooth function. To address this, as mentioned, we can
use multi-block ADMM,; in this case, we introduce new blocks for the non-smooth functions
and hence develop a full three-block ADMM approach to fit our problem.

To augment the non-differentiable term, we assume that our loss function can be written as
fk(X(k), U(k)) =f k(gk(X(k), U(k))) where £ is convex but non-differentiable and gy is affine.
This condition is satisfied by all distance-based losses with gk(X(k), U(k)) =x® _ U(k);

for example, for Manhattan distances, we have f(Z) = Zf =101zl : [vec(Z)||1, and

2x(X, U) = X — U. The benefit of doing this is that now the U® sub-problem has a closed-

form solution. Particularly, we can rewrite the U sub-problem as:
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K
mir(llir)’[lizez:”kfk(z(k))+p Ipu - v(K) 4 Ak ||F+aZ:(Zc")nr(")n )
LAY, kol

PyRK); ),

subject to X(k) - U(k) = Z(k), U(k) — i(k) = R(k) s

(k) . k).

where X 3

is an 1 x py matrix with the /# column equal to scalar %"

It is clear that we can use multi-block ADMM to solve the problem above and each
primal variable has a simple update with a closed-form solution. We propose Algorithm

4, a full, iterative multi-block ADMM, to solve the U sub-problem when the loss is a
non-differentiable distance-based function. Algorithm 4 applies to iGecco+ with various
distances such as Manhattan, Minkowski and Chebychev distances and details are given in
Section D of the Appendix.

Algorithm 4
U sub-problem for non-differentiable distance-based loss 4 (multi-block ADMM):

-1
Precompute: Difference matrix D, M = (DTD +2I)

while not converged do
U® = M@ v — A®) 4 KH 4 RE N 4 x®)_ 70 4 k)
0 = prox,,kfk/p(X(k) ) + ‘I‘(k))
R®) = ProXq/pPy( - ;g(k))(U(k) _x® 4 Ny
w9 _ g | x®)_ o) _ 70,

N(k) — N(k) + (U(k) _ i(k) _ R(k))

end while

3.2.3 1GECCO+ ALGORITHM: FAST ADMM WITH INEXACT ONE-STEP APPROXIMATION TO THE SUB-
PROBLEM—Notice that for both Algorithm 3 and 4, we need to run them iteratively to

full convergence in order to solve the U sub-problem in Algorithm 2 for each iteration,
which is dramatically slow in practice. To address this, in literature, many have proposed
variants of ADMM with guaranteed convergence that find an inexact, one-step, approximate
solution to the sub-problem (without fully solving it); these include the generalized ADMM
(Deng and Yin, 2016), proximal ADMM (Shefi and Teboulle, 2014; Banert et al., 2016) and
proximal linearized ADMM (Liu et al., 2013; Lu et al., 2016). Thus, we propose to solve
the U sub-problem approximately by taking a single one-step update of the algorithm
(Algorithm 3 or 4) for both types of losses and prove convergence. For the differentiable
loss case, we propose to apply the proximal linearized ADMM approach while for the
non-differentiable case, we show that taking a one-step update of Algorithm 4, along with V
and A update in Algorithm 2, is equivalent to applying a four-block ADMM to the original
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iGecco+ problem and we provide a sufficient condition for the convergence of four-block
ADMM. Our algorithm, to the best of our knowledge, is the first to incorporate higher-order
multi-block ADMM and inexact ADMM with a one-step update to solve sub-problems for
general loss functions.

When the loss is differentiable, as mentioned in Algorithm 3, one can use full iterative
proximal gradient to solve the U(_kj) sub-problem, which however, is computationally

burdensome. To avoid this, many proposed variants of ADMM which find approximate
solutions to the sub-problems. Specifically, closely related to our problem here, Liu et

al. (2013); Lu et al. (2016) proposed proximal linearized ADMM which solves the sub-
problems efficiently by linearizing the differentiable part and then applying proximal
gradient due to the non-differentiable part. We find their approach fits into our problem

and hence develop a proximal linearized 2-block ADMM to solve iGecco+ when the loss 4
is differentiable and gradient is Lipschitz continuous. It can be shown that applying proximal
linearized 2-block ADMM to Algorithm 2 is equivalent to taking a one-step update of
Algorithm 3 along with V and A update in Algorithm 2. In this way, we avoid running full
iterative proximal gradient updates to convergence for the U® sub-problem as in Algorithm
3 and hence save computation cost.

When the loss is non-differentiable, we still seek to take an one-step update to solve the UK
sub-problem. We achieve this by noticing that taking a one-step update of Algorithm 4 along
with V and A update in Algorithm 2 is equivalent to applying multi-block ADMM to the
original iGecco+ problem recast as follows (for non-differentiable distance-based loss):

K K [ Pk
minimize Z”kfk(z(k)) y(%wllwl [l + aZ Z(ﬁ-k)llrg.k)llz
vy k=l I€e kellizl
Pl(V; w) PQ(R(k); é‘(k))
subjectto XK _ ) =z®) pu®) .. yEj_y=g, y®_gk gk

Typically, general higher-order multi-block ADMM algorithms do not always converge,
even for convex functions (Chen et al., 2016). We prove convergence of our algorithm and
establish a novel convergence result by casting the iGecco+ with non-differentiable losses
as a four-block ADMM, proposing a sufficient condition for convergence of higher-order
multi-block ADMMs, and finally showing that our problem satisfies this condition. (Details
are given in the proof of Theorem 4 in Appendix B.) Therefore, taking a one-step update of
Algorithm 4 converges for iGecco+ with non-differentiable losses.

So far, we have proposed inexact-solve one-step update approach for both differentiable
loss and non-differentiable loss case. For mixed type of losses, we combine these two
algorithms and this gives Algorithm 5, a multi-block ADMM algorithm with inexact
one-step approximation to the U sub-problem to solve iGecco+. We also establish the
following convergence result.
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Algorithm 5

iGecco+ algorithm

while not converged do

forallk =1, -+, K do

Update U(k):
if 4 is differentiable then

Take a one-step update of Algorithm 3
else if 4 is non-differentiable then

Take a one-step update of Algorithm 4
end if

end for

V = proxy/ppy () [PUD + A0 DUK) 4 AK])

A(k) = A(k) + (DU(k) - V(k)) for all &

end while

Theorem 4 (iGecco+ convergence) Consider the iGecco+ problem (1) with fixed inputs g,
wand G;. If 4 is convex for all k, Algorithm 5 converges to a global solution. In addition, if
each 4, is strictly convex, it converges to the unique global solution.

Remark. Our corresponding Theorem 4 establishes a novel convergence result as it is
the first to show the convergence of four-block or higher ADMM using approximate sub-
problems for both differentiable and non-differentiable losses.

It is easy to see that Algorithm 5 can be applied to solve other Gecco-related methods as
special cases. When K= 1, Algorithm 5 gives the algorithm to solve Gecco+. When a =
0, Algorithm 5 gives the algorithm to solve iGecco+. When K= 1 and a = 0, Algorithm 5
gives the algorithm to solve Gecco.

To conclude this section, we compare the convergence results of using both full ADMM and
inexact ADMM with one-step update in the sub-problem to solve Gecco+ (2= 120 and p=
210) in Figure 2. The left plots show the number of iterations needed to yield optimization
convergence while the right plots show computation time. We see that Algorithm 5 (one-step
update to solve the sub-problem) saves much more computational time than Algorithm 2
(full updates to solve the sub-problem). It should be pointed out that though Algorithm 5
takes more iterations to converge due to inexact approximation for each iteration, we still
reduce computation time dramatically as the computation time per iteration is much less
than the full-solve approach.

4. Simulation Studies

In this section, we first evaluate the performance of Gecco+ against existing methods on
non-Gaussian data. Next we compare iGecco+ with other methods on mixed multi-view
data.
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Non-Gaussian Data

In this subsection, we evaluate the performance of Gecco and (adaptive) Gecco+ by
comparing it with k-means, hierarchical clustering and sparse convex clustering. For
simplicity, we have the following naming convention for all methods: loss type name +
Gecco(t). For example, Poisson Deviance Gecco+ refers to Generalized Convex Clustering
with Feature Selection using Poisson deviance. Sparse CC refers to sparse convex clustering
using Euclidean distances where each feature is centered first. We measure the accuracy of
clustering results using adjusted Rand index (Hubert and Arabie, 1985). The adjusted Rand
index is the corrected-for-chance version of the Rand index, which is used to measure the
agreement between the estimated clustering assignment and the true group label. A larger
adjusted Rand index implies a better clustering result. For all methods we consider, we
assume oracle number of clusters for fair comparisons.

Each simulated data set is comprised of 7= 120 observations with 3 clusters. Each cluster
has an equal number of observations. Only the first 10 features are informative while the rest
are noise. We consider the following simulation scenarios.

. S1: Spherical data with outliers

The first 10 informative features in each group are generated from a Gaussian
distribution with different z4’s for each class. Specifically, the first 10 features

T T
are generated from My, 11¢) where y; = (-2.5- 15T, 0?) , Hp = (05T, 2.5 15T) ,

T L .
uz=@2.5- 1?, 05T) . The outliers in each class are generated from a Gaussian

distribution with the same mean centroid s but with higher variance, i.e., M,
25 - 1) The remaining noise features are generated from MO0,1).

In the first setting (S1A), number of noise features ranges in 25, 50, 75, - up

to 225 with the proportion of number of outliers fixed (= 5%). We also consider
the setting when the variance of noise features increases with number of features
fixed p= 200 and number of outliers fixed (S1B) and high-dimensional setting
where p ranges from 250, 500, 750 to 1000 (S1C).

. S2: Non-spherical data with three half moons

Here we consider the standard simulated data of three interlocking half moons as
suggested by Chi and Lange (2015) and Wang et al. (2018). The first 10 features
are informative in which each pair makes up two-dimensional three interlocking
half moons. We randomly select 5% of the observations in each group and

make them outliers. The remaining noise features are generated from MO0,1). The
number of noise features ranges from 25, 50, 75, --* up to 225. In both S1 and S2,
we compare Manhattan Gecco+ with other existing methods.

. S3: Count-valued data

The first 10 informative features in each group are generated from a Poisson
distribution with different z4’s (/= 1, 2, 3) for each class. Specifically, 1 =1 -
19, ip =4 - 119, 15 =7 - 11(. The remaining noise features are generated from
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a Poisson distribution with the same s which are randomly generated integers
from 1 to 10. The number of noise features ranges from 25, 50, 75, -+ up to 225.

We summarize simulation results in Figure 3. We find that for spherical data with outliers,
adaptive Manhattan Gecco+ performs the best in high dimensions. Manhattan Gecco
performs well in low dimensions but poorly as the number of noisy features increases.
Manhattan Gecco+ performs well as the dimension increases, but adaptive Manhattan
Gecco+ outperforms the former as it adaptively penalizes the features, meaning that noisy
features quickly get zeroed out in the clustering path and that only the informative features
perform important roles in clustering. We see that, without adaptive methods, we do not
achieve the full benefit of performing feature selection. As we perform adaptive Gecco+, we
show vast improvement in clustering purity as the number of noise features grows where
regular Gecco performs poorly. Sparse convex clustering performs the worst as it tends to
pick outliers as singleton clusters. In the presence of outliers, Manhattan Gecco+ performs
much better than sparse convex clustering as we choose a loss function that is more robust to
outliers. Interestingly, k-means performs better than sparse convex clustering. This is mainly
because sparse convex clustering calculates pairwise distance in the weights, placing outliers
in singleton clusters more likely than k-means which calculates within-cluster variances
(where outliers could be closer to the cluster centroids than to other data points). Our
simulation results also show that adaptive Manhattan Gecco+ works well for non-spherical
data by selecting the correct features. For count data, all three adaptive Gecco+ methods
perform better than k-means, hierarchical clustering and sparse convex clustering. We
should point out that there are several linkage options for hierarchical clustering. For
visualization purposes, we only show the linkage with the best and worst performance
instead of all the linkages. Also we use the appropriate data-specific distance metrics in
hierarchical clustering. For k-means, we use k-means++ (Arthur and Vassilvitskii, 2006) for
initialization.

Table 2 shows the variable selection accuracy of sparse convex clustering and adaptive
Gecco+ in terms of F; score. In all scenarios, we fix p=225. We see that adaptive Gecco+
selects the correct features, whereas sparse convex clustering performs poorly.

4.2 Multi-View Data

In this subsection, we evaluate the performance of iGecco and (adaptive) iGecco+ on mixed
multi-view data by comparing it with hierarchical clustering, iClusterPlus (Mo et al., 2013)
and Bayesian Consensus Clustering (Lock and Dunson, 2013). Again, we measure the
accuracy of clustering results using the adjusted Rand index (Hubert and Arabie, 1985).

