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The structure of neural circuitry plays a crucial role in brain function. Previous studies of brain organization generally had to trade
off between coarse descriptions at a large scale and fine descriptions on a small scale. Researchers have now reconstructed tens to
hundreds of thousands of neurons at synaptic resolution, enabling investigations into the interplay between global, modular organiza-
tion, and cell type-specific wiring. Analyzing data of this scale, however, presents unique challenges. To address this problem, we
applied novel community detection methods to analyze the synapse-level reconstruction of an adult female Drosophila melanogaster
brain containing >20,000 neurons and 10 million synapses. Using a machine-learning algorithm, we find the most densely connected
communities of neurons by maximizing a generalized modularity density measure. We resolve the community structure at a range of
scales, from large (on the order of thousands of neurons) to small (on the order of tens of neurons). We find that the network is
organized hierarchically, and larger-scale communities are composed of smaller-scale structures. Our methods identify well-known fea-
tures of the fly brain, including its sensory pathways. Moreover, focusing on specific brain regions, we are able to identify subnet-
works with distinct connectivity types. For example, manual efforts have identified layered structures in the fan-shaped body. Our
methods not only automatically recover this layered structure, but also resolve finer connectivity patterns to downstream and
upstream areas. We also find a novel modular organization of the superior neuropil, with distinct clusters of upstream and down-
stream brain regions dividing the neuropil into several pathways. These methods show that the fine-scale, local network reconstruction
made possible by modern experimental methods are sufficiently detailed to identify the organization of the brain across scales, and
enable novel predictions about the structure and function of its parts.
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The Hemibrain is a partial connectome of an adult female Drosophila melanogaster brain containing >20,000 neurons and 10 mil-
lion synapses. Analyzing the structure of a network of this size requires novel and efficient computational tools. We applied a new
community detection method to automatically uncover the modular structure in the Hemibrain dataset by maximizing a general-
ized modularity measure. This allowed us to resolve the community structure of the fly hemibrain at a range of spatial scales reveal-
ing a hierarchical organization of the network, where larger-scale modules are composed of smaller-scale structures. The method
also allowed us to identify subnetworks with distinct cell and connectivity structures, such as the layered structures in the fan-
shaped body, and the modular organization of the superior neuropil. Thus, network analysis methods can be adopted to the connec-
tomes being reconstructed using modern experimental methods to reveal the organization of the brain across scales. This supports
the view that such connectomes will allow us to uncover the organizational structure of the brain, which can ultimately lead to a bet-
ter understanding of its function.
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Introduction

Understanding how brains function requires understanding how
they are wired, and how this wiring underpins neural computa-
tion (Bullmore and Sporns, 2009). Advances in biology, imaging,
and machine learning have led to a proliferation of vast, highly
detailed connectomes of brain tissue from insects (Scheffer et al.,
2020), mammals (Turner et al.,, 2022), and humans (Shapson-
Coe et al.,, 2021). Dense reconstructions of neural tissue at synap-
tic resolution present new opportunities to interrogate the wiring
principles of different brains. However, the enormous volume of
the data presents fundamental challenges since it is difficult to
identify relevant features of a large network and understand how
these features interact.

The brains of sufficiently complex animals, including insects,
are composed of interacting structural units that often have dis-
tinct functions. These “communities” are sometimes, but not
always, anatomically distinct and have traditionally been
identified using painstaking methods that involve the tracing
of individual cells and their connections. However, as the
number and size of connectomes grow, we will need auto-
mated methods to uncover a brain’s functional units and their
interaction. Networks of the size and connectedness of con-
nectomes pose fundamental technical challenges to many
existing network community detection methods, the speed
and accuracy of which can scale poorly with network size and
often cannot resolve structures below a certain limiting size
(Fortunato and Hric, 2016).

Insect brains are an excellent target for methods that auto-
matically identify the salient features of complex networks. They
are small enough and stereotyped enough that complete, vali-
dated connectomes are within reach (Scheffer et al., 2020). Much
is known about the organization of insect brains already, as anat-
omists have been able to characterize them at the level of single
cells, circuits, and regions, and understand the computational
roles and interactions between these components (Hanesch et
al., 1989; Lai et al., 2008; Li et al., 2020). Understanding the struc-
ture of insect brains also provides insights into general organiza-
tional and computational principles of other brains (Haberkern
and Jayaraman, 2016; Kim et al., 2017; Takemura et al., 2017a).
Recently, automated methods have accelerated and amplified the
abilities of scientists to identify neurons and their interactions at
high resolution and in large quantities (Turner et al., 2020). The
fly Hemibrain (Scheffer et al., 2020), a synapse-level reconstruc-
tion of approximately two-thirds of the volume of the brain of an
adult female Drosophila fruit fly, is the largest (by number of
neurons) connectome published to date.

