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Source separation with an acoustic vector sensor
for terrestrial bioacoustics

Irina Tolkova'-® (% and Holger Klinck?
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA

2K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, New York 14850, USA

ABSTRACT:

Passive acoustic monitoring is emerging as a low-cost, non-invasive methodology for automated species-level popu-
lation surveys. However, systems for automating the detection and classification of vocalizations in complex sound-
scapes are significantly hindered by the overlap of calls and environmental noise. We propose addressing this
challenge by utilizing an acoustic vector sensor to separate contributions from different sound sources. More specifi-
cally, we describe and implement an analytical pipeline consisting of (1) calculating direction-of-arrival, (2) decom-
posing the azimuth estimates into angular distributions for individual sources, and (3) numerically reconstructing
source signals. Using both simulation and experimental recordings, we evaluate the accuracy of direction-of-arrival
estimation through the active intensity method (AIM) against the baselines of white noise gain constraint beamform-
ing (WNC) and multiple signal classification (MUSIC). Additionally, we demonstrate and compare source signal
reconstruction with simple angular thresholding and a wrapped Gaussian mixture model. Overall, we show that AIM
achieves higher performance than WNC and MUSIC, with a mean angular error of about 5°, robustness to environ-
mental noise, flexible representation of multiple sources, and high fidelity in source signal reconstructions.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons

Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1121/10.0013505
(Received 11 May 2022; revised 20 July 2022; accepted 24 July 2022; published online 24 August 2022)

[Editor: Karim G. Sabra]

I. INTRODUCTION

To design and implement effective conservation poli-
cies, there is a need for a thorough understanding of large-
scale population dynamics. However, monitoring through
manual observation is infeasible to perform at the temporal
and spatial scales necessary to track changes in global biodi-
versity. To this end, recent years have brought a rise in auto-
mated technologies such as camera traps,'™ drone
footage,*® or even satellite imagery’ for species-level iden-
tification and population estimation. Yet, while such vision-
based methods can be effective under certain conditions,
particularly for large mammals,® their general use is limited
by occlusion, constrained by animal size, and primarily con-
fined to terrestrial environments. An alternative emergent
approach is passive acoustic monitoring (PAM). PAM is a
relatively low-cost, non-invasive methodology which can be
applied for highly diverse taxa (birds, cetaceans, elephants,
frogs, and others) across terrestrial and marine ecosystems
and which has proven to be successful for both ecological
study and wildlife conservation efforts.”™'* However, there
are several challenges limiting the performance and robust-
ness of PAM. A particular difficulty is the occurrence of
overlapping calls, or the overshadowing of calls with high-
amplitude noise. As PAM classifiers are frequently trained
on “focal recordings”—recordings with a high signal-to-
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noise ratio (SNR) made in close proximity to individual ani-
mals—such systems experience a domain shift when
deployed in complex natural soundscapes, further exacerbat-
ing this challenge.'*

One approach to address overlap could be to separate
an acoustic recording into multiple components correspond-
ing to different sound sources prior to further analysis.
Source separation over monaural audio classically relies on
matrix decomposition methods, such as independent compo-
nent analysis (ICA), principal component analysis (PCA), or
non-negative matrix factorization (NMF), which calculate a
lower-dimensional basis with specified properties for the
observed signal.">~'” More recently, studies have leveraged
deep learning to differentiate sources.'®!?

A fundamental challenge of single-channel source sepa-
ration is that the problem is under-determined; there are
many possible choices of a basis for vocalizations such that
mixtures would yield the observed signal."> This issue could
be addressed with an array of microphones, with which an
individual sound event can be localized by cross-correlating
different channels to find the time-difference-of-arrival
across microphones, triangulating to determine source loca-
tion, and beamforming to reconstruct the true signal.'>*
Localization with acoustic arrays has been used to study ani-
mal movement, behavior, population densities, and anoma-
lous sound events such as gunshots; a thorough review is
given by Rhinehart e al.?' While array processing can be
very fruitful, it carries some limitations. First, array systems
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are more expensive than monaural microphones and require
more resources to deploy and maintain. Additionally, micro-
phone arrays are prone to clock drift—de-synchronization of
time across different recorders—resulting in inaccurate time
difference estimates and therefore errors in localization.'> An
intermediate approach between monaural analysis and micro-
phone array processing is the use of co-located microphones—
such as stereo or quadraphonic systems—which capture spatial
acoustic information while requiring a single clock and fewer
hardware components. In this work, we consider acoustic vec-
tor sensors (AVSs), devices that measure acoustic pressure and
particle velocity,”> commonly implemented as systems of three
or four co-located capsules.”®> AVSs enable streamlined direc-
tion-of-arrival (DoA) estimation through calculation of active
intensity vector statistics, which makes it possible to spatially
distinguish different sound sources.

In underwater acoustics, the use of AVS-integrated
hydrophones dates back to the development of directional
low-frequency analysis and recording sonobuoys (DIFARs)
by the United States Navy in 1965.** DIFARs and the succes-
sive directional autonomous seafloor acoustic recorders
(DASARs) have since become an established tool within
marine bioacoustics.>7 In particular, Thode et al. (2019)28
demonstrated how active-intensity-based DoA estimation with
DIFAR recordings can be used to visualize whale calls
through “azigrams,” representations of spectrograms indicat-
ing directionality for each pixel. Azigrams give an additional
dimension to time-frequency signal analysis and bridge the
gap between image processing techniques and beamforming.
Furthermore, active intensity methods with arrays of AVSs
have been leveraged for two-dimensional localization and
tracking of bowhead and humpback whales and of coral reef
ecosystems.”***>! Yet, despite the adoption of AVSs in
marine bioacoustics, applications of co-located arrays in the
terrestrial domain have been very limited.