As before, each simulated data set is comprised of n= 120 observations with 3 clusters.
Each cluster has an equal number of observations. Only the first 10 features are informative
while the rest are noise. We have three data views consisting of continuous data, count-
valued data and binary/proportion-valued data. We investigate different scenarios with
different dimensions for each data view and consider the following simulation scenarios:

. S1: Spherical data with p; = p, = p3 =10
. S2: Three half-moon data with p; = pp = p3 = 10
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. S3: Spherical data with p; =200, p, = 100, p3 = 50
. S4: Spherical data with p; = 50, p, =200, p3 = 100
. S5: Three half-moon data with p; = 200, p, = 100, p3 =50
. S6: Three half-moon data with p; = 50, p, = 200, p3 = 100

We employ a similar simulation setup as in Section 4.1 to generate each data view. The
difference is that here for informative features, we increase the within-cluster variance for
Gaussian data and decrease difference of cluster mean centroids y4’s for binary and count
data so that there is overlap between different clusters. Specifically, for spherical cases,
Gaussian data is generated from My, 3 - I1p); count data is generated from Poisson with
different w’s (1y = 2, 1o =4, 15 = 6, etc); binary data is generated from Bernoulli with
different t’s (11 = 0.5, 1o = 0.2, 15 = 0.8, etc). For half-moon cases, continuous data is
simulated with larger noise and the count and proportion-valued data is generated via a
copula transform. In this manner, we have created a challenging simulation scenario where
accurate clustering results cannot be achieved by considering only a single data view.

Again, for fair comparisons across methods, we assume oracle number of clusters.
When applying iGecco(+) methods, we employ Euclidean distances for continuous data,
Manhattan distances for count-valued data and Bernoulli log-likelihood for binary or
proportion-valued data. We use the latter two losses as they perform well compared with
counterpart losses in Gecco+ and demonstrate faster computation speed.

Simulation results in Table 3 and Table 4 show that our methods perform better than existing
methods. In low dimensions, iGecco performs comparably with iCluster and Bayesian
Consensus Clustering for spherical data. For non-spherical data, iGecco performs much
better. For high dimensions, iGecco+ performs better than iGecco while adaptive iGecco+
performs the best as it achieves the full benefit of feature selection. We also applied k-means
to the simulated data. The results of k-means are close to (or in some cases worse than)
hierarchical clustering with the best-performing linkage; hence we only show the results of
hierarchical clustering here for comparison.

Also we show the variable selection results in Table 5 and compare our method to that of
iClusterPlus. For fair comparisons, we assume oracle number of features. For our method,
we choose a that gives oracle number of features; for iClusterPlus, we select top features
based on Lasso coefficient estimates. Our adaptive iGecco+ outperforms iClusterPlus for all
scenarios.

Note in this section, we assume that the oracle number of clusters and features are known a
priori for fair comparisons. Results when the number of clusters and features are not fixed
but estimated based on the data using tuning parameter selection, are given in Appendix J.3.

5. Real Data Examples

In this section, we apply our methods to various real data sets and evaluate our methods
against existing ones. We first evaluate the performance of Gecco+ for several real data sets
and investigate the features selected by various Gecco+ methods.
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5.1 Authors Data

The authors data set consists of word counts from n= 841 chapters written by four famous
English-language authors (Austen, London, Shakespeare, and Milton). Each class contains
an unbalanced number of observations with 69 features. The features are common “stop
words” like “a”, “be” and “the” which are typically removed before text mining analysis.
We use Gecco+ not only to cluster book chapters and compare the clustering assignments
with true labels of authors, but also to identify which key words help distinguish the authors.
We choose tuning parameters using BIC based approach; results for stability selection based
approach are given in Table 15, Appendix J.3.

In Table 6, we compare Gecco+ with existing methods in terms of clustering quality. For
hierarchical clustering, we only show the linkage with the best performance (in this whole
section). Our method outperforms k-means and the best hierarchical clustering method.
Secondly, we look at the word texts selected by Gecco+. As shown in Table 7, Jane Austen
tended to use the word “her” more frequently than the other authors; this is expected as the
subjects of her novels are typically females. The word “was” seems to separate Shakespeare
and Jack London well. Shakespeare preferred to use present tense more while Jack London
preferred to use past tense more. To summarize, our Gecco+ not only has superior clustering
performance but also selects interpretable features.

5.2 TCGA Breast Cancer Data

The TCGA data set consists of log-transformed Level III RPKM gene expression levels for
445 breast-cancer patients with 353 features from The Cancer Genome Atlas Network (The
Cancer Genome Atlas Network, 2012). Five PAMS50 breast cancer subtypes are included,
i.e., Basal-like, Luminal A, Luminal B, HER2-enriched, and Normal-like. Only 353 genes
out of 50,000 with somatic mutations from COSMIC (Forbes et al., 2010) are retained. The
data is Level IIl TCGA BRCA RNA-Sequencing gene expression data that have already
been pre-processed according to the following steps: i) reads normalized by RPKM, and ii)
corrected for overdispersion by a log-transformation. We remove 7 patients, who belong to
the normal-like group and the number of subjects n becomes 438. We also combine Luminal
A with Luminal B as they are often considered one aggregate group (Choi et al., 2014).

From Table 8, our method outperforms k-means and the best hierarchical clustering method.
Next, we look at the genes selected by Gecco+ in Table 9. FOXAL is known to be a key gene
that characterizes luminal subtypes in DNA microarray analyses (Badve et al., 2007). GATA
binding protein 3 (GATA3) is a transcriptional activator highly expressed by the luminal
epithelial cells in the breast (Mehra et al., 2005). ERBB2 is known to be associated with
HER?2 subtype and has been well studied in breast cancer (Harari and Yarden, 2000). Hence
our Gecco+ not only outperforms existing methods but also selects genes which are relevant
to biology and have been implicated in previous scientific studies.

Next we evaluate the performance of iGecco+ for mixed multi-view data sets and investigate
the features selected by iGecco+.
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5.3 Multi-omics Data

One promising application for integrative clustering for multi-view data lies in integrative
cancer genomics. Biologists seek to integrate data from multiple platforms of high-
throughput genomic data to gain a more thorough understanding of disease mechanisms

and detect cancer subtypes. In this case study, we seek to integrate four different types of
genomic data to study how epigenetics and short RNAs influence the gene regulatory system
in breast cancer.

We use the data set from The Cancer Genome Atlas Network (2012). Lock and Dunson
(2013) analyzed this data set using integrative methods and we follow the same data
pre-processing procedure: i) filter out genes in expression data whose standard deviation

is less than 1.5, ii) take square root of methylation data, and iii) take log of miRNA data. We
end up with a data set of 348 tumor samples including:

. RNAseq gene expression (GE) data for 645 genes,

. DNA methylation (ME) data for 574 probes,

. miRNA expression (miRNA) data for 423 miRNAs,

. Reverse phase protein array (RPPA) data for 171 proteins.

The data set contains samples used on each platform with associated subtype calls from
each technology platform as well as integrated cluster labels from biologists. We use the
integrated labels from biologists as true label to compare different methods. Also we merged
the subtypes 3 and 4 in the integrated labels as those two subtypes correspond to Luminal A
and Luminal B respectively from the predicted label given by gene expression data (PAMS50
mRNA).

Figure 6 in Appendix H gives the distribution of data from different platforms. For our
iGecco+ methods, we use Euclidean distances for gene expression data and protein data as
the distributions of these two data sets appear Gaussian; binomial deviances for methylation
data as the value is between [0, 1]; Manhattan distances for miRNA data as the data is
highly-skewed.

We compare our adaptive iGecco+ with other existing methods. From Table 10, we see that
our method outperforms all the existing methods.

We also investigate the features selected by adaptive iGecco+, shown in Table 11, and find
that our method is validated as most are known in the breast cancer literature. For example,
FOXAT1 is known to segregate the luminal subtypes from the others (Badve et al., 2007), and
AGR3 is a known biomarker for breast cancer prognosis and early breast cancer detection
from blood (Garczyk et al., 2015). Several well-known miRNAs were selected including
MIR-135b, which is upregulated in breast cancer and promotes cell growth (Hua et al.,
2016) as well as MIR-190 which suppresses breast cancer metastasis (Yu et al., 2018).
Several known proteins were also selected including ERalpha, which is overexpressed in
early stages of breast cancer (Hayashi et al., 2003) and GATA3 which plays an integral role
in breast luminal cell differentiation and breast cancer progression (Cimino-Mathews et al.,
2013).
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We also visualize the resulting clusters from adaptive iGecco+. Figure 4 shows the cluster
heatmap of multi-omics TCGA data with row orders determined by cluster assignments
from iGecco+ and left bar corresponding to the integrated cluster labels from biologists.
We see that there is a clear separation between groups and adaptive iGecco+ identifies
meaningful subtypes. The black bars at the bottom of each data view correspond to the
selected features in Table 11.

6. Discussion

In this paper, we develop a convex formulation of integrative clustering for high-dimensional
mixed multi-view data. We propose a unified, elegant methodological solution to two critical
issues for clustering and data integration: i) dealing with mixed types of data and ii)
selecting sparse, interpretable features in high-dimensional settings. Specifically, we show
that clustering for mixed, multi-view data can be achieved using different data-specific
convex losses with a joint fusion penalty. We also introduce a shifted group-lasso penalty
that shrinks noise features to their loss-specific centers, hence selecting features that play
important roles in separating groups. In addition, we make an optimization contribution by
proposing and proving the convergence of a new general multi-block ADMM algorithm with
sub-problem approximations that efficiently solves our problem. Empirical studies show that
iGecco+ outperforms existing clustering methods and selects sparse, interpretable features in
separating clusters.

This paper focuses on the methodological development for integrative clustering and feature
selection, but there are many possible avenues for future research related to this work. For
example, we expect in future work to be able to show that our methods inherit the strong
statistical and theoretical properties of other convex clustering approaches such as clustering
consistency and prediction consistency. An important problem in practice is choosing which
loss function is appropriate for a given data set. While this is beyond the scope of this paper,
an interesting direction for future research would be to learn the appropriate convex loss
function in a data-driven manner. Additionally, many have shown block missing structure

is common in mixed data (Yu et al., 2019; Xiang et al., 2013). A potentially interesting
direction for future work would be to develop an extension of iGecco+ that can appropriately
handle block-missing multi-view data. Moreover, Weylandt et al. (2020) developed a fast
algorithm to compute the entire convex clustering solution path and used this to visualize
the results via a dendrogram and pathwise plot. In future work, we expect that algorithmic
regularization path approaches can also be applied to our method to be able to represent

our solution as a dendrogram and employ other dynamic visualizations. Finally, while we
develop an efficient multi-block ADMM algorithm, there may be further room to speed up
computation of iGecco+, potentially by using distributed optimization approaches.

In this paper, we demonstrate that our method can be applied to integrative genomics, yet
it can be applied to other fields such as multi-modal imaging, national security, online
advertising, and environmental studies where practitioners aim to find meaningful clusters
and features at the same time. In conclusion, we introduce a principled, unified approach
to a challenging problem that demonstrates strong empirical performance and opens many
directions for future research.
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Our method is implemented in MATLAB and available at https://github.com/DataSlingers/
iGecco.
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Appendix A.: Proof of Propositions

Proposition 1 and 2 are direct extensions from Proposition 2.1 of Chi and Lange (2015).
Notice they proved the solution path depends continuously on the tuning parameter y and
the weight matrix w. It follows that the argument can be also applied to tuning parameter a,

the loss weight 7y, and feature weight Cﬁ-k). Also it is obvious that the loss #( - ) is continuous

with respect to the data, X.

We show in detail how to prove Proposition 3 in the following. First we rewrite the objective
F, o(U) as:

nlly

Fy,o(U) = Zﬂkfk(x( )’U("))H;w” ZHUST)— l||| + ZZC(k)l|U )?S-k) 1
—ZZﬂkfk(X( )’U,| )+7;w v ZIIUST)— fk.)ll +aZZ¢(k)||U ~(k)|1 I,

n
By definition, loss-specific cluster center is i(k) = argminz. - lfk(Xl(."c)’ u). Since 4 is convex,
u

it is equivalent to u such that az.fk(xf.’")’ u) = 0. Hence, 0E'fk(xgllc)’§(k)) =0
1 1

We use the similar proof approach of Chi and Lange (2015). A point X furnishes a global
minimum of the convex function F(X) if and only if all forward directional derivatives

doF(X) at X are nonnegative. Here © = {@(1), O(K)} represents a direction in the space

of possible concatenated centroids, where o) e R"* Pk_ We calculate the directional

derivatives:

d@Fy,a(X) ZZﬂk(dfk(X
*"ZZC o) =9

K
" ST
\o! ,>+y% ”\/Euq, o)1,

n ) <k 50 _ . ) . .
Note } . 1( X3 X6y y = 0. The generalized Cauchy-Schwartz inequality therefore
!

implies:
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Hence the forward directional derivative test is satisfied for any y >

n
2ﬁ'

On the other hand, for fixed y, the generalized Cauchy-Schwartz inequality implies:

Zn;<dfk(x Zn;q)bﬂk(xflf) i(k)), @l(llc)_fi(k)>
Pk
) jzl<dfk(xlj o —)?Ek) 1)
Pk
> —j-leldfk(X(lkj) 1yl |”@ ~(!c) i,

Hence, we have:
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When all Cﬁk) > 0, one can take any a that exceeds
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1

In general, set a > -max; gl dfk(X(k) ) ~Ipll,. It is easy to check the

mlng(k) > ch'k)

forward directional derivative test is satisfied. H

Appendix B.: Proof of Theorem 4

Recall the iGeccot problem is:

. )k — (k) (0) 2
min anfk(x( )’U( ))+y§wii/ kZ]llUi‘ _Ui’ . ||2

U(k)k -l

> 2p 26/

nllz-

We can recast the original iGecco+ problem as the equivalent constrained problem:
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where 4 refers to the differentiable losses and 4 ‘refers to the non-differentiable losses. We
use multi-block ADMM algorithm (Algorithm 6) to solve the problem above.

