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Source separation with an acoustic vector sensor
for terrestrial bioacoustics
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ABSTRACT:
Passive acoustic monitoring is emerging as a low-cost, non-invasive methodology for automated species-level popu-

lation surveys. However, systems for automating the detection and classification of vocalizations in complex sound-

scapes are significantly hindered by the overlap of calls and environmental noise. We propose addressing this

challenge by utilizing an acoustic vector sensor to separate contributions from different sound sources. More specifi-

cally, we describe and implement an analytical pipeline consisting of (1) calculating direction-of-arrival, (2) decom-

posing the azimuth estimates into angular distributions for individual sources, and (3) numerically reconstructing

source signals. Using both simulation and experimental recordings, we evaluate the accuracy of direction-of-arrival

estimation through the active intensity method (AIM) against the baselines of white noise gain constraint beamform-

ing (WNC) and multiple signal classification (MUSIC). Additionally, we demonstrate and compare source signal

reconstruction with simple angular thresholding and a wrapped Gaussian mixture model. Overall, we show that AIM

achieves higher performance than WNC and MUSIC, with a mean angular error of about 5�, robustness to environ-

mental noise, flexible representation of multiple sources, and high fidelity in source signal reconstructions.
VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1121/10.0013505
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I. INTRODUCTION

To design and implement effective conservation poli-

cies, there is a need for a thorough understanding of large-

scale population dynamics. However, monitoring through

manual observation is infeasible to perform at the temporal

and spatial scales necessary to track changes in global biodi-

versity. To this end, recent years have brought a rise in auto-

mated technologies such as camera traps,1–3 drone

footage,4–6 or even satellite imagery7 for species-level iden-

tification and population estimation. Yet, while such vision-

based methods can be effective under certain conditions,

particularly for large mammals,8 their general use is limited

by occlusion, constrained by animal size, and primarily con-

fined to terrestrial environments. An alternative emergent

approach is passive acoustic monitoring (PAM). PAM is a

relatively low-cost, non-invasive methodology which can be

applied for highly diverse taxa (birds, cetaceans, elephants,

frogs, and others) across terrestrial and marine ecosystems

and which has proven to be successful for both ecological

study and wildlife conservation efforts.9–13 However, there

are several challenges limiting the performance and robust-

ness of PAM. A particular difficulty is the occurrence of

overlapping calls, or the overshadowing of calls with high-

amplitude noise. As PAM classifiers are frequently trained

on “focal recordings”—recordings with a high signal-to-

noise ratio (SNR) made in close proximity to individual ani-

mals—such systems experience a domain shift when

deployed in complex natural soundscapes, further exacerbat-

ing this challenge.14

One approach to address overlap could be to separate

an acoustic recording into multiple components correspond-

ing to different sound sources prior to further analysis.

Source separation over monaural audio classically relies on

matrix decomposition methods, such as independent compo-

nent analysis (ICA), principal component analysis (PCA), or

non-negative matrix factorization (NMF), which calculate a

lower-dimensional basis with specified properties for the

observed signal.15–17 More recently, studies have leveraged

deep learning to differentiate sources.18,19

A fundamental challenge of single-channel source sepa-

ration is that the problem is under-determined; there are

many possible choices of a basis for vocalizations such that

mixtures would yield the observed signal.15 This issue could

be addressed with an array of microphones, with which an

individual sound event can be localized by cross-correlating

different channels to find the time-difference-of-arrival

across microphones, triangulating to determine source loca-

tion, and beamforming to reconstruct the true signal.13,20

Localization with acoustic arrays has been used to study ani-

mal movement, behavior, population densities, and anoma-

lous sound events such as gunshots; a thorough review is

given by Rhinehart et al.21 While array processing can be

very fruitful, it carries some limitations. First, array systemsa)Electronic mail: itolkova@g.harvard.edu
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are more expensive than monaural microphones and require

more resources to deploy and maintain. Additionally, micro-

phone arrays are prone to clock drift—de-synchronization of

time across different recorders—resulting in inaccurate time

difference estimates and therefore errors in localization.13 An

intermediate approach between monaural analysis and micro-

phone array processing is the use of co-located microphones—

such as stereo or quadraphonic systems—which capture spatial

acoustic information while requiring a single clock and fewer

hardware components. In this work, we consider acoustic vec-

tor sensors (AVSs), devices that measure acoustic pressure and

particle velocity,22 commonly implemented as systems of three

or four co-located capsules.23 AVSs enable streamlined direc-

tion-of-arrival (DoA) estimation through calculation of active

intensity vector statistics, which makes it possible to spatially

distinguish different sound sources.

In underwater acoustics, the use of AVS-integrated

hydrophones dates back to the development of directional

low-frequency analysis and recording sonobuoys (DIFARs)

by the United States Navy in 1965.24 DIFARs and the succes-

sive directional autonomous seafloor acoustic recorders

(DASARs) have since become an established tool within

marine bioacoustics.25–27 In particular, Thode et al. (2019)28

demonstrated how active-intensity-based DoA estimation with

DIFAR recordings can be used to visualize whale calls

through “azigrams,” representations of spectrograms indicat-

ing directionality for each pixel. Azigrams give an additional

dimension to time-frequency signal analysis and bridge the

gap between image processing techniques and beamforming.

Furthermore, active intensity methods with arrays of AVSs

have been leveraged for two-dimensional localization and

tracking of bowhead and humpback whales and of coral reef

ecosystems.26,29–31 Yet, despite the adoption of AVSs in

marine bioacoustics, applications of co-located arrays in the

terrestrial domain have been very limited.

