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Abstract
In mixed multi-view data, multiple sets of diverse features are measured on the same set of 
samples. By integrating all available data sources, we seek to discover common group structure 
among the samples that may be hidden in individualistic cluster analyses of a single data 
view. While several techniques for such integrative clustering have been explored, we propose 
and develop a convex formalization that enjoys strong empirical performance and inherits the 
mathematical properties of increasingly popular convex clustering methods. Specifically, our 
Integrative Generalized Convex Clustering Optimization (iGecco) method employs different 
convex distances, losses, or divergences for each of the different data views with a joint convex 
fusion penalty that leads to common groups. Additionally, integrating mixed multi-view data is 
often challenging when each data source is high-dimensional. To perform feature selection in such 
scenarios, we develop an adaptive shifted group-lasso penalty that selects features by shrinking 
them towards their loss-specific centers. Our so-called iGecco+ approach selects features from 
each data view that are best for determining the groups, often leading to improved integrative 
clustering. To solve our problem, we develop a new type of generalized multi-block ADMM 
algorithm using sub-problem approximations that more efficiently fits our model for big data 
sets. Through a series of numerical experiments and real data examples on text mining and 
genomics, we show that iGecco+ achieves superior empirical performance for high-dimensional 
mixed multi-view data.
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1. Introduction
As the volume and complexity of data grows, statistical data integration has gained 
increasing attention as it can lead to discoveries which are not evident in analyses of a 
single data set. We study a specific data-integration problem where we seek to leverage 
common samples measured across multiple diverse sets of features that are of different types 
(e.g., continuous, count-valued, categorical, skewed continuous and etc.). This type of data 
is often called mixed, multi-view data (Hall and Llinas, 1997; Acar et al., 2011; Lock et 
al., 2013; Tang and Allen, 2018; Baker et al., 2019). While many techniques have been 
developed to analyze each individual data type separately, there are currently few methods 
that can directly analyze mixed multi-view data jointly. Yet, such data is common in many 
areas such as electronic health records, integrative genomics, multi-modal imaging, remote 
sensing, national security, online advertising, and environmental studies. For example in 
genomics, scientists often study gene regulation by exploring only gene expression data, but 
other data types, such as short RNA expression and DNA methylation, are all part of the 
same gene regulatory system. Joint analysis of such data can give scientists a more holistic 
view of the problem they study. But, this presents a major challenge as each individual 
data type is high-dimensional (i.e., a larger number of features than samples) with many 
uninformative features. Further, each data view can be of a different data type: expression of 
genes or short RNAs measured via sequencing is typically count-valued or zero-inflated plus 
skewed continuous data whereas DNA methylation data is typically proportion-valued. In 
this paper, we seek to leverage multiple sources of mixed data to better cluster the common 
samples as well as select relevant features that distinguish the inherent group structure.

We propose a convex formulation which integrates mixed types of data with different data-
specific losses, clusters common samples with a joint fusion penalty and selects informative 
features that separate groups. Due to the convex formulation, our methods enjoy strong 
mathematical and empirical properties. We make several methodological contributions. First, 
we consider employing different types of losses for better handling non-Gaussian data with 
Generalized Convex Clustering Optimization (Gecco), which replaces Euclidean distances 
in convex clustering with more general convex losses. We show that for different losses, 
Gecco’s fusion penalty forms different types of centroids which we call loss-specific centers. 
To integrate mixed multi-view data and perform clustering, we incorporate different convex 
distances, losses, or divergences for each of the different data views with a joint convex 
fusion penalty that leads to common groups; this gives rise to Integrative Generalized 
Convex Clustering (iGecco). Further, when dealing with high-dimensional data, practitioners 
seek interpretability by identifying important features which can separate the groups. To 
facilitate feature selection in Gecco and iGecco, we develop an adaptive shifted group-lasso 
penalty that selects features by shrinking them towards their loss-specific centers, leading to 
Gecco+ and iGecco+ which performs clustering and variable selection simultaneously. To 
solve our problems in a computationally efficient manner, we develop a new general multi-
block ADMM algorithm using sub-problem approximations, and make an optimization 
contribution by proving that this new class of algorithms converge to the global solution.
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1.1 Related Literature

Our goal is to develop a unified, convex formulation of integrative clustering with feature 
selection based on increasingly popular convex clustering methods. Pelckmans et al. (2005); 
Lindsten et al. (2011); Hocking et al. (2011) proposed convex clustering which uses a 
fusion penalty to achieve agglomerative clustering like hierarchical clustering. This convex 
formulation guarantees a global optimal solution, enjoys strong statistical and mathematical 
theoretical properties, and often demonstrates superior empirical performance to competing 
approaches. Specifically, in literature, Pelckmans et al. (2005); Chi et al. (2017) showed it 
yields stable solutions to small perturbations on the data or tuning parameters; Radchenko 
and Mukherjee (2017) established clustering consistency by proving the clustering tree 
produced by convex clustering consistently estimates the clustering tree produced by 
the population procedure for the ℓ1 penalty case; Tan and Witten (2015) established its 
link to hierarchical clustering as well as prediction consistency (finite sample bound for 
the prediction error); the perfect recovery properties of convex clustering with uniform 
weights have been proved by Zhu et al. (2014) for the two-clusters case and Panahi et al. 
(2017) for the general k-clusters case while Sun et al. (2021) proved results for general 
weighted convex clustering model; and many others have studied other appealing theoretical 
properties (Wu et al., 2016; Chi and Steinerberger, 2019). Despite these advantages, convex 
clustering has not yet gained widespread popularity due to its intensive computation. 
Recently, some proposed fast and efficient algorithms to solve convex clustering and 
estimate its regularization paths (Chi and Lange, 2015; Weylandt et al., 2020). Meanwhile, 
convex clustering has been extended to biclustering (Chi et al., 2017) and many other 
applications (Chi et al., 2018; Choi et al., 2019).

One potential drawback to convex clustering however, is that thus far, it has only been 
well-studied employing Euclidean distances between data points and their corresponding 
cluster centers. As is well known, the Euclidean metric suffers from poor performance 
with data that is highly non-Gaussian such as binary, count-valued, skewed data, or with 
data that has outliers. To alleviate the impact of outliers, Wang et al. (2016) studied robust 
convex clustering, Sui et al. (2018) investigated convex clustering with metric learning and 
Wu et al. (2016) mentioned replacing ℓ2-norm with ℓ1-norm loss function as extensions. 
Despite these, however, no one has conducted a general investigation of convex clustering 
for non-Gaussian data, let alone studied data integration on mixed data, to the best of our 
knowledge. But, many others have proposed clustering methods for non-Gaussian data in 
other contexts. One approach is to perform standard clustering procedures on transformed 
data (Anders and Huber, 2010; Bullard et al., 2010; Marioni et al., 2008; Robinson and 
Oshlack, 2010). But, choosing an appropriate transformation that retains the original cluster 
signal is a challenging problem. Another popular approach is to use hierarchical clustering 
with specified distance metrics for non-Gaussian data (Choi et al., 2010; Fowlkes and 
Mallows, 1983). Closely related to this, Banerjee et al. (2005) studied different clustering 
algorithms utilizing a large class of loss functions via Bregman divergences. Yet, the 
proposed methods are all extensions of existing clustering approaches and hence inherit 
both good and bad properties of those approaches. There has also been work on model-based 
clustering, which assumes that data are generated by a finite mixture model; for example 
Banfield and Raftery (1993); Si et al. (2013) proposed such a model for the Poisson and 
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negative binomial distributions. Still these methods have a non-convex formulation and local 
solutions like all model-based clustering methods. We propose to adopt the method similar 
to Banerjee et al. (2005) and study convex clustering using different loss functions; hence 
our method inherits the desirable properties of convex clustering and handles non-Gaussian 
data as well. More importantly, there is currently no literature on data integration using 
convex clustering and we achieve this by integrating different types of general convex losses 
with a joint fusion penalty.

Integrative clustering, however, has been well-studied in the literature. The most popular 
approach is to use latent variables to capture the inherent structure of multiple types of data. 
This achieves a joint dimension reduction and then clustering is performed on the joint latent 
variables (Shen et al., 2009, 2012, 2013; Mo et al., 2013, 2017; Meng et al., 2015). Similar 
in nature to the latent variables approach, matrix factorization methods assume that the data 
has an intrinsic low-dimensional representation, with the dimension often corresponding to 
the number of clusters (Lock et al., 2013; Hellton and Thoresen, 2016; Zhang et al., 2012; 
Chalise and Fridley, 2017; Zhang et al., 2011; Yang and Michailidis, 2015). There are a 
few major drawbacks of latent variable or dimension reduction approaches, however. First 
it is often hard to directly interpret latent factors or low-dimensional projections. Second, 
many of these approaches are based on non-convex formulations yielding local solutions. 
And third, choosing the rank of factors or projections is known to be very challenging in 
practice and will often impact resulting clustering solutions. Another approach to integrative 
clustering is clustering of clusters (COC) which performs cluster analysis on every single 
data set and then integrates the primary clustering results into final group assignments using 
consensus clustering (Hoadley et al., 2014; Lock and Dunson, 2013; Kirk et al., 2012; 
Savage et al., 2013; Wang et al., 2014). This, however, has several potential limitations 
as each individual data set might not have enough signal to discern joint clusters or the 
individual cluster assignments are too disparate to reach a meaningful consensus. Finally, 
others have proposed to use distance-based clustering for mixed types of data by first 
defining an appropriate distance metric for mixed data (for example, the Gower distance 
by Gower, 1971) and then applying an existing distance-based clustering algorithm such as 
hierarchical clustering (Ahmad and Dey, 2007; Ji et al., 2012). Consequently, this method 
inherits both good and bad properties of distance-based clustering approaches. Notice that 
all of these approaches are either two-step approaches or are algorithmic or non-convex 
problems that yield local solutions. In practice, such approaches often lead to unreliable and 
unstable results.

Clustering is known to perform poorly for high-dimensional data as most techniques 
are highly sensitive to uninformative features. One common approach is to reduce the 
dimensionality of the data via PCA, NMF, or t-SNE before clustering (Ghosh and 
Chinnaiyan, 2002; Bernardo et al., 2003; Tamayo et al., 2007). A major limitation of 
such approaches is that the resulting clusters are not directly interpretable in terms 
of feature importance. To address this, several have proposed sparse clustering for 
high-dimensional data. This performs clustering and feature selection simultaneously by 
iteratively applying clustering techniques to subsets of features selected via regularization 
(Witten and Tibshirani, 2010; Sun et al., 2012; Chang et al., 2014). The approach, however, 
is non-convex and is highly susceptible to poor local solutions. Others have proposed 
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penalized model-based clustering that selects features (Raftery and Dean, 2006; Wang 
and Zhu, 2008; Pan and Shen, 2007). Still, these methods inherit several advantages and 
disadvantages of model-based clustering approaches. Moreover, sparse integrative clustering 
is relatively under-studied. Shen et al. (2013); Mo et al. (2013) extended iCluster using 
a penalized latent variable approach to jointly model multiple omics data types. They 
induced sparsity on the latent variable coefficients via regularization. As feature selection 
is performed on the latent variables, however, this is less interpretable in terms of selecting 
features directly responsible for distinguishing clusters. Recently, and most closely related 
to our own work, Wang et al. (2018) proposed sparse convex clustering which adds a 
group-lasso penalty term on the cluster centers to shrink them towards zero, thus selecting 
relevant features. This penalty, however, is only appropriate for Euclidean distances when 
the data is centered; otherwise, the penalty term shrinks towards the incorrect cluster centers. 
For feature selection using different distances and losses, we propose an adaptive shifted 
group-lasso penalty that will select features by shrinking them towards their appropriate 
centroid.

2. Integrative Generalized Convex Clustering with Feature Selection
In this section, we introduce our new methods, beginning with the Gecco and iGecco 
and then show how to achieve feature selection via regularization. We also discuss some 
practical considerations for applying our methods and develop an adaptive version of our 
approaches.

2.1 Generalized Convex Clustering Optimization (Gecco)

In many applications, we seek to cluster data that is non-Gaussian. In the literature, most 
do this using different distance metrics other than Euclidean distances (Choi et al., 2010; 
Fowlkes and Mallows, 1983; de Souza and De Carvalho, 2004). Some use losses based on 
exponential family or deviances closely related to Bregman divergences (Banerjee et al., 
2005).

To account for different types of losses for non-Gaussian data, we propose to replace the 
Euclidean distances in convex clustering with more general convex losses; this gives rise to 
Generalized Convex Clustering Optimization (Gecco):

minimize
U i 1

n
ℓ Xi Ui + γ

i i
wii Ui . − Ui′ . q .

Here, our data X is an n × p matrix consisting of n observations and p features; U is an n × 
p centroid matrix with the ith row, Ui . , the cluster centroid attached to point Xi .  The general 
loss ℓ Xi . ,Ui .  refers to a general loss metric that measures dissimilarity between the data 
point Xi .  and assigned centroids Ui . . We choose one loss type as ℓ that is appropriate based 

on the data type of X. For example, we use ℓ1 loss in the presence of outliers. ⋅ q is the 
ℓq-norm of a vector and usually q ∈ 1, 2, ∞  is considered (Hocking et al., 2011). Here we 
prefer using the ℓ2-norm in the fusion penalty (q = 2) as it encourages the entire rows of 
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similar observations to be fused together simultaneously and is also rotation-invariant; but 
one could use ℓ1 or ℓ∞-norm as well. γ is a positive tuning constant and wij is a nonnegative 
weight. When γ equals zero, each data point occupies a unique cluster. As γ increases, the 
fusion penalty encourages some of the rows of the cluster center U to be exactly fused, 
forming clusters. When γ becomes sufficiently large, all centroids eventually coalesce to 
a single cluster centroid, which we define as the loss-specific center associated with ℓ ⋅ . 
Hence γ regulates both the cluster assignment and number of clusters, providing a family of 
clustering solutions. The weight wij should be specified by the user in advance and is not a 
tuning parameter; we discuss choices of weights for various convex losses in Section 2.5.

Going beyond Euclidean distances, we propose to employ convex distance metrics as well 
as deviances associated with exponential family distributions and Bregman divergences, 
which are always convex. Interestingly, we show that each of these possible loss functions 
shrinks the cluster centers, U, to different loss-specific centers, instead of the mean-based 
centroid as in convex clustering with Euclidean distances. For example, one may want 
to use least absolute deviations (ℓ1-norm or Manhattan distances) for skewed data or for 
data with outliers; with this loss, we show that all observations fuse to the median when 
γ is sufficiently large. We emphasize loss-specific centers here as they will be important 
in feature selection in the next section. For completeness, we list common distances and 
deviance-based losses, as well as their loss-specific centers xj respectively in Table 1. (See 
Appendix F for all calculations associated with loss-specific centers, and we provide a 
formal proof when studying the properties of our approaches in Section 2.4.)

2.2 Integrative Generalized Convex Clustering (iGecco)

In data integration problems, we observe data from multiple sources and would like to 
get a holistic understanding of the problem by analyzing all the data simultaneously. In 
our framework, we integrate mixed multi-view data and perform clustering by employing 
different convex losses for each of the different data views with a joint convex fusion penalty 
that leads to common groups. Hence we propose Integrative Generalized Convex Clustering 
(iGecco) which can be formulated as follows:

minimize
U k k 1

K
πkℓk X k ,U k + γ

i i
wii

k 1

K
Ui

k Ui
k

2
2

.

Here, we have K data sources. The kth data view X(k) is an n × pk matrix consisting of 

n observations and pk features; U(k) is also an n × pk matrix and the ith row, Ui .
k , is 

the cluster center associated with the point Xi .
k . And, ℓk(Xi .

k ,Ui .
k ) is the loss function 

associated with the kth data view. Still, we choose one loss type as ℓk that is appropriate 
based on the data type of each view. Each loss function is weighted by πk, which is 
fixed by the user in advance. We have found that setting πk to be inversely proportional 

to the null deviance evaluated at the loss-specific center, i.e., πk = 1
ℓk(X k ,X k )

, performs 
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well in practice. The null deviance, ℓk(X k ,X k ) refers to the loss function evaluated 

at X k  where each jth column of X k  denotes the loss-specific center xj
k . We employ 

this loss function weighting scheme to ensure equal scaling across data sets of different 
types. Recall that in generalized linear model (GLM), the likelihood-ratio test statistic, 

or the difference between the log-likelihoods, 2 ℓk(X k ,U k ) − ℓk(X k ,U0
k ) , follows a 

χ2-distribution. Here U k  is our iGecco estimate while U0
k  is the loss-specific center X k

(cluster centroid when there is only one cluster). Therefore, the ratio of the two quantities, 

i.e., 
ℓk(X k ,U k )

ℓk(X k ,X k )
= πkℓk(X k ,U k ) should be the same scale for each data view k. Finally, 

notice that we employ a joint convex fusion penalty on all of the U(k)’s; this incorporates 
information from each of the data sources and enforces the same group structure amongst 
the shared observations. Similar to convex clustering, our joint convex fusion penalty 
encourages the differences in the rows of concatenated centroids U 1 …U K  to be shrunk 

towards zero, inducing a clustering behavior. Specifically, it forces the group structure of the 
ith row of U(k) to be the same for all k data views. Note the joint convex fusion penalty can 

be also written as 
Ui .

1

⋮

Ui .
K

−
Ui′ .

1

⋮

Ui′ .
K

2

. We say that subject i and i′ belong to the same cluster 

if Ui .
K = Ui′ .

K , for all k. Hence, due to this joint convex fusion penalty, the common group 

structure property always holds. We study our methods further and prove some properties in 
Section 2.4.

2.3 Feature Selection: Gecco+ and iGecco+

In high dimensions, it is important to perform feature selection both for clustering purity 
and interpretability. Recently, Wang et al. (2018) proposed sparse convex clustering by 
imposing a group-lasso-type penalty on the cluster centers which achieves feature selection 
by shrinking noise features towards zero. This penalty, however, is only appropriate for 
Euclidean distances when the data is centered; otherwise, the penalty term shrinks towards 
the incorrect cluster centers. For example, the median is the cluster center with the ℓ1 or 
Manhattan distances. Thus, to select features in this scenario, we need to shrink them 
towards the median, and we should enforce “sparsity” with respect to the median and not the 
origin. To address this, we propose adding a shifted group-lasso-type penalty which forces 
cluster center U·j to shrink towards the appropriate loss-specific center xj for each feature. 
Both the cluster fusion penalty and this new shifted-group-lasso-type feature selection 
penalty will shrink towards the same loss-specific center.

To facilitate feature selection with the adaptive shifted group-lasso penalty for one data 
type, our Generalized Convex Clustering Optimization with Feature Selection (Gecco+) is 
formulated as follows:
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minimize
U i 1

n
ℓ Xi Ui γ

i i

n
ωii Ui Ui 2 + α

j 1

p
ζj U j xj 1n 2 .