To prove convergence of Algorithm 5, we first show that multi-block ADMM Algorithm

6 converges to a global minimum. Then we show that we can proximal-linearize the
sub-problems in the primal updates of Algorithm 6 with proved convergence and this is
equivalent to Algorithm 5. Without loss of generality, we assume we have one differentiable
loss #1( - ) and one non-differentiable distance-based loss #5( - ).

Algorithm 6
Multi-block ADMM to solve iGeccot+
while not converged do
forallk =1,---, K do
2 Pk
U = argmin me, XM, 0) + S1DU - VO 4 AB 0} 029 |1,
U J -

, , , n 2 ~(k' / n 2 , n 2
U®) = argmin £1x*) — U + 260 1 w® 74 21U - XE - RE) e NEY 74 2D - vE) 4 A
U

, , , N2
2% = argmin 7 f10(2) + IXE) - U*) - 2.+ WO
Z
, . Pk’ , K (K , ~(k' n 2
R = argmin a = ¢ N0YG =5 | 10, + 5100 =X - R N

W) k) 4 xK) _ k) _ 7K,
NED = NED ) _XED _ g
end for

. 2 ’ ’ n 2
v = argming DU = V4 A+ 21D -V AS 4 4(Fr € Vi 1)

A(k) — A(k) + (DU(k) — V(k)) for all kand &~

end while

To prove convergence of Algorithm 6, we first propose a sufficient condition for the
convergence of four-block ADMM and prove it holds true. This is an extension of the
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convergence results in Section 2 of the work by Chen et al. (2016). Suppose the convex
optimization problem with linear constraints we want to minimize is

min 0)(x1) + 02(x2) + 03(x3) + 04(x4)

3
s.t. AiX +Axxy + Asxs+ Ayxy =Db. @
The multi-block ADMM has the following form. Note here, the superscript in ng 1) refers
to the (k+ 1) iteration in the ADMM updates. We have:
X(lk +1) _ argmin{ L (xy, X(Zk)’ ng), ng)’ x(k))}
x(zk +D 2 argmin{LA(x(lk + 1), X, x(3k), ng), X(k))}
ng +D 2 argmin { LA(X(lk + 1), x(zk + 1), X3, xﬁf‘), X(k))} “
ng +h 2 argmin{ LA(X(lk + 1), x(zk + l), x(3k + 1), X4, )»(k))}

AHD 2300 _ (4 xE+ D g Ak D | p kD g g+ D

where

4
T
Ly = Z 20i(x) — 2T (A1x] + A2xp + A3x3 4 Agxs —b)
im

+%||A1x1 + Aox) + A3x3 + Agxgq — b||%.

We establish Lemma 5, a sufficient condition for convergence of four-block ADMM:

Lemma 5 (Sufficient Condition for Convergence of Four-block ADMM) A sufficient
condition ensuring the convergence of (4) to a global solution of (3) is: AYAz =0, AJA, =0,
Afa =0.

We prove Lemma 5 at the end of this section. Note that Lemma 5 is stated in

vector form and therefore we need to transform the constraints in the original iGecco+
problem (2) from matrix form to vector form in order to apply Lemma 5. Note that

T T T
pu® = vk & W T v s D@ 1, vee(U®)) = vee(v(9)"). Hence we can write the

constraints in (2) as:

A1 0 0 0 -10
0 I I 00
0 A2u+Oz+ 0r+ 0 _Iv—b
01 0 |-I 00
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uj e,
where u = ( ) YU A —pel,. A =D® I,z = vee(ZD), r = vee®D),

T p1°
vec(U(z) )
Opy el
T
T VCC(X(z) )
vec V(l) ) 0 )
v =vec(Vl) = b=| 7%l | g eRr”isacolumn vector consisting of all %7
@" 2
vec(V\“ ) X
@

and is repeated n times in b.

Next we show that the constraints in (2) for our problem satisfy the condition in Lemma 5
and hence the multi-block ADMM Algorithm 6 converges.

0 0 -10
. I 0 0 0 . . T
By construction, E, = ol E; = 0 and E4 = o —1l It is easy to verify that: E;E3 =0,
0 -1 00

E5E4 =0, E§E4 = 0. Hence our setup satisfies the sufficient condition in Lemma 5 and the
multi-block ADMM Algorithm 6 converges.

Next, we see that each primal update in Algorithm 5 is equivalent to the primal update by
applying proximal linearized ADMM to the sub-problems in Algorithm 6. (We will show
this in detail in Theorem 6.) It is easy to show that these updates with closed-form solutions
are special cases of proximal-linearizing the sub-problems. Meanwhile, Lu et al. (2016); Liu
et al. (2013) showed the convergence of proximal linearized multi-block ADMM. Hence
Algorithm 5 converges to a global minimum if 4 is convex for all & and has Lipschitz
gradient when it is differentiable. Further, if each 4 is strictly convex, it converges to the
unique global solution. B

Proof of Lemma 5:

According to the first-order optimality conditions of the minimization problems in (4), we

have:

orxp - 0,y xg - (k“) (=AT0 - D s axd s Ak a1y 2 0
02(X2)—€2(x(2k+1))+(x2 x(k +l) -af ) - (Alx(k+ )+A2x(k +l)+A3x(k)+A4x(k)—b)]}20

030x3) - 0305 T ) 1 v - (k“) (=AT0® - @D A D gD L aD yyy »

04(xa) — 04(x(k+1))+(x4 x(k+1) —A ) _ (Alx("+1)+A2xg‘+1 +A3x§k+1)+A4x5‘k+1)—b)]}204

Since A2A3 =0, A2A4 =0, A3 A4 =0, we have:
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T
o1x1) — 016K T D) e = x{E DY AT Y A AP A by 2 0

T
02x2) = 205 T D) g = xS T AT - ap{ FD ATy s 0

03(x3) — 03(x(3k 1) 4 x3 - x(3k +1)

T
0axg) — 03065 T D)+ g —xF D)

T
R e N e SR I EY
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which is also the first-order optimality condition of the scheme:

. T 1 2
x(lk +1) 2 argmin{6(x;) — (k(k)) (Arxy) + EHAle + Azx(zk) + A3ng) + A4xgk) -bll,}

. T
(x(zk + 1), X(Sk + 1), ng + 1)) = argmin{6,(x;) + 03(x3) + 04(x4) — ()»(k)) (Aoxs + Asxs + Ayxy) -
1 2
+ I AT 4 A%y + Agxs + Agxs - bl3)

X(IH' D _ X(k) _ (Alx(lk+ 1) + A2X(2k+ 1) + A3X(3k+ 1) +A4X2k+ 1 _ b) .

Clearly, (5) is a specific application of the original two-block ADMM to (3) by regarding
(x2, X3, X4) as one variable, [Aj, Az, A4] as one matrix and 65(xy) + 65(X3) + B4(X4) as one
function. l

Appendix C.: Gecco+ for Differentiable Losses

In this section, we propose algorithms to solve Gecco+ when the loss 4s differentiable and
gradient is Lipschitz continuous. In this case, we develop a fast two-block ADMM algorithm
without fully solving the U sub-problem. Our result is closely related to the proximal
linearized ADMM literature (Liu et al., 2013; Lu et al., 2016). Also solving the sub-problem
approximately is closely connected with the generalized ADMM literature (Deng and Yin,
2016).

In the following sections, we discuss algorithms to solve Gecco+ instead of iGecco+ for
notation purposes as we would like to include iteration counter indices in the algorithm

for illustrating backtracking; but we can easily extend the algorithm to solve iGecco+. To
begin with, we clarify different notations in Gecco+ and iGecco+: the superscript in UK in
iGecco+ refers to the k% data view while U in Gecco+ refers to the k? iteration counter in
the ADMM updates. We omit iteration counter indices in all iGecco+ algorithm for notation
purposes and use the most recent values of the updates.

C.1 Two-block ADMM in Matrix Form

Suppose the loss #(X,U) is differentiable. Similar to the formulation in convex clustering, we
can recast the Gecco+ problem as the equivalent constrained problem:
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minimize £(X,U) +7|
uv

)4
+“Z}¢j“Uu—fjl1n”z
J -

%:wzllet Il
ICe

Py(V;w)
subjectto DU-V =0 .

Like in convex clustering (Chi and Lange, 2015; Weylandt et al., 2020), we index a
centroid pair by I = (I1, 1) with | < I, define the set of edges over the non-zero weights

e = {I = (I1,l2):w; > 0}, and introduce a new variable V,; =U;, —U,, to account for the

difference between the two centroids. Hence V is a matrix containing the pairwise
differences between connected rows of U. Also D is the directed difference matrix
corresponding to the non-zero fusion weights defined in the work of Weylandt et al. (2020).

We can show that the augmented Lagrangian in scaled form is equal to:

)4
2 -
L(U,V,A)=f(XaU)+%||DU—V+A||F+“2 :Cj||U|j—xj|1n||2+}’% :Wl||Vl|||2,
Juml IEe

where the dual variable is denoted by A.

To update U, we need to solve the following sub-problem:

p
I » 2 e
mlngnlze (X, U) + §||DU—V+A||2+aj§ ICJ”U“ Xj | 1,,||2 .

Let U = U — X. The sub-problem becomes:

p
S T 2 i
mmirjmze L”(X,U+X)+§I|D(U+X)—V+A||2+aj§li_,‘Jllujllz,

where U; is the J™ column of U. For each ADMM iterate, we have:

p
— - - - = _ _ 2 -
T®  argmin X, T+ + 51D+ 0-VE =D 4 A€ =I5 40 Sl

U =l

(=
Pr(U;0)

This can be solved by running iterative proximal gradient to full convergence:

ﬁ(k’ m) = prox (ﬁ(k’m -0
sk - aPy(+5¢)

@@ =D gy vk =1 A= 1)

— - vex, R L g +,DT

which is equivalent to:

J Mach Learn Res. Author manuscript; available in PMC 2021 November 05.



1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Wang and Allen

Page 33

vlem = pox ke m =D ek utem =Dy pT oyt =1 _yk= 1) A(k=1)
sk - aPy(:0)
M+X .

Here UK refers to the m™ inner iteration counter in the U sub-problem out of the A outer
iteration counter of the ADMM update. It is straightforward that this is computationally
expensive. To address this, we propose to solve the U sub-problem approximately using

just a one-step proximal gradient update and prove convergence in the next section. This
approach is based on proximal linearized ADMM (Liu et al., 2013; Lu et al., 2016), which
solves the sub-problems efficiently by linearizing the differentiable part and then applying
proximal gradient due to the non-differentiable part. To ensure convergence, the algorithm
requires that gradient should be Lipschitz continuous. The V and A updates are just the same
as in regular convex clustering.

We adopt such an approach and develop the proximal linearized 2-block ADMM (Algorithm
7) to solve Gecco+ when the loss is differentiable and gradient is Lipschitz continuous.

Algorithm 7

Proximal linearized 2-block ADMM when the loss is differentiable and gradient is Lipschitz
continuous — matrix form

while not converged do

UM = proxy, . gpy( ;o @0* =V X — g - [vexuk =Dy 4, pTutk =D o vk =D Ak=Dyp 4 X

vk = ProXy/pp(( - ;W)(DU(k) + Ak 1))

A(k) — A(k -1 + (DU(k) _ V(k))

end while

Further, if the U sub-problem can be decomposed to p separate U ;sub-problems where the
augmented Lagrangian for each now is a sum of a differentiable loss, a quadratic term and

a sparse group-lasso penalty, we propose to use proximal gradient descent for each separate
U ;sub-problem. In this way, we yield adaptive step size for each U ; sub-problem and hence
our algorithm enjoys better convergence property than updating U’s all together. (In the
latter case, the step size becomes fairly small as we are moving all U to some magnitude in
the direction of negative gradient.) To achieve this, we assume that the loss is elementwise,
which means we can write the loss function as a sum of p terms. (The loss can be written

as ) A(X;\U;)) 2 X4(X ..U ) = Zi qu(x,-j’ uij) where g(-) is the element-wise version of

the loss while £-) is the vector-wise version of the loss.) We see that every deviance-based
loss satisfies this assumption. Moreover, by decomposing to p sub-problems, we can solve
each in parallel which saves computation cost. We describe in detail how to solve each U ;
sub-problem in the next subsection.

J Mach Learn Res. Author manuscript; available in PMC 2021 November 05.



1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Wang and Allen Page 34

C.2 Two-block ADMM in Vector Form in Parallel

Suppose the U sub-problem can be decomposed to p separate U ;sub-problems mentioned
above. The augmented Lagrangian now becomes:

4 P
_ ) N V. 112
L{U.V.A) = IZI””(XMUIJHQJZI DU j =V j+Al3

p
+a Z :CJI|U|j—fj| Lylly +7 % :WI||VI|||2 .
Jml IEe

In this way we can perform block-wise minimization. Now minimizing the augmented

Lagrangian over U is equivalent to minimizing over each U j,j =1, -, p:

mir[l]imize L”(X_j,U'j)+%||DU.J‘—V'j+A‘j||%+aCj||U‘j—fj~1n||2.
-J

Letu;=U ;-X;-1, The problem above becomes:

minimize f(X.j,ﬁj+5€j-ln)+§||D(ﬁj+fj‘ln)—V.j+A.j||%+a§j||ﬁj||2 -
q:
J

Similarly, this can be solved by running iterative proximal gradient to full convergence.
However, as mentioned above, we propose to solve the U sub-problem approximately by
taking just a one-step proximal gradient update and prove convergence. Still this approach
is based on proximal linearized ADMM (Liu et al., 2013; Lu et al., 2016), which solves the
sub-problems efficiently by linearizing the differentiable part and then applying proximal
gradient due to the non-differentiable part. To ensure convergence, the algorithm requires
that gradient should be Lipschitz continuous.