In this work, we propose using an AVS to perform DoA

estimation and separate overlapping vocalizations, with a

focus on bird calls in terrestrial environments. We build on

recent work in marine bioacoustics and compare the perfor-

mance of the active intensity method (AIM) against two estab-

lished DoA estimation algorithms: white noise gain constraint

beamforming (WNC) and multiple signal classification

(MUSIC). We start with the theoretical foundation and imple-

mentation details of DoA estimation and source signal recon-

struction (Sec. II). We then evaluate angular accuracy and

reconstruction fidelity through both simulation and controlled

outdoor experiments (Sec. IV). We report results for one and

two sources and describe the effects of signal characteristics,

algorithm parameters, and environmental factors on DoA esti-

mation (Sec. V). Finally, we discuss challenges and possibili-

ties for further analysis, such as the visualization of vocal

activity across both time and azimuth angles (Sec. VI).

II. DOA ESTIMATION

In general, DoA estimation with microphone arrays is

achieved through beamforming: a family of methods for

assigning weights to coherently combine measurements

across different sensors. Alternatively, eigenspace-based

techniques estimate the dominant directional modes within

the data, subject to the constraints of the array architecture.

While these methods can be applied to any microphone

array, the particular properties of an AVS enable empirical

calculation of the active intensity vector, and the correspond-

ing DoA, for each time sample. In this work, we compare the

performance of a beamforming method (white noise gain

constraint beamforming), an eigenspace method (multiple

signal classification), and an active-intensity-based method.

Let R be the number of sensors (for our microphone,

R¼ 4), N be the number of sampled time points, and K be

the number of signal sources. We assume that the recorded

audio can be described by a linear model,

X ¼
XK
k¼1

mð/k; hkÞSk þW; (1)

where X 2 C
R�N

is the matrix of measured signals, /k

2 ½�p; p� is the azimuth angle of source k, hk 2 ½�p=2; p=2�
is the elevation angle of source k, mð/k; hkÞ 2 RR�1 is the

array response vector, Sk 2 C
1�N

is the signal emitted by

source k, andW 2 C
R�N

is a noise matrix.

The form of m is dictated by array architecture and pre-

processing. Notably, if we take X to be the B-format signal

of a tetrahedral AVS, m simplifies to

mð/; hÞ ¼

ffiffiffi
3
p

cos ð/Þ cos ðhÞ
sin ð/Þ cos ðhÞ

sin ðhÞ

2
66664

3
77775: (2)

Please see Figure 1 for a visualization, and Appendix A for

a derivation. The DoA estimation problem then consists of

determining K, the /’s, and the h’s, and the goal of source

separation is to find S.
In this work, we discuss DoA estimation in both the azi-

muth (horizontal) angle / and elevation (vertical) angle h
but focus on calculating and evaluating the azimuth esti-

mates. Additionally, we consider DoA estimation in both

the time-domain and time-frequency-domain. For the for-

mer, we take X to be the 4� N matrix of B-format measure-

ments, where N is the number of time samples. For the

latter, we take X to be the 4� ðNt � Nf Þ matrix of vectorized

spectrograms, where Nt is the number of spectrogram bins

in time and Nf is the number of frequency bins.

A. WNC

WNC can be considered a regularized adaptation of

minimum variance distortionless response (MVDR) beam-

forming.32,33 MVDR aims to optimally minimize output var-

iance under the constraint of unity gain in the look direction.

Specifically, the MVDR weight vector for data X for a par-

ticular (azimuth, elevation) pair ð/; hÞ is
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wð/; hÞ ¼ C�1ni mð/; hÞ
mð/; hÞHC�1ni mð/; hÞ

; (3)

where Cni is the covariance of noise and interference within

the environment, and H indicates the conjugate transpose.

Cni can be approximated with the time-averaged sample

covariance of a segment of the recording, Xni, selected to lie

outside of the target signal,

Cni ¼
1

N
XniX

H
ni: (4)

However, Cni may be poorly conditioned, causing insta-

bility in the calculation of C�1ni and therefore of wð/; hÞ. To
mitigate this issue, WNC replaces Cni with the regularized

expression Cni þ �I, where � > 0 is a manually chosen param-

eter balancing between data adaptivity (smaller �) and stability
(larger �). Overall, the WNC weight vector takes the form

wð/; hÞ ¼ ðCni þ �IÞ�1mð/; hÞ
mð/; hÞHðCni þ �IÞ�1mð/; hÞ

; (5)

and the output is

Ywncð/; hÞ ¼ jjwð/; hÞHXjj2: (6)

We use � ¼ 0:001 and manually select regions of the

recordings outside of the target signals to provide Xni.

B. MUSIC

The MUSIC algorithm, introduced in 1986, is a com-

mon eigenspace-based approach for DoA estimation.34,35

MUSIC considers sound sources to occupy a K-dimensional

subspace within the R-dimensional space of sensor

measurements, with the complementary ðR� KÞ-dimen-

sional subspace occupied only by noise. More specifically,

given a measurement matrix X, we construct the time-

averaged sample covariance matrix C ¼ ð1=NÞXXH and

take an eigenvalue decomposition, C ¼ UKUH. Then we

can consider the dominant K vectors of U to represent a

basis for the signal DoA subspace (denoted Usignal) and the

last R – K to represent a basis for the noise DoA subspace

(denoted Unoise). For each pair of azimuth and elevation

angles, the squared projection of ~mð/; hÞ onto the noise

DoA subspace would be jjUH
noise~mð/; hÞjj

2
. We are looking

for ~mð/; hÞ, which is closest to the signal DoA subspace and

therefore has a minimal projection onto the noise DoA sub-

space. Equivalently, we can maximize the metric,

Ymusicð/; hÞ ¼
1

~mð/; hÞH Unoise UH
noise ~mð/; hÞ

: (7)

The source directions can then be estimated by selecting the

azimuth and elevation values at which Ymusic attains local

maxima. Note that the number of sources K must be chosen

prior to computation and is limited to K<R by the nature of

the algorithm.