Here we use an automated method to uncover cell commun-
ities that may constitute different signaling paths, or may be
devoted to distinct computations in the Hemibrain network. We
identify communities of neurons as the sets of neurons that are
more densely connected than expected in a random network.
The community structure is found by partitioning the neurons
in a way that maximizes a modularity density measure (M. Chen
et al., 2013, 2014; Botta and del Genio, 2016; T. Chen et al., 2018;
Guo et al.,, 2023). To find the maximizing partition, we use a
recently introduced machine-learning algorithmic scheme
Reduced network Extremal Ensemble Learning (RenEEL) (Guo
et al, 2019) that enables fast and accurate analysis of the
Hemibrain network. By increasing a tunable parameter in our
modularity density measure, we resolve the structure of the net-
work on increasingly smaller scales.

We identify communities that range in size from thousands to
only a few neurons and find a roughly hierarchical organization of
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the structure (K. Ito and Awasaki, 2008). At the coarsest scale, we
automatically identify well-known brain regions and functional
networks. At smaller scales, our analysis reveals how these brain
regions are organized into subnetworks. It also identifies specific
connectivity patterns among modules and brain regions. For
example, we automatically recover the layered structure of the fan-
shaped body (FB) (Hanesch et al., 1989) in an unsupervised way.
By considering the cell type composition of the communities, we
are able to identify potentially biologically relevant networks and
cell type-specific wiring patterns. Thus, we provide a scalable,
automated method to identify structure in connectomes com-
posed of tens of thousands of neurons, or more.

Materials and Methods

Datasets analyzed. The larval mushroom body dataset is a dense
reconstruction of all neurons in the mushroom body of a larval female
fruit fly, Drosophila melanogaster (Eichler et al., 2017). The network we
studied consisted of 365 neurons, selected for having at least one synapse
in the synapse table published in (Eichler et al., 2017). From the synapse
table, we constructed a weighted, directed graph with neurons as nodes
and edge weights defined by total number of synapses between neurons.
For input to the community-detection algorithm, we combined antipar-
allel edges by summing their edge weights to obtain an undirected
graph.

The Hemibrain dataset is a dense reconstruction of approximately
one-half of the central brain of an adult female fruit fly, D. melanogaster
(Scheffer et al., 2020). The network we analyzed was based on version
1.1 of the dataset and consists of 21,733 nodes and 2,872,500 undirected,
weighted edges. As for the larval dataset, the undirected edge weights in
the network were the total number of synapses between each pair of neu-
rons, in either direction.

Detecting communities with generalized modularity density maximi-
zation. We have identified communities of nodes with clusters C;, C,,...
in a partition of the nodes C = {Cy, C,,...} that maximizes Q,, the
Generalized Modularity Density measure (Guo et al., 2023) as follows:

1 K
Q(Cs x) =ﬁ2(2mc7ﬁ>pé (1)

ceC

Here m is the sum of the weights of all links in the network, m is the
sum of weights of all links between nodes in community C, K¢ is the
weight-degree sum of nodes in C (the sum of the weights of the links
connected to each node in C), and pc is the relative density of connec-
tions in C, as follows:

- 2me
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where nc is the number of nodes in C. The exponent y is a tunable con-
trol parameter. We consider y > 0. At y = 0, Qg equals the classical
modularity score (Newman, 2006). Modularity is the difference of frac-
tion of the network’s links that are within communities of the partition
C minus what that fraction would be, on average, if the links were ran-
domly shuffled. For y > 0, a power-law function of the relative density
of each cluster C weights the cluster’s contribution to Modularity in the
Q, measure.

For networks of the size and density we consider here, Modularity
(x = 0) is typically maximized by partitions that consist of a relatively
small number of large clusters. Indeed, it can be difficult to resolve clus-
ters that are small by maximizing Modularity, even if those clusters are
very well connected. This well-known resolution limit problem with
maximizing Modularity (Fortunato and Barthélemy, 2007; Traag et al.,
2011) is mitigated by maximizing Generalized Modularity Density at
positive values of y (Guo et al., 2023). As y is increased, the clusters in
partitions that maximize Generalized Modularity Density tend to subdi-
vide into smaller more tightly linked clusters (Guo et al., 2019).
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RenEEL algorithm for maximizing generalized modularity density.
Finding the partition that maximizes Generalized Modularity Density
can be a challenging and computationally expensive problem, especially
for larger and denser networks. An exact solution for an arbitrary net-
work has an NP-Complete computational complexity (Brandes et al.,
2008). Thus, it is necessary to use an approximate method that is fast,
with polynomial time complexity, but still gives accurate results. We used
an algorithm that has been shown to give accurate results for networks as
large and dense as we consider in this paper (Guo et al., 2019). This algo-
rithm is based on RenEEL, which uses a machine learning paradigm for
graph partitioning, Extremal Ensemble Learning (EEL). ELL evolves an
ensemble of partitions toward consensus by replacing the” worst” parti-
tion with a new one. RenEEL efficiently generates the new partition by
expending effort only where there is disagreement within the ensemble’s
existing partitions. The speed and accuracy of our algorithm enables anal-
yses of networks with tens of thousands of nodes, such as ours, that previ-
ously were not possible.