We propose Algorithm 8 to solve Gecco+ when 4s differentiable and gradient is Lipschitz
continuous in vector form. Note the U-update in Algorithm 8§ is a just a vectorized version
of that in Algorithm 7 if we use fixed step size s for each feature ;. We use the vector form
update here since it enjoys better convergence property mentioned above and we use this
form to prove convergence. Next we prove the convergence of Algorithm 8.

Algorithm 8

Proximal linearized 2-block ADMM when the loss is differentiable and gradient is Lipschitz
continuous — vector form in parallel

Input: X, 7, W, @, ¢
Initialize: U(O), V(O), A(O)
Precompute: Difference matrix D, X j

while not converged do
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for j=1to pdo

U = proxgg. ag - @Y™V = 55 1y = s (v 0% D) 4 ool T o vETD
AL D) 15501,

end for

V) = prox,,py (- wy®UH + 4K D)

AR Z A=) 4 py®) _ ),
end while

Output: UK,

C.3 Proof of Convergence

Theorem 6 /£ /is convex and differrentiable and V/is Lipschitz continuous, then Algorithm
8 converges to a global solution. Further, if lis strictly convex, it converges to the unique
global solution.

Proof: We will show that the U-update in Algorithm 8 is equivalent to linearizing the U
sub-problem and then applying a proximal operator, which is proximal linearized ADMM.

Note that each U ;sub-problem is:

k+1 ‘ k k), 2 -
U(.j )= argmin L”(X.j,U.j)+gllDU.j—V(.j)+A(.j)||2+aCj||U.j—xj-1,,||2 :
-J

For simplicity of notation, we replace U ; with u; in the following:

k+1 . k k)2 -
ug. ) = argmin L”(X‘j,uj)+§||Duj—V(.j)+A('j)||2+aé‘j||uj-—xj-1,,||2.

uj

Rearranging terms, we have:

k) 2

T
k k ~
i+ oY) 0w V) gy - 51,0,

K+1) _ o romi w4 2pu; - v
u; _ar%lr;lm f(X_j,uj)+§||DuJ—V'

According to the proximal linearized ADMM with parallel splitting algorithm (see
Algorithm 3 of Liu et al. (2013) and Equation (14) of Lu et al. (2016)), we can linearize the
first two terms and add a quadratic term in the objective:
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uE.k +1) =argmin (X}, ug.k)) + (Vf(X.j, us.k)), uj— ug.k))
uj
k
+ (pDT(DuS.k) - J.)), uj— uﬂk%
T
k k - 1 k), 2
+pA(_j) (Dl.lj — V(J)) + a§j||l.lj —Xj- 1n||2 + EHUJ — uS )||2 .
Rearranging terms and removing irrelevant terms, we have:
a D~ aromin (ve@®) ;- u®+ 2w —u® 4 ag - %5 1,0
j—%lj 8 JTN T g N T TS A el -
where V() = v ul) 1 ppTmul) - v 149
Letu;=u;—X;-1, We have:
§4 D Zargmin (Ve @+ % 1, - 00 4 2L 4% - 1= w1 4 a1
/—gﬁj & R A R I TYL L AR R B I UL LA
Recall the definition of proximal operator:
xk+1) = prox(x(k) - th(X(k)))
th
= argmin(h(w) + 5xk) + Vgx(¥) wx(®) 4 Ljux(V)3)
u
Therefore, the u; update is just a proximal gradient descent update:
ﬁg.k Do ox (us.k) —%j - s [VAX ug.k)) + pDT(DuE.k) - V('kj) + A(.kj))]) .
sk - aljll - 12
Now we plug back and get the u, i.e., U _; update:
vl = prox (U(kj_ h_ Xjly—sp- [Vf(X.j,U(kj_ 1)) + pDT(DU(kj_ b_ V(kj_ D +A(kj_ 1)>])
sieadjll-llz ' ’ ' ’
+)?j -1y,

which is equivalent to the U ;update in Algorithm 8.

The V and A update is just the same as the one in convex clustering. Hence Algorithm 8 is
equivalent to the form of proximal linearized ADMM by Liu et al. (2013); Lu et al. (2016)
and hence converges to a global solution as long as Vs Lipschitz continuous. Note that
Algorithm 7 is equivalent to Algorithm 8 with a fixed step size s3. (We can choose sy to
be the minimum step size sy over all features.) Therefore, Algorithm 7 also converges to
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a global solution as long as VAs Lipschitz continuous. Further, if 4s strictly convex, the
optimization problem has unique minimum and hence Algorithm 7 and 8 converges to the
global solution. l

Note:

. In Liu et al. (2013); Lu et al. (2016), the algorithm requires that V As
Lipschitz continuous to guarantee convergence. We know that V /being Lipschitz
continuous is equivalent to /being strongly smooth. It is easy to show that the
Hessian of log-likelihood of exponential family and GLM deviance is upper
bounded since in (generalized) convex clustering, the value of U is bounded as
it moves along the regularization path from X to the loss-specific center; also to
avoid numerical issues, we add trivial constraint that u;> 0 when zero is not
defined in the log-likelihood/deviance. Hence the condition for convergence of
proximal linearized ADMM is satisfied.

. To obtain a reasonable step size sz, we need to compute the Lipschitz constant.
However, it is non-trivial to calculate the Lipschitz constant for most of our
general losses. Instead, we suggest using backtracking line search procedure
proposed by Beck and Teboulle (2009); Parikh et al. (2014), which is a common
way to determine step size with guaranteed convergence in optimization.
Empirical studies show that choosing step size with backtracking in our
framework also ensures convergence. The details for backtracking procedure are
discussed below.

. For proximal linearized ADMM, Liu et al. (2013); Lu et al. (2016) established
convergence rate of ((1/K). An interesting future direction might be establishing
the linear convergence rate of proximal linearized ADMM when the objective is
strongly convex.

C.4 Backtracking Criterion

In this section we discuss how to choose the step size s in Algorithm 8. As mentioned,
usually we employ a fixed step size by computing the Lipschitz constant as in the squared
error loss case; but in our method, it is hard to compute the Lipschitz constant for most of
our general losses. Instead, we propose using backtracking line search procedure proposed
by Beck and Teboulle (2009); Parikh et al. (2014), which is a common way to determine
step size with guaranteed convergence in optimization.

Recall the objective function we want to minimize in the U sub-problem is:

f)) = f(X.,-,ﬁ,-+>?j-ln)+§||D<ﬁ,~+i,--1,,)—V,,-+A_,~||§+ac,-||ﬁ,~||2,

Whereusz_j—xj-ln.

Define:
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_ I I 2
g()) = /(X _j 0+ % 1)+ SID@; + % 1) =V _j+A_jli3
h(W)) = oIy

u; — prox; . alill -l (u;—tVgj)
- J 280 J
G(u)) = - :

We adopt the backtracking line search procedure proposed by Beck and Teboulle (2009);
Parikh et al. (2014). At each iteration, while

8@~ 1G(@)) > g(@)) ~ 1 V@) G@) + TNG@NIS e,
g(prox(u; — 1 Vg(u))) > g(u;) — Vg j)T(ﬁ j— prox(u; — 1 Vg(u,)
t t

1= - _
+opllu — prtc>X(uj - th(uj))Ili

shrink = Bt

We still adopt the one-step approximation and hence suggest taking a one-step proximal
update with backtracking to solve the U sub-problem. To summarize, we propose Algorithm
9, which uses proximal linearized 2-block ADMM with backtracking when the loss is
differentiable and gradient is Lipschitz continuous.

C.5 Alternative Algorithm for Differentiable Losses

It should be pointed out that there are many other methods to solve the U sub-problem when
the loss 4s differentiable. We choose to use proximal gradient descent algorithm as there is
existing literature on approximately solving the sub-problem using proximal gradient under
ADMM with proved convergence (Liu et al., 2013; Lu et al., 2016). But there are many
other optimization techniques to solve the U sub-problem such as ADMM.

In this subsection, we show how to apply ADMM to solve the U sub-problem and specify
under which conditions this method is more favorable. Recall to update U, we need to solve
the following sub-problem:

)4
- p 2 . =
mml[r]nlze 7(X,U) +§||DU -V+A|F+ ajz ICJ||U|J X ' 1,,||2 .

We use ADMM to solve this minimization problem and can now recast the problem above
as the equivalent constrained problem:

)4
L 2
minimize E £X AU j)+£||DU—V+A||F+‘l
U,V,A,R =T U1+

D
2 :lell‘jllz
Jom ]
=
Py(R: ()
subject to U-X=R.
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Algorithm 9

Proximal linearized 2-block ADMM with backtracking when the loss is differentiable and

gradient is Lipschitz continuous

Input: X, 7, W, a,
Initialize: U©, VO AO) ¢
Precompute: Difference matrix D, X j

while not converged do
for j=1to pdo
t=1
(k_l)zU(k._ 1) X ln

u; AT

—(k—1)

~(k—1 ~ ~(k—=1 - — -
ve@/ "= vex ;i V45 1)+ @ TV 451, - vETD A%

~(k—1 ~(k—-1
Z = ProXg || - ||2(u§~ )_ th(ug» )))
(k-1 ~k=DT (k-1 1 ~(k—1),2
while g(z) > g@) " - Ve@ ) @ TP -2+ jlz-5 " Vlydo

t=pt
—(k—1 ~(k—1
Z = ProXeg || - ||2(u§- )_ th(ug- )))
end while
(k) _ =
Uj =Z+ Xj . ln
end for

vk = ProXy/pp((- ;W)(DU(k) +A%- 1))

AR 2 A=, pyk) _ yk),
end while

Output: UK,

The augmented Lagrangian in scaled form is:

P
< 2
LUV, RAN) = DA AU )+ 5IDU -V + AT+ 21U -%) - R+N|F
=

P
+a Z :lell‘jllz,
=

where the dual variable for V is denoted by A; the dual variable for R is denoted by N.

The U ;sub-problem in the inner nested ADMM is:
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k_ AL P yk=1D (k=12
U.j—arlgjml'n £X U p+5IDU = V5T P+ AT Vi
-J
k-1

Py s (k—1),2
+§||(U.J—xj-ln)—rj +N7; ”F'

Now, we are minimizing a sum of a differentiable loss Zand two quadratic terms which are
all smooth. Still the U ; sub-problem does not have a closed-form solution for general convex
losses and we need to run an iterative descent algorithm (such as gradient descent, Newton
method) to full convergence to solve the problem. Similarly, to reduce computation cost, we
take a one-step update by applying linearized ADMM (Lin et al., 2011) to the U ;

Algorithm 10

Full-step multi-block algorithm for Gecco+ with Bernoulli log-likelihood 4:

-1
Precompute: Difference matrix D, M| = (%I + pDTD + pI) .

while not converged do

while not converged do
U =gk =D vy vex u® =Dy 4 ppTut =D o vk =D A6 =Dy k=D g gE =D N =Dy
R® = ProXg/pPy( - ;Q(U(k) —X+Nk=Dy

N Z NGk =D 4 (g0 _ g _ gK)

end while

VO = prox,py (- wy®UE +AK D)

AR = Ak =1 4 k) _ i),

end while

sub-problem. The U ;update in the inner ADMM now becomes:

L B A Z2e S8 B R L1 A A V)

o7V gy, = T DN

In this case, empirical studies show that taking a one-step Newton update is favored than

a one-step gradient descent update as the former enjoys better convergence properties and
generally avoids backtracking. However, inverting a Hessian matrix is computationally
burdensome at each iteration when n is large. Exceptions are for Euclidean distances case
where there is a closed-form solution for the U jupdate and for Bernoulli log-likelihood case
where the Hessian of the loss can be upper bounded by a fixed matrix. In the latter case,

we propose to pre-compute the inverse of that fixed matrix instead of inverting a Hessian
matrix at each iteration. To illustrate this, we write out the U ;sub-problem of Gecco+ with
Bernoulli log-likelihood:
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n

. . 2

U.j = argmin _Zl—xijuij+log(1+e"u) +£IDU -V j+A jliE
JN -

- 2
+%||(U.j—xj~ln)—rj+N_j||F )

The Hessian is diag (eu—l:>2 + pDTD + pI which can be upper bounded by %I + pDTD + pL.
1+et
We propose to replace the Hessian with this fixed matrix in Newton method and use its
inverse. This is closely related to the approximate Hessian literature (Krishnapuram et al.,
2005; Simon et al., 2013). In this way, we just pre-compute this inverse matrix instead of
inverting the Hessian matrix at each iteration, which dramatically saves computation. We
give Algorithm 10 to solve Gecco+ for Bernoulli log-likelihood with a one-step update to
solve the U sub-problem. Empirical studies show that this is faster than taking the inner
nested proximal gradient approach as we generally don’t need to perform the backtracking
step.