C. AIM

An alternative approach for DoA estimation is built on

empirical calculation of the active intensity vector.28,36 Let

p( f, t) and ~vð f ; tÞ denote short-term Fourier transforms of

the acoustic pressure and particle velocity vector at fre-

quency f and time t. For a sufficiently distant source, a signal
emitted by a point source will be received at the microphone

as a plane wave, satisfying

~vð f ; tÞ ¼ � pð f ; tÞ
qc

~u; (8)

where q is the ambient density, c is the speed of sound in the

medium (air), and~u is a direction-of-arrival unit vector. Note

that the plane wave assumption holds when the source dis-

tance is large relative to the signal wavelength k; since the

lowest frequency we consider is 200Hz (k ¼ 1:7 m) and bird

calls are usually above 1 kHz (k ¼ 0:34 m), this is a reason-

able expectation for avian monitoring. As described in

Appendix A, the tetrahedral arrangement of cardioid micro-

phones has a pickup pattern proportional to p~u when con-

verted to B-format and yields measurements of both p and~v.
Now we can obtain the acoustic active intensity vector,

~I ¼ Reðpð f ; tÞ~vð f ; tÞÞ: (9)

Since ~I has direction ~u, we can compute the corresponding

azimuth / and elevation h, which define the direction-of-

arrival,

/ð f ; tÞ ¼ tan�1ðIy=IxÞ; (10)

hð f ; tÞ ¼ tan�1 Iz

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2x þ I2y

q� �
: (11)

FIG. 1. A first-order ambisonic microphone, comprised of four co-located

capsules, is one design for an AVS. The four cardioid capsules are oriented

in a tetrahedron, with axes ~aT
FLU (front-left-up), ~aTFRD (front-right-down),

~aT
BLD (back-left-down), and ~aTBRU (back-right-up). The azimuth angle / and

elevation angle h define the direction-of-arrival unit vector ~u relative to the

microphone.
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The AIM entails calculating the azimuth and elevation

for each time sample (in the time-domain) or spectrogram

pixel (in the time-frequency-domain) and then constructing

a histogram of both angle estimates. For robustness against

low-intensity noise, all samples are weighted by the magni-

tude of intensity within the histogram calculation. The

source directions can be obtained from the maxima of these

distributions or from decomposing the histogram into com-

ponents as described in Sec. III.

III. SOURCE SEPARATION

After obtaining a DoA distribution with AIM, we seek

to reconstruct the signals corresponding to individual sour-

ces. We approach this problem by decomposing the DoA

distribution of the acoustic mixture into DoA distributions

of the constituent sources, through simple angular threshold-

ing or through a Gaussian mixture model. We can then

assign spectrogram pixels to different components to obtain

both spectrogram- and time-domain source reconstructions.

We compare the reconstruction fidelity obtained with both

pixel assignment methods.

A. Angular thresholding

The locations of the sound sources can be inferred from

the peaks of the DoA distributions. Consequently, a simple

approach to reconstructing source signals could entail calcu-

lating a collection of peaks and then masking the original

spectrogram to include only pixels with azimuth angles

within a pre-specified range of these maxima. In practice, to

represent a recording as a sum of K components, we calcu-

late K – 1 maxima and leave one component to incorporate

all complementary azimuth angles, thereby capturing back-

ground noise.

B. Wrapped Gaussian mixture model

As an alternative to angular thresholding, we consider

fitting the DoA estimates with a mixture model: a sum of

simple probability distributions representing individual

components. In particular, the Gaussian mixture model

(GMM), a weighted sum of Gaussian probability densities,

has been extensively studied and is a common choice for

statistical modeling.37 A GMM can be fit to data through the

iterative expectation-maximization (EM) algorithm; a

detailed description of EM-GMM is provided in Appendix B.

To adapt this algorithm to angular data, which are character-

ized by circular wraparound of the azimuth angle, we modify

the calculations of the distances and averages of data samples.

First, we replace the linear distance /1 � /2 with the angular

distance,

distð/1;/2Þ ¼ ð/1 � /2 þ 180�Þmod ð360�Þ � 180�:

(12)

Additionally, one step of the EM algorithm requires calcu-

lating means of data samples weighted by “member

weights” fwikg, which represent the probability that the ith

azimuth sample /i belongs to component k. Instead of the

standard mean
PN

i¼1 wik/i, we calculate this weighted azi-

muthal mean by converting a set of angles to unit vector

form, summing them, and converting back to angular form,

lk  tan�1

XN
i¼1

wik sin ð/iÞ

XN
i¼1

wik cos ð/iÞ

0
BBBBB@

1
CCCCCA
: (13)

Last, to reduce runtime, we fit the GMM to a random subset

of size ~N ¼ 10 000 rather than to all N azimuth samples.

With the GMM, source separation can be achieved by

multiplying the pressure spectrogram pixel-wise by the

member weights for the kth component to reconstruct the

kth source signal. Since the member weights represent prob-

abilities, we automatically enforce that the sum of all recon-

structions is equal to the pressure spectrogram. Furthermore,

if a time-domain representation of the signal is required, we

can obtain a rough audio reconstruction by performing pixel

assignment over the complex spectrogram prior to applying

an inverse short-time Fourier transform.

IV. METHODS

Through analysis of simulated and experimental audio

recordings, we aim to evaluate DoA estimation across vari-

able signal characteristics (such as source frequency and

recording duration), environmental factors (such as noise

level), and algorithm parameters (such as angular resolu-

tion). Examination of simulated narrowband signals allows

us to isolate estimation error associated with the AVS

model, while outdoor experiments enable assessment of

expected accuracy under realistic conditions for passive

acoustic monitoring.