The RenEEL scheme for community detection first uses a very fast
base algorithm to create an ensemble of partitions that try to maximize a
modularity measure. Then an iterative learning process is used to update
the ensemble. A reduced network is formed by combining the groups of
nodes that the ensemble partitions agree should be clustered together
into single nodes. The base algorithm is then used to partition the
reduced network. The ensemble is updated either by using the new parti-
tion to replace the ensemble partition with the lowest modularity or by
reducing the size of the ensemble if the new partition matches one al-
ready in the ensemble or has a lower modularity than any in the ensem-
ble. The learning process continues until only one partition remains in the
ensemble; thus, consensus is reached on what partition maximizes modu-
larity. In our implementation of the RenEEL scheme, we used a random-
ized greedy algorithm (Clauset et al., 2004; Newman, 2004) for the base
algorithm and typically started with 100 partitions in the ensemble.

To ensure validity of our results, we tested its sensitivity to initial
conditions and to incompleteness of the underlying data. We tested the
robustness of the clustering results by repeating our analysis multiple
times and found that consistently clustered pairs of neurons are orders
of magnitude more common than inconsistently clustered pairs in the
Hemibrain network (Fig. 1). We also repeated the analysis on a per-
turbed network from which we excluded synapses that were marked as
low-confidence in the data, and found qualitatively similar results to the
original network (Fig. 2).

Information measures. Clusters define a partition C = {C;, C,,...},
and cell types define a partition T = {T}, T5,...} of the nodes in the net-
work. By comparing these partitions, we are able to identify potentially
biologically relevant networks.

Cluster heterogeneity quantifies the variety of cell types within a clus-
ter, and is measured using Shannon entropy. We defined the heteroge-
neity of a Cluster C as follows:

Het(C) = —Z fenr log, (n;mT> (3)
c

TeT e

where n¢ is the number of cells in Cluster C and n¢ny is the number of
cells of type T in Cluster C, and the sum is taken over cell types T. If a
cluster consists entirely of cells of one type, the cell type distribution has
zero bits of entropy, while a cluster composed of equal numbers of cells
of n different types has log, (1) bits of entropy, the maximum for a clus-
ter composed of n types.

Cluster completeness measures how well represented each cell type is
in a given cluster. This is the fraction of a cell type present in a cluster
averaged across the cell types within that cluster, defined by the
following:

nent . nenr (4)
ne ny

Com(C) = Z

TeT

Here nc and nenr are the same as in Equation 3, and nr is the num-
ber of cells of type T in the whole network. A completeness score close
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Figure 1.  Robustness of clustering. RenEEL was run with a different random seed 100

times; shown here is the number of pairs of neurons (on the y axis) that appear in the same
cluster a number of times given on the x axis. Pairs of neurons that are consistently clustered
have a frequency of co-clustering of 0 or 100, meaning that they are never in the same clus-
ter or are always in the same cluster. Consistently clustered pairs of neurons are orders of
magnitude more common than inconsistently clustered pairs.

to 1 means that, among cell types represented in a cluster, nearly all of
the cells of those types belong to that cluster.

We defined analogous measures for cell types. To identify cell types
that may be partitioned into dense subnetworks, we introduce the
Fraction of Type measure, defined as follows:

FI(Tix) = 3 <@>2 )

cecto \ T

Here n¢nr, and nyp are defined as in Equation 4. This is the fraction
of cells of type T that belong to each cluster, averaged over clusters that
contain cells of type T. If FT(T; y) is close to 1, then cells of type T form
a single dense network at resolution scale y. Lower values of FT(T; x)
indicate that cells of type T are partitioned into multiple densely con-
nected communities.

To identify subnetworks which may represent repeated wiring pat-
terns, we introduce the Fraction of Cluster measure, defined as follows:

FC(T; x) = Y mor.Tar, (6)

cecly) M1 e

This the fraction of each cluster that is composed of cell type T, aver-
aged over clusters which contain cells of type T. A score near 1 indicates
that clusters containing cells of type T contain only cells of type T,
regardless of how many such clusters there are.

Visualization of volumes. To visualize the relationship between clus-
ter identity and brain regions, we considered the locations of synaptic
sites on the neurons. Brain regions annotated in the Hemibrain partition
the dataset into disjoint volumes. The presynaptic and postsynaptic sites
of each neuron are given coordinates, which lie in one of those disjoint
volumes. Thus, we can identify all synaptic sites lying within a given
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Figure 2.  Effects of network perturbation. 4, Synapses in the Hemibrain each have a con-
fidence score, indicating the confidence of the machine leaming algorithm which automati-
cally identified them. We perturbed the network by excluding synapses with a confidence
score below a certain threshold. Each edge in the perturbed network had a weight, which
was a fraction of its original weight; shown here is the distribution of these weight ratios.
This perturbation resulted in overall weaker edges, with higher thresholds also severing
more edges (counted in the bin at 0.0). B, The number of communities found in the per-
turbed networks compared with the number in the original network. Gray line indicates
equality. At higher resolution scales, as the perturbed graph became weakly connected,
more clusters were found relative to the original network.

brain region, and associate each to a specific neuron and thus a specific
cluster. This is used to compute the fraction of the volume belonging to
each cluster as in Figure 5B. The regions are represented as triangulated
3D surfaces. To represent the fraction of the volume belonging to a clus-
ter, we color that fraction of the triangles in the mesh as in Figures 5C
and 7A.