In this work, we propose using an AVS to perform DoA
estimation and separate overlapping vocalizations, with a
focus on bird calls in terrestrial environments. We build on
recent work in marine bioacoustics and compare the perfor-
mance of the active intensity method (AIM) against two estab-
lished DoA estimation algorithms: white noise gain constraint
beamforming (WNC) and multiple signal -classification
(MUSIC). We start with the theoretical foundation and imple-
mentation details of DoA estimation and source signal recon-
struction (Sec. II). We then evaluate angular accuracy and
reconstruction fidelity through both simulation and controlled
outdoor experiments (Sec. IV). We report results for one and
two sources and describe the effects of signal characteristics,
algorithm parameters, and environmental factors on DoA esti-
mation (Sec. V). Finally, we discuss challenges and possibili-
ties for further analysis, such as the visualization of vocal
activity across both time and azimuth angles (Sec. VI).

Il. DOA ESTIMATION

In general, DoA estimation with microphone arrays is
achieved through beamforming: a family of methods for
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assigning weights to coherently combine measurements
across different sensors. Alternatively, eigenspace-based
techniques estimate the dominant directional modes within
the data, subject to the constraints of the array architecture.
While these methods can be applied to any microphone
array, the particular properties of an AVS enable empirical
calculation of the active intensity vector, and the correspond-
ing DoA, for each time sample. In this work, we compare the
performance of a beamforming method (white noise gain
constraint beamforming), an eigenspace method (multiple
signal classification), and an active-intensity-based method.

Let R be the number of sensors (for our microphone,
R=4), N be the number of sampled time points, and K be
the number of signal sources. We assume that the recorded
audio can be described by a linear model,

X = m( ¢y, 0k)Sk + W, (1)

K
k=1
where X € CFV is the matrix of measured signals, ¢,
€ [—m, n] is the azimuth angle of source &, O € [—n/2,7/2]
is the elevation angle of source k, m(¢,,0;) € RF! is the
array response vector, Sy € CPN s the signal emitted by
source k, and W € CR*N is a noise matrix.

The form of m is dictated by array architecture and pre-
processing. Notably, if we take X to be the B-format signal
of a tetrahedral AVS, m simplifies to

V3

| cos(¢)cos(0)
m(#,6) = sin (¢p) cos () | @

sin (0)

Please see Figure 1 for a visualization, and Appendix A for
a derivation. The DoA estimation problem then consists of
determining K, the ¢’s, and the 6’s, and the goal of source
separation is to find S.

In this work, we discuss DoA estimation in both the azi-
muth (horizontal) angle ¢ and elevation (vertical) angle 0
but focus on calculating and evaluating the azimuth esti-
mates. Additionally, we consider DoA estimation in both
the time-domain and time-frequency-domain. For the for-
mer, we take X to be the 4 x N matrix of B-format measure-
ments, where N is the number of time samples. For the
latter, we take X to be the 4 x (N; * Ny) matrix of vectorized
spectrograms, where N, is the number of spectrogram bins
in time and N is the number of frequency bins.

A. WNC

WNC can be considered a regularized adaptation of
minimum variance distortionless response (MVDR) beam-
forming.**** MVDR aims to optimally minimize output var-
iance under the constraint of unity gain in the look direction.
Specifically, the MVDR weight vector for data X for a par-
ticular (azimuth, elevation) pair (¢, 0) is
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FIG. 1. A first-order ambisonic microphone, comprised of four co-located
capsules, is one design for an AVS. The four cardioid capsules are oriented
in a tetrahedron, with axes &y, (front-left-up), @y, (front-right-down),
@k (back-left-down), and @hp,; (back-right-up). The azimuth angle ¢ and
elevation angle 0 define the direction-of-arrival unit vector # relative to the
microphone.

_ Clm(e,0)
~m(,0)Ctm(p,0)

w(,0) 3)

where C,, is the covariance of noise and interference within
the environment, and *’ indicates the conjugate transpose.
C,; can be approximated with the time-averaged sample
covariance of a segment of the recording, X,,;, selected to lie
outside of the target signal,

1
Cni = NXmXZ . (4)

However, C,; may be poorly conditioned, causing insta-
bility in the calculation of C,;! and therefore of w(¢, ). To
mitigate this issue, WNC replaces C,; with the regularized
expression C,; + €l, where € > 0 is a manually chosen param-

eter balancing between data adaptivity (smaller €) and stability
(larger €). Overall, the WNC weight vector takes the form

(Coi +el)"'m(¢, 0)

0) =
M G0 (Cut el) i 0) ©
and the output is
Ywnc‘((ba 0) = ||W(¢7 O)HX||2 (6)

We use € = 0.001 and manually select regions of the
recordings outside of the target signals to provide X,;.

B. MUSIC

The MUSIC algorithm, introduced in 1986, is a com-
mon eigenspace-based approach for DoA estimation.**
MUSIC considers sound sources to occupy a K-dimensional
subspace within the R-dimensional space of sensor

J. Acoust. Soc. Am. 152 (2), August 2022

measurements, with the complementary (R — K)-dimen-
sional subspace occupied only by noise. More specifically,
given a measurement matrix X, we construct the time-
averaged sample covariance matrix C = (1/N)XX" and
take an eigenvalue decomposition, C = UAU". Then we
can consider the dominant K vectors of U to represent a
basis for the signal DoA subspace (denoted Us;g,,) and the
last R — K to represent a basis for the noise DoA subspace
(denoted U,,;s.). For each pair of azimuth and elevation
angles, the squared projection of 7i(¢,0) onto the noise
DoA subspace would be ||U” (¢, 0)||>. We are looking
for 7i(¢, 0), which is closest to the signal DoA subspace and
therefore has a minimal projection onto the noise DoA sub-
space. Equivalently, we can maximize the metric,

1
; I’ﬁ((]ﬁ, 0)H Unoise U}Zn‘xe }’ﬁ(d), 0) '

Ymusir (¢; 0) (7)

The source directions can then be estimated by selecting the
azimuth and elevation values at which Y,,,. attains local
maxima. Note that the number of sources K must be chosen
prior to computation and is limited to K < R by the nature of
the algorithm.