For our simulation, we consider a tetrahedral cardioid

array with an axis-capsule distance of 1.5 cm, accounting for

associated time delays. We use single-frequency (mono-

chromatic) sound sources of duration 0.5 s and add white

noise to each A-format capsule measurement for an overall

SNR of 20 dB, as described in Sec. VD.

For our experiments, we used the AMBEO VR Mic

(Sennheiser Electronic GMBH & Co. KG, Wedemark,

Germany) and the MixPre-10 recorder (Sound Devices

LLC, Reedsburg, WI). The microphone has a flat frequency

response from 20Hz to 20 kHz, with a sensitivity rating of

31mV/Pa (–30 dBV); the recorder has a 24-bit depth with a

sampling rate of 48 kHz and preamplifier gain set to 50 dB.

Signals were played through Aomais Real Sound Portable

Bluetooth speakers, with a stereo pair used for the two-

source measurements. To simplify measurements of relative

distances and angles between the microphone and speakers,

we conducted the experiments outdoors on an artificial turf

sports field, with the microphone positioned at the center

mark and mounted on a tripod at a height of about 1.5 m.

For distance measurements, we took advantage of accurate
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markings for a 10-yard (9.1-m) center circle and lines. To

determine 60� angles, we geometrically inscribed a hexagon

within the center circle. For smaller angle increments, we

calculated corresponding chord lengths and measured them

manually along the circle. Since we estimate the error in

length measurement and tripod positioning to be within

10 cm, the associated angular error would be within 0.1/9.1

radians, or about 1�. As our source signals, we used cropped,
filtered, and repeated versions of four recordings from

Xeno-Canto: blue jay (Cyanocitta cristata, XC571792),

Carolina wren (Thryothorus ludovicianus, XC556630),

American robin (Turdus migratorius, XC464766), and song

sparrow (Melospiza melodia, XC480068) songs.
We pre-process recordings with a 5th-order Butterworth

high pass filter at 200Hz to remove low-frequency noise

and calculate spectrograms with a Hann window of size

1024 and a shift of 50%, trimmed to a maximum frequency

of 10 kHz. Note that, for a 1-s recording, the number of sam-

ples N is equal to 48 000 (the sampling rate) for the time-

domain methods and 20 330 (Nx ¼ 95, Nf ¼ 214) for the

time-frequency-domain methods.

V. RESULTS

A. Examples of DoA estimation

First, we demonstrate and compare the output of each

algorithm across a set of sample recordings with varied

characteristics. Figure 2(A) shows four recordings: a simula-

tion with one 3 kHz source (top left), a simulation with two

non-overlapping sources at 2 and 4 kHz (top right), an exper-

imental recording of a speaker playing a blue jay call (bot-

tom left), and an experimental recording of two speakers

playing overlapping American robin and song sparrow calls

(bottom right). Both single-source recordings are emitted

from an azimuth of �60�, while both two-source recordings

have a separation angle of 45�. For each recording,

Fig. 2(B) shows the associated azimuth values calculated by

AIM for each time-frequency bin (pixel). Despite the lack of

intensity information, the calls are still recognizable and can

be visibly separated from each other and from the back-

ground. Finally, Fig. 2(C) shows the outcome of DoA esti-

mation by plotting the output of all algorithms in both the

time-domain and time-frequency-domain: Ywncð/; 0Þ, as

defined in Eq. (6), for WNC; Ymusicð/; 0Þ, as defined in Eq.

(7), for MUSIC; and the weighted histogram of azimuth val-

ues for AIM. We indicate the time-domain variant of each

algorithm with “(time)” and the time-frequency-domain var-

iant with “(t-f)”. Additionally, for ease of visual comparison,

we scale all outputs to a maximum value of 1. For a single

simulated source, all algorithms identify the source direction

at �60� with high accuracy. However, for the case of a real

recording with a single source, WNC exhibits an inaccurate

response, suggesting a lack of robustness to directional noise

in the environment. The presence of two sources reveals

greater differences between algorithms. Both in simulation

and in practice, only AIM produces a bimodal distribution;

MUSIC and WNC result in metrics that peak either at one

of the sources or in between. Overall, in these examples,

AIM outperforms WNC and MUSIC through higher robust-

ness to noise in real-world data and more flexible represen-

tation of multiple sources.

B. Effect of angular resolution

The angular resolution of the DoA estimate is set by

azimuth discretization for WNC and MUSIC and by the

number of histogram bins for AIM. For the first two meth-

ods, we expect accuracy to increase with resolution, with

FIG. 2. (Color online) (A) Spectrograms of four sample recordings: a simulation of one monochromatic source at �60� (top left), a simulation of two mono-

chromatic sources separated by 45� (top right), experimental data for one speaker playing a blue jay call at �60� (bottom left), and experimental data for

two speakers playing overlapping American robin and song sparrow calls separated by 45� (bottom right). (B) Azigrams corresponding to the four sample

signals; pixel color indicates azimuth in degrees as measured by AIM in the time-frequency domain. (C) DoA estimates returned by all algorithms for the

four sample signals. Dashed lines indicate speaker angles for the single-source examples and 45� separation for the two-source examples.
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the only disadvantage being a proportional increase in com-

putation. For AIM, we might expect a trade-off between

angular resolution and robustness. With a numerical evalua-

tion, we find that AIM (t-f) achieves best performance in the

100–1000 bin range per a 1-s recording (200–20 pixels/bin).

As anticipated, a small bin count (below 30 bins) yields a

consistent estimate across trials but higher error due to the

coarse-grained resolution. As bin count increases, the mean

angular error remains stable, suggesting robustness to sam-

ple sparsity. Finally, past about 1000 bins, error variance

increases. Given the low sensitivity of the algorithm to this

parameter, we simply choose to use 360 bins for an angular

resolution of 1� and apply the same discretization for WNC

and MUSIC.