Visualization of clusters. To better visualize and compare our cluster-
ing results, we used a simulated annealing method to arrange cells in the
adjacency matrix plots. In Figure 3B, the clustering results of three differ-
ent values of parameter y are visualized to show the evolution of cluster-
ing as the parameter increases, and the spontaneous emergence of the
hierarchical structure. Specifically, for visualization, we ordered the
nodes to minimize a function H of the Euclidean distance d;; between
matrix elements (4, j) and the closest point on the diagonal (under peri-
odic boundary conditions). This function takes the following form:

H=Y s;ds, (7)

i<j

where s;; is the link weight between node i and j. We analyzed undirected
networks, so the sum is over the elements above the diagonal. The pa-
rameter & controls the nonlinear dependence of H on dy;. Figure 3B is
generated by setting o = 3.

For the order we used, we started with the partition at y = 0.5, and
used simulated annealing to swap pairs of clusters and pairs of nodes
within clusters until the order of nodes and clusters minimized the cost
function. Fixing this partition, we then repeated this process with the
partition at y = 0.25, now only swapping clusters from the finer parti-
tion (y = 0.5) within the clusters defined by the coarser partition (y =
0.25). This process was then repeated for the partitions at y = 0.0 and
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x = 0.25. The final order thus obtained was used for plotting all three
plots in Figure 3B.

Software accessibility. A C implementation of RenEEL to maximize
Qg (Guo et al,, 2023) is available at https://github.com/prameshsingh/
generalized-modularity-density.

The Python code and data to generate these figures are available at
https://github.com/josiclab/flybrain-clustering.

Many of the figures in this paper are simplified to be printer-friendly,
and, necessarily, static. They are available at https://josiclab.github.io/
flybrain-clustering/ rendered as interactive plots using javascript so
zooming, panning, and mouse-over information is available.

Results

To infer the community organization of a connectome, we treat
it as an undirected graph whose nodes are neurons and whose
edge weights are defined as the total number of synapses between
neurons. By initially treating the connectome as undirected, we
obtain a liberal measure of communities, and we subsequently
evaluate directed motifs on this undirected scaffold. We discover
these communities based on the strength and density of connec-
tions between individual cells. Strong connections between neu-
rons may be important for information flow in the network, and
highly connected groups of neurons may represent distinct com-
putational circuits. We therefore assume that groups of strongly
interacting neurons are likely to form functional units and use a
multiresolution community detection method to identify groups
of densely connected cells. To validate our clustering approach,
we compare our results with previously identified structures in
the fly connectome, and apply our method to the connectome of
the mushroom body of a Drosophila larva.

Many biological networks are hierarchical. Our method is
designed to uncover such organization in an unsupervised way,
without assuming a priori that a network is structured hierarchi-
cally. We identify communities in the network by partitioning
the network into clusters in a way that maximizes a global mea-
sure, the Generalized Modularity Density Q(x) (Guo et al.,
2023). This measure increases with the density of connections
within clusters, and depends on a tunable parameter y > 0,
which governs the resolution scale of the communities identified.
At xy = 0, Qg0) is equivalent to the classical Modularity, Q
(Newman, 2006), and a relatively small number of large com-
munities are identified (eight in the Hemibrain). As y increases,
maximizing Q,(x) identifies progressively smaller, more densely
connected communities (Table 1; see Materials and Methods).
Thus, the resolution scale of the community structure within the
network varies with y. The number of communities identified at
any particular value of ) is not predetermined but is a result of
the optimization. The communities we identify at larger y are
generally subsets of the communities we identify at smaller yx;
thus, the community structure is generally hierarchical. To
find the partition that maximizes Q,(x), we use RenEEL (Guo
et al., 2019), a recently introduced machine-learning algorith-
mic scheme for graph partitioning that enables fast and accu-
rate results for networks of the size and density of the
Hemibrain (Guo et al., 2019). At this scale, without this speed
and accuracy of RenEEL, this study would not have been
possible.