C. AIM

An alternative approach for DoA estimation is built on
empirical calculation of the active intensity vector.”®>® Let
p(f, t) and U(f,t) denote short-term Fourier transforms of
the acoustic pressure and particle velocity vector at fre-
quency fand time ¢. For a sufficiently distant source, a signal
emitted by a point source will be received at the microphone
as a plane wave, satisfying

_p(f.1) 7 @)
pc

o(f,1) =
where p is the ambient density, ¢ is the speed of sound in the
medium (air), and i is a direction-of-arrival unit vector. Note
that the plane wave assumption holds when the source dis-
tance is large relative to the signal wavelength Z; since the
lowest frequency we consider is 200 Hz (4 = 1.7 m) and bird
calls are usually above 1kHz (4 = 0.34 m), this is a reason-
able expectation for avian monitoring. As described in
Appendix A, the tetrahedral arrangement of cardioid micro-
phones has a pickup pattern proportional to pii when con-
verted to B-format and yields measurements of both p and .
Now we can obtain the acoustic active intensity vector,

I =Re(p(f,1)8(f,1)). ©))

Since I has direction i, we can compute the corresponding
azimuth ¢ and elevation 0, which define the direction-of-
arrival,

o(f,1) = tan~ ' (1,/1,), (10)

Q(f,t):tan_'<12/,/1§+1y2>. (11)
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The AIM entails calculating the azimuth and elevation
for each time sample (in the time-domain) or spectrogram
pixel (in the time-frequency-domain) and then constructing
a histogram of both angle estimates. For robustness against
low-intensity noise, all samples are weighted by the magni-
tude of intensity within the histogram calculation. The
source directions can be obtained from the maxima of these
distributions or from decomposing the histogram into com-
ponents as described in Sec. III.

lll. SOURCE SEPARATION

After obtaining a DoA distribution with AIM, we seek
to reconstruct the signals corresponding to individual sour-
ces. We approach this problem by decomposing the DoA
distribution of the acoustic mixture into DoA distributions
of the constituent sources, through simple angular threshold-
ing or through a Gaussian mixture model. We can then
assign spectrogram pixels to different components to obtain
both spectrogram- and time-domain source reconstructions.
We compare the reconstruction fidelity obtained with both
pixel assignment methods.

A. Angular thresholding

The locations of the sound sources can be inferred from
the peaks of the DoA distributions. Consequently, a simple
approach to reconstructing source signals could entail calcu-
lating a collection of peaks and then masking the original
spectrogram to include only pixels with azimuth angles
within a pre-specified range of these maxima. In practice, to
represent a recording as a sum of K components, we calcu-
late K — 1 maxima and leave one component to incorporate
all complementary azimuth angles, thereby capturing back-
ground noise.

B. Wrapped Gaussian mixture model

As an alternative to angular thresholding, we consider
fitting the DoA estimates with a mixture model: a sum of
simple probability distributions representing individual
components. In particular, the Gaussian mixture model
(GMM), a weighted sum of Gaussian probability densities,
has been extensively studied and is a common choice for
statistical modeling.>” A GMM can be fit to data through the
iterative expectation-maximization (EM) algorithm; a
detailed description of EM-GMM is provided in Appendix B.
To adapt this algorithm to angular data, which are character-
ized by circular wraparound of the azimuth angle, we modify
the calculations of the distances and averages of data samples.
First, we replace the linear distance ¢, — ¢, with the angular
distance,

dist(¢h,, ) = (¢, — b + 180°) mod (360°) — 180°.
(12)

Additionally, one step of the EM algorithm requires calcu-
lating means of data samples weighted by “member
weights” {w; }, which represent the probability that the ith

1126  J. Acoust. Soc. Am. 152 (2), August 2022

azimuth sample ¢, belongs to component k. Instead of the

standard mean Zf\': | Wir®;, we calculate this weighted azi-
muthal mean by converting a set of angles to unit vector
form, summing them, and converting back to angular form,

[P Tl [PL=LE— (13)

Last, to reduce runtime, we fit the GMM to a random subset
of size N = 10000 rather than to all N azimuth samples.

With the GMM, source separation can be achieved by
multiplying the pressure spectrogram pixel-wise by the
member weights for the kth component to reconstruct the
kth source signal. Since the member weights represent prob-
abilities, we automatically enforce that the sum of all recon-
structions is equal to the pressure spectrogram. Furthermore,
if a time-domain representation of the signal is required, we
can obtain a rough audio reconstruction by performing pixel
assignment over the complex spectrogram prior to applying
an inverse short-time Fourier transform.

IV. METHODS

Through analysis of simulated and experimental audio
recordings, we aim to evaluate DoA estimation across vari-
able signal characteristics (such as source frequency and
recording duration), environmental factors (such as noise
level), and algorithm parameters (such as angular resolu-
tion). Examination of simulated narrowband signals allows
us to isolate estimation error associated with the AVS
model, while outdoor experiments enable assessment of
expected accuracy under realistic conditions for passive
acoustic monitoring.