C. Effect of recording duration

Since natural soundscapes are dynamic, and the direc-

tionality of vocalizations may change at short time scales,

we consider how recording duration affects DoA estima-

tion. To evaluate this parameter, we analyze a recording of

a Carolina wren call played back at 0� by a speaker posi-

tioned 9.1 m (10 yards) from the microphone, with the

dominant source of background noise emitted by highway

traffic located at about 180�. The angular error resulting

from DoA estimation over the call cropped to varying

durations is shown in Fig. 3(A). At the shortest limit, all

DoA estimates become dominated by noise. AIM (t-f) is

the most robust to short durations, yielding an accurate

estimate even with a 0.05-s analysis window, while the

other methods show poor performance below a duration of

0.5 s. In practice, spectrograms of complete calls are proba-

bly at least 0.5 s long, but short recording windows are rel-

evant for temporal analysis of DoA, as shown in Fig. 8 and

discussed in Sec. VI.

D. Effect of noise

Vocalizations in natural soundscapes will occur along-

side ambient environmental and anthropogenic noise. In this

section, we analyze the robustness of WNC, MUSIC, and

AIM against SNR by keeping source level fixed and varying

the distance of the speaker from the microphone.

We compute SNR as 20 log10ðAs=AnÞ, where As and An

are the root mean square time-domain amplitudes of seg-

ments of the B-format pressure channel corresponding to the

signal and noise, respectively. The results are thus compara-

ble to SNR for an omnidirectional microphone. For the

experimental recordings, we do not have true signal samples

that are isolated from noise and interference, so we approxi-

mate the signal sound level by selecting a narrow time win-

dow around a bird call and filtering below 2 kHz. To

represent background noise, we manually select a nearby

portion of the recording that excludes the calls and interfer-

ing sound sources. Note that we do not band-limit the noise

sample to the range of a particular bird call, since all fre-

quencies affect DoA calculations.

Figure 3 shows the angular error of DoA estimation for a

blue jay call played back from a speaker positioned at 0� at dis-
tances ranging from 4.6 to 37 m (5–40 yards) at increments of

4.6 m (5 yards). Once again, the dominant noise source was

highway traffic located at about 180� relative to the micro-

phone. We find that all algorithms yield consistent accuracy

for a SNR above about 2 dB. Below this threshold, the direc-

tionality of background noise overshadows the signal for

WNC and MUSIC. AIM (t-f) appears to be most robust to

noise, even for an SNR close to 0 dB. Since pixels are weighted

by acoustic intensity, a small proportion of high-amplitude sig-

nal pixels with consistent directionality can outweigh a large

proportion of noise pixels with scattered directionality while

maintaining similar root mean square amplitudes.

Note that frequency-domain filtering will impact DoA

distributions. For example, Fig. 4 shows an example of the

spectrograms and DoA distributions for the same recording,

pre-processed with a 200Hz and 2 kHz high pass filter. With

200Hz filtering, the noise dominates all DOA estimates

except AIM (t-f), which exhibits a broad distribution for the

noise and a narrow distribution for the target source. With

2 kHz filtering, all DoA estimates indicate the target source.

Consequently, limiting analysis to the target frequencies can

substantially improve DoA estimates if the noise occupies

disjoint frequency bands.

FIG. 3. (Color online) (A) Mean 6 standard deviation of the angular error of DoA estimates as a function of the recording duration. For this experiment, a

speaker played back a Carolina wren call from a distance of 9.1 m (10 yards), repeated for eight trials. (B) Mean6 standard deviation of the angular error of

DoA estimates as a function of the SNR. For this experiment, a speaker played back a blue jay call from distances of 4.6–37 m (5–40 yards) in increments

of 4.6 m (5 yards), repeated for six trials.
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E. Effect of signal frequency

In addition to DoA estimation error associated with

environmental noise and inaccuracy in measurement of

speaker positions, the underlying model of the AVS is itself

not exact. Specifically, the array response vector given in

Eq. (2) is an approximation of the true array response and

assumes that the four capsules of the tetrahedral array are

located at a point. This assumption is reasonable for low fre-

quencies but worsens as the signal wavelength becomes

comparable to the finite spacing between capsules. In this

work, the microphone has a capsule-axis distance of about

1.5 cm. To evaluate the magnitude of error contributed by

violation of this co-location assumption, we simulate the

recording associated with monochromatic signals and per-

form DoA estimation with AIM (t-f) across different azi-

muthal directions. We set the SNR to 60 dB to remove error

associated with noise.

The result of this experiment is presented in Fig. 5. As

expected, we find that DoA estimation error increases with fre-

quency. This error is deterministically defined by source DoA;

moreover, at particular source azimuth angles (specifically, at

multiples of 45� relative to the microphone axis), the model

error drops to 0. Overall, for this microphone architecture,

we suggest focusing on sound sources below about 5 kHz to

limit maximum angular error to below 10�. In practice, we

find that the challenge posed by model error to DoA estima-

tion and source separation is tempered by the rest of the algo-

rithm: high-frequency narrowband calls should still yield a

coherent (albeit inaccurate) source direction and should

therefore be amenable to directionality-based source separa-

tion, and in broadband calls, higher frequencies will experi-

ence greater attenuation and therefore receive less weight

than lower-frequency components.

F. Overall accuracy and resolution

Finally, after considering the effects of different param-

eters on DoA estimation error, we summarize comparative

algorithm performance in Table I. We focus on two main

metrics: angular accuracy for a single source and the mini-

mum separation angle necessary to distinguish two sources.

When considering one source in simulation at frequen-

cies randomly sampled between 0 and 5 kHz, we find that all

algorithms have similar accuracy at around 2:5� mean error.