Modular structure in the larval mushroom body is driven by
cell type and anatomy

To validate our method, we applied it first to the connectome of
the mushroom body of a larval fruit fly (Eichler et al., 2017). This
network consists of 365 neurons and is composed of two
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Figure 3.  The larval mushroom body network exhibits hierarchical modularity which aligns with anatomy and cell type. 4, Morphologic reconstructions of the neurons in the larval mush-

room body network, colored by cluster membership, viewed from a posterior and slightly dorsal viewpoint. Cluster coloring is preserved down each column. From left to right, clustering was
performed by maximizing generalized modularity density, Qg( ), with x = 0.0, 0.25, 0.5 (see Materials and Methods). The three largest communities are shown in isolation in Figure 4. B,
Undirected adjacency matrix of 365 neurons in the larval mushroom body. Rows and columns correspond to neurons ordered using a simulated annealing method for cluster visualization. Pixel
intensity corresponds to edge weight on a log scale. Colors highlight within-cluster edges. Neuron ordering is preserved across panels to show the hierarchical organization: with increasing y,
larger clusters break into smaller, more tightly linked clusters. €, Cell type composition of clusters. Clusters, identified by color bars on the y axis, are ordered by size; clusters consisting of 1 or
2 neurons are not shown. Each hemisphere is separated into two primary clusters: with one containing the input/output neurons and the other containing the sensory projection neurons.

symmetric hemispheres with lobes extending in the anterior and
dorsal direction (Fig. 3A). At the coarsest level, y = 0, our
method partitioned the mushroom body into the left and right
hemispheres (Figs. 34, 4, purple and blue clusters), as well as a
bilateral dorsal-posterior bundle of 34 neurons with projections
to both halves (green). In addition, it identified two small clus-
ters: one in the anterior bridge connecting the two hemispheres
and one in the left hemisphere. The larger cluster bridging the
two halves consists of sensory and other projection neurons that
often come in left/right pairs. The small cluster in the anterior
bridge consists of a left-right pair of dopaminergic neurons and

one output neuron, with strong internal connections and strong
connections to both hemispheres. The five-neuron cluster consists
of very young Kenyon cells (KCs) in the left hemisphere with few
synaptic connections to each other and to the remaining neurons.
Increasing the resolution by increasing y reveals a nested hi-
erarchy in the hemispheres that follows anatomy and cell type.
Higher values of y separate each of the two hemispheres into an-
terior and posterior halves (Fig. 3A,B). These clusters are also
composed of distinct cell types. The network we analyzed is com-
posed of 201 KCs, 48 output neurons, 30 input neurons, 66 pro-
jection neurons, and 20 cells of various other types (Eichler et al.,
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Table 1. Generalized modularity in the Hemibrain network”

X No. of communities Mean size Mean weighted density (IQR)
0.0 8 2716.6 0.60 (0.30-0.64)

0.05 68 699.5 2.15 (0.63-1.60)

0.1 175 2774 2.70 (0.72-2.99)

0.25 440 66.9 8.16 (1.00-5.00)

0.5 1485 16.1 23.52 (2.00-12.33)

0.75 3076 75 27.62 (3.48-20.00)

1.0 40 5.1 30.35 (4.33-23.00)

“Statistics of communities in the Hemibrain network found by maximizing generalized modularity density Qy().
Increasing ' results in smaller, more tightly-connected communities. Weighed density is the sum of edge weights di-
vided by the number of possible edges within a community; mean and interquartile range (IQR) exclude communities
consisting of a single node.

2017). Distinct populations of KCs have different connection
probabilities to the other cell types (Eichler et al., 2017), and our
method assigns the input and output neurons to one community
and the projection neurons to another, with KCs split between
those two communities based on strength of connectivity (Fig.
3C). As yx increases, a large community persists in each hemi-
sphere composed of KCs, input neurons, and output neurons,
reflecting a repeated tightly connected microcircuit (Eichler et
al., 2017) (Fig. 3C). These results highlight the contrast between
modularity maximization methods and spectral embedding
methods of graph clustering. The latter groups neurons based on
common connectivity properties; in the larval mushroom body,
the clusters found this way are generally composed of a single
cell type (Chung et al., 2021).

At the coarsest scale, our method thus identifies the clear, bilat-
eral structure of the network. However, it also identifies two less
obvious bilateral structures and isolates several very weakly con-
nected KCs. At finer resolutions, the structure separates into ana-
tomically meaningful subsets with distinct cell type compositions,
grouping sensory projection neurons separately from modulatory
input and output neurons. The inferred organization is approxi-
mately hierarchical; at successively finer resolution, the commun-
ities we find are typically nested (Fig. 3B). The agreement between
the communities we detected and previously identified anatomic
and cell type organization (Eichler et al., 2017) provides support for
our method.

We next turn to the Hemibrain connectome, which is two
orders of magnitude larger in size.

In the hemibrain, communities at the largest scale
correspond to anatomically identified structures

At the coarsest resolution, y = 0, we identified eight commun-
ities in the Hemibrain. Some of these communities correspond
to individual anatomic structures in the brain, while others span
several brain regions (Fig. 5A).

The fly brain is composed of many interconnected neuropils,
which have been further partitioned into ROIs over the last decades
by expert anatomists (K. Ito et al., 2014). In Figure 5B, we compare
the communities we identified with the previously identified brain
regions in the Hemibrain. Box height is proportional to the fraction
of the brain region contained in the cluster, while width is propor-
tional to the number of neurons synapsing in that region. We find
that clusters we identified make or receive synaptic connections in
restricted subsets of previously identified regions, and many of those
regions are primarily contained in one cluster.