Yet, Algorithm 10 is slow as we need to run iterative inner nested ADMM updates to full
convergence. To address this, as mentioned, we can take a one-step update of the inner
nested iterative ADMM algorithm. To see this, we can recast the original Gecco+ problem
as:

minimize ¢(X,U)+y +a

ORY

p
%wzllelllz Z¢j||r,~||2)
IEe J=l

P1(V;w) Py(Ry0)

subjectto DU-V=0, U-X=R.

We apply multi-block ADMM to solve this optimization problem and hence get Algorithm
11. As discussed above, we take a one-step update to solve the U sub-problem with
linearized ADMM and use the inverse of fixed approximate Hessian matrix, M.

Algorithm 11

One-step inexact multi-block algorithm for Gecco+ with Bernoulli log-likelihood 4:

-1
Precompute: Difference matrix D, M| = (%I + pDTD +poI) .
while not converged do
U =g Do vy vexut Dy 4 o U T D - vEE D AR D) 4o D) o X - RE D NET D))
RK = ProXg/pPy( - ;g)(U(k) —X+Nk- 1))

NK — k=1 + (U(k) -X- R(k))

VO = prox,pp (- wy®UE + A% D)
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AR Z Ak =1 4 k) _ i),

end while

Similarly, we adopt this approach to solve Gecco+ with Euclidean distances (sparse convex
clustering). We first recast the original problem as:

p
% S wlIV) |+ | > :cjurjnz)
IEe Jouml

Pi(V;w) P>(R;%)
subjectto DU-V=0, U-X=R.

minimize %M—Uﬁ+y +4

ORY

Still, we use multi-block ADMM to solve this optimization problem and hence get
Algorithm 12. Note that U sub-problem now has a closed-form solution. Typically, we do
not have an approximate Hessian matrix or a closed-form solution to the sub-problem for
general losses and we have to use one-step gradient descent with backtracking to solve the U
sub-problem. Empirical study shows that this approach converges slower than Algorithm 9
which uses one-step proximal gradient descent with backtracking.

Appendix D.: Gecco+ for Non-Differentiable Losses

In this section, we propose an algorithm to solve Gecco+ when the loss 4is non-
differentiable. In this case, we develop a multi-block ADMM algorithm to solve Gecco+
and prove its algorithmic convergence.

Algorithm 12

One-step inexact multi-block algorithm for Gecco+ with Euclidean distances 4;

Precompute: Difference matrix D, My = (I4+ pDTD + pI) .
while not converged do
U® = Myx+ppT (V=D Ak =Dy 4 p X 4 RE - D Nk =Dy
RK = PrOXg/p Py - ;g)(U(k) —X+NKk=Dy
NK ZNk=D 4 ) _K _r®)
vk = ProXy/pp((- ;W)(DU(k) +A%- 1))

AR = Ak =1 4 k) _ i),

end while

D.1 Gecco+ Algorithm for Non-Differentiable Losses

Suppose the non-differentiable loss Zcan be expressed as £X, U) = £g(X, U)) where fis
convex but non-differentiable and g is affine. This expression is reasonable as it satisfies
the affine composition of a convex function. For example, for the least absolute loss,
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f(Z) = Z?- 11zl S llvec(Z)lly and g(X, U) = X — U. We specify the affine function gas we

want to augment the non-differentiable term in the loss function £

We can rewrite the problem as:

)4
minimize f(g(X. )+ y%wmw” —Up |l +« 20 =% | Ll -
i<i'<n Jul

15iLi

We can now recast the problem above as the equivalent constrained problem:

4
Z :lelrjllz)
Joum |

minimize  f(Z) + 7 %:w,nvn | +a
U,V,Z,R 1E¢e
Pi(V;w) Py(Ry0)
subjectto  g(X,U)=7Z
DU-V =0
U-X=R

where X is an 7 x p matrix with the /% column equal to scalar % -
The augmented Lagrangian in scaled form is:

L(U,V,Z,R, AN, ¥) = §||DU -V+ All% + §||(U -X)-R+ N||%F

D
p 2 s
+518(X.U) = Z+ W[ + /(Z) HI% S:WI||VI|||2+0!jZ 1ic:,nr,uz,

where the dual variable for V is denoted by A; the dual variable for Z is denoted by ¥; the
dual variable for R is denoted by N.

Since we assume g to be affine, i.e., g(X, U) = AX + BU + C, the augmented Lagrangian in
scaled form can be written as:

L(U,V,Z,R,AN,¥) = %HDU -V +A||%~+ §||(U -X)-R+ N||%7

)4
2
+2IAX +BU+C - Z + W[ + /(Z) HI% oIV | ||2+aj§ 1',¢,-||r,~||2 :

£

It can be shown that the U sub-problem has a closed-form solution.

Note that, hinge loss is also non-differentiable and we can write g(X, U) =1 — U o X where
1 is a matrix of all one and “o0” is the Hadamard product. In this case, the U sub-problem
does not have a closed-form solution and we will discuss how to solve this problem in the
next section.
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For distance-based losses, the loss function can always be written as: £X, U) = £X — U),
which means g(X, U) = X — U. Then the augmented Lagrangian in scaled form can be
simplified as:

L(U.V.Z.RAN.¥) = 2IDU -V + A%+ 2)[(U - X) - R+ N

p
p 2
+2IX-U-Z+ W+ /(Z) +V%wzlle | ||2+ajz;c,-ur,n2 :

Now the U sub-problem has a closed-form solution:
U0 = @ p+on o vk =D _pak=D g gRE-D_NK=D x k=D gk=1)
This gives us Algorithm 13 to solve Gecco+ for non-differentiable distance-based loss.

Algorithm 13
Multi-block ADMM for non-differentiable distance-based loss

Precompute: Difference matrix D, M = (D'D + 21) !
while not converged do
UR =M@ vk =D _A* =Dy, Xy RE-D_NK=Dyx 7Kk =D glk=1),
75 = prox g/ ,(X — U(k) + k- 1))
RK = ProXo/p Py - ;g)(U(k) —X+Nk=Dy
k) k=1 4 x _ gk _ 70
NK 2 NK =D ) _ K — g0
VO = prox, /(s wy®UE + AK D)

AR Z Ak=D 4 k) _ vk

end while

Algorithm 13 can be used to solve Gecco+ problem with various distances such as
Manhattan, Minkowski and Chebychev distances by applying the corresponding proximal
operator in the Z-update. For example, for Gecco+ with Manhattan distances, the Z-update
is just applying element-wise soft-thresholding operator. For Gecco+ with Chebychev
distances, the proximal operator in the Z-update can be computed separately across the rows
of its argument and reduces to applying row-wise proximal operator of the infinity-norm.
For Geccot+ with Minkowski distances, we similarly apply row-wise proximal operator of
the £-norm.

Next we prove the convergence of Algorithm 13.
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D.2 Proof of Convergence for Algorithm 13

Theorem 7 If/is convex, Algorithm 13 converges to a global minimum.
Proof: Note we have provided a sufficient condition for the convergence of four-block
ADMM in Lemma 5. Next we show that the constraint set in our problem satisfies the

condition in Lemma 5 and hence the multi-block ADMM Algorithm 13 converges. Recall
our problem is:

)4
minimize f(Z) +y willVi.ll2 + aZCjHrj”z
U,V,Z,R I€e Jal

subjectto X-U=7Z
DU-V=0
U-X=R.

Note that Lemma 5 is stated in vector form. Hence we transform the constraints above from
matrix form to vector form. Note that DU =V < U'D? = v! o (D QI p)vec(UT) = vec(VT).

Hence we can write the constraints as:

I I 0 0
Aflu+(0z+|0 |r+|-Ilv=Db,
I 0 -1 0
vec(XT)
T T T T Opxlel | _ .
whereu:vec(U ),A=D®Ip,z=vec(Z ),r:vec(R ),V=VeC(V ),b: % ,xeR?is
X
a column vector consisting of all ¥; and is repeated n times in b.
I 0 0
By construction, Ay =|0[, A3 = 0 |, and A4 = |-I|. It is easy to verify that: A{A3 =0,
0 -1 0

AgA4 =0, A3TA4 = 0. Hence our setup satisfies the sufficient condition in Lemma 5 and the
multi-block ADMM Algorithm 13 converges. ll

D.3 Special Case: Gecco+ with Hinge Losses

As mentioned, we cannot directly apply Algorithm 13 to solve Gecco+ with hinge losses as
the function g(X, U) in this case is not the same as the one in distance-based losses. Recall
Gecco+ with hinge losses is:

n

)4 )4
minimize Z Z max(0y 1 —u; jx; j) + % :w,-,-/llU,-.—U,-/_||2+a Z GO j=%j-1,ll,
Y imljml 1<i<i<n a2
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Like before, we can rewrite the problem as:

p
miniénize feX,0)+7y g ;Wii’||Ui~ -Upi.lg+a 2 :Cj”U-j—fj' 1plly -
15i<i<n Jjal

We can now recast the problem above as the equivalent constrained problem:

)4
minimize  f(Z) +y willVi| 5|+« Cille il
U.V.ZR % " ,_Zl e
P1(V:w) Py(R; )
subjectto 1-UoX=2Z
DU-V=0

U-X=R.

Here, {Z) = max(0, Z). With a slight abuse of notation, we refer fto applying element-wise
maximum to all entries in the matrix. We set g(X, U) =1 — U o X where 1 is a matrix of
all one and “o0” is the Hadamard product. X is an 22 x p matrix with the ;% column equal to

scalar %;.
The augmented Lagrangian in scaled form is:

L(U,V,Z,R, AN, ¥) = §||DU -V +A||%+ §||(U -X)-R+ N||i-

P
p 2
+2I-UoX-Z+¥|F+f(Z) + yl% LwllVy| ”2+",~Z 1',¢,~||1rj||2 :
3 -

The U sub-problem now becomes:
UE+D 2 argmin 10U = VO 1 AR 4 ju =X - RK) 4 NO)Y S,
U

2
+1-Uox-2z® +w®yp .

The first-order optimality condition is:

D mU- vt A®) L U _X—R® yNO X o Uox+2®) — 1wk _g,

which can be written as:

XoX)oU+Xo@Z® _1-wh)  plpy-pT vk _ A0y Ly _X-r® NK) _ g
Xo0X)oU+M®DU+DU=DT(vK) _A®) L, X+ R® _NK) L x o (1 + 9K _ 7))

To solve U from the above equation, one way is to first find the SVD of the leading
coefficient:
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XoX= Zo‘kﬁka = ZWka .
k k

From this decomposition we create two sets of diagonal matrices:
Wy, = Diag(W)
V) = Diag(¥y) .

The Hadamard product can now be replaced by a sum

Ywuvitontouzc,
3

where C = DT(VH) - A®) 1 X+ RO - NK) 4 X 0 (1 +9® - 2K,
Now we can solve this equation via vectorization:
vee(C) =A@ DD +1) + zk:Vk ® Wivee(U)
vec(U) =A@ DD +1) + ;V,{ QW) vec(C)

U=Mafd®@®'D+1)+ 3.V, @ W) vec(©)| .
3

where B denotes the pseudo-inverse of B, and Mat() is the inverse of the vec() operation.

Here we have to compute the pseudo-inverse of a matrix which is computationally expensive
in practice. To avoid this, we adopt generalized ADMM approach proposed by Deng and
Yin (2016) where the U sub-problem is augmented by a positive semi-definite quadratic
operator. In our case, our modified U sub-problem becomes:

argmin DU — V) 4 AG 74 0 - %) - RO 4 N7 1 - 00 x - 200 4wy 3
U

+l1-X0X)o (U - U(k))lli,

The first-order optimality condition now becomes:

pToU - vH) f A X —R® yNK) 4y x o Uo X +2HK) — 1 — k)
+(1-XoX)oW-UR)=0.

We have:

HU = DT (v A0y L X4 RO _NKO) _x 6 z® — 1 —w®)y L (1 - X 0x) 0 UK
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where H = (DD + I + 1). Hence we have analytical update:

vk D g lpT (v _ ARy, X4 RO _NK) _x o 2® 1~y L (1 =X 0 X) 0 U .

It is easy to see that the V, Z and R updates all have closed-form solutions.

Appendix E.: Multinomial Gecco+

In this section, we briefly demonstrate how Gecco+ with multinomial losses is formulated,
which is slightly different from the original Gecco+ problems. Suppose we observe

111
Xpxp=[222|.

categorical data as follows (K= 3):

333

We can get the indicator matrix X(® for each class & as:

|
000 x() =
000

x(D =

000
x@ {111
000

000
000f.

111

Then we concatenate X(1, X@), X©) and get X, » (r+ k) = (X X xO)). This is equivalent
to the dummy coding of the categorical matrix X after some row/column shuffle:
100100100

010010010
001001001

X =

nX(p+*K)

It is obvious that measuring the difference of two observations by comparing rows of X

is better than simply comparing the Euclidean distances of rows of original data matrix

X. Also parameterizing in X is beneficial for computing the multinomial log-likelihood or
deviance. Hence we concatenate all columns of X(® as input data. Similarly, we concatenate

all columns of the corresponding U®) and then fuse U in a row-wise way.

E.1 Gecco with Multinomial Log-likelihood

Gecco with multinomial log-likelihood can be formulated as:
1 1
x x o] [
minimize ZZ E —Xj jkUi jk + log( E eMijky y;wi,ﬁ R
U i j |kal kal i< 1) (K)
Uil 19,
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where x; i refers to the elements of indicator matrix Xff) discussed previously and
Uilk
Utk _ |12k

i.