For our simulation, we consider a tetrahedral cardioid
array with an axis-capsule distance of 1.5 cm, accounting for
associated time delays. We use single-frequency (mono-
chromatic) sound sources of duration 0.5s and add white
noise to each A-format capsule measurement for an overall
SNR of 20 dB, as described in Sec. V D.

For our experiments, we used the AMBEO VR Mic
(Sennheiser Electronic GMBH & Co. KG, Wedemark,
Germany) and the MixPre-10 recorder (Sound Devices
LLC, Reedsburg, WI). The microphone has a flat frequency
response from 20 Hz to 20kHz, with a sensitivity rating of
31 mV/Pa (=30 dBV); the recorder has a 24-bit depth with a
sampling rate of 48 kHz and preamplifier gain set to 50 dB.
Signals were played through Aomais Real Sound Portable
Bluetooth speakers, with a stereo pair used for the two-
source measurements. To simplify measurements of relative
distances and angles between the microphone and speakers,
we conducted the experiments outdoors on an artificial turf
sports field, with the microphone positioned at the center
mark and mounted on a tripod at a height of about 1.5 m.
For distance measurements, we took advantage of accurate
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markings for a 10-yard (9.1-m) center circle and lines. To
determine 60° angles, we geometrically inscribed a hexagon
within the center circle. For smaller angle increments, we
calculated corresponding chord lengths and measured them
manually along the circle. Since we estimate the error in
length measurement and tripod positioning to be within
10 cm, the associated angular error would be within 0.1/9.1
radians, or about 1°. As our source signals, we used cropped,
filtered, and repeated versions of four recordings from
Xeno-Canto: blue jay (Cyanocitta cristata, XC571792),
Carolina wren (Thryothorus ludovicianus, XC556630),
American robin (Turdus migratorius, XC464766), and song
sparrow (Melospiza melodia, XC480068) songs.

We pre-process recordings with a Sth-order Butterworth
high pass filter at 200Hz to remove low-frequency noise
and calculate spectrograms with a Hann window of size
1024 and a shift of 50%, trimmed to a maximum frequency
of 10kHz. Note that, for a 1-s recording, the number of sam-
ples N is equal to 48000 (the sampling rate) for the time-
domain methods and 20330 (N, = 95, Ny = 214) for the
time-frequency-domain methods.

V. RESULTS
A. Examples of DoA estimation

First, we demonstrate and compare the output of each
algorithm across a set of sample recordings with varied
characteristics. Figure 2(A) shows four recordings: a simula-
tion with one 3 kHz source (top left), a simulation with two
non-overlapping sources at 2 and 4 kHz (top right), an exper-
imental recording of a speaker playing a blue jay call (bot-
tom left), and an experimental recording of two speakers
playing overlapping American robin and song sparrow calls
(bottom right). Both single-source recordings are emitted

(A) Spectrograms (B) Azigrams
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from an azimuth of —60°, while both two-source recordings
have a separation angle of 45°. For each recording,
Fig. 2(B) shows the associated azimuth values calculated by
AIM for each time-frequency bin (pixel). Despite the lack of
intensity information, the calls are still recognizable and can
be visibly separated from each other and from the back-
ground. Finally, Fig. 2(C) shows the outcome of DoA esti-
mation by plotting the output of all algorithms in both the
time-domain and time-frequency-domain: Y,,.(¢,0), as
defined in Eq. (6), for WNC; Y,usic (¢, 0), as defined in Eq.
(7), for MUSIC; and the weighted histogram of azimuth val-
ues for AIM. We indicate the time-domain variant of each
algorithm with “(time)” and the time-frequency-domain var-
iant with “(t-f)”. Additionally, for ease of visual comparison,
we scale all outputs to a maximum value of 1. For a single
simulated source, all algorithms identify the source direction
at —60° with high accuracy. However, for the case of a real
recording with a single source, WNC exhibits an inaccurate
response, suggesting a lack of robustness to directional noise
in the environment. The presence of two sources reveals
greater differences between algorithms. Both in simulation
and in practice, only AIM produces a bimodal distribution;
MUSIC and WNC result in metrics that peak either at one
of the sources or in between. Overall, in these examples,
AIM outperforms WNC and MUSIC through higher robust-
ness to noise in real-world data and more flexible represen-
tation of multiple sources.

B. Effect of angular resolution

The angular resolution of the DoA estimate is set by
azimuth discretization for WNC and MUSIC and by the
number of histogram bins for AIM. For the first two meth-
ods, we expect accuracy to increase with resolution, with

(C) DoA Estimates
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FIG. 2. (Color online) (A) Spectrograms of four sample recordings: a simulation of one monochromatic source at —60° (top left), a simulation of two mono-
chromatic sources separated by 45° (top right), experimental data for one speaker playing a blue jay call at —60° (bottom left), and experimental data for
two speakers playing overlapping American robin and song sparrow calls separated by 45° (bottom right). (B) Azigrams corresponding to the four sample
signals; pixel color indicates azimuth in degrees as measured by AIM in the time-frequency domain. (C) DoA estimates returned by all algorithms for the
four sample signals. Dashed lines indicate speaker angles for the single-source examples and 45° separation for the two-source examples.

J. Acoust. Soc. Am. 152 (2), August 2022

Irina Tolkova and Holger Klinck 1127

GG'8€'9} €20T 1890100 G2


https://doi.org/10.1121/10.0013505

the only disadvantage being a proportional increase in com-
putation. For AIM, we might expect a trade-off between
angular resolution and robustness. With a numerical evalua-
tion, we find that AIM (t-f) achieves best performance in the
100-1000 bin range per a 1-s recording (200-20 pixels/bin).
As anticipated, a small bin count (below 30 bins) yields a
consistent estimate across trials but higher error due to the
coarse-grained resolution. As bin count increases, the mean
angular error remains stable, suggesting robustness to sam-
ple sparsity. Finally, past about 1000 bins, error variance
increases. Given the low sensitivity of the algorithm to this
parameter, we simply choose to use 360 bins for an angular
resolution of 1° and apply the same discretization for WNC
and MUSIC.