Several anatomic structures in the brain correspond to an
entire community identified at this coarsest scale (Fig. 5C). For
example, the mushroom body, a structure that plays a role in
olfaction and memory (Turner et al., 2008), forms a single cluster
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(Cluster 5). The FB, which plays a role in spatial navigation and
modulation of internal states (Hulse et al., 2021), likewise forms
a single cluster (Cluster 2). Other structures jointly form a larger
cluster, such as the right lateral horn, antennal lobe, and superior
lateral protocerebrum, which form a cluster with connections to
other lateral structures on the right side of the Hemibrain
(Cluster 4). This is a primary sensory pathway by which olfactory
information is transmitted from the antennae to the central brain
(Jefferis and Hummel, 2006; Vosshall and Stocker, 2007; Pereanu
et al., 2010). The superior lateral protocerebrum is part of the
superior neuropils, which are split into two clusters (Clusters 3
and 4). The right superior intermediate and medial protocerebra
cluster together with their left pairs in Cluster 3. This cluster
makes bilateral connections to the left and right superior and in-
ferior neuropils. Cluster 7 consists of the anterior visual pathway,
which transmits polarized light information from the optic lobe
to the ellipsoid body (EB) (Otsuna et al, 2014; Omoto et al.,
2017), as well as the EB itself. The protocerebral bridge (PB),
which connects the ellipsoid body and the FB, is split between
Clusters 7 and 2, with the greater portion grouped with the EB in
Cluster 7. The remaining ventral neuropils and optic lobe are
mostly split between Clusters 1 and 6. The lobula plate, a struc-
ture in the optic lobe that is not fully contained in the Hemibrain
volume, forms a cluster consisting of just 88 cells (Cluster 8).

Much of the network topology of the fly brain connectome is
closely tied to its spatial topography (M. Ito et al., 2013). However,
the community structure we find is not simply a reflection of spatial
proximity. For example, the anterior and posterior visual pathways
(parts of Clusters 7 and 6, respectively) span nearly the whole width
of the Hemibrain volume. Likewise, Clusters 3, 4, and 5 (making up
the superior neuropils and the mushroom body), while spatially
colocalized, reflect the distinct roles of their constituent structures in
the network: the superior intermediate and medial neuropils form a
pathway connecting the FB to the mushroom body (Li et al., 2020;
Hulse et al,, 2021), while the superior lateral protocerebrum is part
of a network connecting the antennal lobe to the mushroom body.

Thus, at the coarsest level of resolution, our algorithm automati-
cally identified well-known anatomic subunits of the fly brain.
However, it also placed some anatomic structures with distinct but
related functions into the same cluster, suggesting that these struc-
tures are tightly linked. We next show that increasing the partition-
ing resolution can resolve the finer structure of the fly brain, and
reveal the hierarchical organization of communities.

Generalized modularity density reveals the hierarchical
organization of the fly brain
Clustering is a form of dimension reduction for network data
that allows us to project a larger network onto a network of clus-
ters and the connections between them. The reduced graph of
the clusters we found at the coarsest level, y = 0, reveals high-
level organization of the network. In Figure 6A, each node repre-
sents one of the eight clusters, with the size of a node indicating
the number of neurons in the corresponding cluster. The thick-
ness of the edges is proportional to the weighted edge density
between clusters (black) and within clusters (gray). Weighted
density is how the measure of connection strength is defined for
the Generalized Modularity Density, Qg(Y), and we see the
within-cluster connections are an order of magnitude stronger
than between-cluster connections. Indeed, if we used the same
edge scale for both within and intercluster connections, the latter
would be nearly invisible.

We reran our RenEEL community detection algorithm using
several values of y to find smaller, more densely connected
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view as in Figure 3. Right column, Cluster 3 in a lateral view from the right.

clusters. The clusters identified using the classical modularity
score, Q = Q,(0), roughly broke into smaller clusters as we
increased y, revealing more specialized subclusters. While
increasing y generally resulted in a refinement of the partition
(i.e, a community C;(x) at a larger value of y is usually a proper
subset of some community Ci(y') at a smaller value, ' < y),
some clusters appearing at higher values of y are composed of sub-
networks from two or more clusters at lower values of y. For exam-
ple, 3796 (87.3%) of the 4345 neurons in the largest cluster found
using x = 0.05 (Fig. 6B, bottom right, large purple node) belong to
Cluster 1 (Fig. 64, purple node), while 490 neurons (11.3%) belong
to Cluster 6 (red). However, the vast majority of clusters were bro-
ken into smaller subclusters: on average, clusters identified at resolu-
tions y > 0 were at least 85% contained in one of the eight clusters
found with y = 0 (Fig. 6F).