Note that we are controlling for experimental inaccuracies,

and this error stems from the co-location assumption. Next,

we consider the accuracy for one source with speaker play-

back experiments, which reveals greater differences between

algorithms. In particular, both the time- and time-frequency-

domain variations of WNC show greater error than MUSIC

and AIM. This reduction in performance is likely caused by

heterogeneity and directionality of background noise: while

the simulation contained only omni-directional white noise,

the real-world data contain variable, directional broadband

noise together with interfering sound sources that we could

not control for (such as real birds vocalizing in the

background).

Next, we consider an environment with multiple sound

sources. Specifically, we evaluate the minimum angular

FIG. 4. (Color online) (A) A recording of a blue jay call is played back

from a speaker located at about 0� at a distance of 37 m (40 yards) from the

microphone and is high pass-filtered at 200Hz prior to DoA estimation.

The DoA estimates are largely dominated by low-frequency noise from a

highway located at about 180�. (B) The same recording is high pass-filtered

at 2 kHz prior to DoA estimation. The resulting DoA estimates are now all

centered on the source direction.

FIG. 5. (Color online) To evaluate DoA estimation error associated with

the co-location assumption, we simulate monochromatic signals across

source frequency and azimuth and calculate the angular error of AIM (t-f).

White dashed lines indicate multiples of 45�. We observe substantial error

for wavelengths comparable to the 1.5 cm capsule spacing.
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separation necessary between two sources for the DoA esti-

mation algorithms to distinguish them with two peaks. In sim-

ulation, we consider two consecutive non-overlapping 0.5-s

3 kHz sources. We find that both variants of WNC begin to

distinguish the sources at a minimum separation angle of

150�, and both MUSIC variants require a separation of at

least 90�. In contrast, AIM would yield two peaks with

approximately 3� width, resulting in a minimum separation

angle of about 7�. For the real-world experiments, both WNC

and MUSIC maintain unimodal distributions across the sepa-

ration angles tested (up to 45�). On the other hand, AIM

begins to successfully separate two sources when the separa-

tion angle reaches 11�, similarly to the simulated results.

Overall, AIM significantly outperforms WNC and MUSIC in

the ability to represent environments with multiple sound

sources.

On the whole, we find that while the algorithms give

similar performance for a single source in high-SNR condi-

tions, AIM (t-f) shows best performance and highest robust-

ness for low SNR, short analysis windows, or multiple

sources. Additionally, AIM has the advantage of being

highly automated: it can flexibly represent multiple sources

with variable DoA distributions and gives stable output

across a wide range of the angular resolution hyper-

parameter. On the other hand, the number of sources that

can be represented by MUSIC and WNC is much more lim-

ited, and WNC requires manual selection of a region of the

recording not containing the signals of interest, which may

be undesirable for automated monitoring systems.

G. Source separation

Finally, we complete the source separation pipeline and

evaluate the fidelity of spectrogram reconstruction. First, we

calculate DoA estimates with AIM (t-f), selected due to its

high performance throughout the evaluation in Sec. V F.

Next, we apply angular thresholding and fit a wrapped

Gaussian mixture model to obtain the azimuth distributions

associated with individual sources. Based on the observed

width of AIM distributions, we use an angular range of 10�

to both sides of an azimuth maxima for angular threshold-

ing. Additionally, to avoid multiple maxima corresponding

to the same source, we apply a buffer of 20� between max-

ima. Finally, for each source, we calculate spectrogram and

time-domain reconstructions and compare cross-correlations

between the true source audio signals and the reconstruc-

tions obtained with both methods.

First, we demonstrate the source separation pipeline for

recordings of American robin and song sparrow birdsong

played back from stereo speakers. We set the number of com-

ponents K to 3, to represent the two actual sources as well as

remaining background noise. Figure 6 shows the original

source signal, measured signal, azigram, DoA distribution,

and reconstructions. In this example, the high SNR and

non-directional background noise result in a DoA distribution

composed of two clearly defined peaks. Consequently, the

angles associated with each peak can be successfully recovered

by either the GMM, which fits two narrow distributions to the

peaks, or with a simple thresholding method. The resulting

spectrogram reconstructions closely match the structure of the

original calls. To quantitatively evaluate reconstruction fidel-

ity, we cross-correlate the time-domain reconstructions with

the true source signals and find that angular thresholding yields

the same output as a GMM for the robin call and a 26%

improvement for the sparrow call in this example.

Next, we repeat the source separation analysis for a

recording of a 1-s blue jay call played from a speaker posi-

tioned at 0� at a distance of 37 m (40 yards) from the micro-

phone in the presence of significant directional noise. We

set the number of components K to 4, to represent multiple

sources along with remaining background noise. The origi-

nal source signal, measured signal, azigram, DoA distribu-

tion, and reconstructions are displayed in Fig. 7. Here, we

see a greater difference in the components resulting from

angular thresholding and from the GMM. Not only is the

DoA distribution now dominated by noise and external

sound sources (such as a crow call at about �100�), but the
noise and signal have variable widths, and the DoA maxima

no longer correspond to unique sound sources. As a result,

angular thresholding only partially captures the sound sour-

ces present in the acoustic environment. On the other hand,

the GMM adaptively fits components to the widths present

in the data and is able to separate the blue jay call (compo-

nent 2) from the low-frequency highway noise (component

0) and even from a crow call (component 1). In this exam-

ple, the GMM results in a 49% higher cross correlation

score for the source signal than angular thresholding.

Overall, while simple angular thresholding can be suffi-

cient for signals with high SNR in a quiet environment, the

wrapped GMM enables flexible representation of mixtures of

angular distributions with variable characteristics. A possible

limitation of this approach is that DoA distributions may be

TABLE I. We evaluated two key metrics: the DoA estimation accuracy

with a single source and the minimum angular separation necessary to dis-

tinguish two sources. We evaluated error in simulation across 20 trials of

sources at frequencies randomly sampled between 0 and 5 kHz, with non-

directional background noise for an SNR of 20 dB. To evaluate error in

real-world experiments, we played back a 1-s blue jay call from a speaker

located at a distance of 9.1 m (10 yards) from the microphone, at repeated

increments of 60�, repeated for eight trials. Next, we evaluated the mini-

mum angular separation across algorithms in simulation by calculating

DoA estimates for two 3 kHz sources at randomly sampled azimuth angles.