Again, U is an n × p matrix and xj is the loss-specific center for the jth feature introduced in 
Table 1. The tuning parameter α controls the number of informative features and the feature 
weight ζj is a user input which plays an important role to adaptively penalize the features. 
(We discuss choices of ζj in Section 2.5.2 when we introduce the adaptive version of our 
method.) When α is small, all features are selected and contribute to defining the cluster 
centers. When α grows sufficiently large, all features coalesce at the same value, the loss-
specific center xj, and hence no features are selected and contribute towards determining 
the clusters. Another way of interpreting this is that the fusion penalty exactly fuses some 
of the rows of the cluster center U, hence determining groups of rows. On the other hand, 
the shifted group-lasso penalty shrinks whole columns of U towards their loss-specific 
centers, thereby essentially removing the effect of uninformative features. Selected features 
are then columns of U that are not shrunken to their loss-specific centers, U . j ≠ xj ⋅ 1n. 
These selected features, then, exhibit differences across the clusters determined by the fusion 
penalty. Clearly, sparse convex clustering of Wang et al. (2018) is a special case of Gecco+ 
using Euclidean distances with centered data. Our approach using both a row and column 
penalty is also reminiscent of convex biclustering (Chi et al., 2017) which uses fusion 
penalties on both the rows and columns to achieve checker-board-like biclusters.

Building upon integrative generalized convex clustering in Section 2.2 and our proposed 
feature selection penalty above, our Integrative Generalized Convex Clustering Optimization 
with Feature Selection (iGecco+) is formulated as follows:

minimize
U k k 1

K
πkℓk(X k U k ) + γ

i i
wii

k 1

K
‖Ui

k Ui
k ‖2

2

+α
k 1

K

j 1

pk
ζj
k ‖U j

k xj
k 1n‖2 .

(1)

Again, U k  is an n × pk matrix and xj
k  is the loss-specific center for the jth feature for 

kth data view. By construction, iGecco+ directly clusters mixed multi-view data and selects 

features from each data view simultaneously. Similarly, adaptive choice of ζj
k  gives rise to 

adaptive iGecco+ which will be discussed in Section 2.5.2. Detailed discussions on practical 
choices of tuning parameters and weights can be also found in Section 2.5.

2.4 Properties

In this section, we develop some properties of our methods, highlighting several advantages 
of our convex formulation. Corresponding proofs can be found in Section A of the 
Appendix.
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Define the objective function in (1) as Fγ, α U  where U = U 1 …U K . Then due to 

convexity, we have the following properties. First, any minimizer achieves a global solution.

Proposition 1 (Global solution) If ℓk is convex for all k, then any minimizer of Fγ, α U , U∗, 

is a global minimizer. If ℓk is strictly convex for all k, then U∗ is unique.

Our method is continuous with respect to data, tuning parameters and input parameters.

Proposition 2 (Continuity with respect to data, tuning and input parameters) The global 
minimizer Uw,π, ζ,X

∗ γ, α  of iGecco+ exists and depends continuously on the data, X, tuning 

parameters γ and α, the weight matrix w, the loss weight πk, and the feature weight ζj
k .

When tuning parameters are sufficiently large, all U’s coalesce to the loss-specific centers.

Proposition 3 (Loss-specific center) Define X = X 1 ⋯X K  where each jth column of X k

equals the loss-specific center xj
k . Suppose each observation corresponds to a node in a 

graph with an edge between nodes i and j whenever wij > 0. If this graph is fully connected, 
then Fγ, α U  is minimized by the loss-specific center X when γ is sufficiently large or α is 
sufficiently large.

Remark. As Gecco, Gecco+ and iGecco are special cases of iGecco+, it is easy to show that 
all of our properties hold for these methods as well.

These properties illustrate some important advantages of our convex clustering approaches. 
Specifically, many other widely used clustering methods are known to suffer from poor local 
solutions, but any minimizer of our problem will achieve a global solution. Additionally, 
we show that iGecco+ is continuous with respect to the data, tuning parameters, and other 
input parameters. Together, these two properties are very important in practice and illustrate 
that the global solution of our method remains stable to small perturbations in the data and 
input parameters. Stability is a desirable property in practice as one would question the 
validity of a clustering result that can change dramatically with small changes to the data 
or parameters. Importantly, most popular clustering methods such as k-means, hierarchical 
clustering, model-based clustering, or low-rank based clustering, do not enjoy these same 
stability properties.

Finally in Proposition 3, we verify that when the tuning parameters are sufficiently large, full 
fusion of all observations to the loss-specific centers is achieved. Hence, our methods indeed 
behave as intended, achieving joint clustering of observations. We illustrate this property 
in Figure 1 where we apply Gecco+ to the authors data set (described fully in Section 
4). Here, we illustrate how our solution, U γ, α , changes as a function of γ and α. This 
so-called “cluster solution path” begins with each observation as its own cluster center when 
γ is small and stops when all observations are fused to the loss-specific center when γ is 
sufficiently large. In between, we see that observations are fusing together as γ increases. 
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Similarly, when α is small, all features are selected and as α increases, some of the features 
get fused to their loss-specific center.

2.5 Practical Considerations and Adaptive iGecco+

In this section, we discuss some practical considerations for applying our method to real 
data. In the iGecco+ problem, πk, w and ζj are user-specific fixed inputs while γ and α are 
tuning parameters; γ controls the number of clusters while α controls the number of features 
selected. We discuss choosing user-specific inputs such as weights as well as how to select 
tuning parameters. In doing so, we introduce an adaptive version of our method as well.

2.5.1 CHOICE OF WEIGHTS AND TUNING PARAMETERS—In practice, a good choice of fusion 
weights wij has been shown to enhance both computational efficiency and clustering quality 
of convex clustering (Chi and Lange, 2015). It has been empirically demonstrated that 
using weights inversely proportional to the distances yields superior clustering performance; 
this approach is widely adopted in practice. Further, setting many of the weights to zero 
helps reduce computation cost. Considering these two, the most common weights choice for 
convex clustering is to use K-nearest-neighbors method with a Gaussian kernel. Specifically, 
the weight between the sample pair (i, j) is set as wij = Iijkexp −ϕd Xi . ,Xj . , where Iijk

equals 1 if observation j is among observation i’s κ nearest neighbors or vice versa, 
and 0 otherwise. However, this choice of weights based on Euclidean distances may not 
work well for non-Gaussian data in Gecco(+) or for mixed data in iGecco(+). To account 
for different data types and better measure the similarity between observations, we still 
adopt K-nearest-neighbors method with an exponential kernel, but further extend this by 
employing appropriate distance metrics for specific data types in the exponential kernel. In 
particular, for weights in Gecco and Gecco+, we suggest using the same distance functions 
or deviances in the loss function of Gecco and Gecco+. For weights in iGecco and iGecco+, 
the challenge is that we need to employ a distance metric which measures mixed types 
of data. In this case, the Gower distance, which is a distance metric used to measure 
the dissimilarity of two observations measured in different data types (Gower, 1971), 
can address our problem. To be specific, the Gower distance between observation i and 

i′ overall is defined as d Xi . ,Xi′ . =
k 1

K
j 1
pk

dii j
k

k 1
K pk where dii′j

k =
|Xij

k − Xi′j
k |

Rj
k

refers to the Gower distance between observation i and i′ for feature j in data view k and 

Rj
k = maxi, i′|Xij

k − Xi′j
k | is the range of feature j in data view k. In the literature, Gower 

distance has been commonly used as distance metrics for clustering mixed types of data 
(Wangchamhan et al., 2017; Hummel et al., 2017; Akay and Yüksel, 2018) and shown 
to yield superior performance than other distance metrics (Ali and Massmoudi, 2013; dos 
Santos and Zárate, 2015).

Alternatively, we also propose and explore using stochastic neighbor embedding weights 
based on symmetrized conditional probabilities (Maaten and Hinton, 2008). These 
have been shown to yield superior performance in high-dimensions and if there are 
potential outliers. Specifically, the symmetrized conditional probabilities are defined 
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as pij =
pj i + pi j

2n , where pj i =
exp(−ϕd(Xi . ,Xj . ))

k iexp( ϕd(Xi Xk ))
. We propose to use the weights 

wij = Iijk ⋅ pij where Iijk  still equals 1 if observation j is among observation i’s κ nearest 
neighbors or vice versa, and 0 otherwise. Again, we suggest using distance metrics 
appropriate for specific data types or the Gower distance for mixed data. In empirical 
studies, we experimented with both weight choices and found that stochastic neighbor 
embedding weights tend to work better in high-dimensional settings and if there are outliers. 
Hence, we recommend these and employed them in our empirical investigations in Section 4 
and 5.

Estimating the number of clusters in a data set is always challenging. Going beyond, we 
have two tuning parameters in our iGecco+ problem; γ controls the number of clusters while 
α controls the number of features selected. Current literature for tuning parameter selection 
for convex clustering mainly focuses on stability selection (Wang, 2010; Fang and Wang, 
2012), hold-out validation (Chi et al., 2017) and information criterion (Tan and Witten, 
2015). We first adopt the stability selection based approach for tuning parameter selection 
and follow closely the approach described in the work of Wang (2010); Fang and Wang 
(2012). We choose stability selection based approach because i) its selection consistency has 
been established and ii) Wang et al. (2018) adopted similar approach for tuning parameter 
selection and demonstrated strong empirical performance. However, stability selection is 
often computationally intensive in practice. To address this, we further explore information 
criterion based approaches like the Bayesian information criterion (BIC). We explain full 
details of both approaches in Appendix J and demonstrate empirical results when the 
number of clusters and features are not fixed but estimated based on the data.

2.5.2 ADAPTIVE GECCO+ AND IGECCO+ TO WEIGHT FEATURES—Finally, we consider how 
to specify the feature weights, ζj used in the shifted group-lasso penalty. While employing 
these weights are not strictly necessary, we have found, as did Wang et al. (2018), that 
like the fusion weights, well-specified ζj’s can both improve performance and speed up 
computation. But unlike the fusion weights where we can use the pairwise distances, we 
don’t have prior information on which features may be relevant in clustering. Thus, we 
propose to use an adaptive scheme that first fits the iGecco+ with no feature weights and 
uses this initial estimate to define feature importance for use in weights. This is similar to 
many adaptive approaches in the literature (Zou, 2006; Wang et al., 2018).

Our adaptive iGecco+ approach is given in Algorithm 1; this applies to adaptive Gecco+ as 
a special case as well. We assume that the number of clusters (or a range of the number 
of clusters) is known a priori. We begin by fitting iGecco+ with α = 1 and uniform feature 

weights ζj
k = 1. We then find the γ which gives the desired number of clusters, yielding 

the initial estimate, U k . (We provide alternative adaptive iGecco+ Algorithm 17 when the 
number of clusters is not known in Appendix J.) Next, similar to the adaptive approaches by 
Zou (2006); Wang et al. (2018), we use this initial estimate to adaptively weight features by 

proposing the following weights: ζj
k = 1/‖U . j

k − xj
k ⋅ 1n‖2. (To avoid numerical issues, we 

add ϵ = 0.01 to the denominator.) These weights place a large penalty on noise features as 
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‖U . j
k − xj

k ⋅ 1n‖2 is close to zero in this case. Note, compared with sparse convex clustering 

where the authors defined feature weights ζj by solving a convex clustering problem with 
feature penalty α = 0, we propose to fit iGecco+ with feature penalty α = 1 first and 
then update the feature weights adaptively. We find this weighting scheme works well in 
practice as it shrinks noise features more and hence penalizes more on those features. Such 
with-penalty initialization for adaptive weights has also been proposed in literature (Zhou 
et al., 2009; Fan et al., 2009; van de Geer et al., 2011). We also notice that noise features 
impact the distances used in the fusion weights as well. Hence, we suggest updating the 
distances adaptively by using the selected features to better measure the similarities between 
observations. To this end, we propose a new scheme to compute weighted Gower distances. 
First, we scale the features within each data view so that informative features in different 
data views contribute equally and on the same scale. Then, we employ the inverse of πk, 
i.e., the null deviance, to weight the distances from different data types, resulting in an 
aggregated and weighted Gower distance, d(Xi . ,Xi′ . ) as further detailed in Algorithm 1. 
Note that if the clustering signal from one particular data type is weak and there are few 
informative features for this data type, then our weighting scheme will down-weight this 
entire data type in the weighted Gower distance. In practice, our adaptive iGecco+ scheme 
works well as evidenced in our empirical investigations in the next sections.

Algorithm 1

Adaptive iGecco+

1. Fit iGecco+ with α = 1, ζj
k = 1 and a sequence of γ.

2. Find γ which gives desired number of clusters; Get the estimate U k
.

3. Update the feature weights ζ j
k = 1/‖U . j

k − xj
k ⋅ 1n‖2

and fusion weights wij = Iijκexp(−ϕd(Xi . ,Xi′ . )), where 

d(Xi . ,Xi′ . ) =

k 1

K

j 1

pk
‖U j

k xj
k 1n‖2

maxj‖U j
k xj

k 1n‖2

⋅ 1
πk

⋅ dii′j
k .

4. Fit adaptive iGecco+ with ζ , w and a sequence of γ and α; Find optimal γ and α which give desired number of 
clusters and features.

Note that Algorithm 1 for adaptive iGecco+ assumes desired number of clusters and 
features. (Panahi et al. (2017); Sun et al. (2021) proved that perfect recovery can be 
guaranteed for the general case of q-clusters for convex clustering. To yield exact q desired 
number of clusters, Weylandt et al. (2020) suggested back-tracking in practice.) We provide 
the alternative adaptive iGecco+ (Algorithm 17) in Appendix J when the number of clusters 
or features are not known a priori but estimated from the data.

3. iGecco+ Algorithm
In this section, we introduce our algorithm to solve iGecco+, which can be easily extended 
to Gecco, Gecco+ and iGecco. We first propose a simple, but rather slow ADMM algorithm 
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as a baseline approach. To save computation cost, we further develop a new multi-block 
ADMM-type procedure using inexact one-step approximation of the sub-problems. Our 
algorithm is novel from optimization perspective as we extend the multi-block ADMM to a 
higher number of blocks and combine it with the literature related to inexact-solve ADMM 
with sub-problem approximations, which often results in major computational savings.

3.1 Full ADMM to Solve iGecco+ (Naive Algorithm)

Given the shifted group-lasso and fusion penalties along with general losses, developing an 
optimization routine for iGecco+ method is less straight-forward than convex clustering or 
sparse convex clustering. In this section, we propose a simple ADMM algorithm to solve 
iGecco+ as a baseline algorithm and point out its drawbacks.

The most common approach to solve problems with more than two non-smooth functions is 
via multi-block ADMM (Lin et al., 2015; Deng et al., 2017), which decomposes the original 
problem into several smaller sub-problems and solves them in parallel at each iteration. 
Chen et al. (2016) established a sufficient condition for the convergence of three-block 
ADMM. We develop a multi-block ADMM approach to fit our problem for certain types of 
losses and prove its convergence.

We first recast iGecco+ problem (1) as the equivalent constrained optimization problem:

minimize
U k ,V k 1

K
πkℓk(X k U k ) + γ

l ε
wl Vl 2

P1 V;w

+ α
k 1

K

j 1

pk
ζj
k ‖U j

k xj
k 1n‖2

subject to D U 1 ⋯U K − V = 0 .

Recently, Weylandt et al. (2020) derived the ADMM for convex clustering in matrix form 
and we adopt similar approach. We index a centroid pair by l = l1, l2  with l1 < l2, define the 
set of edges over the non-zero weights ε = l = l1, l2 :wl > 0 , and introduce a new variable 

V = V 1 ⋯ V K ∈ ℝ ε × Σpk where Vl .
k = Ul1 .

k − Ul2 .
k  to account for the difference 

between the two centroids. Hence V k  is a matrix containing the pairwise differences 
between connected rows of U k  and the constraint is equivalent to DU k − V k = 0 for 
all k; D ∈ ℝ ε × n is the directed difference matrix corresponding to the non-zero fusion 
weights. We give general-form multi-block ADMM (Algorithm 2) to solve iGecco+. Here 

proxℎ ⋅ x = argminz
1
2 x − z 2

2 + ℎ z  is the proximal mapping of function h. Also, the 

superscript in U k  in Algorithm 2 refers to the kth data view; we omit iteration counter 
indices in all iGecco+ algorithm for notation purposes and use the most recent values of the 
updates. The dual variable is denoted by Λ k .
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Algorithm 2

General multi-block algorithm for iGecco+

while not converged do

 for all k = 1, ⋯,K do

  U k = argmin
U

πkℓk(X k ,U) + ρ
2‖DU − V k + Λ k ‖F

2 + α j 1
pk

ζj
k ‖U j xj

k 1n‖2

 end for

 V = proxγ /ρP1 ⋅ ; w ([DU 1 + Λ 1 ⋯DU K + Λ K ])

 Λ k = Λ k + (DU k − V k ) for allk
end while

Notice that, in Algorithm 2, there is no closed-form analytical solution for the U(k) sub-
problem for general losses. Typically, at each iteration of Algorithm 2, we need to apply 
an inner optimization routine, which requires a nested iterative solver, to solve the U(k) 

sub-problem until full convergence. In the next section, we seek to speed up this algorithm 
by using U(k) sub-problem approximations. But, first we propose two different approaches to 
fully solve the U(k) sub-problem based on specific loss types and then use these to develop 
a one-step update to solve the sub-problem approximately with guaranteed convergence. For 
the V sub-problem, one can easily show that it has a closed-form analytical solution for each 
iteration, as given in Algorithm 2.

3.2 iGecco+ Algorithm

We have introduced Algorithm 2, a simple baseline ADMM approach to solve iGecco+. In 
this section, we consider different ways to solve the U(k) sub-problem in Algorithm 2. First, 
based on specific loss types (differentiable or non-differentiable), we propose two different 
algorithms to solve the U(k) sub-problem to full convergence. These approaches, however, 
are rather slow for general losses as there is no closed-form solution which requires another 
nested iterative solver. To address this and in connection with current literature on variants 
of ADMM with sub-problem approximations, we propose iGecco+ algorithm, a multi-block 
ADMM algorithm which solves the sub-problems approximately by taking a single one-step 
update. We prove convergence of this general class of algorithms, a novel result in the 
optimization literature.

3.2.1 DIFFERENTIABLE CASE—When the loss ℓk is differentiable, we consider solving 
the U(k) sub-problem with proximal gradient descent, which is often used when the 
objective function can be decomposed into a differentiable and a non-differentiable function. 
While there are many other possible optimization routines to solve the U(k) sub-problem, 
we choose proximal gradient descent as there is existing literature proving convergence 
of ADMM algorithms with approximately solved sub-problems using proximal gradient 
descent (Liu et al., 2013; Lu et al., 2016). We will discuss in detail how to approximately 
solve the sub-problem by taking a one-step approximation in Section 3.2.3. Based upon 
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this, we propose Algorithm 3, which solves the U(k) sub-problem by running full iterative 

proximal gradient descent to convergence. Here P2(U k ; ζ k ) = j 1

pk
ζj
k ‖U j

k ‖2.