Thus, increasing the resolution of the modularity measure
allows us to identify subclusters that may have important func-
tions in the network. For instance, Figure 6A shows the strong
within-community connections in the anterior visual pathway-
EB-PB circuit (represented by the thick gray loop on the brown
node) and its strong connection to the FB (the thick black edge

Cluster 2
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The three primary clusters of the larval mushroom body, shown in isolation. Left column, Cluster 1 in a lateral view from the left. Middle column, Cluster 2 from the same posterior
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Cluster 3

o]

connecting brown and green nodes). This circuit splits into two
stages in Figure 6B (brown nodes). The first stage consists of the
inputs from the optic lobe and is very weakly connected to the
FB, while the second, more densely connected cluster, contains
the EB and PB and retains the strong connection to the FB.
Increasing ) resolves these clusters further, revealing the modu-
lar organization of the visual inputs and of the FB. The visual
inputs are organized into a densely connected network of clusters
which feed into a single densely connected cluster, which in turn
connects strongly to three of the four subclusters of the FB (Fig.
6C,D). The clusters in the FB correspond to distinct anatomic
layers, which we discuss further in the next section. We discuss
the inputs to the visual pathway further in Clustering Reveals
Cell type-specific Wiring Patterns.

Our approach shows that the fly brain is composed of hier-
archically organized communities. The function of many of these
communities, and the reason for this structure, is not completely
understood. However, the inferred structure suggests a func-
tional role for this organization that could be tested in follow-up
experiments. We next take a closer look at the organization of
the FB revealed by our method.
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Overview of modularity and anatomy in the Hemibrain. At the coarsest scale modularity, Q,(0) is maximized by partitioning the Hemibrain network into 8 clusters. A, Morphologic

rendering of neurons color-coded by cluster identity. Shown is a sample of 120 neurons from each cluster (except Cluster 8, which consists of only 88 neurons). B, Comparison between commu-
nity structure and anatomy. Brain regions identified by anatomists partition the Hemibrain into disjoint volumes, listed on the y axis. Names are those assigned in the Hamibrain dataset, with
L/R specifying left and right, respectively. Box height is the fraction of the volume on the y axis contained in the cluster on the x axis. The heights in each row sum to 1. The width of a box cor-
responds to the fraction of neurons in the cluster with synapses in the brain region given on the y axis. Individual neurons may have synapses in many brain regions, so the widths in one col-
umn may sum to >1. €, Volumetric renderings of the brain regions contained in each cluster, with shading indicating only partial containment.

Clustering automatically reveals layering in the fan-shaped
body

Having identified the FB as a single community at y = 0, we
next investigated the finer structure of this community by
increasing y. The FB splits into several subclusters, which corre-
spond to previously identified anatomic layers.

At the coarsest resolution, the FB comprises a single cluster
(Cluster 2, Fig. 5C). This cluster consists of 2391 cells, of which
2315 (97%) have synapses in the FB; this represents 90% of the
2570 cells in the Hemibrain volume with synapses in the FB.
This cluster remained coherent at higher values of y: Clusters
containing at least one of these 2391 cells found using y > 0

were, on average, 95% contained in the original cluster (Fig. 6F).
The subclusters we found are arranged from dorsal to ventral,
with increasing resolution producing finer layering.

The FB is known to have a layered structure (Hanesch et al.,
1989; Lin et al., 2013; Wolff et al,, 2015), with different layers
playing different functional roles in the brain (Donlea et al,
2011; Lin et al., 2013; Hulse et al., 2021; Kato et al., 2022). The
exact number of reported layers in the FB varies, so we compared
our results with the nine layers identified in the Hemibrain data-
set (Scheffer et al., 2020). Increasing y from 0 to 0.1 split the FB
into four communities, which roughly correspond to layers 1, 2,
3-6, and 7-9. This is shown in Figure 7A by rendering each
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Communities with <<5 neurons are not shown. We reran the clustering algorithm with y = 0.0, 0.05, 0.1, producing results shown in 4, B, and G, respectively. Thickness of edges corresponds
to weighted edge density, defined as the total weight of the edges connecting nodes in one cluster to nodes in another, divided by the number of possible edges between the two clusters.
Gray border loops represent the connections between nodes within the cluster. The strength of within-community connections is orders of magnitude stronger than between communities. D,
The subdlusters of the anterior visual inputs, ellipsoid body, and FB are shown in isolation to show the organization of the circuit connecting visual inputs to the ellipsoid body and the FB. E,
Brain regions represented by the different colors in this figure. F, The coherence of each of the 8 clusters in A. Coherence of Cluster C is defined as the fraction of each Cluster C" found with
x' > 0 contained in C, averaged over the C" which have nonempty intersection with C. If the clustering found by increasing y was strictly hierarchical, all values would equal 1.0.

volume as a triangulated mesh, with the proportion of triangles
of each color representing the partition of the synapses in the
volume (see Materials and Methods). Increasing y further sepa-
rated these clusters along the dorsal-ventral axis. At y = 0.5, the
FB separated into seven layers, combining the Hemibrain’s layers
4 and 5 and layers 7 and 8 into single communities.

The strong separation between the dorsal and ventral halves
may reflect their different functional roles: the ventral layers play
a role in navigation, while the dorsal layers modulate arousal
(Liu et al., 2006; Donlea et al., 2011; Kato et al., 2022). The pa-
rameter x controls the sensitivity of the clustering to within-
cluster density, so our findings show that the anatomically
defined layers are also densely connected as networks. However,
the individual layers themselves do not form single network
communities. Rather, each layer is composed of a mix of densely
connected networks that reside primarily in that layer (Fig. 7B).