For corresponding real-world experiments, we position two speakers at a

radial distance of 9.1 m (10 yards) from the microphone and separation

angles of 0�, 6�, 11�, 22�, and 45� and play back American robin and song

sparrow recordings overlapping in time and frequency.

Algorithm

Error

(simulation)
Error

(experiment)

Angular

separation

(simulation)

Angular

separation

(experiment)

WNC (time) 2:4�6 2:6� 28:3�6 27:0� 150� >45�

WNC (t-f) 2:4�6 2:6� 9:9�6 7:8� 150� >45�

MUSIC (time) 2:3�6 2:6� 5:1�6 3:4� 90� >45�

MUSIC (t-f) 2:4�6 2:6� 5:1�6 3:3� 90� >45�

AIM (time) 2:4�6 2:7� 5:6�6 3:9� 7� 6�–11�

AIM (t-f) 2:5�6 2:7� 4:7�6 2:4� 7� 6�–11�
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non-Gaussian and may result in a poor fit for some sources.

The GMM is also the most computationally intensive part of

the source separation pipeline; runtime depends on the num-

ber of subsampled azimuth points, the chosen number of iter-

ations (or convergence threshold), and the number of mixture

components. Further development of this approach could

incorporate automatic selection of the number of sources.

This is commonly achieved by iterating through all relevant

values of K, calculating the Akaike or Bayesian information

criterion, and choosing the K at which the improvement in

the criterion value is below a set threshold.38,39

VI. DISCUSSION

All in all, AVSs are a simple, robust, and compact tool for

soundscape analysis that can support efficient direction-of-

arrival estimation and source separation. While DoA estimation

can be performed with conventional beamforming methods

like WNC or eigenspace methods like MUSIC, we found best

performance with empirical calculation of active intensity. In

playback experiments with speakers, AIM (t-f) resulted in

angular error of about 5� and could distinguish sources at a

separation angle of 11�. Moreover, this performance persisted

for recording lengths as short as 0.05 s and for near-zero SNR.

FIG. 6. (Color online) To demonstrate source separation, we consider 5-s recordings of American robin and song sparrow birdsong played back from two

speakers separated by 45� at a distance of 9.1 m (10 yards) from the microphone (A). The measured recording (B) is a mixture of these calls. Calculating azi-

muth estimates for each pixel with AIM (t-f) yields an azigram (C), in which both sources are visibly distinguishable against a backdrop of omnidirectional

noise. Next, we compare a baseline angular thresholding approach (D and F) with a wrapped Gaussian mixture model (E and G). Note that the distributions

and y axes in (D) and (E) differ slightly, as we use a probability density over a subsampled set of azimuth points for the GMM. In this example, we see very

similar performance between the two source separation methods.

FIG. 7. (Color online) We repeat the source separation pipeline, now with a 1-s blue jay call (A) being played by a speaker located at 37 m. (40 yards) at 0�.
The measured recording (B) has low SNR, with significant noise from a highway located at about 180�, a crow call at about �100�, and other interfering

sound sources. The azigram (C) displays directional characteristics of both the target signal and noise. Again, we compare a baseline angular thresholding

approach [(D) and (F)] with a wrapped Gaussian mixture model in (E) and (G). We see much clearer output from the GMM than from angular thresholding,

as the GMM can adaptively fit distributions to represent variable spread in directionality across different sources.
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Unlike a microphone array, an AVS requires minimal

calibration, mitigating the need for clock synchronization.

Additionally, the only algorithmic parameters are the angu-

lar resolution, which has a minor effect on accuracy over a

wide range of values, and the number of GMM components

or sources, which could be chosen automatically through an

information criterion. Furthermore, the proposed pipeline

can provide DoA estimates in both the azimuth and eleva-

tion angles. Analysis in both dimensions would improve the

ability to pinpoint sources and likely increase the number of

sounds that can be distinguished within an environment.

However, preliminary experiments showed poor results for

elevation estimation, likely due to acoustic reflection and

scattering from the ground. Further development on these

methods could incorporate modeling of acoustic propagation

to account for these distortions.40

The calculation of azimuth angles advances our under-

standing of a soundscape by providing an additional dimen-

sion for acoustic analysis. For instance, we can apply DoA

estimation over a sliding temporal window to visually display

both the angles and times at which sources are actively vocal-

izing. Figure 8 shows this technique for the two-source exper-

iment with 45� angular separation between speakers, using a

0.1-s time window and 50% overlap between consecutive

windows. Each column of the figure represents the AIM (t-f)

angular histogram for a particular window; darker purple cor-

responds to higher histogram values. We can clearly see that

there are two angles at which sources are active—at about 0�

and 45�—along with fine granularity in the times at which

they are vocalizing. Comparing against the ground-truth time

series, we see that the activity of the 45� signal matches the

first source signal, and the activity of the 0� signal matches

the second source signal.

The ability to perform DoA estimation and source sepa-

ration within acoustic mixtures opens a number of opportu-

nities within passive acoustic monitoring. First, this

approach can be integrated with a machine-learning-based

classifier to disentangle individual vocalizations and thereby

improve accuracy of species-level identification and count

estimates. Furthermore, localization and tracking algorithms

with AVS arrays established in marine bioacoustics could

be adapted and further developed for terrestrial environ-

ments.30,31 Finally, behavioral studies of vocal behavior

could also benefit from identifying source directions and

removing undesired sound sources.
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APPENDIX A: AVS PICKUP PATTERN

In three dimensions, the pickup pattern of a cardioid

microphone is given by gðhÞ ¼ 1
2
þ 1

2
cos ðhÞ, where h is the

angle between the microphone’s axis ~a and the sound direc-

tion of propagation~u.41 Equivalently,

gð~uÞ ¼ 1

2
þ 1

2
~aT~u:

An ambisonic microphone is composed of four cardioid

microphones in a tetrahedral arrangement, as shown in Fig. 1.