Algorithm 3

U(k) sub-problem for differentiable loss ℓk (proximal gradient):

while not converged do

U k = proxsk ⋅ αP2( ⋅ ; ζ k )(U k − X k − sk ⋅ [πk∇ℓk(X k ,U k ) + ρDT (DU k − V k + Λ k )]) + X k

end while

In Algorithm 3 and typically in general (proximal gradient) descent algorithms, we need 
to choose an appropriate step size sk to ensure convergence. Usually we employ a fixed 
step size by computing the Lipschitz constant as in the squared error loss case; but in our 
method, it is hard to compute the Lipschitz constant for most of our general losses. Instead, 
we suggest using backtracking line search procedure proposed by Beck and Teboulle (2009); 
Parikh et al. (2014), which is a common way to determine step size with guaranteed 
convergence in optimization. Further, we find decomposing the U(k) sub-problem to pk 

separate U . j
k  sub-problems brings several advantages such as i) better convergence property 

(than updating U(k)’s all together) due to adaptive step size for each U . j
k  sub-problem and 

ii) less computation cost by solving each in parallel. Hence, in this case, we propose to use 

proximal gradient for each separate U . j
k  sub-problem. To achieve this, we assume that the 

loss is elementwise, which is satisfied by every deviance-based loss. Last, as mentioned, 
there are many other possible ways to solve the U(k) sub-problem than proximal gradient, 
such as ADMM. We find that when the loss function is squared Euclidean distances or 
the loss function has a Hessian matrix that can be upper bounded by a fixed matrix, using 
ADMM approach saves more computation. We provide all implementation details discussed 
above in Section C of the Appendix.

3.2.2 NON-DIFFERENTIABLE CASE—When the loss ℓk is non-differentiable, we can no longer 
adopt the proximal gradient method to solve the U(k) sub-problem as the objective is now a 
sum of more than one separable non-smooth function. To address this, as mentioned, we can 
use multi-block ADMM; in this case, we introduce new blocks for the non-smooth functions 
and hence develop a full three-block ADMM approach to fit our problem.

To augment the non-differentiable term, we assume that our loss function can be written as 
ℓk(X(k),U(k)) = fk(gk(X(k),U(k))) where fk is convex but non-differentiable and gk is affine. 

This condition is satisfied by all distance-based losses with gk(X(k),U(k)) = X(k) − U(k); 

for example, for Manhattan distances, we have fk(Z) = j 1
p zj 1 vec(Z) 1, and 

gk(X,U) = X − U. The benefit of doing this is that now the U(k) sub-problem has a closed-

form solution. Particularly, we can rewrite the U(k) sub-problem as:
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minimize
U k ,V k 1

K
πkfk(Z k ) + ρ

2‖DU − V k + Λ k ‖F
2 + α

k 1

K

j 1

pk
ζj
k ‖rj

k ‖2

P2(R k ζ k )

subject to X k − U k = Z k , U k − X k = R k ,

where X k  is an n × pk matrix with the jth column equal to scalar xj
k .

It is clear that we can use multi-block ADMM to solve the problem above and each 
primal variable has a simple update with a closed-form solution. We propose Algorithm 
4, a full, iterative multi-block ADMM, to solve the U(k) sub-problem when the loss is a 
non-differentiable distance-based function. Algorithm 4 applies to iGecco+ with various 
distances such as Manhattan, Minkowski and Chebychev distances and details are given in 
Section D of the Appendix.

Algorithm 4

U(k) sub-problem for non-differentiable distance-based loss ℓk (multi-block ADMM):

Precompute: Difference matrix D,M = (DTD + 2I)−1
.

while not converged do

 U k = M(DT (V k − Λ k ) + X k + R k − N k + X k − Z k + Ψ k )

 Z k = proxπkfk/ρ(X k − U k + Ψ k )

 R k = proxα/ρP2( ⋅ ; ζ k )(U k − X k + N k )

 Ψ k = Ψ k + (X k − U k − Z k )

 N k = N k + (U k − X k − R k )
end while

3.2.3 IGECCO+ ALGORITHM: FAST ADMM WITH INEXACT ONE-STEP APPROXIMATION TO THE SUB-

PROBLEM—Notice that for both Algorithm 3 and 4, we need to run them iteratively to 
full convergence in order to solve the U(k) sub-problem in Algorithm 2 for each iteration, 
which is dramatically slow in practice. To address this, in literature, many have proposed 
variants of ADMM with guaranteed convergence that find an inexact, one-step, approximate 
solution to the sub-problem (without fully solving it); these include the generalized ADMM 
(Deng and Yin, 2016), proximal ADMM (Shefi and Teboulle, 2014; Banert et al., 2016) and 
proximal linearized ADMM (Liu et al., 2013; Lu et al., 2016). Thus, we propose to solve 
the U(k) sub-problem approximately by taking a single one-step update of the algorithm 
(Algorithm 3 or 4) for both types of losses and prove convergence. For the differentiable 
loss case, we propose to apply the proximal linearized ADMM approach while for the 
non-differentiable case, we show that taking a one-step update of Algorithm 4, along with V 
and Λ update in Algorithm 2, is equivalent to applying a four-block ADMM to the original 
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iGecco+ problem and we provide a sufficient condition for the convergence of four-block 
ADMM. Our algorithm, to the best of our knowledge, is the first to incorporate higher-order 
multi-block ADMM and inexact ADMM with a one-step update to solve sub-problems for 
general loss functions.

When the loss is differentiable, as mentioned in Algorithm 3, one can use full iterative 

proximal gradient to solve the U . j
k  sub-problem, which however, is computationally 

burdensome. To avoid this, many proposed variants of ADMM which find approximate 
solutions to the sub-problems. Specifically, closely related to our problem here, Liu et 
al. (2013); Lu et al. (2016) proposed proximal linearized ADMM which solves the sub-
problems efficiently by linearizing the differentiable part and then applying proximal 
gradient due to the non-differentiable part. We find their approach fits into our problem 
and hence develop a proximal linearized 2-block ADMM to solve iGecco+ when the loss ℓk 
is differentiable and gradient is Lipschitz continuous. It can be shown that applying proximal 
linearized 2-block ADMM to Algorithm 2 is equivalent to taking a one-step update of 
Algorithm 3 along with V and Λ update in Algorithm 2. In this way, we avoid running full 
iterative proximal gradient updates to convergence for the U(k) sub-problem as in Algorithm 
3 and hence save computation cost.

When the loss is non-differentiable, we still seek to take an one-step update to solve the U(k) 

sub-problem. We achieve this by noticing that taking a one-step update of Algorithm 4 along 
with V and Λ update in Algorithm 2 is equivalent to applying multi-block ADMM to the 
original iGecco+ problem recast as follows (for non-differentiable distance-based loss):

minimize
U k ,V k 1

K
πkfk(Z k ) γ

l ε
wl‖Vl ‖2

P1 V w

+ α
k 1

K

j 1

pk
ζj
k ‖rj

k ‖2

P2 R k ζ k

subject to X k − U k = Z k , D [U 1 ⋯ U K ] − V = 0, U k − X k = R k .

Typically, general higher-order multi-block ADMM algorithms do not always converge, 
even for convex functions (Chen et al., 2016). We prove convergence of our algorithm and 
establish a novel convergence result by casting the iGecco+ with non-differentiable losses 
as a four-block ADMM, proposing a sufficient condition for convergence of higher-order 
multi-block ADMMs, and finally showing that our problem satisfies this condition. (Details 
are given in the proof of Theorem 4 in Appendix B.) Therefore, taking a one-step update of 
Algorithm 4 converges for iGecco+ with non-differentiable losses.

So far, we have proposed inexact-solve one-step update approach for both differentiable 
loss and non-differentiable loss case. For mixed type of losses, we combine these two 
algorithms and this gives Algorithm 5, a multi-block ADMM algorithm with inexact 
one-step approximation to the U(k) sub-problem to solve iGecco+. We also establish the 
following convergence result.
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Algorithm 5

iGecco+ algorithm

while not converged do

 for all k = 1, ⋯,K do

  Update U k :

  if ℓk is differentiable then

   Take a one-step update of Algorithm 3

  else if ℓk is non-differentiable then

   Take a one-step update of Algorithm 4

  end if

 end for

 V = proxγ /ρP1 ⋅ ;w DU 1 + Λ 1 ⋯ DU K + Λ K

 Λ k = Λ k + DU k − V k   for all k

end while

Theorem 4 (iGecco+ convergence) Consider the iGecco+ problem (1) with fixed inputs πk, 
w and ζj. If ℓk is convex for all k, Algorithm 5 converges to a global solution. In addition, if 
each ℓk is strictly convex, it converges to the unique global solution.

Remark. Our corresponding Theorem 4 establishes a novel convergence result as it is 
the first to show the convergence of four-block or higher ADMM using approximate sub-
problems for both differentiable and non-differentiable losses.

It is easy to see that Algorithm 5 can be applied to solve other Gecco-related methods as 
special cases. When K = 1, Algorithm 5 gives the algorithm to solve Gecco+. When α = 
0, Algorithm 5 gives the algorithm to solve iGecco+. When K = 1 and α = 0, Algorithm 5 
gives the algorithm to solve Gecco.

To conclude this section, we compare the convergence results of using both full ADMM and 
inexact ADMM with one-step update in the sub-problem to solve Gecco+ (n = 120 and p = 
210) in Figure 2. The left plots show the number of iterations needed to yield optimization 
convergence while the right plots show computation time. We see that Algorithm 5 (one-step 
update to solve the sub-problem) saves much more computational time than Algorithm 2 
(full updates to solve the sub-problem). It should be pointed out that though Algorithm 5 
takes more iterations to converge due to inexact approximation for each iteration, we still 
reduce computation time dramatically as the computation time per iteration is much less 
than the full-solve approach.

4. Simulation Studies
In this section, we first evaluate the performance of Gecco+ against existing methods on 
non-Gaussian data. Next we compare iGecco+ with other methods on mixed multi-view 
data.
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4.1 Non-Gaussian Data

In this subsection, we evaluate the performance of Gecco and (adaptive) Gecco+ by 
comparing it with k-means, hierarchical clustering and sparse convex clustering. For 
simplicity, we have the following naming convention for all methods: loss type name + 
Gecco(+). For example, Poisson Deviance Gecco+ refers to Generalized Convex Clustering 
with Feature Selection using Poisson deviance. Sparse CC refers to sparse convex clustering 
using Euclidean distances where each feature is centered first. We measure the accuracy of 
clustering results using adjusted Rand index (Hubert and Arabie, 1985). The adjusted Rand 
index is the corrected-for-chance version of the Rand index, which is used to measure the 
agreement between the estimated clustering assignment and the true group label. A larger 
adjusted Rand index implies a better clustering result. For all methods we consider, we 
assume oracle number of clusters for fair comparisons.

Each simulated data set is comprised of n = 120 observations with 3 clusters. Each cluster 
has an equal number of observations. Only the first 10 features are informative while the rest 
are noise. We consider the following simulation scenarios.

• S1: Spherical data with outliers

The first 10 informative features in each group are generated from a Gaussian 
distribution with different μk’s for each class. Specifically, the first 10 features 

are generated from N(μk, I10) where μ1 = ( − 2.5 · 15
T , 05

T )T , μ2 = (05
T , 2.5 · 15

T )T , 

μ3 = (2.5 · 15
T , 05

T )T . The outliers in each class are generated from a Gaussian 

distribution with the same mean centroid μk but with higher variance, i.e., N(μk, 
25 · I10). The remaining noise features are generated from N(0,1).

In the first setting (S1A), number of noise features ranges in 25, 50, 75, ⋯ up 
to 225 with the proportion of number of outliers fixed ( = 5%). We also consider 
the setting when the variance of noise features increases with number of features 
fixed p = 200 and number of outliers fixed (S1B) and high-dimensional setting 
where p ranges from 250, 500, 750 to 1000 (S1C).

• S2: Non-spherical data with three half moons

Here we consider the standard simulated data of three interlocking half moons as 
suggested by Chi and Lange (2015) and Wang et al. (2018). The first 10 features 
are informative in which each pair makes up two-dimensional three interlocking 
half moons. We randomly select 5% of the observations in each group and 
make them outliers. The remaining noise features are generated from N(0,1). The 
number of noise features ranges from 25, 50, 75, ⋯ up to 225. In both S1 and S2, 
we compare Manhattan Gecco+ with other existing methods.

• S3: Count-valued data

The first 10 informative features in each group are generated from a Poisson 
distribution with different μk’s (i = 1, 2, 3) for each class. Specifically, μ1 = 1 · 
110, μ2 = 4 · 110, μ3 = 7 · 110. The remaining noise features are generated from 
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a Poisson distribution with the same μ’s which are randomly generated integers 
from 1 to 10. The number of noise features ranges from 25, 50, 75, ⋯ up to 225.

We summarize simulation results in Figure 3. We find that for spherical data with outliers, 
adaptive Manhattan Gecco+ performs the best in high dimensions. Manhattan Gecco 
performs well in low dimensions but poorly as the number of noisy features increases. 
Manhattan Gecco+ performs well as the dimension increases, but adaptive Manhattan 
Gecco+ outperforms the former as it adaptively penalizes the features, meaning that noisy 
features quickly get zeroed out in the clustering path and that only the informative features 
perform important roles in clustering. We see that, without adaptive methods, we do not 
achieve the full benefit of performing feature selection. As we perform adaptive Gecco+, we 
show vast improvement in clustering purity as the number of noise features grows where 
regular Gecco performs poorly. Sparse convex clustering performs the worst as it tends to 
pick outliers as singleton clusters. In the presence of outliers, Manhattan Gecco+ performs 
much better than sparse convex clustering as we choose a loss function that is more robust to 
outliers. Interestingly, k-means performs better than sparse convex clustering. This is mainly 
because sparse convex clustering calculates pairwise distance in the weights, placing outliers 
in singleton clusters more likely than k-means which calculates within-cluster variances 
(where outliers could be closer to the cluster centroids than to other data points). Our 
simulation results also show that adaptive Manhattan Gecco+ works well for non-spherical 
data by selecting the correct features. For count data, all three adaptive Gecco+ methods 
perform better than k-means, hierarchical clustering and sparse convex clustering. We 
should point out that there are several linkage options for hierarchical clustering. For 
visualization purposes, we only show the linkage with the best and worst performance 
instead of all the linkages. Also we use the appropriate data-specific distance metrics in 
hierarchical clustering. For k-means, we use k-means++ (Arthur and Vassilvitskii, 2006) for 
initialization.

Table 2 shows the variable selection accuracy of sparse convex clustering and adaptive 
Gecco+ in terms of F1 score. In all scenarios, we fix p = 225. We see that adaptive Gecco+ 
selects the correct features, whereas sparse convex clustering performs poorly.

4.2 Multi-View Data

In this subsection, we evaluate the performance of iGecco and (adaptive) iGecco+ on mixed 
multi-view data by comparing it with hierarchical clustering, iClusterPlus (Mo et al., 2013) 
and Bayesian Consensus Clustering (Lock and Dunson, 2013). Again, we measure the 
accuracy of clustering results using the adjusted Rand index (Hubert and Arabie, 1985).

As before, each simulated data set is comprised of n = 120 observations with 3 clusters. 
Each cluster has an equal number of observations. Only the first 10 features are informative 
while the rest are noise. We have three data views consisting of continuous data, count-
valued data and binary/proportion-valued data. We investigate different scenarios with 
different dimensions for each data view and consider the following simulation scenarios:

• S1: Spherical data with p1 = p2 = p3 = 10

• S2: Three half-moon data with p1 = p2 = p3 = 10
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• S3: Spherical data with p1 = 200, p2 = 100, p3 = 50

• S4: Spherical data with p1 = 50, p2 = 200, p3 = 100

• S5: Three half-moon data with p1 = 200, p2 = 100, p3 = 50

• S6: Three half-moon data with p1 = 50, p2 = 200, p3 = 100

We employ a similar simulation setup as in Section 4.1 to generate each data view. The 
difference is that here for informative features, we increase the within-cluster variance for 
Gaussian data and decrease difference of cluster mean centroids μk’s for binary and count 
data so that there is overlap between different clusters. Specifically, for spherical cases, 
Gaussian data is generated from N(μk, 3 · I10); count data is generated from Poisson with 
different μk’s (μ1 = 2, μ2 = 4, μ3 = 6, etc); binary data is generated from Bernoulli with 
different μk’s (μ1 = 0.5, μ2 = 0.2, μ3 = 0.8, etc). For half-moon cases, continuous data is 
simulated with larger noise and the count and proportion-valued data is generated via a 
copula transform. In this manner, we have created a challenging simulation scenario where 
accurate clustering results cannot be achieved by considering only a single data view.

Again, for fair comparisons across methods, we assume oracle number of clusters. 
When applying iGecco(+) methods, we employ Euclidean distances for continuous data, 
Manhattan distances for count-valued data and Bernoulli log-likelihood for binary or 
proportion-valued data. We use the latter two losses as they perform well compared with 
counterpart losses in Gecco+ and demonstrate faster computation speed.

Simulation results in Table 3 and Table 4 show that our methods perform better than existing 
methods. In low dimensions, iGecco performs comparably with iCluster and Bayesian 
Consensus Clustering for spherical data. For non-spherical data, iGecco performs much 
better. For high dimensions, iGecco+ performs better than iGecco while adaptive iGecco+ 
performs the best as it achieves the full benefit of feature selection. We also applied k-means 
to the simulated data. The results of k-means are close to (or in some cases worse than) 
hierarchical clustering with the best-performing linkage; hence we only show the results of 
hierarchical clustering here for comparison.

Also we show the variable selection results in Table 5 and compare our method to that of 
iClusterPlus. For fair comparisons, we assume oracle number of features. For our method, 
we choose α that gives oracle number of features; for iClusterPlus, we select top features 
based on Lasso coefficient estimates. Our adaptive iGecco+ outperforms iClusterPlus for all 
scenarios.

Note in this section, we assume that the oracle number of clusters and features are known a 
priori for fair comparisons. Results when the number of clusters and features are not fixed 
but estimated based on the data using tuning parameter selection, are given in Appendix J.3.

5. Real Data Examples
In this section, we apply our methods to various real data sets and evaluate our methods 
against existing ones. We first evaluate the performance of Gecco+ for several real data sets 
and investigate the features selected by various Gecco+ methods.
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5.1 Authors Data

The authors data set consists of word counts from n = 841 chapters written by four famous 
English-language authors (Austen, London, Shakespeare, and Milton). Each class contains 
an unbalanced number of observations with 69 features. The features are common “stop 
words” like “a”, “be” and “the” which are typically removed before text mining analysis. 
We use Gecco+ not only to cluster book chapters and compare the clustering assignments 
with true labels of authors, but also to identify which key words help distinguish the authors. 
We choose tuning parameters using BIC based approach; results for stability selection based 
approach are given in Table 15, Appendix J.3.

In Table 6, we compare Gecco+ with existing methods in terms of clustering quality. For 
hierarchical clustering, we only show the linkage with the best performance (in this whole 
section). Our method outperforms k-means and the best hierarchical clustering method. 
Secondly, we look at the word texts selected by Gecco+. As shown in Table 7, Jane Austen 
tended to use the word “her” more frequently than the other authors; this is expected as the 
subjects of her novels are typically females. The word “was” seems to separate Shakespeare 
and Jack London well. Shakespeare preferred to use present tense more while Jack London 
preferred to use past tense more. To summarize, our Gecco+ not only has superior clustering 
performance but also selects interpretable features.