Uipk

E.2 Gecco+ with Multinomial Log-likelihood

Gecco+ with multinomial log-likelihood can be formulated as:

o] [o®

s

i- i’

K K
i i j P los( 46 r; wirlll & || ¢
1 K ol i <i U(K)
i

K UEK)

minimize Zz
U i

2

1yl -
all

&~ 0 k)
+ajZ}kZI||U“—fj

Uilk ul jk

U2k W jk -
where Uglf) = " , U(";-) = J (k)
Uipk Un jk

Appendix F.: Loss-specific Center Calculation

In this section, we show how to calculate the loss-specific center in Table 1.

F.1 Continuous Data

For continuous data, we consider Gecco with Euclidean distances.

F.1.1 EucLiDEAN DiSTANCE
I~ 2
minimize EI_Zz,uxu —U,~|||2+y%‘,w,-,~ ;. = Uy Ii2

When total fusion occurs, U; = Uy ,Vi#i'. Let U; = Uy =u. The problem above

becomes:
I~ 2
minilinize 5,’ E 1 ||X,-' —u||2 .

Taking derivative, we get:
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i(X”—u):Ofru:i.

1

L

F.2 Count Data

For count-valued data, we consider Gecco with Poisson log-likelihood/deviance, negative
binomial log-likelihood/deviance and Manhattan distances.

F.2.1 POISSON LOG-LIKELIHOOD
n_ p
min%nize Zz—xiju,'j + exp(uij) + y;wiy 10;. = Ui 2
ij i<

When total fusion occurs, u;; =y, Vi # i’. Let u be the fusion vector and u = (uj, -+, u,). The

problem above becomes:
n p
minimize Zz—xijuj+exp(uj) .
U i

Taking derivative, we get:

n

E —xjj+ nexpuj) = 0= exp(uj) = X; = u;j=log(x)) > u= log(X) .
i

F.2.2 Poisson DEvIANCE
n o p
mini[rjnize Zz—xijloguijli_uijli_y% wi 10| = Uy |l
T i<i

Let u be the fusion vector and u = (u, **, up). The problem above becomes:

n_p
minimize Z ' —xjjloguju; .
L

Taking derivative, we get:
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F.2.3 NEGATIVE BINOMIAL LOG-LIKELIHOOD
n o p
L 1 1 .
mmirjmze Zz_xijuij + (xij + Flog(— + iy + Y ; ;| =Gy | lly
i i<

When total fusion occurs, u;; = u;/;, Vi # i’. Let u be the fusion vector and u = (uy, -+, u,). The

problem above becomes:

n p
miniénize zz_xij”j + (xi + é)log(é -I- &y .
i J

Taking derivative, we get:

n

1 &M
2 G )T =0

[ a+e!
< < N
ZXU=Z(XU+*>71 ,
il i a;+e“]
n 1 n n
Ui Ui n u;
E xij'g"' E xij'eJ: E xij'eJ+EeJ
i i i

n

u:

elJ= Xjj/n
Z il
[ ]

L

exp(uj) = fj >uj= log(ij) =u = log(X) .

F.2.4 Necative BinomiAL DEVIANCE

. L Xij 1 1+ axjj
minimize D > x; flog(-%) — (x;; -|- DMog(—h) +v 2w lU;| = Uy |l
U i 1j 1J i<i

The formulation above is equivalent to:
n p 1
min‘i}nize Zz—xijloguij + (xij + E)log(l + axl'j) +v wjj' ||U," —Uy | ||2 .
i i ; i
Let u be the fusion vector and u = (uy, ---, up). The problem above becomes:

nop
minimize Y, > —x; flogu; -|- (xi + é)log(l +auj) .
U 77

Taking derivative, we get:
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1
n xij""g

—Xii
2 T,
" uj +auj

1

L

n n . n
inj+auj2xij nuj auijij
i ial "N inl

ui=xj=>u= X .
F.2.5 MANHATTAN DisTANCE
n
minimize 2> l1x; —ujll }’;Wii’ IU;| = Uy (1,
U il i<i
When total fusion occurs, U; =U; ,Vi#i'.LetU; =U; =u. We have:
n
minimize E [[x; —ull] .
U igl
For each j, we have:
n
minimize E llx;j—ujlly -
Uj i -l

We know that the optimal u;is just the median of x;; for each ;.

F.3 Binary Data

For binary data, we consider Gecco with Bernoulli log-likelihood, binomial deviance and
hinge loss.

F.3.1 BERNOULLILOG-LIKELIHOOD
n p
minimize Zz_xijuij+10g(1 +eidy+y ; wii 10;) =Uy |l
U i i<i

When total fusion occurs, u;; = u;/j, Vi # i’. Let u be the fusion vector and u = (uj, -+, u,). The

problem above becomes:

n p
minimize Z . —xl-juj+10g(l + My .
L

Taking derivative, we get:
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n

Z—"+ exp(u;) 0= exp(u;) o
- Xij n1+exp(uj)_ 1+exp(uj)_x/

!

= logit™ 1(uj) =X = u; = logit(x;) = u = logit(x) .

F.3.2 BinomiaL DEvIANCE

n p
minilrjnize ZZ—xijloguij— 1- xl-j)log(l _”ij) + y ; wii |U; | =Uy| ||2
i<

i
Let u be the fusion vector and u = (uy, ---, up). The problem above becomes:

np
minimize ), ) —x; jloguj— (1 —x; Plog(1 —u;) .
U i

Taking derivative, we get:

n

n
—Xij  L-xij -
Z_ w1y —O:Xl_:—xl‘f“—“j)+(1—xt'j)uj-°

L

n
=>Z—xij+uj:O:>uj:fj:>u:i .
1

F.3.3 HinGE Loss

n

p
minimize ZZmax(O, 1 —u; ;) + y%wﬁ,nU” — Ui/l
U i_1jal i<i
Let u be the fusion vector and u = (ul, up). The problem above becomes:
n__p
minimize E E max(0)1 _”jxij) .
U iltial
For each feature j, the problem becomes:
n
minimize E max(O, 1—u X j) .
Uuj i 1
o i

Note in hinge loss, x;; € {—1, 1}. Suppose we have 1 observations for class “1” and m

observations for class “—1”. The problem now becomes:
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F.4

F.4.1

minimize nymax(0, 1 — uj) + nmpmax(0, 1 + uj)
uj :
J

Define A(t) = nymax(0, 1 — ¢) + npmax(0, 1 + 7). We have:

ni(1-1) ifr< -1
ht) = {nd=-0+nmd+if —1<t<1
(1 +1) if t>1.

Clearly, if my > ny (more “—17), A(#) is minimized by ¢=—1; if 7y > m (more “17), A(?) is
minimized by ¢= 1; if n; = m, A(?) is minimized by any ¢between [~1, 1]. Therefore, u;
should be the mode of all observations for feature ;:

uj = modci(xij) .

Categorical Data

For categorical data, we consider Gecco with multinomial log-likelihood and deviance.
MULTINOMIAL LOG-LIKELIHOOD

] [

n p K K
mmlmlze ZZ{ E xljkuijk+10g( E euijk)}+y§ wjjl N
i kal i <il (K)
Ui.

)

kel
oK

2

When total fusion occurs, u;jx = u;ji, Vi # i’. Let u be the fusion vector and

uj = (u . -+ upk). The problem above becomes:

K

n p K
mlnlmlze ZZ Z_xijk”jk +log(ze”jk)}
i j ok k
Taking derivative with respect to uj;, we get:

exp(u;x)
Z—xw = vl

s K exotup

Ujp = log'i_Jk = mlogit(x _j) -
Lick |k
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F.4.2 MuLtinomiAL DEVIANCE

(1) (D
nop K Ui Ui
minimize ZZ{Z—xijklog(uijk)} +r| P |-
vk K| |yK)
U; U, )
K
subject to E ujji =1
kol

When total fusion occurs, ; jx = u; j, Vi # i’. Let u be the fusion vector and

uj = (u . . upk). The problem above becomes:

n p K
minimize Zzz—xijklogujk
U T4
K

subject to Zujk =1.

Kl

We can write the constraint in Lagrangian form:
n p K K
mlnlmlze ZZZ —x; jjloguji + A( 2 :“jk -b.
i j k kol
Taking derivative with respect to uj, we get:

n
> “lijk +/1 =0
- ujk

i m 1

We have:
n K K
= th]k lejk = Z/lujk =4.
1kl ko lim
Therefore,

n
ujk: E xijk/n .
iml
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Appendix G.: Visualization of Gecco+ for Authors Data

Figure 5 illustrates selected features and cluster assignment for authors data set with one
combination of a and y. We select meaningful features and achieve satisfactory clustering
results. We have already discussed the results and interpretation in detail in Section 5.1.

Author

Austen
London
Milton
Shakesphere

rescale
1.00

Observations

0.75
0.50
0.25

0.00

be been had her not the to was
Features

Figure 5:

Cluster heatmap of Gecco+ solution U(y, a) for authors data set with @ =15 and y = 10°.
The left bar refers to the true author label. We highlight selected features at the bottom.
Gecco+ selects informative features that separate groups.

Appendix H.: Multi-omics Data

In this section, we show the distribution of data from different platforms in Section 5.3. We
see that both gene expression data and protein data appear Gaussian; methylation data is
between [0, 1]; miRNA data is highly-skewed.
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Figure 6:
Histograms of data from different platforms for multi-omics TCGA data set. Both gene

expression data and protein data appear Gaussian; methylation data is proportion-valued;
miRNA data is highly-skewed.

Appendix I.: Null Deviance

In this appendix, we list the null deviance D for some common losses used in iGecco. Recall
in the iGecco formulation, 7z, which are set inversely proportional to the null deviance
evaluated at the loss-specific center, are scaling factors to ensure that the losses are measured
at the same scale in the objective function.

By definition, the null deviance D evaluated at the loss-specific center, refers to 2(X, X)
where each j# column of X is the loss-specific center )Zg-k) for that column/feature. Table 12

shows the null deviance D for some common losses.
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Table 12:

Null deviance for common losses used in iGecco

Loss Function | Null Deviance D

. . X-X 2 -2
Euclidean distance X =X]||7 = Zi Zj (x;j—Xj)
Manhattan distance Z i Z j |X,' j— median(x J)|

Bernoulli log-likelihood Z[Zi Zj—x,- jlogit(x ) -|- log(1 T ek’g“(xj))]

Binomial deviance 2[2,' Zj_xijlogij — (I —x;log(l— ij)]

Here %; refers to the mean for the " column/feature while median(x)) refers to the median

for the /% column. Simple calculation shows that the Bernoulli log-likelihood is equivalent to

. . . . Xj
binomial deviance by noting logit(x;) = 10g1_—1i_.
J

Appendix J.: Choice of Tuning Parameters

In this appendix, we propose two different approaches to select tuning parameters y and

a in the iGecco+ problem; y controls the number of clusters while a controls the number

of features selected. We first consider stability selection based approach, which has been
shown to enjoy nice statistical properties such as selection consistency (Wang, 2010; Fang
and Wang, 2012) and been adopted in practice with strong empirical performance (Wang et
al., 2018). Next, to reduce computation, we consider information criterion based approaches.
Finally, we demonstrate empirical results when the number of clusters and features are not
fixed but estimated based on the data.

J.1 Stability Selection Based Approach

We first adopt the stability selection based approach for tuning parameter selection and
follow closely the approach described in the work of Wang (2010); Fang and Wang (2012).
We choose the stability selection based approach because i) its selection consistency has
been established and ii) Wang et al. (2018) adopted similar approach for tuning parameter
selection and demonstrated strong empirical performance. The rationale behind stability
selection is that a good clustering algorithm with optimal tuning parameter should produce
clusterings that do not vary much with respect to a small perturbation to the training
samples.

By Wang (2010); Fang and Wang (2012), a clustering y(x) is defined as a mapping
w:R? — (1, ..., q} where gis the given number of clusters. Here, we use g as the number
of clusters since we have already used & to represent the k% data view X(®. A clustering
algorithm '¥(-; g) with a given number of clusters ¢g> 2 yields a clustering mapping y(x)
when applied to a sample. Here, we choose the number of clusters g, which is equivalent
to choosing optimal y since we can yield the cluster assignment and corresponding ¢
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for each . To account for the tuning parameter a for feature selection, we further
denote the clustering algorithm as ¥(-; g, @). Then, in our case, for any given pair of
gand a, two clustering results can be obtained from two sets of bootstrapped samples.
Then the clustering distance d, defined by Fang and Wang (2012), can be computed to
measure the dissimilarity between two clustering results. We repeat the procedure multiple
times and the optimal tuning parameter pair (g, @) is the one that minimizes the average
clustering instability. This gives Algorithm 14, which uses stability selection to choose
tuning parameters.