C. Effect of recording duration

Since natural soundscapes are dynamic, and the direc-
tionality of vocalizations may change at short time scales,
we consider how recording duration affects DoA estima-
tion. To evaluate this parameter, we analyze a recording of
a Carolina wren call played back at 0° by a speaker posi-
tioned 9.1 m (10 yards) from the microphone, with the
dominant source of background noise emitted by highway
traffic located at about 180°. The angular error resulting
from DoA estimation over the call cropped to varying
durations is shown in Fig. 3(A). At the shortest limit, all
DoA estimates become dominated by noise. AIM (t-f) is
the most robust to short durations, yielding an accurate
estimate even with a 0.05-s analysis window, while the
other methods show poor performance below a duration of
0.5 s. In practice, spectrograms of complete calls are proba-
bly at least 0.5 s long, but short recording windows are rel-
evant for temporal analysis of DoA, as shown in Fig. 8 and
discussed in Sec. VI.

D. Effect of noise

Vocalizations in natural soundscapes will occur along-
side ambient environmental and anthropogenic noise. In this
section, we analyze the robustness of WNC, MUSIC, and

(A) Angular Error Over Recording Duration

-
>
o

AIM against SNR by keeping source level fixed and varying
the distance of the speaker from the microphone.

We compute SNR as 201log,,(As/A,), where A, and A,,
are the root mean square time-domain amplitudes of seg-
ments of the B-format pressure channel corresponding to the
signal and noise, respectively. The results are thus compara-
ble to SNR for an omnidirectional microphone. For the
experimental recordings, we do not have true signal samples
that are isolated from noise and interference, so we approxi-
mate the signal sound level by selecting a narrow time win-
dow around a bird call and filtering below 2kHz. To
represent background noise, we manually select a nearby
portion of the recording that excludes the calls and interfer-
ing sound sources. Note that we do not band-limit the noise
sample to the range of a particular bird call, since all fre-
quencies affect DoA calculations.

Figure 3 shows the angular error of DoA estimation for a
blue jay call played back from a speaker positioned at 0° at dis-
tances ranging from 4.6 to 37 m (5-40 yards) at increments of
4.6 m (5 yards). Once again, the dominant noise source was
highway traffic located at about 180° relative to the micro-
phone. We find that all algorithms yield consistent accuracy
for a SNR above about 2 dB. Below this threshold, the direc-
tionality of background noise overshadows the signal for
WNC and MUSIC. AIM (t-f) appears to be most robust to
noise, even for an SNR close to 0 dB. Since pixels are weighted
by acoustic intensity, a small proportion of high-amplitude sig-
nal pixels with consistent directionality can outweigh a large
proportion of noise pixels with scattered directionality while
maintaining similar root mean square amplitudes.

Note that frequency-domain filtering will impact DoA
distributions. For example, Fig. 4 shows an example of the
spectrograms and DoA distributions for the same recording,
pre-processed with a 200 Hz and 2 kHz high pass filter. With
200 Hz filtering, the noise dominates all DOA estimates
except AIM (t-f), which exhibits a broad distribution for the
noise and a narrow distribution for the target source. With
2 kHz filtering, all DoA estimates indicate the target source.
Consequently, limiting analysis to the target frequencies can
substantially improve DoA estimates if the noise occupies
disjoint frequency bands.

(B) Angular Error Over Signal-to-Noise Ratio
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FIG. 3. (Color online) (A) Mean * standard deviation of the angular error of DoA estimates as a function of the recording duration. For this experiment, a
speaker played back a Carolina wren call from a distance of 9.1 m (10 yards), repeated for eight trials. (B) Mean = standard deviation of the angular error of
DoA estimates as a function of the SNR. For this experiment, a speaker played back a blue jay call from distances of 4.6-37 m (540 yards) in increments

of 4.6 m (5 yards), repeated for six trials.
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(A) Highpass Filter at 200 Hz
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FIG. 4. (Color online) (A) A recording of a blue jay call is played back
from a speaker located at about 0° at a distance of 37 m (40 yards) from the
microphone and is high pass-filtered at 200 Hz prior to DoA estimation.
The DoA estimates are largely dominated by low-frequency noise from a
highway located at about 180°. (B) The same recording is high pass-filtered
at 2kHz prior to DoA estimation. The resulting DoA estimates are now all
centered on the source direction.

E. Effect of signal frequency

In addition to DoA estimation error associated with
environmental noise and inaccuracy in measurement of
speaker positions, the underlying model of the AVS is itself
not exact. Specifically, the array response vector given in
Eq. (2) is an approximation of the true array response and
assumes that the four capsules of the tetrahedral array are
located at a point. This assumption is reasonable for low fre-
quencies but worsens as the signal wavelength becomes
comparable to the finite spacing between capsules. In this
work, the microphone has a capsule-axis distance of about
1.5cm. To evaluate the magnitude of error contributed by
violation of this co-location assumption, we simulate the
recording associated with monochromatic signals and per-
form DoA estimation with AIM (t-f) across different azi-
muthal directions. We set the SNR to 60 dB to remove error
associated with noise.