5.2 TCGA Breast Cancer Data

The TCGA data set consists of log-transformed Level III RPKM gene expression levels for 
445 breast-cancer patients with 353 features from The Cancer Genome Atlas Network (The 
Cancer Genome Atlas Network, 2012). Five PAM50 breast cancer subtypes are included, 
i.e., Basal-like, Luminal A, Luminal B, HER2-enriched, and Normal-like. Only 353 genes 
out of 50,000 with somatic mutations from COSMIC (Forbes et al., 2010) are retained. The 
data is Level III TCGA BRCA RNA-Sequencing gene expression data that have already 
been pre-processed according to the following steps: i) reads normalized by RPKM, and ii) 
corrected for overdispersion by a log-transformation. We remove 7 patients, who belong to 
the normal-like group and the number of subjects n becomes 438. We also combine Luminal 
A with Luminal B as they are often considered one aggregate group (Choi et al., 2014).

From Table 8, our method outperforms k-means and the best hierarchical clustering method. 
Next, we look at the genes selected by Gecco+ in Table 9. FOXA1 is known to be a key gene 
that characterizes luminal subtypes in DNA microarray analyses (Badve et al., 2007). GATA 
binding protein 3 (GATA3) is a transcriptional activator highly expressed by the luminal 
epithelial cells in the breast (Mehra et al., 2005). ERBB2 is known to be associated with 
HER2 subtype and has been well studied in breast cancer (Harari and Yarden, 2000). Hence 
our Gecco+ not only outperforms existing methods but also selects genes which are relevant 
to biology and have been implicated in previous scientific studies.

Next we evaluate the performance of iGecco+ for mixed multi-view data sets and investigate 
the features selected by iGecco+.
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5.3 Multi-omics Data

One promising application for integrative clustering for multi-view data lies in integrative 
cancer genomics. Biologists seek to integrate data from multiple platforms of high-
throughput genomic data to gain a more thorough understanding of disease mechanisms 
and detect cancer subtypes. In this case study, we seek to integrate four different types of 
genomic data to study how epigenetics and short RNAs influence the gene regulatory system 
in breast cancer.

We use the data set from The Cancer Genome Atlas Network (2012). Lock and Dunson 
(2013) analyzed this data set using integrative methods and we follow the same data 
pre-processing procedure: i) filter out genes in expression data whose standard deviation 
is less than 1.5, ii) take square root of methylation data, and iii) take log of miRNA data. We 
end up with a data set of 348 tumor samples including:

• RNAseq gene expression (GE) data for 645 genes,

• DNA methylation (ME) data for 574 probes,

• miRNA expression (miRNA) data for 423 miRNAs,

• Reverse phase protein array (RPPA) data for 171 proteins.

The data set contains samples used on each platform with associated subtype calls from 
each technology platform as well as integrated cluster labels from biologists. We use the 
integrated labels from biologists as true label to compare different methods. Also we merged 
the subtypes 3 and 4 in the integrated labels as those two subtypes correspond to Luminal A 
and Luminal B respectively from the predicted label given by gene expression data (PAM50 
mRNA).

Figure 6 in Appendix H gives the distribution of data from different platforms. For our 
iGecco+ methods, we use Euclidean distances for gene expression data and protein data as 
the distributions of these two data sets appear Gaussian; binomial deviances for methylation 
data as the value is between [0, 1]; Manhattan distances for miRNA data as the data is 
highly-skewed.

We compare our adaptive iGecco+ with other existing methods. From Table 10, we see that 
our method outperforms all the existing methods.

We also investigate the features selected by adaptive iGecco+, shown in Table 11, and find 
that our method is validated as most are known in the breast cancer literature. For example, 
FOXA1 is known to segregate the luminal subtypes from the others (Badve et al., 2007), and 
AGR3 is a known biomarker for breast cancer prognosis and early breast cancer detection 
from blood (Garczyk et al., 2015). Several well-known miRNAs were selected including 
MIR-135b, which is upregulated in breast cancer and promotes cell growth (Hua et al., 
2016) as well as MIR-190 which suppresses breast cancer metastasis (Yu et al., 2018). 
Several known proteins were also selected including ERalpha, which is overexpressed in 
early stages of breast cancer (Hayashi et al., 2003) and GATA3 which plays an integral role 
in breast luminal cell differentiation and breast cancer progression (Cimino-Mathews et al., 
2013).
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We also visualize the resulting clusters from adaptive iGecco+. Figure 4 shows the cluster 
heatmap of multi-omics TCGA data with row orders determined by cluster assignments 
from iGecco+ and left bar corresponding to the integrated cluster labels from biologists. 
We see that there is a clear separation between groups and adaptive iGecco+ identifies 
meaningful subtypes. The black bars at the bottom of each data view correspond to the 
selected features in Table 11.

6. Discussion
In this paper, we develop a convex formulation of integrative clustering for high-dimensional 
mixed multi-view data. We propose a unified, elegant methodological solution to two critical 
issues for clustering and data integration: i) dealing with mixed types of data and ii) 
selecting sparse, interpretable features in high-dimensional settings. Specifically, we show 
that clustering for mixed, multi-view data can be achieved using different data-specific 
convex losses with a joint fusion penalty. We also introduce a shifted group-lasso penalty 
that shrinks noise features to their loss-specific centers, hence selecting features that play 
important roles in separating groups. In addition, we make an optimization contribution by 
proposing and proving the convergence of a new general multi-block ADMM algorithm with 
sub-problem approximations that efficiently solves our problem. Empirical studies show that 
iGecco+ outperforms existing clustering methods and selects sparse, interpretable features in 
separating clusters.

This paper focuses on the methodological development for integrative clustering and feature 
selection, but there are many possible avenues for future research related to this work. For 
example, we expect in future work to be able to show that our methods inherit the strong 
statistical and theoretical properties of other convex clustering approaches such as clustering 
consistency and prediction consistency. An important problem in practice is choosing which 
loss function is appropriate for a given data set. While this is beyond the scope of this paper, 
an interesting direction for future research would be to learn the appropriate convex loss 
function in a data-driven manner. Additionally, many have shown block missing structure 
is common in mixed data (Yu et al., 2019; Xiang et al., 2013). A potentially interesting 
direction for future work would be to develop an extension of iGecco+ that can appropriately 
handle block-missing multi-view data. Moreover, Weylandt et al. (2020) developed a fast 
algorithm to compute the entire convex clustering solution path and used this to visualize 
the results via a dendrogram and pathwise plot. In future work, we expect that algorithmic 
regularization path approaches can also be applied to our method to be able to represent 
our solution as a dendrogram and employ other dynamic visualizations. Finally, while we 
develop an efficient multi-block ADMM algorithm, there may be further room to speed up 
computation of iGecco+, potentially by using distributed optimization approaches.

In this paper, we demonstrate that our method can be applied to integrative genomics, yet 
it can be applied to other fields such as multi-modal imaging, national security, online 
advertising, and environmental studies where practitioners aim to find meaningful clusters 
and features at the same time. In conclusion, we introduce a principled, unified approach 
to a challenging problem that demonstrates strong empirical performance and opens many 
directions for future research.
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Our method is implemented in MATLAB and available at https://github.com/DataSlingers/
iGecco.
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Appendix A.: Proof of Propositions
Proposition 1 and 2 are direct extensions from Proposition 2.1 of Chi and Lange (2015). 
Notice they proved the solution path depends continuously on the tuning parameter γ and 
the weight matrix w. It follows that the argument can be also applied to tuning parameter α, 

the loss weight πk, and feature weight ζj
k . Also it is obvious that the loss ℓ ⋅  is continuous 

with respect to the data, X.

We show in detail how to prove Proposition 3 in the following. First we rewrite the objective 
Fγ, α U  as:

Fγ, α(U) =
k 1

K
πkℓk(X k U k ) + γ
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By definition, loss-specific cluster center is x k = argmin
u i 1

n
ℓk(Xi

k u). Since ℓk is convex, 

it is equivalent to u such that ∂
i
ℓk(Xi

k u) = 0. Hence, ∂
i
ℓk(Xi

k x k ) = 0.

We use the similar proof approach of Chi and Lange (2015). A point X furnishes a global 
minimum of the convex function F X  if and only if all forward directional derivatives 
dΘF X  at X are nonnegative. Here Θ = Θ 1 , ⋯,Θ K  represents a direction in the space 

of possible concatenated centroids, where Θ k ∈ ℝn × pk. We calculate the directional 
derivatives:

dΘFγ, α(X) =
k 1
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Note 
i 1
n

〈 ℓk(Xi
k x k ) Θi

k 〉 = 0. The generalized Cauchy-Schwartz inequality therefore 

implies:
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Hence the forward directional derivative test is satisfied for any γ ≥ n
2 β.

On the other hand, for fixed γ, the generalized Cauchy-Schwartz inequality implies:
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forward directional derivative test is satisfied. ■

Appendix B.: Proof of Theorem 4
Recall the iGecco+ problem is:

min
U k k 1

K
πkℓk(X k U k ) + γ

i i
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We can recast the original iGecco+ problem as the equivalent constrained problem:
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minimize
U k ,V k 1
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πkℓk(X k U k ) + γ
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subject to DU k − V k = 0, DU(k′) − V(k′) = 0, X(k′) − U(k′) = Z(k′),U(k′) − X(k′) = R(k′) ,

(2)

where ℓk refers to the differentiable losses and ℓk′ refers to the non-differentiable losses. We 
use multi-block ADMM algorithm (Algorithm 6) to solve the problem above.

To prove convergence of Algorithm 5, we first show that multi-block ADMM Algorithm 
6 converges to a global minimum. Then we show that we can proximal-linearize the 
sub-problems in the primal updates of Algorithm 6 with proved convergence and this is 
equivalent to Algorithm 5. Without loss of generality, we assume we have one differentiable 
loss ℓ1 ⋅  and one non-differentiable distance-based loss ℓ2 ⋅ .

Algorithm 6

Multi-block ADMM to solve iGecco+

while not converged do

 for all k = 1, ⋯,K do

  U k = argmin
U

πkℓk(X k ,U) + ρ
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2 + α j 1
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2
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  Ψ(k′) = Ψ(k′) + (X(k′) − U(k′) − Z(k′))

  N(k′) = N(k′) + (U(k′) − X(k′) − R(k′))
 end for

 V = argmin
V

ρ
2‖DU k − V k + Λ k ‖F

2 + ρ
2‖DU(k′) − V(k′) + Λ(k′)‖F

2 + γ l εwl‖Vl ‖2

 Λ k = Λ k + (DU k − V k ) for all k and k′

end while

To prove convergence of Algorithm 6, we first propose a sufficient condition for the 
convergence of four-block ADMM and prove it holds true. This is an extension of the 
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convergence results in Section 2 of the work by Chen et al. (2016). Suppose the convex 
optimization problem with linear constraints we want to minimize is

min θ1 x1 + θ2 x2 + θ3 x3 + θ4 x4
s.t. A1x1 + A2x2 + A3x3 + A4x4 = b . (3)

The multi-block ADMM has the following form. Note here, the superscript in xi
k + 1  refers 

to the (k + 1)th iteration in the ADMM updates. We have:

x1
k + 1 = argmin{LA(x1, x2

k , x3
k , x4

k , λ k )}

x2
k + 1 = argmin{LA(x1

k + 1 , x2, x3
k , x4

k , λ k )}

x3
k + 1 = argmin{LA(x1

k + 1 , x2
k + 1 , x3, x4

k , λ k )}

x4
k + 1 = argmin{LA(x1

k + 1 , x2
k + 1 , x3

k + 1 , x4, λ k )}

λ k + 1 = λ k − (A1x1
k + 1 + A2x2

k + 1 + A3x3
k + 1 + A4x4

k + 1 − b) ,

(4)

where

LA =
i 1

4
θi xi λT A1x1 A2x2 A3x3 A4x4 b

+ 1
2‖A1x1 + A2x2 + A3x3 + A4x4 − b‖2

2 .

We establish Lemma 5, a sufficient condition for convergence of four-block ADMM:

Lemma 5 (Sufficient Condition for Convergence of Four-block ADMM) A sufficient 
condition ensuring the convergence of (4) to a global solution of (3) is: A2

TA3 = 0, A2
TA4 = 0, 

A3
TA4 = 0.

We prove Lemma 5 at the end of this section. Note that Lemma 5 is stated in 
vector form and therefore we need to transform the constraints in the original iGecco+ 
problem (2) from matrix form to vector form in order to apply Lemma 5. Note that 

DU k = V k U k TDT = V k T
(D⊗ Ipk)vec(U k T

) = vec(V k T
). Hence we can write the 

constraints in (2) as:

A1 0
0 I
0 A2
0 I

u +

0
I
0
0

z +

0
0
0

−I

r +

−I 0
0 0
0 −I
0 0

v = b ,
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where u =
u1
u2

= vec(U 1 T
)

vec(U 2 T
)

, A1 = D⊗ Ip1, A2 = D⊗ Ip2, z = vec(ZT ), r = vec(RT ), 

v = vec(VT ) =
vec V 1 T

)

vec(V 2 T
)

, b =

0p1 × ε

vec(X 2 T
)

0p2 × ε

x 2

⋮
x 2

. x ∈ ℝp2 is a column vector consisting of all xj2

and is repeated n times in b.

Next we show that the constraints in (2) for our problem satisfy the condition in Lemma 5 
and hence the multi-block ADMM Algorithm 6 converges.

By construction, E2 =

0
I
0
0

, E3 =

0
0
0

−I

 and E4 =

−I 0
0 0
0 −I
0 0

. It is easy to verify that: E2
TE3 = 0, 

E2
TE4 = 0, E3

TE4 = 0. Hence our setup satisfies the sufficient condition in Lemma 5 and the 

multi-block ADMM Algorithm 6 converges.

Next, we see that each primal update in Algorithm 5 is equivalent to the primal update by 
applying proximal linearized ADMM to the sub-problems in Algorithm 6. (We will show 
this in detail in Theorem 6.) It is easy to show that these updates with closed-form solutions 
are special cases of proximal-linearizing the sub-problems. Meanwhile, Lu et al. (2016); Liu 
et al. (2013) showed the convergence of proximal linearized multi-block ADMM. Hence 
Algorithm 5 converges to a global minimum if ℓk is convex for all k and has Lipschitz 
gradient when it is differentiable. Further, if each ℓk is strictly convex, it converges to the 
unique global solution. ■

Proof of Lemma 5:

According to the first-order optimality conditions of the minimization problems in (4), we 
have:

θ1(x1) − θ1(x1
k + 1 ) + (x1 − x1

k + 1 )
T

{−A1
T [λ k − (A1x1

k + 1 + A2x2
k + A3x3

k + A4x4
k − b)]} ≥ 0

θ2(x2) − θ2(x2
k + 1 ) + (x2 − x2

k + 1 )
T

{−A2
T [λ k − (A1x1

k + 1 + A2x2
k + 1 + A3x3

k + A4x4
k − b)]} ≥ 0

θ3(x3) − θ3(x3
k + 1 ) + (x3 − x3

k + 1 )
T

{−A3
T [λ k − (A1x1

k + 1 + A2x2
k + 1 + A3x3

k + 1 + A4x4
k − b)]} ≥ 0

θ4(x4) − θ4(x4
k + 1 ) + (x4 − x4

k + 1 )
T

{−A4
T [λ k − (A1x1

k + 1 + A2x2
k + 1 + A3x3

k + 1 + A4x4
k + 1 − b)]} ≥ 0.

Since A2
TA3 = 0, A2

TA4 = 0, A3
TA4 = 0, we have:
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θ1 x1 − θ1(x1
k + 1 ) + (x1 − x1

k + 1 )
T

{−A1
T [λ k − (A1x1

k + 1 + A2x2
k + A3x3

k + A4x4
k − b)]} ≥ 0

θ2 x2 − θ2(x2
k + 1 ) + (x2 − x2

k + 1 )
T

{−A2
T [λ k − (A1x1

k + 1 + A2x2
k + 1 − b)]} ≥ 0

θ3 x3 − θ3(x3
k + 1 ) + (x3 − x3

k + 1 )
T

{−A3
T [λ k − (A1x1

k + 1 + A3x3
k + 1 − b)]} ≥ 0

θ4 x4 − θ4(x4
k + 1 ) + (x4 − x4

k + 1 )
T

{−A4
T [λ k − (A1x1

k + 1 + A4x4
k + 1 − b)]} ≥ 0,

which is also the first-order optimality condition of the scheme:

x1
k + 1 = argmin{θ1 x1 − (λ k )T A1x1 + 1

2‖A1x1 + A2x2
k + A3x3

k + A4x4
k − b‖2

2}

(x2
k + 1 , x3

k + 1 , x4
k + 1 ) = argmin{θ2 x2 + θ3 x3 + θ4 x4 − (λ k )T A2x2 + A3x3 + A4x4

+ 1
2‖A1x1

k + 1 + A2x2 + A3x3 + A4x4 − b‖2
2}

λ k + 1 = λ k − (A1x1
k + 1 + A2x2

k + 1 + A3x3
k + 1 + A4x4

k + 1 − b) .

(5)

Clearly, (5) is a specific application of the original two-block ADMM to (3) by regarding 
(x2, x3, x4) as one variable, [A2, A3, A4] as one matrix and θ2(x2) + θ3(x3) + θ4(x4) as one 
function. ■

Appendix C.: Gecco+ for Differentiable Losses
In this section, we propose algorithms to solve Gecco+ when the loss ℓ is differentiable and 
gradient is Lipschitz continuous. In this case, we develop a fast two-block ADMM algorithm 
without fully solving the U sub-problem. Our result is closely related to the proximal 
linearized ADMM literature (Liu et al., 2013; Lu et al., 2016). Also solving the sub-problem 
approximately is closely connected with the generalized ADMM literature (Deng and Yin, 
2016).

In the following sections, we discuss algorithms to solve Gecco+ instead of iGecco+ for 
notation purposes as we would like to include iteration counter indices in the algorithm 
for illustrating backtracking; but we can easily extend the algorithm to solve iGecco+. To 
begin with, we clarify different notations in Gecco+ and iGecco+: the superscript in U(k) in 
iGecco+ refers to the kth data view while U(k) in Gecco+ refers to the kth iteration counter in 
the ADMM updates. We omit iteration counter indices in all iGecco+ algorithm for notation 
purposes and use the most recent values of the updates.

C.1 Two-block ADMM in Matrix Form
Suppose the loss ℓ X,U  is differentiable. Similar to the formulation in convex clustering, we 
can recast the Gecco+ problem as the equivalent constrained problem:
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minimize
U,V

ℓ X,U + γ
l ε

wl‖Vl ‖2

P1 V;w

+ α
j 1

p
ζj‖U j xj 1n‖2

subject to DU − V = 0 .

Like in convex clustering (Chi and Lange, 2015; Weylandt et al., 2020), we index a 
centroid pair by l = l1, l2  with l1 < l2, define the set of edges over the non-zero weights 
ε = l = l1, l2 :wl > 0 , and introduce a new variable Vl . = Ul1. − Ul2. to account for the 

difference between the two centroids. Hence V is a matrix containing the pairwise 
differences between connected rows of U. Also D is the directed difference matrix 
corresponding to the non-zero fusion weights defined in the work of Weylandt et al. (2020).

We can show that the augmented Lagrangian in scaled form is equal to:

L U,V,Λ = ℓ X,U + ρ
2‖DU − V + Λ‖F

2 + α
j 1

p
ζj‖U j xj 1n‖2 + γ

l ε
wl‖Vl ‖2 ,

where the dual variable is denoted by Λ.