The unit vectors indicating the axes of each capsule are given as

~aTFLU

~aTFRD

~aTBLD

~aTBRU

2
666664

3
777775
¼ 1ffiffiffi

3
p

1 1 1

1 �1 �1
�1 1 �1
�1 �1 1

2
66664

3
77775: (A1)

FIG. 8. (Color online) Direction-of-arrival analysis can be enhanced by using

a sliding window to visualize both the times at which sources are active and

the azimuth angles from which they arrive. In this example, two 15-s record-

ings of robin and sparrow song were played back from azimuth angles of 45�

and 0�, respectively. The time-series representations of the original signals,

along with the measured mixture, are shown in the top section of the figure.

By applying DoA estimation with AIM (t-f) over 0.1-s windows of the mea-

sured signal, stacking the estimates as columns of a matrix, and visualizing

with a log-scale pseudocolor plot, we obtain a two-dimensional (2D) repre-

sentation of a soundscape. We can see that both the angles and times at

which the two sources are active closely correspond to the ground-truth.
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Therefore, the A-format response would be

gAð~uÞ ¼
1

2

1

1

1

1

2
66664

3
77775þ

1

2
� 1ffiffiffi

3
p

1 1 1

1 �1 �1
�1 1 �1
�1 �1 1

2
66664

3
77775~u:

The different components of gAð~uÞ contain mixed combina-

tions of the elements of ~u. However, this pickup pattern can

be greatly simplified by converting to B-format through a

linear transformation,

gBð~uÞ ¼

1 1 1 1

1 1 �1 �1

1 �1 1 �1

1 �1 �1 1

2
6666664

3
7777775
gAð~uÞ

¼ 1

2

4

0

0

0

2
6666664

3
7777775
þ 1

2
ffiffiffi
3
p

0 0 0

4 0 0

0 4 0

0 0 4

2
6666664

3
7777775
~u

¼ 2ffiffiffi
3
p

ffiffiffi
3
p

~u

2
4

3
5:

Note that the relative gain between the first and other rows

depends on architecture and data format convention.

Under the assumption that the distance to a source is

much greater than its wavelength, its signal will be received

at the microphone as a plane wave, for which

~vðtÞ ¼ � pðtÞ
qc

~u;

where ~vðtÞ is the acoustic particle velocity, p(t) is the pres-

sure, q is the density of the medium of propagation, and c is
the speed of sound. Therefore, if the AVS yields B-format

readings gBð~uÞsðtÞ, where s(t) is the incident source pressure,
then the first B-format entry will be proportional to acoustic

pressure, and the next three components will be proportional

to the acoustic particle velocity. Note that this derivation

depends on the approximation that the microphone capsules

are coincident. For high frequencies, for which the wave-

length is comparable to the capsule spacing, this may no lon-

ger hold.42 Fortunately, performance at high frequencies can

be improved through non-coincidence correction filters.43

APPENDIX B: GAUSSIAN MIXTURE MODEL

We fit a GMM to decompose an azimuth probability

distribution into constituent parts representing different

sound sources. Given N azimuth measurements U ¼ f/1;
/2;…;/Ng, a GMM with K components has the form

Pð/ja; l; rÞ ¼ RK
k¼1akPkð/jlk; rkÞ; (B1)

where Pk is a Gaussian distribution with mean lk and stan-

dard deviation rk, and ak is a mixture weight representing

the contribution of the kth component to the overall distribu-

tion. Note that by definition, ak satisfies RK
k¼1ak ¼ 1. Each

mixture component has the form

Pkð/jlk; rkÞ ¼
1ffiffiffiffiffiffi
2p
p

rk
exp � 1

2r2
distð/; lkÞ2

� �
:

(B2)

For a standard GMM, the distance function distð/1;/2Þ
is simply equal to /1 � /2. To adapt this method for azi-

muth samples, we instead use circular distance as given by

Eq. (12).

A GMM can be fit to data through the iterative EM

algorithm. The EM algorithm determines the optimal lk, rk,
and ak by alternating between the expectation step, which
assigns probabilities to the data points, and the maximization
step, which updates the means and variances of the mixture

components. In the expectation step, we update the member

weights wik, which represent the probability that a sample /i

belongs to component k,

wik  
akPkð/ijlk; rkÞ

RK
j¼1ajPjð/ijlj; rjÞ

: (B3)

Note that RK
k¼1wik ¼ 1, as every point must belong to one of

the components. We use “  ” to indicate variable assign-

ment rather than algebraic equality.

In the maximization step, we use the data and the mem-

ber weights to update distribution parameters. We define Nk

to be the effective number of data points assigned to compo-

nent k,

Nk  RN
i¼1wik:

Then ak will be the effective proportion of data points

assigned to component k,

ak  
Nk

N
:

Next, we update the distribution parameters by calculating

means and variances, but with all points weighted by their

associated member weight. For a vanilla GMM, this would be

lk  
1

Nk
RN
i¼1wik/i;

r2k  
1

Nk
RN
i¼1wikdistð/i; lkÞ2:

Once again, for our application, we modify the calculation

of the mean, as given by Eq. (13). The algorithm iterates

between the expectation and maximization steps until con-

vergence. Specifically, we terminate the algorithm when the

difference in consecutive mixture means is less than 0.005,

or at a maximum of 100 iterations.
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