The result of this experiment is presented in Fig. 5. As
expected, we find that DoA estimation error increases with fre-
quency. This error is deterministically defined by source DoA;
moreover, at particular source azimuth angles (specifically, at
multiples of 45° relative to the microphone axis), the model
error drops to 0. Overall, for this microphone architecture,
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FIG. 5. (Color online) To evaluate DoA estimation error associated with
the co-location assumption, we simulate monochromatic signals across
source frequency and azimuth and calculate the angular error of AIM (t-f).
White dashed lines indicate multiples of 45°. We observe substantial error
for wavelengths comparable to the 1.5 cm capsule spacing.

we suggest focusing on sound sources below about 5kHz to
limit maximum angular error to below 10°. In practice, we
find that the challenge posed by model error to DoA estima-
tion and source separation is tempered by the rest of the algo-
rithm: high-frequency narrowband calls should still yield a
coherent (albeit inaccurate) source direction and should
therefore be amenable to directionality-based source separa-
tion, and in broadband calls, higher frequencies will experi-
ence greater attenuation and therefore receive less weight
than lower-frequency components.

F. Overall accuracy and resolution

Finally, after considering the effects of different param-
eters on DoA estimation error, we summarize comparative
algorithm performance in Table I. We focus on two main
metrics: angular accuracy for a single source and the mini-
mum separation angle necessary to distinguish two sources.

When considering one source in simulation at frequen-
cies randomly sampled between 0 and 5 kHz, we find that all
algorithms have similar accuracy at around 2.5° mean error.
Note that we are controlling for experimental inaccuracies,
and this error stems from the co-location assumption. Next,
we consider the accuracy for one source with speaker play-
back experiments, which reveals greater differences between
algorithms. In particular, both the time- and time-frequency-
domain variations of WNC show greater error than MUSIC
and AIM. This reduction in performance is likely caused by
heterogeneity and directionality of background noise: while
the simulation contained only omni-directional white noise,
the real-world data contain variable, directional broadband
noise together with interfering sound sources that we could
not control for (such as real birds vocalizing in the
background).

Next, we consider an environment with multiple sound
sources. Specifically, we evaluate the minimum angular
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TABLE I. We evaluated two key metrics: the DoA estimation accuracy
with a single source and the minimum angular separation necessary to dis-
tinguish two sources. We evaluated error in simulation across 20 trials of
sources at frequencies randomly sampled between O and 5 kHz, with non-
directional background noise for an SNR of 20dB. To evaluate error in
real-world experiments, we played back a 1-s blue jay call from a speaker
located at a distance of 9.1 m (10 yards) from the microphone, at repeated
increments of 60°, repeated for eight trials. Next, we evaluated the mini-
mum angular separation across algorithms in simulation by calculating
DoA estimates for two 3 kHz sources at randomly sampled azimuth angles.
For corresponding real-world experiments, we position two speakers at a
radial distance of 9.1 m (10 yards) from the microphone and separation
angles of 0°, 6°, 11°, 22°, and 45° and play back American robin and song
sparrow recordings overlapping in time and frequency.

Angular Angular
Error Error separation separation

Algorithm (simulation)  (experiment)  (simulation) (experiment)
WNC (time) 24°+2.6° 28.3°*27.0° 150° >45°
WNC (t-f) 2.4° +2.6° 9.9° +7.8° 150° >45°
MUSIC (time) 2.3° +£2.6° 5.1°*+34° 90° >45°
MUSIC (t-f) 2.4° +2.6° 5.1°*+3.3° 90° >45°
AIM (time) 2.4°+2.7° 5.6° =3.9° 7° 6°—11°
AIM (t-f) 2.5°+2.7° 4.7°+2.4° 7° 6°—11°

separation necessary between two sources for the DoA esti-
mation algorithms to distinguish them with two peaks. In sim-
ulation, we consider two consecutive non-overlapping 0.5-s
3kHz sources. We find that both variants of WNC begin to
distinguish the sources at a minimum separation angle of
150°, and both MUSIC variants require a separation of at
least 90°. In contrast, AIM would yield two peaks with
approximately 3° width, resulting in a minimum separation
angle of about 7°. For the real-world experiments, both WNC
and MUSIC maintain unimodal distributions across the sepa-
ration angles tested (up to 45°). On the other hand, AIM
begins to successfully separate two sources when the separa-
tion angle reaches 11°, similarly to the simulated results.
Overall, AIM significantly outperforms WNC and MUSIC in
the ability to represent environments with multiple sound
sources.

On the whole, we find that while the algorithms give
similar performance for a single source in high-SNR condi-
tions, AIM (t-f) shows best performance and highest robust-
ness for low SNR, short analysis windows, or multiple
sources. Additionally, AIM has the advantage of being
highly automated: it can flexibly represent multiple sources
with variable DoA distributions and gives stable output
across a wide range of the angular resolution hyper-
parameter. On the other hand, the number of sources that
can be represented by MUSIC and WNC is much more lim-
ited, and WNC requires manual selection of a region of the
recording not containing the signals of interest, which may
be undesirable for automated monitoring systems.

G. Source separation

Finally, we complete the source separation pipeline and
evaluate the fidelity of spectrogram reconstruction. First, we
calculate DoA estimates with AIM (t-f), selected due to its
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high performance throughout the evaluation in Sec. VF.
Next, we apply angular thresholding and fit a wrapped
Gaussian mixture model to obtain the azimuth distributions
associated with individual sources. Based on the observed
width of AIM distributions, we use an angular range of 10°
to both sides of an azimuth maxima for angular threshold-
ing. Additionally, to avoid multiple maxima corresponding
to the same source, we apply a buffer of 20° between max-
ima. Finally, for each source, we calculate spectrogram and
time-domain reconstructions and compare cross-correlations
between the true source audio signals and the reconstruc-
tions obtained with both methods.