To update U, we need to solve the following sub-problem:

minimize
U

ℓ X,U + ρ
2‖DU − V + Λ‖2

2 + α
j 1

p
ζj‖U j xj 1n‖2 .

Let U = U − X. The sub-problem becomes:

minimize
U

ℓ(X,U + X) + ρ
2‖D(U + X) − V + Λ‖2

2 + α
j 1

p
ζj‖uj‖2 ,

where uj is the jth column of U. For each ADMM iterate, we have:

U(k) = argmin
U

ℓ(X,U + X) + ρ
2‖D(U + X)−V(k − 1) + Λ(k − 1)‖2

2 + α
j 1

p
ζj‖uj‖2

P2(U; ζ)

.

This can be solved by running iterative proximal gradient to full convergence:

U k,m = prox
sk ⋅ αP2 ⋅ ; ζ

(U k,m − 1 − sk ⋅ [∇ℓ(X,U k,m − 1 + X) +ρ DT

(D(U k,m − 1 + X) − V k − 1 + Λ k − 1 )]) ,

which is equivalent to:
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U k,m = prox
sk ⋅ αP2 ⋅ ; ζ

(U k,m − 1 − X − sk ⋅ [∇ℓ(X,U k,m − 1 ) +ρ DT (DU k,m − 1 − V k − 1 + Λ k − 1

)]) + X .

Here U(k,m) refers to the mth inner iteration counter in the U sub-problem out of the kth outer 
iteration counter of the ADMM update. It is straightforward that this is computationally 
expensive. To address this, we propose to solve the U sub-problem approximately using 
just a one-step proximal gradient update and prove convergence in the next section. This 
approach is based on proximal linearized ADMM (Liu et al., 2013; Lu et al., 2016), which 
solves the sub-problems efficiently by linearizing the differentiable part and then applying 
proximal gradient due to the non-differentiable part. To ensure convergence, the algorithm 
requires that gradient should be Lipschitz continuous. The V and Λ updates are just the same 
as in regular convex clustering.

We adopt such an approach and develop the proximal linearized 2-block ADMM (Algorithm 
7) to solve Gecco+ when the loss is differentiable and gradient is Lipschitz continuous.

Algorithm 7

Proximal linearized 2-block ADMM when the loss is differentiable and gradient is Lipschitz 
continuous — matrix form

while not converged do

U k = proxsk ⋅ αP2 ⋅ ; ζ (U k − 1 − X − sk ⋅ [∇ℓ(X,U k − 1 ) +ρ DT (DU k − 1 − V k − 1 + Λ k − 1 )]) + X

 V k = proxγ /ρP1 ⋅ ;w (DU k + Λ k − 1 )

 Λ k = Λ k − 1 + (DU k − V k )
end while

Further, if the U sub-problem can be decomposed to p separate U.j sub-problems where the 
augmented Lagrangian for each now is a sum of a differentiable loss, a quadratic term and 
a sparse group-lasso penalty, we propose to use proximal gradient descent for each separate 
U.j sub-problem. In this way, we yield adaptive step size for each U.j sub-problem and hence 
our algorithm enjoys better convergence property than updating U’s all together. (In the 
latter case, the step size becomes fairly small as we are moving all U to some magnitude in 
the direction of negative gradient.) To achieve this, we assume that the loss is elementwise, 
which means we can write the loss function as a sum of p terms. (The loss can be written 
as iℓ Xi Ui jℓ X . j,U . j = i jq xij uij  where q(·) is the element-wise version of 

the loss while ℓ(·) is the vector-wise version of the loss.) We see that every deviance-based 
loss satisfies this assumption. Moreover, by decomposing to p sub-problems, we can solve 
each in parallel which saves computation cost. We describe in detail how to solve each U.j 
sub-problem in the next subsection.
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C.2 Two-block ADMM in Vector Form in Parallel
Suppose the U sub-problem can be decomposed to p separate U.j sub-problems mentioned 
above. The augmented Lagrangian now becomes:

L U,V,Λ =
j 1

p
ℓ(X j U j) + ρ

2 j 1

p
‖DU j V j Λ j‖2

2

+α
j 1

p
ζj‖U j xj 1n‖2 + γ

l ε
wl‖Vl ‖2 .

In this way we can perform block-wise minimization. Now minimizing the augmented 
Lagrangian over U is equivalent to minimizing over each U . j, j = 1, ⋯, p:

minimize
U . j

ℓ(X . j,U . j) + ρ
2‖DU . j − V . j + Λ . j‖2

2 + αζj‖U . j − xj ⋅ 1n‖2 .

Let uj = U . j − xj ⋅ 1n. The problem above becomes:

minimize
uj

ℓ(X . j, uj + xj ⋅ 1n) + ρ
2‖D(uj + xj ⋅ 1n) − V . j + Λ . j‖2

2 + αζj‖uj‖2 .

Similarly, this can be solved by running iterative proximal gradient to full convergence. 
However, as mentioned above, we propose to solve the U sub-problem approximately by 
taking just a one-step proximal gradient update and prove convergence. Still this approach 
is based on proximal linearized ADMM (Liu et al., 2013; Lu et al., 2016), which solves the 
sub-problems efficiently by linearizing the differentiable part and then applying proximal 
gradient due to the non-differentiable part. To ensure convergence, the algorithm requires 
that gradient should be Lipschitz continuous.

We propose Algorithm 8 to solve Gecco+ when ℓ is differentiable and gradient is Lipschitz 
continuous in vector form. Note the U-update in Algorithm 8 is a just a vectorized version 
of that in Algorithm 7 if we use fixed step size sk for each feature j. We use the vector form 
update here since it enjoys better convergence property mentioned above and we use this 
form to prove convergence. Next we prove the convergence of Algorithm 8.

Algorithm 8

Proximal linearized 2-block ADMM when the loss is differentiable and gradient is Lipschitz 
continuous — vector form in parallel

Input: X, γ,w, α, ζ

Initialize: U 0 ,V 0 ,Λ 0

Precompute: Difference matrix D, xj
while not converged do

Wang and Allen Page 34

J Mach Learn Res. Author manuscript; available in PMC 2021 November 05.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



 for j = 1 to p do

U . j
k = proxsk ⋅ αζj‖ ⋅ ‖2(U . j

k − 1 − xj ⋅ 1n − sk ⋅ [∇ℓ(X . j,U . j
k − 1)) + ρDT (DU . j

k − 1 − V . j
k − 1 +

Λ . j
k − 1 )]) + xj ⋅ 1n

 end for

 V k = proxγ /ρP1 ⋅ ;w (DU k + Λ k − 1 )

 Λ k = Λ k − 1 + (DU k − V k )
end while

Output: U(k).

C.3 Proof of Convergence
Theorem 6 If ℓ is convex and differrentiable and ∇ℓ is Lipschitz continuous, then Algorithm 
8 converges to a global solution. Further, if ℓ is strictly convex, it converges to the unique 
global solution.

Proof: We will show that the U-update in Algorithm 8 is equivalent to linearizing the U 
sub-problem and then applying a proximal operator, which is proximal linearized ADMM.

Note that each U.j sub-problem is:

U . j
k + 1 = argmin

U . j
ℓ(X . j,U . j) + ρ

2‖DU . j − V . j
k + Λ . j

k ‖2
2

+ αζj‖U . j − xj ⋅ 1n‖2 .

For simplicity of notation, we replace U.j with uj in the following:

uj
k + 1 = argmin

uj
ℓ(X . j, uj) + ρ

2‖Duj − V . j
k + Λ . j

k ‖2
2

+ αζj‖uj − xj ⋅ 1n‖2 .

Rearranging terms, we have:

uj
k + 1 = argmin

uj
ℓ(X . j, uj + ρ

2‖Duj − V . j
k ‖2

2
+ ρΛ . j

k T
(Duj − V . j

k ) + αζj‖uj − xj ⋅ 1n‖2 .

According to the proximal linearized ADMM with parallel splitting algorithm (see 
Algorithm 3 of Liu et al. (2013) and Equation (14) of Lu et al. (2016)), we can linearize the 
first two terms and add a quadratic term in the objective:
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uj
k + 1 = argmin

uj
ℓ(X . j, uj

k ) + 〈∇ℓ(X . j, uj
k ), uj − uj

k 〉

+〈ρDT (Duj
k − V . j

k ), uj − uj
k 〉

+ρΛ . j
k T

(Duj − V . j
k ) + αζj‖uj − xj ⋅ 1n‖2 + 1

2sk
‖uj − uj

k ‖2
2

.

Rearranging terms and removing irrelevant terms, we have:

uj
k + 1 = argmin

uj
(∇g(uj

k ))
T

(uj − uj
k ) + 1

2sk
‖uj − uj

k ‖2
2

+ αζj‖uj − xj ⋅ 1n‖2 ,

where ∇g(uj
k ) = ∇ℓ(X . j, uj

k ) + ρDT (Duj
k − V . j

k + Λ . j
k))).

Let uj = uj − xj ⋅ 1n. We have:

uj
k + 1 = argmin

uj
(∇g(uj

k ))
T

(uj + xj ⋅ 1n − uj
k ) + 1

2sk
‖uj+xj ⋅ 1n − uj

k ‖2
2

+ αζj‖uj‖2 .

Recall the definition of proximal operator:

x k + 1 = prox
tℎ

(x k − t∇g(x k ))

= argmin
u

(ℎ u + g(x k ) + ∇g(x k )T (u−x k ) + 1
2t‖u−x k ‖2

2) .

Therefore, the uj update is just a proximal gradient descent update:

uj
k + 1 = prox

sk ⋅ αζj‖ ⋅ ‖2
(uj

k − xj ⋅ 1n − sk ⋅ [∇ℓ(X . j, uj
k ) + ρDT (Duj

k − V . j
k + Λ . j

k )]) .

Now we plug back and get the uj, i.e., U . j update:

U . j
k = prox

sk ⋅ αζj‖ ⋅ ‖2
(U . j

k − 1 − xj ⋅ 1n − sk ⋅ [∇ℓ(X . j,U . j
k − 1 ) + ρDT (DU . j

k − 1) − V . j
k − 1 + Λ . j

k − 1 )])

+xj ⋅ 1n ,

which is equivalent to the U.j update in Algorithm 8.

The V and Λ update is just the same as the one in convex clustering. Hence Algorithm 8 is 
equivalent to the form of proximal linearized ADMM by Liu et al. (2013); Lu et al. (2016) 
and hence converges to a global solution as long as ∇ℓ is Lipschitz continuous. Note that 
Algorithm 7 is equivalent to Algorithm 8 with a fixed step size sk. (We can choose sk to 
be the minimum step size sk over all features.) Therefore, Algorithm 7 also converges to 
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a global solution as long as ∇ℓ is Lipschitz continuous. Further, if ℓ is strictly convex, the 
optimization problem has unique minimum and hence Algorithm 7 and 8 converges to the 
global solution. ■

Note:

• In Liu et al. (2013); Lu et al. (2016), the algorithm requires that ∇ℓ is 
Lipschitz continuous to guarantee convergence. We know that ∇ℓ being Lipschitz 
continuous is equivalent to ℓ being strongly smooth. It is easy to show that the 
Hessian of log-likelihood of exponential family and GLM deviance is upper 
bounded since in (generalized) convex clustering, the value of U is bounded as 
it moves along the regularization path from X to the loss-specific center; also to 
avoid numerical issues, we add trivial constraint that uij > 0 when zero is not 
defined in the log-likelihood/deviance. Hence the condition for convergence of 
proximal linearized ADMM is satisfied.

• To obtain a reasonable step size sk, we need to compute the Lipschitz constant. 
However, it is non-trivial to calculate the Lipschitz constant for most of our 
general losses. Instead, we suggest using backtracking line search procedure 
proposed by Beck and Teboulle (2009); Parikh et al. (2014), which is a common 
way to determine step size with guaranteed convergence in optimization. 
Empirical studies show that choosing step size with backtracking in our 
framework also ensures convergence. The details for backtracking procedure are 
discussed below.

• For proximal linearized ADMM, Liu et al. (2013); Lu et al. (2016) established 
convergence rate of O(1/K). An interesting future direction might be establishing 
the linear convergence rate of proximal linearized ADMM when the objective is 
strongly convex.

C.4 Backtracking Criterion
In this section we discuss how to choose the step size sk in Algorithm 8. As mentioned, 
usually we employ a fixed step size by computing the Lipschitz constant as in the squared 
error loss case; but in our method, it is hard to compute the Lipschitz constant for most of 
our general losses. Instead, we propose using backtracking line search procedure proposed 
by Beck and Teboulle (2009); Parikh et al. (2014), which is a common way to determine 
step size with guaranteed convergence in optimization.

Recall the objective function we want to minimize in the U sub-problem is:

f uj = ℓ(X . j, uj + xj ⋅ 1n) + ρ
2‖D(uj + xj ⋅ 1n) − V . j + Λ . j‖2

2 + αζj‖uj‖2 ,

where uj = U . j − xj ⋅ 1n.

Define:
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g uj = ℓ(X . j, uj + xj ⋅ 1n) + ρ
2‖D(uj + xj ⋅ 1n) − V . j + Λ . j‖2

2

ℎ uj = αζj‖uj‖2

Gt uj =
uj − proxt ⋅ αζj‖ ⋅ ‖2(uj − t∇g(uj))

t .

We adopt the backtracking line search procedure proposed by Beck and Teboulle (2009); 
Parikh et al. (2014). At each iteration, while

g(uj − tGt(uj)) > g(uj) − t∇g(uj)TGt(uj) + t
2‖Gt(uj)‖2

2 i.e.,

g(prox
t

(uj − t∇g(uj))) > g(uj) − ∇g(uj)T (uj − prox
t

(uj − t∇g(uj)))

+ 1
2t‖uj − prox

t
(uj − t∇g(uj))‖

2
2

shrink t = βt.

We still adopt the one-step approximation and hence suggest taking a one-step proximal 
update with backtracking to solve the U sub-problem. To summarize, we propose Algorithm 
9, which uses proximal linearized 2-block ADMM with backtracking when the loss is 
differentiable and gradient is Lipschitz continuous.

C.5 Alternative Algorithm for Differentiable Losses
It should be pointed out that there are many other methods to solve the U sub-problem when 
the loss ℓ is differentiable. We choose to use proximal gradient descent algorithm as there is 
existing literature on approximately solving the sub-problem using proximal gradient under 
ADMM with proved convergence (Liu et al., 2013; Lu et al., 2016). But there are many 
other optimization techniques to solve the U sub-problem such as ADMM.

In this subsection, we show how to apply ADMM to solve the U sub-problem and specify 
under which conditions this method is more favorable. Recall to update U, we need to solve 
the following sub-problem:

minimize
U

ℓ(X,U) + ρ
2‖DU − V + Λ‖F

2 + α
j 1

p
ζj‖U j xj 1n‖2 .

We use ADMM to solve this minimization problem and can now recast the problem above 
as the equivalent constrained problem:

minimize
U,V,Λ,R j 1

p
ℓ(X j U j) + ρ

2‖DU − V + Λ‖F
2 + α

j 1

p
ζj‖rj‖2

P2 R; ζ
subject to U−X = R .
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Algorithm 9

Proximal linearized 2-block ADMM with backtracking when the loss is differentiable and 
gradient is Lipschitz continuous

Input: X, γ,w, α, ζ
Initialize: U(0), V(0), Λ(0), t

Precompute: Difference matrix D, xj
while not converged do

 for j = 1 to p do

  t = 1

  uj
k − 1 = U . j

k − 1 − xj ⋅ 1n

  ∇g(uj
(k − 1)) = ∇ℓ(X . j,uj

(k − 1) + xj ⋅ 1n) + ρDT (D(uj
(k − 1) + xj ⋅ 1n) − V . j

(k − 1) + Λ . j
(k − 1))

  z = proxtαζj‖ ⋅ ‖2(uj
(k − 1) − t∇g(uj

(k − 1)))

  while g(z) > g(uj
(k − 1) − ∇g(uj

(k − 1))
T

(uj
(k − 1) − z) + 1

2t‖z − uj
(k − 1)‖2

2
do

   t = βt

   z = proxtαζj‖ ⋅ ‖2(uj
(k − 1) − t∇g(uj

(k − 1)))

  end while

  U . j
(k) = z + xj ⋅ 1n

 end for

 V(k) = proxγ /ρP1( ⋅ ;w)(DU(k) + Λ(k − 1))

 Λ(k) = Λ(k − 1) + (DU(k) − V(k))
end while

Output: U(k).

The augmented Lagrangian in scaled form is:

L(U,V,R,Λ,N) =
j 1

p
ℓ(X j U j) + ρ

2‖DU − V + Λ‖F
2 + ρ

2‖(U − X) − R + N‖F
2

+α
j 1

p
ζj‖rj‖2 ,

where the dual variable for V is denoted by Λ; the dual variable for R is denoted by N.

The U.j sub-problem in the inner nested ADMM is:
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U . j
(k) = argmin

U . j
ℓ(X . j,U . j) + ρ

2‖DU . j − V . j
(k − 1) + Λ . j

(k − 1)‖F
2

+ ρ
2‖(U . j − xj ⋅ 1n) − rj

(k − 1) + N . j
(k − 1)‖F

2
.

Now, we are minimizing a sum of a differentiable loss ℓ and two quadratic terms which are 
all smooth. Still the U.j sub-problem does not have a closed-form solution for general convex 
losses and we need to run an iterative descent algorithm (such as gradient descent, Newton 
method) to full convergence to solve the problem. Similarly, to reduce computation cost, we 
take a one-step update by applying linearized ADMM (Lin et al., 2011) to the U.j

Algorithm 10

Full-step multi-block algorithm for Gecco+ with Bernoulli log-likelihood ℓk:

Precompute: Difference matrix D,M1 = 1
4I + ρDTD + ρI

−1
.

while not converged do

 while not converged do

U(k) = U(k − 1) − M1[∇ℓ(X,U(k − 1) ) + ρDT (DU(k − 1) − V(k − 1) + Λ(k − 1)) + ρ(U(k − 1) − X − R(k − 1) + N(k − 1))]

  R(k) = proxα/ρP2( ⋅ ; ζ)(U(k) − X + N(k − 1))

  N(k) = N(k − 1) + (U(k) − X − R(k))
 end while

 V(k) = proxγ /ρP1( ⋅ ;w)(DU(k) + Λ(k − 1))

 Λ(k) = Λ(k − 1) + (DU(k) − V(k))
end while

sub-problem. The U.j update in the inner ADMM now becomes:

U . j
(k) = U . j

(k − 1) − sk[∇ℓ(X . j,U . j
(k − 1)) + ρDT (DU . j

(k − 1) − V . j
(k − 1) + Λ . j

(k − 1))

+ρ(U . j
(k − 1) − xj ⋅ 1n − rj

(k − 1) + N . j
(k − 1))] .