Algorithm 14

Choice of number of clusters g and feature penalty y in Gecco+/iGecco+ using stability
selection

1. Generate Bindependent bootstrap sample-pairs (X b X b)’ b=1,--, B.
2. Construct ‘I’Xb, 0. and ‘I’;\/vb’ 0 based on (Xb, Xb), b=1,-,B

3. For each pair, \PXb, wa and \P)?b, .o calculate their clustering distance d(\I‘Xb’ e \P)?b, 7 a) defined by
Fang and Wang (2012). Then the clustering instability (‘I’, q, 0!) can be estimated by

B
= 1
SpW.q,a) =+ d¥ ¥Yx .
B(¥.q,0) B; ( Xb,q,a’ Xb,q,a)
4. Finally, the optimal number of clusters ¢ and feature penalty a can be estimated by

(G,8)= argmin Sp¥.q.q) .
2<q<Q,a

J.2 Information Criterion Based Approach

While choosing number of clusters based on stability selection has been shown to enjoy
nice properties such as selection consistency (Wang, 2010), such methods are always
computationally burdensome. To address this, on the other hand, information criterion

based approach has been proposed for tuning parameter selection in convex clustering (Tan

and Witten, 2015). We adopt the similar approach and propose the Bayesian information

criterion (BIC) based approach to choose optimal number of clusters and features; this gives

Algorithm 15.
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Algorithm 15

Choice of number of clusters g and feature penalty a in Gecco+/iGecco+ using BIC

Initialize: § = ZkK- 1 Pks ;T\k ={1,, prt,a=1

1. Fit iGecco+ with a sequence of ) and fixed @. Choose the number of clusters § using BIC.

G =argmin n- S P Af(x(f) ﬁqc))+ log(sn)
a=ag Zf K Spf kX5, - Ug)) +glog(Sn) -

2. Fit iGecco+ with a sequence of a and fixed number of clusters §. Choose number of features s using BIC. Get

~ - N K |~
corresponding @, active set &' and total number of selected features § = Zk =1 ‘é’k|

§=argmin n- 'kj) (‘k) + sglog(n) .
N Kk = -l (X ’X‘j

3. Repeat Step 1 and 2 until § and & stabilize.

. k .
Here, the submatrix X%,Z corresponds to the subset of features (columns) of X(® that are in
the active set Sy selected by iGecco+. The quantity 7k, 5, refers to 7y calculated on the set

of selected features Sy, i.c.,

() ()
kX5 Xg,)

In summary, in step 1, we choose number of clusters only based on the selected features;
in step 2, we choose number of features with the optimal number of clusters g estimated

~(k
from the previous step. Note in step 1, U%Z is a function of number of clusters g while in

ok )

step 2, U is a function of whether the feature is selected. Specifically, in step 1, since

all features in S, are selected, ﬁ%]z correspond to the cluster centroids for each cluster and

change with respect to the number of clusters. In step 2, by iGecco+, if the j# feature in the

Tk )

k™ data view is selected, U''; still correspond to the cluster centroids which are different for

g

observations across different clusters; if the /* th feature is not selected, U

()

j corresponds to the

same constant, i.e., loss-specific center X'/ for that feature.
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The criterion to minimize is inspired by the BIC approach for convex clustering proposed
by Tan and Witten (2015). Notice that we use different criterion in step 1 and 2 to choose
number of clusters and features respectively. When choosing the number of clusters, we
use the same loss function as in iGecco since all the features are selected. When choosing
the number of features, for the presence of noise features, we find that the weighted loss
function with respect to each feature in step 2 works better, as the criterion in step 1
downweights the contribution of signal features by adding informative terms along with

k)

the noise terms in the denominator. (When a feature is not selected, f’k(X(k) ﬁ( ol equals

;UL
fk(X(.kj), i(_kj)); when a feature is selected, fk(X(.kj), ﬁ(.kj)) is less than f’k(X(ﬁ), ')Z(kj)

the unweighted criterion in step 1, the noise terms will dominate this criterion given a large

); if we use

number of noise features.) The degrees of freedom for choosing number of clusters in step
1 is g while in step 2, the degrees of freedom is sg since we need to estimate g§ number of
cluster centroids for each selected feature.

Stability selection is known to be more stable in terms of choosing number of clusters, with
selection consistency theoretically established in literature. Meanwhile, BIC works better

in choosing number of features in practice and saves much more computation compared
with stability selection. Hence, to take full advantage of both approaches, we propose a
sequential tuning parameter selection procedure, outlined in Algorithm 16. We demonstrate
the clustering and variable selection accuracy results in Appendix J.3 using the proposed two
tuning parameter selection approaches.

Algorithm 16

Choice of number of clusters g and feature penalty a in Gecco+/iGecco+ using stability
selection + BIC

1. Choose the number of clusters g using Algorithm 14 with a = 1 (stability selection).

2. Fit iGecco+ with a sequence of a and fixed number of clusters g. Choose a using BIC based on Step 2 of Algorithm
15.

Based on the algorithms above for tuning parameter selection and the adaptive iGecco+
Algorithm 1 (with oracle number of clusters and features) to choose the feature weights,

we propose Algorithm 17, the alternative adaptive iGecco+ when the number of clusters or
features are not known a priori. Notice that in step 2, we do not perform tuning parameter
selection for number of clusters g, as we are only interested in some type of adaptive feature
selection to weigh the features.

Algorithm 17

Adaptive iGecco+ when the number of clusters or features are not known a priori

1. Fit iGecco+ with a =1, §(k)

Hi 1 and a sequence of y.

(k)

2. Find y which gives non-trivial number of clusters, say ¢ = 2; Get the estimate U™ .
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~(k =(k -
3. Update the feature weights CS ) = 1/||U(. j) - xS-k) . 1n||2

and fusion weights @U = Ilkjexp(— q’)g(X, , X" ), where

S -
X, Xo )= I e T U (9
1.4 ) — maxllﬁ(k)_f(k) 1, Tk i’ j*
PE=RY V=5 R VAR e

Fit adaptive iGecco+ with &, Wanda sequence of y and a; Find optimal y and a using the tuning parameter selection
procedure in Algorithm 15 or 16.

J.3 Empirical Results in Simulation and Real Data Example

In this section, we demonstrate the empirical results when the number of clusters and
features are not fixed but estimated based on the data. Specifically, we apply the two tuning
parameter selection schemes proposed above: 1) BIC based approach (Algorithm 17 + 15)
and ii) stability selection + BIC based approach (Algorithm 17 + 16). We show the results of
the tables in Section 4 and 5 when the number of clusters and features are estimated and not
fixed to be the oracle. For simulation studies, we show the results of iGecco and iGecco+;
Gecco and Gecco+ are special cases of these two. Moreover, we apply the proposed two
tuning parameter selection approaches to the three real data examples in Section 5.

For iGecco, the stability selection based approach simplifies to choosing the number of
clusters g in Algorithm 14; the BIC based approach refers to using the criterion in step 1 of
Algorithm 15 to choose the number of clusters.

For iGecco+, we show the overall F1-score and number of selected features across all three
data views. Recall that each data view has 10 true features and hence there are 30 true
features in total. Also, the optimal number of clusters is ¢ = 3. We compare the results with
iClusterPlus when the number of clusters and features are not fixed. Note we only include
estimated number of clusters for iClusterPlus as there is no tuning parameter for the number
of selected features. (The authors mentioned feature selection could be achieved by selecting
the top features based on Lasso coefficient estimates.)

Table 13 and 14 show the results of Table 3, 4 and 5 in Section 4.2 when the number of
clusters (and features in iGecco+) is not fixed but estimated based on the data. Table 13

and 14 suggest that our proposed BIC based approach selects the correct number of clusters
and features most of the time. On the other hand, information criterion based approaches
save much more computation than stability selection. Hence, we recommend the BIC based
approach for choosing tuning parameters which demonstrates strong empirical performance
and saves computation. Yet, one might have their own justified choice of approach or
information criterion to select tuning parameters.
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Table 13:

Adjusted Rand index and estimated number of clusters of iGecco and iCluster for mixed
multi-view data of Table 3 in Section 4.2 when the number of clusters is not fixed but
estimated based on the data.

S1 S2

ARI # of Clusters ARI # of Clusters

iGecco with BIC 0.93 (5.2e-3) 3.10(1.0e-1)  0.98 (2.2e-2)  3.00 (0.0e-0)
iGecco with Stability Selection  0.92 (8.1e-3)  3.20 (2.0e-1)  0.89 (4.1e-2)  4.00 (3.9¢-1)

iCluster+ with A =0 0.92 (4.1e-2) 3.20(2.0e-1)  0.67 (1.9¢-2)  3.40 (1.6e-1)

Table 14:

Adjusted Rand index, F| score, along with estimated number of clusters and features of
adaptive iGecco+ and iClusterPlus for high-dimensional mixed multi-view data of Table 4
and 5 in Section 4.2 when the number of clusters and features are not fixed but estimated
based on the data. We only include estimated number of clusters for iClusterPlus as there is
no tuning parameter for the number of selected features.

S3 S4 S5 S6
# of # of # of # of
ARI Clusters ARI Clusters ARI Clusters ARI Clusters
f;gfr]‘;hm 0.97 3.00 0.97 3.10 1.00 3.00 1.00 3.00
(BIC) (7.8¢-3)  (0.0e-0)  (1.3e-2)  (1.0e-1)  (0.0e-0)  (0.0e-0)  (0.0e-0)  (0.0e-0)
f;gfr]‘ghm 0.93 2.90 0.89 2.80 0.99 3.10 0.82 4.90
(SS+BIC) (@.1e2)  (1.0e-1)  (55e2)  (1.3e-1)  (1.2e2)  (1.0e-1)  (8.1e2)  (9.le-1)
Clusters 0.53 2.70 0.72 3.50 0.63 3.50 0.60 3.30
(8.1e2)  (3.0e-1)  (53e2)  (B.le-l)  (24e2)  (22e-1)  (lde2)  (1.5e-1)
S3 S4 S5 S6
# of # of # of # of
Fl-score Features Fl-score Features F1-score Features Fl-score Features
f;gfr]‘;hm 0.93 30.00 0.95 31.60 0.99 30.50 0.99 30.90
(BIC) (I.1e2)  (1.1e-0)  (1.9¢-2)  (72e-1)  (6.3e-3)  (4.0e-1)  (6.5¢-3)  (4.le-1)
f;gfr]‘ghm 0.93 29.60 0.96 29.40 0.99 30.50 0.99 30.10
(SS+BIC) (12¢2)  (12¢:0)  (1.5e-2)  (6.5e-1)  (6.3e-3)  (4.0e-1)  (6.0e-3)  (3.8¢-1)

Also, we apply the proposed two tuning parameter selection approaches to the real data
examples in Section 5. Table 15 shows the estimated number of clusters. Again, the BIC
based approach selects the correct number of clusters for all three cases.
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Table 15:

Adjusted Rand index, along with estimated number of clusters using adaptive (i)Gecco+ for
real data of Table 6, 8 and 10 in Section 5 when the number of clusters and features are

not fixed but estimated based on the data. For the first two data set, we show the results of
Manhattan Gecco+.

Authors Data TCGA Data Multi-omics Data
ARI #of Clusters ARI #of Clusters ARI # of Clusters

Algorithm 17 + 15 (BIC) 0.96 4.00 0.76 3.00 0.71 3.00
Algorithm 17 + 16 (SS+BIC)  0.96 4.00 0.59 2.00 0.52 2.00

Appendix K.: Stable to Perturbations of Data

In this appendix, we demonstrate that clustering assignments of iGecco+ are stable to
perturbations in the data as shown in Proposition 2 of Section 2.4.

To show this, we include a simulation study similar to the one by Chi et al. (2017). We first
apply adaptive iGecco+ on the original data to obtain baseline clustering. Then we add i.i.d.
noise to each data view to create a perturbed data set on which we apply the same iGecco+
method. Specifically, for Gaussian data view, we add i.i.d. M0, ¢?) noise where o= 0.5,

1.0, 1.5; for count data view, we add i.i.d. Poisson noise; for binary data view, we randomly
shuffle a small proportion of the entries. We compute the adjusted Rand index between the
baseline clustering and the one obtained on the perturbed data. We adopt the same approach
for other existing methods. Table 16 shows the average adjusted Rand index of 10 replicates.
For all values of o, we see that iGecco+ tends to produce the most stable results.

Table 16:

Stability and reproducibility of adaptive iGeccot on simulated data. Adaptive iGecco+ and
other existing methods are applied to the simulated data to obtain baseline clusterings. We
then perturb the data by adding i.i.d. noise. Specifically, for Gaussian data view, we add i.i.d.
MO, o) noise where o= 10.5, 1.0, 1.5; for count data view, we add i.i.d. Poisson noise;

for binary data view, we randomly shuffle a small proportion of the entries. We compute

the adjusted Rand index (ARI) between the baseline clustering and the one obtained on the
perturbed data.

o AiGeccot+  Hclust: Euclidean  Hclust: Gower iCluster+ BCC
0.5 1.00 (0.0e-0) 0.85 (5.1e-2) 0.90 (1.4e-2) 0.69 (2.6e-2)  0.92 (1.6e-2)
1.0 1.00 (0.0e-0) 0.69 (8.3e-2) 0.89 (1.8e-2) 0.71 (3.0e-2)  0.90 (1.7e-2)
1.5 0.95(3.4e-2) 0.66 (2.8e-2) 0.86 (2.0e-2) 0.70 (2.9¢-2)  0.90 (2.0e-2)

Appendix L.: Noisy Data Sources

In this appendix, we show the performance of iGecco+ when a purely noisy data view is
observed.
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Often in real data, not all the data views observed contain clustering information, i.e., one
or more data views might be pure noise. Our iGecco+ is able to filter out noisy data views
by adaptively shrinking all the (noise) features in these data sets towards the loss-specific
centers. We include a simulation study to demonstrate the performance of iGecco+t in the
presence of some purely noisy data sets. Similar to the base simulation, each simulated data
set consists of n= 120 observations with 3 clusters. Each cluster has an equal number of
observations. Only the first data view contains clustering signal with the first 30 features
being informative while the rest features being noisy; the rest two data views are pure noise.