First, we demonstrate the source separation pipeline for
recordings of American robin and song sparrow birdsong
played back from stereo speakers. We set the number of com-
ponents K to 3, to represent the two actual sources as well as
remaining background noise. Figure 6 shows the original
source signal, measured signal, azigram, DoA distribution,
and reconstructions. In this example, the high SNR and
non-directional background noise result in a DoA distribution
composed of two clearly defined peaks. Consequently, the
angles associated with each peak can be successfully recovered
by either the GMM, which fits two narrow distributions to the
peaks, or with a simple thresholding method. The resulting
spectrogram reconstructions closely match the structure of the
original calls. To quantitatively evaluate reconstruction fidel-
ity, we cross-correlate the time-domain reconstructions with
the true source signals and find that angular thresholding yields
the same output as a GMM for the robin call and a 26%
improvement for the sparrow call in this example.

Next, we repeat the source separation analysis for a
recording of a 1-s blue jay call played from a speaker posi-
tioned at 0° at a distance of 37 m (40 yards) from the micro-
phone in the presence of significant directional noise. We
set the number of components K to 4, to represent multiple
sources along with remaining background noise. The origi-
nal source signal, measured signal, azigram, DoA distribu-
tion, and reconstructions are displayed in Fig. 7. Here, we
see a greater difference in the components resulting from
angular thresholding and from the GMM. Not only is the
DoA distribution now dominated by noise and external
sound sources (such as a crow call at about —100°), but the
noise and signal have variable widths, and the DoA maxima
no longer correspond to unique sound sources. As a result,
angular thresholding only partially captures the sound sour-
ces present in the acoustic environment. On the other hand,
the GMM adaptively fits components to the widths present
in the data and is able to separate the blue jay call (compo-
nent 2) from the low-frequency highway noise (component
0) and even from a crow call (component 1). In this exam-
ple, the GMM results in a 49% higher cross correlation
score for the source signal than angular thresholding.

Overall, while simple angular thresholding can be suffi-
cient for signals with high SNR in a quiet environment, the
wrapped GMM enables flexible representation of mixtures of
angular distributions with variable characteristics. A possible
limitation of this approach is that DoA distributions may be
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FIG. 6. (Color online) To demonstrate source separation, we consider 5-s recordings of American robin and song sparrow birdsong played back from two
speakers separated by 45° at a distance of 9.1 m (10 yards) from the microphone (A). The measured recording (B) is a mixture of these calls. Calculating azi-
muth estimates for each pixel with AIM (t-f) yields an azigram (C), in which both sources are visibly distinguishable against a backdrop of omnidirectional
noise. Next, we compare a baseline angular thresholding approach (D and F) with a wrapped Gaussian mixture model (E and G). Note that the distributions
and y axes in (D) and (E) differ slightly, as we use a probability density over a subsampled set of azimuth points for the GMM. In this example, we see very
similar performance between the two source separation methods.

non-Gaussian and may result in a poor fit for some sources. ~ VI. DISCUSSION
The GMM is also the most computationally intensive part of
the source separation pipeline; runtime depends on the num-
ber of subsampled azimuth points, the chosen number of iter-
ations (or convergence threshold), and the number of mixture
components. Further development of this approach could
incorporate automatic selection of the number of sources.
This is commonly achieved by iterating through all relevant
values of K, calculating the Akaike or Bayesian information
criterion, and choosing the K at which the improvement in
the criterion value is below a set threshold.*®>°

All in all, AVSs are a simple, robust, and compact tool for
soundscape analysis that can support efficient direction-of-
arrival estimation and source separation. While DoA estimation
can be performed with conventional beamforming methods
like WNC or eigenspace methods like MUSIC, we found best
performance with empirical calculation of active intensity. In
playback experiments with speakers, AIM (t-f) resulted in
angular error of about 5° and could distinguish sources at a
separation angle of 11°. Moreover, this performance persisted
for recording lengths as short as 0.05 s and for near-zero SNR.
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FIG. 7. (Color online) We repeat the source separation pipeline, now with a 1-s blue jay call (A) being played by a speaker located at 37 m. (40 yards) at 0°.
The measured recording (B) has low SNR, with significant noise from a highway located at about 180°, a crow call at about —100°, and other interfering
sound sources. The azigram (C) displays directional characteristics of both the target signal and noise. Again, we compare a baseline angular thresholding
approach [(D) and (F)] with a wrapped Gaussian mixture model in (E) and (G). We see much clearer output from the GMM than from angular thresholding,
as the GMM can adaptively fit distributions to represent variable spread in directionality across different sources.
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FIG. 8. (Color online) Direction-of-arrival analysis can be enhanced by using
a sliding window to visualize both the times at which sources are active and
the azimuth angles from which they arrive. In this example, two 15-s record-
ings of robin and sparrow song were played back from azimuth angles of 45°
and 0°, respectively. The time-series representations of the original signals,
along with the measured mixture, are shown in the top section of the figure.
By applying DoA estimation with AIM (t-f) over 0.1-s windows of the mea-
sured signal, stacking the estimates as columns of a matrix, and visualizing
with a log-scale pseudocolor plot, we obtain a two-dimensional (2D) repre-
sentation of a soundscape. We can see that both the angles and times at
which the two sources are active closely correspond to the ground-truth.