In this case, empirical studies show that taking a one-step Newton update is favored than 
a one-step gradient descent update as the former enjoys better convergence properties and 
generally avoids backtracking. However, inverting a Hessian matrix is computationally 
burdensome at each iteration when n is large. Exceptions are for Euclidean distances case 
where there is a closed-form solution for the U.j update and for Bernoulli log-likelihood case 
where the Hessian of the loss can be upper bounded by a fixed matrix. In the latter case, 
we propose to pre-compute the inverse of that fixed matrix instead of inverting a Hessian 
matrix at each iteration. To illustrate this, we write out the U.j sub-problem of Gecco+ with 
Bernoulli log-likelihood:
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U . j = argmin
U . j i 1

n
xijuij log 1 euij + ρ

2‖DU . j − V . j + Λ . j‖F
2

+ ρ
2‖(U . j − xj ⋅ 1n) − rj + N . j‖F

2 .

The Hessian is diag euij

1 + euij 2 + ρDTD + ρI which can be upper bounded by 1
4I + ρDTD + ρI. 

We propose to replace the Hessian with this fixed matrix in Newton method and use its 
inverse. This is closely related to the approximate Hessian literature (Krishnapuram et al., 
2005; Simon et al., 2013). In this way, we just pre-compute this inverse matrix instead of 
inverting the Hessian matrix at each iteration, which dramatically saves computation. We 
give Algorithm 10 to solve Gecco+ for Bernoulli log-likelihood with a one-step update to 
solve the U sub-problem. Empirical studies show that this is faster than taking the inner 
nested proximal gradient approach as we generally don’t need to perform the backtracking 
step.

Yet, Algorithm 10 is slow as we need to run iterative inner nested ADMM updates to full 
convergence. To address this, as mentioned, we can take a one-step update of the inner 
nested iterative ADMM algorithm. To see this, we can recast the original Gecco+ problem 
as:

minimize
U k ,V

ℓ X,U + γ
l ε

wl‖Vl ‖2

P1 V;w

+ α
j 1

p
ζj‖rj‖2

P2 R;ζ
subject to DU−V = 0, U − X = R .

We apply multi-block ADMM to solve this optimization problem and hence get Algorithm 
11. As discussed above, we take a one-step update to solve the U sub-problem with 
linearized ADMM and use the inverse of fixed approximate Hessian matrix, M1.

Algorithm 11

One-step inexact multi-block algorithm for Gecco+ with Bernoulli log-likelihood ℓk:

Precompute: Difference matrix D,M1 = (1
4I + ρDTD + ρI)

−1
.

while not converged do

U(k) = U(k − 1) − M1 ∇ℓ(X,U(k − 1) ) + ρDT (DU(k − 1) − V(k − 1) + Λ(k − 1)) + ρ(U(k − 1)) − X − R(k − 1) + N(k − 1))

 R(k) = proxα/ρP2( ⋅ ; ζ)(U(k) − X + N(k − 1))

 N(k) = N(k − 1) + (U(k) − X − R(k))

 V(k) = proxγ /ρP1( ⋅ ;w)(DU(k) + Λ(k − 1))
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 Λ(k) = Λ(k − 1) + (DU(k) − V(k))
end while

Similarly, we adopt this approach to solve Gecco+ with Euclidean distances (sparse convex 
clustering). We first recast the original problem as:

minimize
U k ,V

1
2‖X − U‖2

2 + γ
l ε

wl‖Vl ‖2

P1 V;w

+ α
j 1

p
ζj‖rj‖2

P2 R;ζ
subject to DU−V = 0, U − X = R .

Still, we use multi-block ADMM to solve this optimization problem and hence get 
Algorithm 12. Note that U sub-problem now has a closed-form solution. Typically, we do 
not have an approximate Hessian matrix or a closed-form solution to the sub-problem for 
general losses and we have to use one-step gradient descent with backtracking to solve the U 
sub-problem. Empirical study shows that this approach converges slower than Algorithm 9 
which uses one-step proximal gradient descent with backtracking.

Appendix D.: Gecco+ for Non-Differentiable Losses
In this section, we propose an algorithm to solve Gecco+ when the loss ℓ is non-
differentiable. In this case, we develop a multi-block ADMM algorithm to solve Gecco+ 
and prove its algorithmic convergence.

Algorithm 12

One-step inexact multi-block algorithm for Gecco+ with Euclidean distances ℓk:

Precompute: Difference matrix D,M2 = (I+ρDTD + ρI)−1
.

while not converged do

 U(k) = M2[X+ρDT (V(k − 1) − Λ(k − 1)) + ρ(X + R(k − 1) − N(k − 1))]

 R(k) = proxα/ρP2( ⋅ ; ζ)(U(k) − X + N(k − 1))

 N(k) = N(k − 1) + (U(k) − X − R(k))

 V(k) = proxγ /ρP1( ⋅ ;w)(DU(k) + Λ(k − 1))

 Λ(k) = Λ(k − 1) + (DU(k) − V(k))
end while

D.1 Gecco+ Algorithm for Non-Differentiable Losses
Suppose the non-differentiable loss ℓ can be expressed as ℓ(X, U) = f(g(X, U)) where f is 
convex but non-differentiable and g is affine. This expression is reasonable as it satisfies 
the affine composition of a convex function. For example, for the least absolute loss, 
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f Z = j 1
p ‖zj‖1 ‖vec Z ‖1 and g X,U = X − U. We specify the affine function g as we 

want to augment the non-differentiable term in the loss function ℓ.

We can rewrite the problem as:

minimize
U

f g X,U + γ
1 i i n

wii ‖Ui Ui ‖2 + α
j 1

p
ζj‖U j xj 1n‖2 .

We can now recast the problem above as the equivalent constrained problem:

minimize
U,V,Z,R

f Z + γ
l ε

wl‖Vl ‖2

P1 V;w

+ α
j 1

p
ζj‖rj‖2

P2 R;ζ
subject to g X,U = Z

DU−V = 0
U − X = R ,

where X is an n × p matrix with the jth column equal to scalar xj.

The augmented Lagrangian in scaled form is:

L U,V,Z,R,Λ,N,Ψ = ρ
2‖DU − V + Λ‖F

2 + ρ
2‖ U − X − R + N‖F

2

+ ρ
2‖g X,U − Z + Ψ‖F

2 + f Z + γ
l ε

wl‖Vl ‖2 + α
j 1

p
ζj‖rj‖2 ,

where the dual variable for V is denoted by Λ; the dual variable for Z is denoted by Ψ; the 
dual variable for R is denoted by N.

Since we assume g to be affine, i.e., g(X, U) = AX + BU + C, the augmented Lagrangian in 
scaled form can be written as:

L U,V,Z,R,Λ,N,Ψ = ρ
2‖DU − V + Λ‖F

2 + ρ
2‖ U − X − R + N‖F

2

+ ρ
2‖AX + BU + C − Z + Ψ‖F

2 + f Z + γ
l ε

ωl‖Vl ‖2 α
j 1

p
ζj‖rj‖2 .

It can be shown that the U sub-problem has a closed-form solution.

Note that, hinge loss is also non-differentiable and we can write g(X, U) = 1 − U ο X where 
1 is a matrix of all one and “ο” is the Hadamard product. In this case, the U sub-problem 
does not have a closed-form solution and we will discuss how to solve this problem in the 
next section.
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For distance-based losses, the loss function can always be written as: ℓ(X, U) = f(X − U), 
which means g(X, U) = X − U. Then the augmented Lagrangian in scaled form can be 
simplified as:

L U,V,Z,R,Λ,N,Ψ = ρ
2‖DU − V + Λ‖F

2 + ρ
2‖ U − X − R + N‖F

2

+ ρ
2‖X − U − Z + Ψ‖F

2 + f Z + γ
l ε

ωl‖Vl ‖2 α
j 1

p
ζj‖rj‖2 .

Now the U sub-problem has a closed-form solution:

U(k) = (DTD + 2I)−1(DT (V(k − 1) −Λ(k − 1) )+X + R(k − 1) − N(k − 1) + X − Z(k − 1) + Ψ(k − 1)) .

This gives us Algorithm 13 to solve Gecco+ for non-differentiable distance-based loss.

Algorithm 13

Multi-block ADMM for non-differentiable distance-based loss

Precompute: Difference matrix D,M = DTD + 2I −1
.

while not converged do

 U(k) = M(DT (V(k − 1) − Λ(k − 1)) + X + R(k − 1) − N(k − 1) + X − Z(k − 1) + Ψ(k − 1))

 Z(k) = proxf /p(X − U(k) + Ψ(k − 1))

 R(k) = proxα/ρP2( ⋅ ; ζ)(U(k) − X + N(k − 1))

 Ψ(k) = Ψ(k − 1) + (X − U(k) − Z(k))

 N(k) = N(k − 1) + (U(k) − X − R(k))

 V(k) = proxγ /ρP1( ⋅ ;w)(DU(k) + Λ(k − 1))

 Λ(k) = Λ(k − 1) + (DU(k) − V(k))
end while

Algorithm 13 can be used to solve Gecco+ problem with various distances such as 
Manhattan, Minkowski and Chebychev distances by applying the corresponding proximal 
operator in the Z-update. For example, for Gecco+ with Manhattan distances, the Z-update 
is just applying element-wise soft-thresholding operator. For Gecco+ with Chebychev 
distances, the proximal operator in the Z-update can be computed separately across the rows 
of its argument and reduces to applying row-wise proximal operator of the infinity-norm. 
For Gecco+ with Minkowski distances, we similarly apply row-wise proximal operator of 
the ℓq-norm.

Next we prove the convergence of Algorithm 13.

Wang and Allen Page 44

J Mach Learn Res. Author manuscript; available in PMC 2021 November 05.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



D.2 Proof of Convergence for Algorithm 13
Theorem 7 If ℓ is convex, Algorithm 13 converges to a global minimum.

Proof: Note we have provided a sufficient condition for the convergence of four-block 
ADMM in Lemma 5. Next we show that the constraint set in our problem satisfies the 
condition in Lemma 5 and hence the multi-block ADMM Algorithm 13 converges. Recall 
our problem is:

minimize
U,V,Z,R

f Z + γ
l ε

wl‖Vl ⋅ ‖2 + α
j 1

p
ζj‖rj‖2

subject to X − U = Z
DU − V = 0
U−X = R .

Note that Lemma 5 is stated in vector form. Hence we transform the constraints above from 
matrix form to vector form. Note that DU = V UTDT = VT D⊗ Ip vec UT = vec VT . 

Hence we can write the constraints as:

I
A
I
u +

I
0
0
z +

0
0

−I
r +

0
−I
0
v = b ,

where u = vec UT , A = D⊗ Ip, z = vec ZT , r = vec RT , v = vec VT , b =

vec XT

0p × ε
x
⋮
x

, x ∈ ℝp is 

a column vector consisting of all xj and is repeated n times in b.

By construction, A2 =
I
0
0

, A3 =
0
0

−I
, and A4 =

0
−I
0

. It is easy to verify that: A2
TA3 = 0, 

A2
TA4 = 0, A3

TA4 = 0. Hence our setup satisfies the sufficient condition in Lemma 5 and the 

multi-block ADMM Algorithm 13 converges. ■

D.3 Special Case: Gecco+ with Hinge Losses
As mentioned, we cannot directly apply Algorithm 13 to solve Gecco+ with hinge losses as 
the function g(X, U) in this case is not the same as the one in distance-based losses. Recall 
Gecco+ with hinge losses is:

minimize
U i 1

n

j 1

p
max 0 1 uijxij + γ

1 i i n
wii ‖Ui. − Ui′ . ‖2 + α

j 2

p
ζj‖U . j − xj ⋅ 1n‖2 .
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Like before, we can rewrite the problem as:

minimize
U

f g X,U + γ
1 i i n

wii ‖Ui ⋅ − Ui′ ⋅ ‖2 + α
j 1

p
ζj‖U ⋅ j − xj ⋅ 1n‖2 .

We can now recast the problem above as the equivalent constrained problem:

minimize
U,V,Z,R

f Z + γ
l ε

wl‖Vl ‖2

P1 V;w

+ α
j 1

p
ζj‖rj‖2

P2 R; ζ
subject to 1 − U ο X = Z

DU − V = 0
U−X = R .

Here, f(Z) = max(0, Z). With a slight abuse of notation, we refer f to applying element-wise 
maximum to all entries in the matrix. We set g(X, U) = 1 − U ο X where 1 is a matrix of 
all one and “ο” is the Hadamard product. X is an n × p matrix with the jth column equal to 
scalar xj.

The augmented Lagrangian in scaled form is:

L U,V,Z,R,Λ,N,Ψ = ρ
2‖DU − V + Λ‖F

2 + ρ
2‖ U − X − R + N‖F

2

+ ρ
2‖1 − U ο X − Z + Ψ‖F

2 + f Z + γ
l ε

wl‖Vl ‖2 + α
j 1

p
ζj‖rj‖2 .

The U sub-problem now becomes:

U k + 1 = argmin
U

‖DU − V k + Λ k ‖F
2 + ‖U − X − R k + N k ‖F

2

+‖1 − U ο X − Z k + Ψ k ‖F
2 .

The first-order optimality condition is:

DT (DU − V(k) + Λ(k)) + U − X − R(k) + N(k) + X ο (U ο X + Z(k) − 1 − Ψ(k)) = 0 ,

which can be written as:

(X ο X) ο U + X ο (Z(k) − 1 − Ψ(k)) + DTDU − DT (V(k) − Λ(k)) + U − X − R(k) + N(k) = 0

(X ο X) ο U + (DTDU + I)U = DT (V(k) − Λ(k)) + X + R(k) − N(k) + X ο (1 + Ψ(k) − Z(k)) .

To solve U from the above equation, one way is to first find the SVD of the leading 
coefficient:
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X ο X =
k
σkukvk =

k
wkvk .

From this decomposition we create two sets of diagonal matrices:

Wk = Diag wk
Vk = Diag vk .

The Hadamard product can now be replaced by a sum

k
WkUVk (DTD I)U C ,

where C = DT (V(k) − Λ(k)) + X + R(k) − N(k) + X ο (1 + Ψ(k) − Z(k)).

Now we can solve this equation via vectorization:

vec(C) = (I⊗ (DTD + I) +
k

Vk Wk)vec(U)

vec(U) = (I⊗ (DTD + I) +
k

Vk Wk)+vec(C)

U = Mat (I⊗ (DTD + I) +
k

Vk Wk)+vec(C) ,

where B+ denotes the pseudo-inverse of B, and Mat() is the inverse of the vec() operation.

Here we have to compute the pseudo-inverse of a matrix which is computationally expensive 
in practice. To avoid this, we adopt generalized ADMM approach proposed by Deng and 
Yin (2016) where the U sub-problem is augmented by a positive semi-definite quadratic 
operator. In our case, our modified U sub-problem becomes:

argmin
U

‖DU − V k + Λ k ‖F
2 + ‖(U − X) − R k + N k ‖F

2 + ‖1 − U ο X − Z k + Ψ k ‖F
2

+‖ 1 − X ο X ο U − U k ‖F
2 .

The first-order optimality condition now becomes:

DT (DU − V(k) + Λ(k))U − X − R(k) + N(k) + X ο (U ο X + Z(k) − 1 − Ψ(k))

+(1 − X ο X) ο (U − U(k)) = 0 .

We have:

HU = DT (V(k) − Λ(k)) + X + R(k) − N(k) − X ο (Z(k) − 1 − Ψ(k)) + (1 − X ο X) ο U(k) ,

Wang and Allen Page 47

J Mach Learn Res. Author manuscript; available in PMC 2021 November 05.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



where H = (DTD + I + 1). Hence we have analytical update:

U(k + 1) = H−1(DT (V(k) − Λ(k)) + X + R(k) − N(k) − X ο (Z(k) − 1 − Ψ(k)) + (1 − X ο X) ο U(k)) .

It is easy to see that the V, Z and R updates all have closed-form solutions.

Appendix E.: Multinomial Gecco+
In this section, we briefly demonstrate how Gecco+ with multinomial losses is formulated, 
which is slightly different from the original Gecco+ problems. Suppose we observe 
categorical data as follows (K = 3):

Xn × p =
1 1 1
2 2 2
3 3 3

.

We can get the indicator matrix X(k) for each class k as:

X 1 =
1 1 1
0 0 0
0 0 0

X 2 =
0 0 0
1 1 1
0 0 0

X 3 =
0 0 0
0 0 0
1 1 1

.

Then we concatenate X(1), X(2), X(3) and get Xn × p ∗ K = X 1 X 2 X 3 . This is equivalent 
to the dummy coding of the categorical matrix X after some row/column shuffle:

X =
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 n × p ∗ K

.

It is obvious that measuring the difference of two observations by comparing rows of X
is better than simply comparing the Euclidean distances of rows of original data matrix 
X. Also parameterizing in X is beneficial for computing the multinomial log-likelihood or 
deviance. Hence we concatenate all columns of X(k) as input data. Similarly, we concatenate 
all columns of the corresponding U(k) and then fuse U in a row-wise way.

E.1 Gecco with Multinomial Log-likelihood
Gecco with multinomial log-likelihood can be formulated as:

minimize
U i j k 1

K
xijkuijk log(

k 1

K
euijk) γ

i i
wii

Ui ⋅
1

⋮

Ui ⋅
1

−
Ui′ ⋅

1

⋮

Ui′ ⋅
K

2

,
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where xijk refers to the elements of indicator matrix Xij
k  discussed previously and 

Ui .
k =

ui1k
ui2k

⋮
uipk

 .

E.2 Gecco+ with Multinomial Log-likelihood
Gecco+ with multinomial log-likelihood can be formulated as:

minimize
U i j k 1

K
xijkuijk log(

k 1

K
euijk) γ

i i
wii

Ui ⋅
1

⋮

Ui ⋅
K

−
Ui′ ⋅

1

⋮

Ui′ ⋅
K

2

+α
j 1

p

k 1

K
‖U j

k xj
k 1n‖2 ,

where Ui .
k =

ui1k
ui2k

⋮
uipk

, U . j
k =

u1jk
u2jk

⋮
unjk

 and xj
k  is the loss-specific center for j variable in kth class.

Appendix F.: Loss-specific Center Calculation
In this section, we show how to calculate the loss-specific center in Table 1.

F.1 Continuous Data
For continuous data, we consider Gecco with Euclidean distances.

F.1.1 EUCLIDEAN DISTANCE

minimize
U

1
2 i 1

n
‖Xi Ui ‖2

2 γ
i i

wii ‖Ui . − Ui′ . ‖2

When total fusion occurs, Ui . = Ui′ . , ∀i ≠ i′. Let Ui . = Ui′ . = u. The problem above 
becomes:

minimize
u

1
2 i 1

n
‖Xi u‖2

2 .

Taking derivative, we get:
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i 1

n
Xi u 0 u = x .

F.2 Count Data
For count-valued data, we consider Gecco with Poisson log-likelihood/deviance, negative 
binomial log-likelihood/deviance and Manhattan distances.

F.2.1 POISSON LOG-LIKELIHOOD

minimize
U i

n

j

p
xijuij exp uij γ

i i
wii ‖Ui . − Ui′ . ‖2

When total fusion occurs, uij = ui′j, ∀i ≠ i′. Let u be the fusion vector and u = u1, ⋯, up . The 
problem above becomes:

minimize
U i

n

j

p
xijuj exp(uj) .

Taking derivative, we get:

i 1

n
xij + nexp(uj) = 0 exp(uj) = xj uj = log(xj) u = log(x) .

F.2.2 POISSON DEVIANCE

minimize
U i

n

j

p
xijloguij uij γ

i i
wii ‖Ui Ui ‖2

Let u be the fusion vector and u = (u1, ⋯ , up). The problem above becomes:

minimize
U i

n

j

p
xijloguj uj .