Table 17 shows that iGecco+ still performs well in the presence of noise data sources by
adaptively shrinking noise features.

Table 17:

Adjusted Rand index of different methods in the presence of noisy data sources

Method Adjusted Rand Index
Hclust: [X;X,X;] - Euclidean 0.40 (4.9¢-2)
Hclust: [X;X5X;3] - Gower 0.33 (4.8¢-2)
iCluster+ 0.88 (5.8e-2)
Bayesian Consensus Clustering 0.00 (2.8e-4)
Adaptive iGeccot+ 0.99 (5.6e-3)

Appendix M.: Computation Time

In this section, we provide some computation run time results of iGecco(+) with different
sample sizes and dimensions. We include results for both run times per iteration of the
ADMM algorithm in Table 18 as well as the full training time for tuning parameter selection
in Table 19. All timing results are run on a Dell XPS 15 with a 2.4 GHz Intel i5 processor
and 8 GB of 2666 MHz DDR4 memory.

For training, we use BIC based approach to select tuning parameters for both iGecco

and iGecco+ as it works well in practice and saves computation. It takes more time to
train iGecco+ than iGecco as iGecco+ needs to select two tuning parameters (the number
of clusters and features). Yet, our BIC based approach selects optimal tuning parameters
in a reasonable amount of time. Note, for sample size n= 120 and feature size p; =

200, pr = 100, p3 = 50, it takes iClusterPlus hours for tuning parameter selection (using
tune.iClusterPlus function in R).

Table 18:

Run time results per iteration of iGecco(+) with different sample sizes and dimensions; the
first three experiments use iGecco while the rest use iGecco+

Sample Sizen p; p, p3 Computation Time (in seconds)

. 120 10 10 10 0.0018
iGecco
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Sample Sizen p,; p, p3; Computation Time (in seconds)
300 10 10 10 0.0044
120 30 30 30 0.0038
120 200 100 50 0.0041
iGecco+
300 200 100 50 0.0105
120 300 200 100 0.0055
120 400 200 100 0.0061
Table 19:

Training run time results of iGecco(+) with different sample sizes and dimensions; the first

three experiments use iGecco with BIC to choose number of clusters while the rest use

adaptive iGecco+ with BIC to choose number of clusters and features.

Sample Sizen p; p, p3 Computation Time (in seconds)

120 10 10 10 0.89
iGecco

300 10 10 10 2.58

120 30 30 30 2.55

120 200 100 50 63.72
iGecco+t

300 200 100 50 117.94

120 300 200 100 90.77

120 400 200 100 104.04
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Figure 1:

Regularization path of Gecco+ solutions U(y, @) for authors data. From left to right, we
increase the parameter for fusion penalty y. From top to bottom, we increase the parameter
for feature penalty a. The interpretation of regularization path is discussed in more detail in
Section 2.4.
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sub-problem saves much more computational time.
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Comparisons of full ADMM and one-step ADMM to solve Geccot with Poisson log-
likelihood (top panel, differentiable loss) and Gecco+ with Manhattan distances (bottom
panel, non-differentiable loss). Left plots show the number of iterations needed to converge
while right plots show computation time. Algorithm with one-step update to solve the
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Figure 3:
Simulation results of non-Gaussian data: (S1A) We increase number of noise features for

spherical data with outliers; (S2) We increase number of noise features for non-spherical
data with outliers; (S3) We increase number of noise features for count-valued data; (S1B)
We increase noise level for spherical data with outliers; (S1C) We further increase number
of noise features for spherical data with outliers in high dimensions. The adaptive Gecco+
outperforms existing methods in high dimensions.
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Figure 4:
Cluster heatmap of multi-omics TCGA data with row orders determined by cluster

assignments from iGecco+. The left bar refers to the integrated cluster labels from
biologists. The black bars at the bottom of each data view correspond to the selected
features. Our adaptive iGecco+ identifies meaningful subtypes.
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Different losses and their loss-specific centers. We provide all calculations associated with loss-specific

centers in Appendix F. Note the Gecco problem with Hamming or Canberra distances is not convex.

Though we discuss general convex losses in this paper, we list these non-convex losses for reference. For

multinomial log-likelihood and multinomial deviance, we change Gecco formulation slightly to accommodate

three indices; we provide a detailed formulation in Appendix E.

Data Type Loss Type Loss Function Loss-specific Center X
Continuous Euclidean (4) 1 2 X
5||x,~ - ull3
Manbhattan (£) median(x)

Skewed continuous

Minkowski (4)
Mahalanobis (weighted 4)
Chebychev (&)

Canberra (weighted 4)

2 = 1= i

V2= vy —w !
xi—up €l — )

max [ — uj

E i — i
=TT

no closed form
no closed form
no closed form
no closed form

Bernoulli log-likelihood logit(X)
Binomial deviance X
Hinge loss Uj i
KL divergence =X jujj + log(l + ™) nmoO(cile(S:gd form
Hamming (4) mode (x)
—x;jlogu;; — (1 — x; plog(l — u;)
Binary max(O, 1- u,-jx,-j)
—x;jlogou;
L) #Cxij#wn
Poisson log-likelihood —x;j jujj + exp(y; ;) log(X)
Poisson deviance —x; doou: : + i ; X
Negative binomial log-likelihood ijlO8U;j T Uij : : log(X)
Negative binomial deviance s Lo 2 Uij <
Manbhattan () Xijhij + (xlj + (X)log((x +el) X dian(x)
Canberra (weighted 4) Xjj 1 1+ ax;j fnedian(x
Count iilog(—) — (xji + — T losed f
u x; jlog( "ij) (x;j+ a)log( T auij) no closed form

25 = 1 xij— i

E |xi1 _”u|
J 21 gl o el
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Data Type Loss Type Loss Function Loss-specific Center X
Multinomial log-likelihood mlogit(X)
Multinomial deviance X
K K ui
(Ek = i jkUi jk F1og(Yez e ”k)]
Categorical

K K -
[Zk = l_xijk'l'lOg(“ijk)]’ Y= w1
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Table 2:

Comparisons of F| score for adaptive Gecco+ and sparse convex clustering

Method Scenario 1 (A) Scenario 2 Scenario 3

Sparse Convex Clustering 0.37 (3.1e-2) 0.25 (2.4e-2) 0.14 (7.2¢-3)
Adaptive Geccot 0.97 (1.9¢-2) 0.99 (1.0e-2)  0.81 (8.0e-2)
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Comparisons of adjusted Rand index for mixed multi-view data

Table 3:

Method Scenario 1 Scenario 2
Hclust: X 0.35(2.9¢-2) | 0.53(2.3e-2)
Hclust: X, 0.53 (4.6¢-2) | 0.65(1.8¢-2)
Hclust: X; 0.52 (2.2e-2) | 0.70 (2.4e-2)
Hclust: [X;X,X;3] - Euclidean 0.68 (4.7e-2) | 0.63 (3.3e-2)
Hclust: [X;X5X3] - Gower 0.86 (1.5e-2) | 0.83 (7.3e-2)
iCluster+ with A =0 0.90 (1.6e-2) | 0.71 (1.6e-2)
Bayesian Consensus Clustering | 0.95 (1.2e-2) | 0.63 (1.1e-2)
iGecco 0.93 (5.0e-3) | 0.98 (2.2¢-2)
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Comparisons of adjusted Rand index for high-dimensional mixed multi-view data

Table 4:

Method Scenario 3 Scenario 4 Scenario 5 Scenario 6
Hclust: X 0.42(2.3e-2) | 0.56 (2.5¢-2) | 0.43 (2.5¢-2) | 0.51 (2.7e-2)
Hclust: X, 0.23 (2.8¢-2) | 0.29 (3.4e-2) | 0.51 (2.6e-2) | 0.49 (2.1e-2)
Hclust: X3 0.25 (3.1e-2) | 0.27 (3.1e-2) | 0.55(2.6e-2) | 0.48 (1.9¢-2)
Hclust: [X;X,X;3] - Euclidean 0.40 (3.7e-2) | 0.57 (3.3e-2) | 0.55(2.5¢-2) | 0.52 (2.1e-2)
Heclust: [X;X,X;] - Gower 0.68 (3.4e-2) | 0.58 (6.3e-2) | 0.58 (3.2e-2) | 0.58 (3.0e-2)
iCluster+ 0.57 (6.5e-2) | 0.77 (2.7e-2) | 0.61 (2.4e-2) | 0.62 (1.6e-2)
Bayesian Consensus Clustering | 0.35 (1.1e-1) | 0.64 (1.0e-1) | 0.59 (1.2e-2) | 0.63 (6.6e-3)
iGecco 0.00 (6.7e-4) | 0.06 (5.0e-2) | 0.39 (4.5¢-2) | 0.23 (6.9¢-2)
iGecco+ 0.12 (3.3e-2) | 0.16(7.1e-2) | 0.44 (3.6e-2) | 0.39 (3.8¢-2)
Adaptive iGeccot 0.97 (7.8e-3) | 0.99 (7.5¢-3) | 1.00 (0.0e-0) | 1.00 (0.0e-0)
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Table 5:

Comparisons of F; score for adaptive iGecco+ and iClusterPlus

Overall Gaussian Count Binary
iCluster+ A iGeccot+ iCluster+ A iGeccot+ iCluster+ A iGeccot+ iCluster+ A iGeccot+
S3 0.81(3.1e-2) 0.94 (1.7e-2) 0.84(5.7e-2) 0.99(6.3e-3) 0.73(3.3e-2) 0.88(3.5¢-2) 0.85(1.5e-2) 0.93 (2.1e-2)
S4  0.95(9.9¢-3) 0.98(1.3e-2) 099 (6.7e-3) 0.99(7.3e-3) 0.92(1.3e-2) 0.97(1.8¢-2) 0.94(1.9¢-2) 0.97 (1.8e-2)
S5 0.94 (3.5e-2)  1.00 (0.0e-0) 0.95(3.3e-2) 1.00(0.0e-0) 0.91 (4.2e-2)  1.00 (0.0e-0)  0.95(3.3e-2)  1.00 (0.0e-0)
S6  0.92(3.3e-2) 1.00(3.3e-3) 097 (2.1e-2) 1.00(0.0e-0) 0.84 (4.5¢-2) 0.99 (1.0e-2) 0.95(3.3e-2)  1.00 (0.0e-0)
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Adjusted Rand index of different methods for authors data set

Method Adjusted Rand Index
K-means 0.74
Hierarchical Clustering 0.73
Sparse Convex Clustering 0.50
Manhattan Gecco+ 0.96
Poisson LL Gecco+ 0.96
Poisson Deviance Gecco+ 0.96

J Mach Learn Res. Author manuscript; available in PMC 2021 November 05.

Table 6:

Page 83



1duosnuey Joyiny 1duosnuelp Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Wang and Allen

Table 7:

Features selected by different Gecco+ methods for authors data set

Method Features
Manbhattan Gecco+ “be” ,“had” ,“her”, “the” ,“to”, “was”
Poisson LL Geccot+ “an”, “her” , “our”, “your”

Poisson Deviance Geccot  “an”, “be”, “had”, “her”, “is”, “my” , “the”, “was”
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Adjusted Rand index of different methods for TCGA data set

Method Adjusted Rand Index
K-means 0.40
Hierarchical Clustering 0.37
Sparse Convex Clustering 0.01
Manhattan Gecco+ 0.76
Poisson LL Gecco+ 0.72
Poisson Deviance Gecco+ 0.72
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Table 9:

Features selected by different Gecco+ methods for TCGA data set

Method Features
Manhattan Gecco+ “BCL2”, “ERBB2” ,“GATA3” “HMGA1”, “IL6ST”
Poisson LL Gecco+ “ERBB2” “FOXA1” “GATA3”

Poisson Deviance Gecco+  “ERBB2”, “FOXA1”, “GATA3” “RET”, “SLC34A2”
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Table 10:

Adjusted Rand index of different methods for multi-omics TCGA data set

Method Adjusted Rand Index
Hclust: X; GE 0.51
Hclust: X, Meth 0.39
Hclust: X3 miRNA 0.21
Hclust: X4 Protein 0.24
Hclust: [X;X,X3X4] - Euclidean 0.51
Hclust: [X;X,X3X,] - Gower 0.40
iCluster+ 0.36
Bayesian Consensus Clustering 0.35
Adaptive iGecco+ 0.71
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Table 11:

Features selected by adaptive iGecco+ methods for multi-omics TCGA data set

Data view Features

Gene Expression  “AGR3”, “FOXA1”, “AGR2”, “ROPN1”, “ROPN1B”, “ESR1”, “Clorf64”, “ART3”,“FSIP1”

miRNA “hsa-mir-135b”, “hsa-mir-190b”, “hsa-mir-577”, “hsa-mir-934”
Methylation “cg08047457”, “cg08097882”, “cg00117172”, “cg12265829”
Protein “ER.alpha”, “GATA3”, “AR”, “CyclimE1”
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