Unlike a microphone array, an AVS requires minimal
calibration, mitigating the need for clock synchronization.
Additionally, the only algorithmic parameters are the angu-
lar resolution, which has a minor effect on accuracy over a
wide range of values, and the number of GMM components
or sources, which could be chosen automatically through an
information criterion. Furthermore, the proposed pipeline
can provide DoA estimates in both the azimuth and eleva-
tion angles. Analysis in both dimensions would improve the
ability to pinpoint sources and likely increase the number of
sounds that can be distinguished within an environment.
However, preliminary experiments showed poor results for
elevation estimation, likely due to acoustic reflection and
scattering from the ground. Further development on these
methods could incorporate modeling of acoustic propagation
to account for these distortions.*

The calculation of azimuth angles advances our under-
standing of a soundscape by providing an additional dimen-
sion for acoustic analysis. For instance, we can apply DoA
estimation over a sliding temporal window to visually display
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both the angles and times at which sources are actively vocal-
izing. Figure 8 shows this technique for the two-source exper-
iment with 45° angular separation between speakers, using a
0.1-s time window and 50% overlap between consecutive
windows. Each column of the figure represents the AIM (t-f)
angular histogram for a particular window; darker purple cor-
responds to higher histogram values. We can clearly see that
there are two angles at which sources are active—at about 0°
and 45°—along with fine granularity in the times at which
they are vocalizing. Comparing against the ground-truth time
series, we see that the activity of the 45° signal matches the
first source signal, and the activity of the 0° signal matches
the second source signal.

The ability to perform DoA estimation and source sepa-
ration within acoustic mixtures opens a number of opportu-
nities within passive acoustic monitoring. First, this
approach can be integrated with a machine-learning-based
classifier to disentangle individual vocalizations and thereby
improve accuracy of species-level identification and count
estimates. Furthermore, localization and tracking algorithms
with AVS arrays established in marine bioacoustics could
be adapted and further developed for terrestrial environ-
ments.”*>" Finally, behavioral studies of vocal behavior
could also benefit from identifying source directions and
removing undesired sound sources.
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APPENDIX A: AVS PICKUP PATTERN

In three dimensions, the pickup pattern of a cardioid
microphone is given by g(0) = 3+ 1cos (0), where 0 is the
angle between the microphone’s axis @ and the sound direc-
tion of propagation ir.*' Equivalently,

=T
a u.

N[ —

An ambisonic microphone is composed of four cardioid
microphones in a tetrahedral arrangement, as shown in Fig. 1.
The unit vectors indicating the axes of each capsule are given as

7t 1 1 1
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Therefore, the A-format response would be
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The different components of g4 (i) contain mixed combina-
tions of the elements of i#. However, this pickup pattern can
be greatly simplified by converting to B-format through a
linear transformation,
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Note that the relative gain between the first and other rows
depends on architecture and data format convention.

Under the assumption that the distance to a source is
much greater than its wavelength, its signal will be received
at the microphone as a plane wave, for which

B(r) = —@ﬁ,
pc

where ¥(7) is the acoustic particle velocity, p(¢) is the pres-
sure, p is the density of the medium of propagation, and ¢ is
the speed of sound. Therefore, if the AVS yields B-format
readings gg(if)s(t), where s(¢) is the incident source pressure,
then the first B-format entry will be proportional to acoustic
pressure, and the next three components will be proportional
to the acoustic particle velocity. Note that this derivation
depends on the approximation that the microphone capsules
are coincident. For high frequencies, for which the wave-
length is comparable to the capsule spacing, this may no lon-
ger hold.** Fortunately, performance at high frequencies can
be improved through non-coincidence correction filters.**

APPENDIX B: GAUSSIAN MIXTURE MODEL

We fit a GMM to decompose an azimuth probability
distribution into constituent parts representing different
sound sources. Given N azimuth measurements ® = {¢,,
3y ..., by}, a GMM with K components has the form
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P(¢lo, 1, 0) = Zi_ uPr( bl o), (B1)
where P, is a Gaussian distribution with mean y; and stan-
dard deviation oy, and o is a mixture weight representing
the contribution of the kth component to the overall distribu-
tion. Note that by definition, o, satisfies ZkK:]OCk = 1. Each
mixture component has the form

1 1
Pk(¢|,uk7 Uk) = \/2_—ngkexp (—2—0_2dist(¢), ,uk)2>.
(B2)

For a standard GMM, the distance function dist(¢,, ¢,)
is simply equal to ¢; — ¢,. To adapt this method for azi-
muth samples, we instead use circular distance as given by
Eq. (12).

A GMM can be fit to data through the iterative EM
algorithm. The EM algorithm determines the optimal 1, gy,
and o by alternating between the expectation step, which
assigns probabilities to the data points, and the maximization
step, which updates the means and variances of the mixture
components. In the expectation step, we update the member
weights wy;, which represent the probability that a sample ¢;
belongs to component £,

P (il e, ox)
Z;(:lafpj(d)i“ljv 7))

Wik . (B3)

Note that Zlewik = 1, as every point must belong to one of
the components. We use “ <" to indicate variable assign-
ment rather than algebraic equality.

In the maximization step, we use the data and the mem-
ber weights to update distribution parameters. We define N,
to be the effective number of data points assigned to compo-
nent k,

N
Nk — Zizlwik'

Then oy will be the effective proportion of data points
assigned to component £k,
N

O < —.

Next, we update the distribution parameters by calculating
means and variances, but with all points weighted by their
associated member weight. For a vanilla GMM, this would be

1
Wy — ]sz-vzlwik%,

1 .
o7 Mzﬁlwikdmt(% w)’.

Once again, for our application, we modify the calculation
of the mean, as given by Eq. (13). The algorithm iterates
between the expectation and maximization steps until con-
vergence. Specifically, we terminate the algorithm when the
difference in consecutive mixture means is less than 0.005,
or at a maximum of 100 iterations.
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