Taking derivative, we get:

i 1

n xij
uj

n 0 uj xj u x
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F.2.3 NEGATIVE BINOMIAL LOG-LIKELIHOOD

minimize
U i

n

j

p
xijuij (xij

1
α )log(1

α euij) γ
i i

‖Ui Ui ‖2

When total fusion occurs, uij = ui′j, ∀i ≠ i′. Let u be the fusion vector and u = (u1, ⋯, up). The 
problem above becomes:

minimize
U i

n

j

p
xijuj (xij

1
α )log(1

α euj) .

Taking derivative, we get:

i i

n
xij + (xij + 1

α ) euj
1
α + euj

= 0

i i

n
xij =

i i

n
(xij

1
α ) euj

1
α + euj

i i

n
xij

1
α +

i i

n
xij euj =

i i

n
xij euj + n

αe
uj

euj =
i 1

n
xij n

exp(uj) = xj uj = log(xj) u = log(x) .

F.2.4 NEGATIVE BINOMIAL DEVIANCE

minimize
U i

n

j

p
xijlog(

xij
uij

) (xij
1
α )log(

1 + αxij
1 + αuij

) + γ
i i

wii ‖Ui Ui ‖2

The formulation above is equivalent to:

minimize
U i

n

j

p
xijloguij (xij

1
α )log(1 + αxij) + γ

i i
wii ‖Ui Ui ‖2 .

Let u be the fusion vector and u = u1, ⋯, up . The problem above becomes:

minimize
U i

n

j

p
xijloguj (xij

1
α )log(1 + αuj) .

Taking derivative, we get:
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i 1

n xij
uj

+
xij + 1

α
1 + αuj

⋅ α = 0

i

n
xij αuj

i 1

n
xij nuj αuj

i 1

n
xij

uj = xj u = x .

F.2.5 MANHATTAN DISTANCE

minimize
U i 1

n
‖xi ui‖1 γ

i i
wii ‖Ui Ui ‖2

When total fusion occurs, Ui . = Ui′ . , ∀i ≠ i′. Let Ui . = Ui′ . = u. We have:

minimize
U i 1

n
‖xi u‖1 .

For each j, we have:

minimize
uj i 1

n
‖xij uj‖1 .

We know that the optimal uj is just the median of xij for each j.

F.3 Binary Data
For binary data, we consider Gecco with Bernoulli log-likelihood, binomial deviance and 
hinge loss.

F.3.1 BERNOULLI LOG-LIKELIHOOD

minimize
U i

n

j

p
xijuij + log(1 + euij) + γ

i i
wii ‖Ui Ui ‖2

When total fusion occurs, uij = ui′j, ∀i ≠ i′. Let u be the fusion vector and u = u1, ⋯, up . The 
problem above becomes:

minimize
U i

n

j

p
xijuj + log(1 + eui) .

Taking derivative, we get:
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i 1

n
xij + n

exp(uj)
1 + exp(uj)

= 0
exp(uj)

1 + exp(uj)
= xj

logit−1(uj) = xj uj = logit(xj) u = logit(x) .

F.3.2 BINOMIAL DEVIANCE

minimize
U i

n

j

p
xijloguij (1 xij)log(1 uij) γ

i i
wii ‖Ui Ui ‖2

Let u be the fusion vector and u = u1, ⋯, up . The problem above becomes:

minimize
U i

n

j

p
xijloguj (1 xij)log(1 uj) .

Taking derivative, we get:

i 1

n xij
uj

+
1 − xij
1 − uj

= 0
i

n
xij(1 uj) (1 xij)uj 0

i

n
xij uj 0 uj xj u x .

F.3.3 HINGE LOSS

minimize
U i 1

n

j 1

p
max(0 1 uijxij) + γ

i i
ωii ‖Ui Ui ‖2

Let u be the fusion vector and u = u1, ⋯, up . The problem above becomes:

minimize
U i 1

n

j 1

p
max(0 1 ujxij) .

For each feature j, the problem becomes:

minimize
uj i 1

n
max(0 1 ujxij) .

Note in hinge loss, xij ∈ −1, 1 . Suppose we have n1 observations for class “1” and n2 

observations for class “−1”. The problem now becomes:
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minimize
uj

n1max(0, 1 − uj) + n2max(0, 1 + uj) .

Define ℎ(t) = n1max(0, 1 − t) + n2max(0, 1 + t). We have:

ℎ(t) =
n1(1 − t) if t ≤ − 1
n1(1 − t) + n2(1 + t) if −1 < t < 1
n2(1 + t) if t ≥ 1 .

Clearly, if n2 > n1 (more “−1”), h(t) is minimized by t = −1; if n1 > n2 (more “1”), h(t) is 
minimized by t = 1; if n1 = n2, h(t) is minimized by any t between [−1, 1]. Therefore, uj 
should be the mode of all observations for feature j:

uj = modei(xij) .

F.4 Categorical Data
For categorical data, we consider Gecco with multinomial log-likelihood and deviance.

F.4.1 MULTINOMIAL LOG-LIKELIHOOD

minimize
U i

n

j

p
{
k 1

K
xijkuijk log(

k 1

K
euijk)} + γ

i i
ωii

Ui .
1

⋮

Ui .
K

−
Ui′ .

1

⋮

Ui′ .
K

2

When total fusion occurs, uijk = ui′jk, ∀i ≠ i′. Let u be the fusion vector and 
uk = u1k, ⋯, upk . The problem above becomes:

minimize
U i

n

j

p
{
k

K
xijkujk log(

k

K
eujk)} .

Taking derivative with respect to ujk, we get:

i 1

n
xijk + n

exp(ujk)

k
K exp(ujk)

= 0

ujk = log
x . jk

kx jk
= mlogit(x . jk) .
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F.4.2 MULTINOMIAL DEVIANCE

minimize
U i

n

j

p
{
k

K
xijklog(uijk)} + γ

Ui .
1

⋮

Ui .
K

−
Ui′ .

1

⋮

Ui′ .
K

2

subject to
k 1

K
uijk = 1

When total fusion occurs, uijk = ui′jk, ∀i ≠ i′. Let u be the fusion vector and 
uk = u1k, ⋯, upk . The problem above becomes:

minimize
U i

n

j

p

k

K
xijklogujk

subject to
k 1

K
ujk = 1 .

We can write the constraint in Lagrangian form:

minimize
U i

n

j

p

k

K
xijklogujk + λ(

k 1

K
ujk − 1) .

Taking derivative with respect to ujk, we get:

i 1

n xijk
ujk

λ = 0

i 1

n
xijk = λujk .

We have:

n =
i 1

n

k 1

K
xijk =

k 1

K

i 1

n
xijk =

k 1

K
λujk = λ .

Therefore,

ujk =
i 1

n
xijk n .
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Appendix G.: Visualization of Gecco+ for Authors Data
Figure 5 illustrates selected features and cluster assignment for authors data set with one 
combination of α and γ. We select meaningful features and achieve satisfactory clustering 
results. We have already discussed the results and interpretation in detail in Section 5.1.

Figure 5: 
Cluster heatmap of Gecco+ solution U(γ, α) for authors data set with α = 15 and γ = 105. 
The left bar refers to the true author label. We highlight selected features at the bottom. 
Gecco+ selects informative features that separate groups.

Appendix H.: Multi-omics Data
In this section, we show the distribution of data from different platforms in Section 5.3. We 
see that both gene expression data and protein data appear Gaussian; methylation data is 
between [0, 1]; miRNA data is highly-skewed.
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Figure 6: 
Histograms of data from different platforms for multi-omics TCGA data set. Both gene 
expression data and protein data appear Gaussian; methylation data is proportion-valued; 
miRNA data is highly-skewed.

Appendix I.: Null Deviance
In this appendix, we list the null deviance D for some common losses used in iGecco. Recall 
in the iGecco formulation, πk, which are set inversely proportional to the null deviance 
evaluated at the loss-specific center, are scaling factors to ensure that the losses are measured 
at the same scale in the objective function.

By definition, the null deviance D evaluated at the loss-specific center, refers to ℓ(X,X)

where each jth column of X is the loss-specific center xj
k  for that column/feature. Table 12 

shows the null deviance D for some common losses.
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Table 12:

Null deviance for common losses used in iGecco

Loss Function Null Deviance D

Euclidean distance ‖X − X‖2
2 = i j (xij xj)2

Manhattan distance i j xij median(xj)

Bernoulli log-likelihood 2 i j xijlogit(xj) log(1 elogit(xj))

Binomial deviance 2 i j xijlogxj (1 xij)log(1 xj)

Here xj refers to the mean for the jth column/feature while median(xj) refers to the median 
for the jth column. Simple calculation shows that the Bernoulli log-likelihood is equivalent to 

binomial deviance by noting logit xj = log
xj

1 − xj
.

Appendix J.: Choice of Tuning Parameters
In this appendix, we propose two different approaches to select tuning parameters γ and 
α in the iGecco+ problem; γ controls the number of clusters while α controls the number 
of features selected. We first consider stability selection based approach, which has been 
shown to enjoy nice statistical properties such as selection consistency (Wang, 2010; Fang 
and Wang, 2012) and been adopted in practice with strong empirical performance (Wang et 
al., 2018). Next, to reduce computation, we consider information criterion based approaches. 
Finally, we demonstrate empirical results when the number of clusters and features are not 
fixed but estimated based on the data.

J.1 Stability Selection Based Approach
We first adopt the stability selection based approach for tuning parameter selection and 
follow closely the approach described in the work of Wang (2010); Fang and Wang (2012). 
We choose the stability selection based approach because i) its selection consistency has 
been established and ii) Wang et al. (2018) adopted similar approach for tuning parameter 
selection and demonstrated strong empirical performance. The rationale behind stability 
selection is that a good clustering algorithm with optimal tuning parameter should produce 
clusterings that do not vary much with respect to a small perturbation to the training 
samples.

By Wang (2010); Fang and Wang (2012), a clustering ψ(x) is defined as a mapping 
ψ :ℝp {1, …, q} where q is the given number of clusters. Here, we use q as the number 
of clusters since we have already used k to represent the kth data view X(k). A clustering 
algorithm Ψ(·; q) with a given number of clusters q ≥ 2 yields a clustering mapping ψ(x) 
when applied to a sample. Here, we choose the number of clusters q, which is equivalent 
to choosing optimal γ since we can yield the cluster assignment and corresponding q 
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for each γ. To account for the tuning parameter α for feature selection, we further 
denote the clustering algorithm as Ψ(·; q, α). Then, in our case, for any given pair of 
q and α, two clustering results can be obtained from two sets of bootstrapped samples. 
Then the clustering distance d, defined by Fang and Wang (2012), can be computed to 
measure the dissimilarity between two clustering results. We repeat the procedure multiple 
times and the optimal tuning parameter pair (q , α) is the one that minimizes the average 
clustering instability. This gives Algorithm 14, which uses stability selection to choose 
tuning parameters.

Algorithm 14

Choice of number of clusters q and feature penalty γ in Gecco+/iGecco+ using stability 
selection

1. Generate B independent bootstrap sample-pairs Xb,Xb , b = 1, ⋯,B.

2. Construct ΨXb, q, α and ΨXb, q, α based on Xb,Xb , b = 1, ⋯,B.

3. For each pair, ΨXb, q, α and ΨXb, q, α, calculate their clustering distance d(ΨXb, q, α,ΨXb, q, α) defined by 

Fang and Wang (2012). Then the clustering instability S Ψ, q, α  can be estimated by

SB Ψ, q, α = 1
Bb 1

B
d(ΨXb q α ΨXb q α) .

4. Finally, the optimal number of clusters q and feature penalty α can be estimated by

q , α = argmin
2 ≤ q ≤ Q, α

SB Ψ, q, α .

J.2 Information Criterion Based Approach
While choosing number of clusters based on stability selection has been shown to enjoy 
nice properties such as selection consistency (Wang, 2010), such methods are always 
computationally burdensome. To address this, on the other hand, information criterion 
based approach has been proposed for tuning parameter selection in convex clustering (Tan 
and Witten, 2015). We adopt the similar approach and propose the Bayesian information 
criterion (BIC) based approach to choose optimal number of clusters and features; this gives 
Algorithm 15.
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Algorithm 15

Choice of number of clusters q and feature penalty α in Gecco+/iGecco+ using BIC

Initialize: s = k 1
K pk, Sk = 1, ⋯, pk , α = 1.

1. Fit iGecco+ with a sequence of γ and fixed α. Choose the number of clusters q  using BIC.

q = argmin
q

n ⋅
k 1

K
πk Skℓk(XSk

k
,USk

k
) + qlog sn .

2. Fit iGecco+ with a sequence of α and fixed number of clusters q . Choose number of features s using BIC. Get 

corresponding α, active set Sk and total number of selected features s = k 1
K Sk .

s = argmin
s

n ⋅
k 1

K

j 1

pk ℓk(X j
k U j

k )

ℓk(X j
k X j

k )
+ sqlog n .

3. Repeat Step 1 and 2 until q  and α stabilize.

Here, the submatrix XSk
k  corresponds to the subset of features (columns) of X(k) that are in 

the active set Sk selected by iGecco+. The quantity πk,Sk refers to πk calculated on the set 

of selected features Sk, i.e., 1

ℓk(XSk
k

,XSk
k

)
.

In summary, in step 1, we choose number of clusters only based on the selected features; 
in step 2, we choose number of features with the optimal number of clusters q estimated 

from the previous step. Note in step 1, USk
k

 is a function of number of clusters q while in 

step 2, U . j
k  is a function of whether the feature is selected. Specifically, in step 1, since 

all features in Sk are selected, USk
k

 correspond to the cluster centroids for each cluster and 

change with respect to the number of clusters. In step 2, by iGecco+, if the jth feature in the 

kth data view is selected, U . j
k  still correspond to the cluster centroids which are different for 

observations across different clusters; if the jth feature is not selected, U . j
k  corresponds to the 

same constant, i.e., loss-specific center X . j
k  for that feature.
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The criterion to minimize is inspired by the BIC approach for convex clustering proposed 
by Tan and Witten (2015). Notice that we use different criterion in step 1 and 2 to choose 
number of clusters and features respectively. When choosing the number of clusters, we 
use the same loss function as in iGecco since all the features are selected. When choosing 
the number of features, for the presence of noise features, we find that the weighted loss 
function with respect to each feature in step 2 works better, as the criterion in step 1 
downweights the contribution of signal features by adding informative terms along with 

the noise terms in the denominator. (When a feature is not selected, ℓk(X . j
k ,U . j

k ) equals 

ℓk(X . j
k ,X . j

k ); when a feature is selected, ℓk(X . j
k ,U . j

k ) is less than ℓk(X . j
k ,X . j

k ); if we use 

the unweighted criterion in step 1, the noise terms will dominate this criterion given a large 
number of noise features.) The degrees of freedom for choosing number of clusters in step 
1 is q while in step 2, the degrees of freedom is sq since we need to estimate q number of 
cluster centroids for each selected feature.

Stability selection is known to be more stable in terms of choosing number of clusters, with 
selection consistency theoretically established in literature. Meanwhile, BIC works better 
in choosing number of features in practice and saves much more computation compared 
with stability selection. Hence, to take full advantage of both approaches, we propose a 
sequential tuning parameter selection procedure, outlined in Algorithm 16. We demonstrate 
the clustering and variable selection accuracy results in Appendix J.3 using the proposed two 
tuning parameter selection approaches.

Algorithm 16

Choice of number of clusters q and feature penalty α in Gecco+/iGecco+ using stability 
selection + BIC

1. Choose the number of clusters q  using Algorithm 14 with α = 1 (stability selection).

2. Fit iGecco+ with a sequence of α and fixed number of clusters q . Choose α using BIC based on Step 2 of Algorithm 
15.

Based on the algorithms above for tuning parameter selection and the adaptive iGecco+ 
Algorithm 1 (with oracle number of clusters and features) to choose the feature weights, 
we propose Algorithm 17, the alternative adaptive iGecco+ when the number of clusters or 
features are not known a priori. Notice that in step 2, we do not perform tuning parameter 
selection for number of clusters q, as we are only interested in some type of adaptive feature 
selection to weigh the features.

Algorithm 17

Adaptive iGecco+ when the number of clusters or features are not known a priori

1. Fit iGecco+ with α = 1, ζj
k = 1 and a sequence of γ.

2. Find γ which gives non-trivial number of clusters, say q = 2; Get the estimate U k
.
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3. Update the feature weights ζ j
k = 1/‖U . j

k − xj
k ⋅ 1n‖2

and fusion weights wij = Iijkexp(−ϕd(Xi . ,Xi′ . )), where 

d(Xi . ,Xi′ . ) =

k 1

K

j 1

pk
‖U j

k xj
k 1n‖2

maxj‖U j
k xj

k 1n‖2

⋅ 1
πk

⋅ dii′j
k

.

Fit adaptive iGecco+ with ζ , w and a sequence of γ and α; Find optimal γ and α using the tuning parameter selection 
procedure in Algorithm 15 or 16.

J.3 Empirical Results in Simulation and Real Data Example
In this section, we demonstrate the empirical results when the number of clusters and 
features are not fixed but estimated based on the data. Specifically, we apply the two tuning 
parameter selection schemes proposed above: i) BIC based approach (Algorithm 17 + 15) 
and ii) stability selection + BIC based approach (Algorithm 17 + 16). We show the results of 
the tables in Section 4 and 5 when the number of clusters and features are estimated and not 
fixed to be the oracle. For simulation studies, we show the results of iGecco and iGecco+; 
Gecco and Gecco+ are special cases of these two. Moreover, we apply the proposed two 
tuning parameter selection approaches to the three real data examples in Section 5.

For iGecco, the stability selection based approach simplifies to choosing the number of 
clusters q in Algorithm 14; the BIC based approach refers to using the criterion in step 1 of 
Algorithm 15 to choose the number of clusters.

For iGecco+, we show the overall F1-score and number of selected features across all three 
data views. Recall that each data view has 10 true features and hence there are 30 true 
features in total. Also, the optimal number of clusters is q = 3. We compare the results with 
iClusterPlus when the number of clusters and features are not fixed. Note we only include 
estimated number of clusters for iClusterPlus as there is no tuning parameter for the number 
of selected features. (The authors mentioned feature selection could be achieved by selecting 
the top features based on Lasso coefficient estimates.)

Table 13 and 14 show the results of Table 3, 4 and 5 in Section 4.2 when the number of 
clusters (and features in iGecco+) is not fixed but estimated based on the data. Table 13 
and 14 suggest that our proposed BIC based approach selects the correct number of clusters 
and features most of the time. On the other hand, information criterion based approaches 
save much more computation than stability selection. Hence, we recommend the BIC based 
approach for choosing tuning parameters which demonstrates strong empirical performance 
and saves computation. Yet, one might have their own justified choice of approach or 
information criterion to select tuning parameters.
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Table 13:

Adjusted Rand index and estimated number of clusters of iGecco and iCluster for mixed 
multi-view data of Table 3 in Section 4.2 when the number of clusters is not fixed but 
estimated based on the data.

S1 S2

ARI # of Clusters ARI # of Clusters

iGecco with BIC 0.93 (5.2e-3) 3.10 (1.0e-1) 0.98 (2.2e-2) 3.00 (0.0e-0)

iGecco with Stability Selection 0.92 (8.1e-3) 3.20 (2.0e-1) 0.89 (4.1e-2) 4.00 (3.9e-1)

iCluster+ with λ = 0 0.92 (4.1e-2) 3.20 (2.0e-1) 0.67 (1.9e-2) 3.40 (1.6e-1)

Table 14:

Adjusted Rand index, F1 score, along with estimated number of clusters and features of 
adaptive iGecco+ and iClusterPlus for high-dimensional mixed multi-view data of Table 4 
and 5 in Section 4.2 when the number of clusters and features are not fixed but estimated 
based on the data. We only include estimated number of clusters for iClusterPlus as there is 
no tuning parameter for the number of selected features.

S3 S4 S5 S6

ARI # of 
Clusters ARI # of 

Clusters ARI # of 
Clusters ARI # of 

Clusters

Algorithm 
17 + 15 
(BIC)

0.97 
(7.8e-3)

3.00 
(0.0e-0)

0.97 
(1.3e-2)

3.10 
(1.0e-1)

1.00 
(0.0e-0)

3.00 
(0.0e-0)

1.00 
(0.0e-0)

3.00 
(0.0e-0)

Algorithm 
17 + 16 
(SS+BIC)

0.93 
(4.1e-2)

2.90 
(1.0e-1)

0.89 
(5.5e-2)

2.80 
(1.3e-1)

0.99 
(1.2e-2)

3.10 
(1.0e-1)

0.82 
(8.1e-2)

4.90 
(9.1e-1)

iCluster+ 0.53 
(8.1e-2)

2.70 
(3.0e-1)

0.72 
(5.3e-2)

3.50 
(3.1e-1)

0.63 
(2.4e-2)

3.50 
(2.2e-1)

0.60 
(1.4e-2)

3.30 
(1.5e-1)

S3 S4 S5 S6

F1-score # of 
Features F1-score # of 

Features F1-score # of 
Features F1-score # of 

Features

Algorithm 
17 + 15 
(BIC)

0.93 
(1.1e-2)

30.00 
(1.1e-0)

0.95 
(1.9e-2)

31.60 
(7.2e-1)

0.99 
(6.3e-3)

30.50 
(4.0e-1)

0.99 
(6.5e-3)

30.90 
(4.1e-1)

Algorithm 
17 + 16 
(SS+BIC)

0.93 
(1.2e-2)

29.60 
(1.2e-0)

0.96 
(1.5e-2)

29.40 
(6.5e-1)

0.99 
(6.3e-3)

30.50 
(4.0e-1)

0.99 
(6.0e-3)

30.10 
(3.8e-1)

Also, we apply the proposed two tuning parameter selection approaches to the real data 
examples in Section 5. Table 15 shows the estimated number of clusters. Again, the BIC 
based approach selects the correct number of clusters for all three cases.
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Table 15:

Adjusted Rand index, along with estimated number of clusters using adaptive (i)Gecco+ for 
real data of Table 6, 8 and 10 in Section 5 when the number of clusters and features are 
not fixed but estimated based on the data. For the first two data set, we show the results of 
Manhattan Gecco+.

Authors Data TCGA Data Multi-omics Data

ARI # of Clusters ARI # of Clusters ARI # of Clusters

Algorithm 17 + 15 (BIC) 0.96 4.00 0.76 3.00 0.71 3.00

Algorithm 17 + 16 (SS+BIC) 0.96 4.00 0.59 2.00 0.52 2.00

Appendix K.: Stable to Perturbations of Data
In this appendix, we demonstrate that clustering assignments of iGecco+ are stable to 
perturbations in the data as shown in Proposition 2 of Section 2.4.

To show this, we include a simulation study similar to the one by Chi et al. (2017). We first 
apply adaptive iGecco+ on the original data to obtain baseline clustering. Then we add i.i.d. 
noise to each data view to create a perturbed data set on which we apply the same iGecco+ 
method. Specifically, for Gaussian data view, we add i.i.d. N(0, σ2) noise where σ = 0.5, 
1.0, 1.5; for count data view, we add i.i.d. Poisson noise; for binary data view, we randomly 
shuffle a small proportion of the entries. We compute the adjusted Rand index between the 
baseline clustering and the one obtained on the perturbed data. We adopt the same approach 
for other existing methods. Table 16 shows the average adjusted Rand index of 10 replicates. 
For all values of σ, we see that iGecco+ tends to produce the most stable results.

Table 16:

Stability and reproducibility of adaptive iGecco+ on simulated data. Adaptive iGecco+ and 
other existing methods are applied to the simulated data to obtain baseline clusterings. We 
then perturb the data by adding i.i.d. noise. Specifically, for Gaussian data view, we add i.i.d. 
N(0, σ2) noise where σ = 0.5, 1.0, 1.5; for count data view, we add i.i.d. Poisson noise; 
for binary data view, we randomly shuffle a small proportion of the entries. We compute 
the adjusted Rand index (ARI) between the baseline clustering and the one obtained on the 
perturbed data.

σ A iGecco+ Hclust: Euclidean Hclust: Gower iCluster+ BCC

0.5 1.00 (0.0e-0) 0.85 (5.1e-2) 0.90 (1.4e-2) 0.69 (2.6e-2) 0.92 (1.6e-2)

1.0 1.00 (0.0e-0) 0.69 (8.3e-2) 0.89 (1.8e-2) 0.71 (3.0e-2) 0.90 (1.7e-2)

1.5 0.95 (3.4e-2) 0.66 (2.8e-2) 0.86 (2.0e-2) 0.70 (2.9e-2) 0.90 (2.0e-2)

Appendix L.: Noisy Data Sources
In this appendix, we show the performance of iGecco+ when a purely noisy data view is 
observed.
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Often in real data, not all the data views observed contain clustering information, i.e., one 
or more data views might be pure noise. Our iGecco+ is able to filter out noisy data views 
by adaptively shrinking all the (noise) features in these data sets towards the loss-specific 
centers. We include a simulation study to demonstrate the performance of iGecco+ in the 
presence of some purely noisy data sets. Similar to the base simulation, each simulated data 
set consists of n = 120 observations with 3 clusters. Each cluster has an equal number of 
observations. Only the first data view contains clustering signal with the first 30 features 
being informative while the rest features being noisy; the rest two data views are pure noise.

Table 17 shows that iGecco+ still performs well in the presence of noise data sources by 
adaptively shrinking noise features.

Table 17:

Adjusted Rand index of different methods in the presence of noisy data sources

Method Adjusted Rand Index

Hclust: [X1X2X3] - Euclidean 0.40 (4.9e-2)

Hclust: [X1X2X3] - Gower 0.33 (4.8e-2)

iCluster+ 0.88 (5.8e-2)

Bayesian Consensus Clustering 0.00 (2.8e-4)

Adaptive iGecco+ 0.99 (5.6e-3)

Appendix M.: Computation Time
In this section, we provide some computation run time results of iGecco(+) with different 
sample sizes and dimensions. We include results for both run times per iteration of the 
ADMM algorithm in Table 18 as well as the full training time for tuning parameter selection 
in Table 19. All timing results are run on a Dell XPS 15 with a 2.4 GHz Intel i5 processor 
and 8 GB of 2666 MHz DDR4 memory.

For training, we use BIC based approach to select tuning parameters for both iGecco 
and iGecco+ as it works well in practice and saves computation. It takes more time to 
train iGecco+ than iGecco as iGecco+ needs to select two tuning parameters (the number 
of clusters and features). Yet, our BIC based approach selects optimal tuning parameters 
in a reasonable amount of time. Note, for sample size n = 120 and feature size p1 = 
200, p2 = 100, p3 = 50, it takes iClusterPlus hours for tuning parameter selection (using 
tune.iClusterPlus function in R).

Table 18:

Run time results per iteration of iGecco(+) with different sample sizes and dimensions; the 
first three experiments use iGecco while the rest use iGecco+

Sample Size n p 1 p 2 p 3 Computation Time (in seconds)

iGecco
120 10 10 10 0.0018
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Sample Size n p 1 p 2 p 3 Computation Time (in seconds)

300 10 10 10 0.0044

120 30 30 30 0.0038

iGecco+
120 200 100 50 0.0041

300 200 100 50 0.0105

120 300 200 100 0.0055

120 400 200 100 0.0061

Table 19:

Training run time results of iGecco(+) with different sample sizes and dimensions; the first 
three experiments use iGecco with BIC to choose number of clusters while the rest use 
adaptive iGecco+ with BIC to choose number of clusters and features.

Sample Size n p 1 p 2 p 3 Computation Time (in seconds)

iGecco
120 10 10 10 0.89

300 10 10 10 2.58

120 30 30 30 2.55

iGecco+
120 200 100 50 63.72

300 200 100 50 117.94

120 300 200 100 90.77

120 400 200 100 104.04
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Figure 1: 
Regularization path of Gecco+ solutions U(γ, α) for authors data. From left to right, we 
increase the parameter for fusion penalty γ. From top to bottom, we increase the parameter 
for feature penalty α. The interpretation of regularization path is discussed in more detail in 
Section 2.4.
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Figure 2: 
Comparisons of full ADMM and one-step ADMM to solve Gecco+ with Poisson log-
likelihood (top panel, differentiable loss) and Gecco+ with Manhattan distances (bottom 
panel, non-differentiable loss). Left plots show the number of iterations needed to converge 
while right plots show computation time. Algorithm with one-step update to solve the 
sub-problem saves much more computational time.
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Figure 3: 
Simulation results of non-Gaussian data: (S1A) We increase number of noise features for 
spherical data with outliers; (S2) We increase number of noise features for non-spherical 
data with outliers; (S3) We increase number of noise features for count-valued data; (S1B) 
We increase noise level for spherical data with outliers; (S1C) We further increase number 
of noise features for spherical data with outliers in high dimensions. The adaptive Gecco+ 
outperforms existing methods in high dimensions.
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Figure 4: 
Cluster heatmap of multi-omics TCGA data with row orders determined by cluster 
assignments from iGecco+. The left bar refers to the integrated cluster labels from 
biologists. The black bars at the bottom of each data view correspond to the selected 
features. Our adaptive iGecco+ identifies meaningful subtypes.
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Table 1:

Different losses and their loss-specific centers. We provide all calculations associated with loss-specific 
centers in Appendix F. Note the Gecco problem with Hamming or Canberra distances is not convex. 
Though we discuss general convex losses in this paper, we list these non-convex losses for reference. For 
multinomial log-likelihood and multinomial deviance, we change Gecco formulation slightly to accommodate 
three indices; we provide a detailed formulation in Appendix E.

Data Type Loss Type Loss Function Loss-specific Center x
Continuous Euclidean (ℓ2) 1

2‖xi − ui‖2
2 x

Skewed continuous

Manhattan (ℓ1)
Minkowski (ℓq)
Mahalanobis (weighted ℓ2)
Chebychev (ℓ∞)
Canberra (weighted ℓ1)

j 1 xij uij

j 1 xij uij
qq

(xi − ui)TC−1(xi − ui)

maxj xij − uij

j 1
xij uij
xij uij

median(x)
no closed form
no closed form
no closed form
no closed form

Binary

Bernoulli log-likelihood
Binomial deviance
Hinge loss
KL divergence
Hamming (ℓ0)

−xijuij + log(1 + euij)

−xijloguij − (1 − xij)log(1 − uij)

max(0, 1 − uijxij)

−xijlog2uij

j (xij uij) n

logit(x)
x
mode(x)
no closed form
mode (x)

Count

Poisson log-likelihood
Poisson deviance
Negative binomial log-likelihood
Negative binomial deviance
Manhattan (ℓ1)
Canberra (weighted ℓ1)

−xijuij + exp(uij)
−xijloguij + uij
−xijuij + (xij + 1

α )log( 1
α + euij)

xijlog(
xij
uij

) − (xij + 1
α )log(

1 + αxij
1 + αuij

)

j 1 xij uij

j 1
xij uij
xij ui

log(x)
x
log(x)
x
median(x)
no closed form
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Data Type Loss Type Loss Function Loss-specific Center x

Categorical

Multinomial log-likelihood
Multinomial deviance

k 1
K xijkuijk log( k 1

K euijk)

k 1
K xijk log(uijk) , k 1

K uijk 1

mlogit(x)
x

J Mach Learn Res. Author manuscript; available in PMC 2021 November 05.



Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript

Wang and Allen Page 79

Table 2:

Comparisons of F1 score for adaptive Gecco+ and sparse convex clustering

Method Scenario 1 (A) Scenario 2 Scenario 3

Sparse Convex Clustering 0.37 (3.1e-2) 0.25 (2.4e-2) 0.14 (7.2e-3)

Adaptive Gecco+ 0.97 (1.9e-2) 0.99 (1.0e-2) 0.81 (8.0e-2)
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Table 3:

Comparisons of adjusted Rand index for mixed multi-view data

Method Scenario 1 Scenario 2

Hclust: X1 0.35 (2.9e-2) 0.53 (2.3e-2)

Hclust: X2 0.53 (4.6e-2) 0.65 (1.8e-2)

Hclust: X3 0.52 (2.2e-2) 0.70 (2.4e-2)

Hclust: [X1X2X3] - Euclidean 0.68 (4.7e-2) 0.63 (3.3e-2)

Hclust: [X1X2X3] - Gower 0.86 (1.5e-2) 0.83 (7.3e-2)

iCluster+ with λ = 0 0.90 (1.6e-2) 0.71 (1.6e-2)

Bayesian Consensus Clustering 0.95 (1.2e-2) 0.63 (1.1e-2)

iGecco 0.93 (5.0e-3) 0.98 (2.2e-2)

J Mach Learn Res. Author manuscript; available in PMC 2021 November 05.



Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript

Wang and Allen Page 81

Table 4:

Comparisons of adjusted Rand index for high-dimensional mixed multi-view data

Method Scenario 3 Scenario 4 Scenario 5 Scenario 6

Hclust: X1 0.42 (2.3e-2) 0.56 (2.5e-2) 0.43 (2.5e-2) 0.51 (2.7e-2)

Hclust: X2 0.23 (2.8e-2) 0.29 (3.4e-2) 0.51 (2.6e-2) 0.49 (2.1e-2)

Hclust: X3 0.25 (3.1e-2) 0.27 (3.1e-2) 0.55 (2.6e-2) 0.48 (1.9e-2)

Hclust: [X1X2X3] - Euclidean 0.40 (3.7e-2) 0.57 (3.3e-2) 0.55 (2.5e-2) 0.52 (2.1e-2)

Hclust: [X1X2X3] - Gower 0.68 (3.4e-2) 0.58 (6.3e-2) 0.58 (3.2e-2) 0.58 (3.0e-2)

iCluster+ 0.57 (6.5e-2) 0.77 (2.7e-2) 0.61 (2.4e-2) 0.62 (1.6e-2)

Bayesian Consensus Clustering 0.35 (1.1e-1) 0.64 (1.0e-1) 0.59 (1.2e-2) 0.63 (6.6e-3)

iGecco 0.00 (6.7e-4) 0.06 (5.0e-2) 0.39 (4.5e-2) 0.23 (6.9e-2)

iGecco+ 0.12 (3.3e-2) 0.16 (7.1e-2) 0.44 (3.6e-2) 0.39 (3.8e-2)

Adaptive iGecco+ 0.97 (7.8e-3) 0.99 (7.5e-3) 1.00 (0.0e-0) 1.00 (0.0e-0)
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Table 5:

Comparisons of F1 score for adaptive iGecco+ and iClusterPlus

Overall Gaussian Count Binary

iCluster+ A iGecco+ iCluster+ A iGecco+ iCluster+ A iGecco+ iCluster+ A iGecco+

S3 0.81 (3.1e-2) 0.94 (1.7e-2) 0.84 (5.7e-2) 0.99 (6.3e-3) 0.73 (3.3e-2) 0.88 (3.5e-2) 0.85 (1.5e-2) 0.93 (2.1e-2)

S4 0.95 (9.9e-3) 0.98 (1.3e-2) 0.99 (6.7e-3) 0.99 (7.3e-3) 0.92 (1.3e-2) 0.97 (1.8e-2) 0.94 (1.9e-2) 0.97 (1.8e-2)

S5 0.94 (3.5e-2) 1.00 (0.0e-0) 0.95 (3.3e-2) 1.00 (0.0e-0) 0.91 (4.2e-2) 1.00 (0.0e-0) 0.95 (3.3e-2) 1.00 (0.0e-0)

S6 0.92 (3.3e-2) 1.00 (3.3e-3) 0.97 (2.1e-2) 1.00 (0.0e-0) 0.84 (4.5e-2) 0.99 (1.0e-2) 0.95 (3.3e-2) 1.00 (0.0e-0)
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Table 6:

Adjusted Rand index of different methods for authors data set

Method Adjusted Rand Index

K-means 0.74

Hierarchical Clustering 0.73

Sparse Convex Clustering 0.50

Manhattan Gecco+ 0.96

Poisson LL Gecco+ 0.96

Poisson Deviance Gecco+ 0.96
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Table 7:

Features selected by different Gecco+ methods for authors data set

Method Features

Manhattan Gecco+ “be” ,“had” ,“her”, “the” ,“to”, “was”

Poisson LL Gecco+ “an” , “her” , “our”, “your”

Poisson Deviance Gecco+ “an”, “be” , “had”, “her”, “is”, “my” , “the”, “was”
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Table 8:

Adjusted Rand index of different methods for TCGA data set

Method Adjusted Rand Index

K-means 0.40

Hierarchical Clustering 0.37

Sparse Convex Clustering 0.01

Manhattan Gecco+ 0.76

Poisson LL Gecco+ 0.72

Poisson Deviance Gecco+ 0.72
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Table 9:

Features selected by different Gecco+ methods for TCGA data set

Method Features

Manhattan Gecco+ “BCL2” , “ERBB2” ,“GATA3” “HMGA1”, “IL6ST”

Poisson LL Gecco+ “ERBB2” “FOXA1” “GATA3”

Poisson Deviance Gecco+ “ERBB2” , “FOXA1”, “GATA3” “RET”, “SLC34A2”
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Table 10:

Adjusted Rand index of different methods for multi-omics TCGA data set

Method Adjusted Rand Index

Hclust: X1 GE 0.51

Hclust: X2 Meth 0.39

Hclust: X3 miRNA 0.21

Hclust: X4 Protein 0.24

Hclust: [X1X2X3X4] - Euclidean 0.51

Hclust: [X1X2X3X4] - Gower 0.40

iCluster+ 0.36

Bayesian Consensus Clustering 0.35

Adaptive iGecco+ 0.71
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Table 11:

Features selected by adaptive iGecco+ methods for multi-omics TCGA data set

Data view Features

Gene Expression “AGR3”, “FOXA1”, “AGR2”, “ROPN1”, “ROPN1B”, “ESR1”, “C1orf64”, “ART3”,“FSIP1”

miRNA “hsa-mir-135b”, “hsa-mir-190b”, “hsa-mir-577”, “hsa-mir-934”

Methylation “cg08047457”, “cg08097882”, “cg00117172”, “cg12265829”

Protein “ER.alpha”, “GATA3”, “AR”, “CyclimE1”
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