Thus, our method automatically discovered the layered struc-
ture of the FB in an unsupervised way. Our results suggest that
the layers are hierarchically organized: At the coarsest scale, the
FB is split into four layers, which are further subdivided at

increasing resolution. Some of the clusters we identified relate to
the columnar structure of the FB, which we revisit below. We
next ask how the structures identified by our algorithm relate to
cell types.

Common cell types form densely connected clusters
Understanding the importance of the identified structures and
relationships between them becomes difficult as the number of
clusters grows. In order to identify meaningful finer-scale net-
works, we combined our clustering results with cell type data
attached to each node in the Hemibrain.

Most neurons in the Hemibrain (>90%) were previously
assigned cell types based on morphology and brain region con-
nectivity (Scheffer et al., 2020). In contrast, the clusters we found
were defined using network connectivity alone, without the use
of cell type information. We thus used the partitioning of cells by
type in conjunction with clustering to uncover potential cell
type-specific wiring principles. Unlikely conjunctions of cell
types, such as clusters with a wide variety of cell types, or clusters
containing all instances of a given cell type, indicate structures
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The layered, hierarchical structure of the FB is automatically revealed by varying the tuning parameter, y. A, The FB is partitioned into nine layers in the Hemibrain dataset, ren-

dered here as 3D volumes. Each volume is rendered as a triangulated 3D mesh. The proportion of triangles of each color represents the cluster membership of the synapses in the volume (see
Materials and Methods). Left column, Anterior view. Right column, Posterior view. At higher resolutions (y > 0.1), most layers are composed of multiple clusters, revealing structure within
layers. This structure is reflected in the multicolor texture of each layer. Each of these individual clusters resides primarily in one or two layers, so different layers have different mixes of colors.
B, Synapse locations of the neurons in Cluster 2 (y = 0). Neurons on the y axis are sorted according to cluster membership at increasing values of y; clusters are indicated by colors in the
left columns labeled with values of . Repeated colors within one column represent the same cluster. Most clusters are nested hierarchically, so there are few repeated colors within each col-
umn. The remaining columns show neurons’ synapse locations. For example, the dark pink cluster at y = 0.1 (near the bottom of the figure) resides primarily in layer 2, while some of its

neurons have processes extending to the Noduli (NO) and PB.

that deserve further examination. A cluster with a wide variety of
cell types could represent a functional circuit composed of
diverse, but strongly interacting neurons. Alternatively, a very
homogeneous cluster could reveal cell type-specific wiring prin-
ciples. We first discuss the cell type distributions within larger
clusters, identifying key functional circuits, and then consider
how cells of particular types are partitioned by the clustering
algorithm.

To quantify the diversity of cell types that constitute a cluster
we used cluster heterogeneity, measured using Shannon entropy
(for details, see Materials and Methods). Smaller clusters typically
have lower entropy than larger clusters as they can contain fewer
cell types (Fig. 8A). Increasing y partitions the network into
smaller clusters on average, and the average entropy across clus-
ters decreases. However, we found that larger clusters tended to
have significantly lower entropy compared with shuffled data
(Fig. 8A, left column), obtained by permuting the cell types

between the cells. The largest clusters we found at higher values
of x have only a few bits of entropy, so they must be composed
of many cells belonging to only a few cell types. This suggests
that neuron types that are prevalent in the brain (i.e., types with
tens or hundreds of exemplars) are most densely connected with
other common cell types, much more so than would be seen in a
randomly labeled network. Therefore, clusters are more uniform
in their composition than expected by chance, with some being
composed almost completely of one or a few cell types.

Cluster heterogeneity does not reveal the degree of homophily
among the different cell types, that is, whether common types of
cells are most densely connected to other cells of the same type,
or whether they tend to share connections with different type
cells. To answer this question, we introduced cell type com-
pleteness of a cluster, defined as the fraction of cells of a given
type that belong to a cluster, averaged over the cell types in that
cluster (for details, see Materials and Methods). A cluster with a
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completeness score of 1 may be composed of multiple cell types,
but it contains all cells of those types. For each value of y > 0,
we found an average completeness score of 0.4 (the 8 clusters
found at y = 0 have an average completeness score of 0.8).
Larger clusters tend to have higher completeness scores; exclud-
ing clusters with <10 neurons raises the mean completeness
score to the range 0.5-0.7 and clusters with at least 100 neurons
have a mean completeness score of 0.8-0.9 for y > 0 (Fig. 84,
middle column, Fig. 9). In other words, certain common cell
types form strongly connected communities and these are auto-
matically identified by our clustering method.

We found high-completeness clusters distributed throughout
the brain, comprising a variety of cell types. The clusters with the
highest completeness scores reside primarily in the mushroom
body, in the inputs from the visual system, and in the central
complex. The two most common cell types in the dataset are lob-
ula columnar cells (LCs) and KCs, which combined represent
18.5% of the neurons in the Hemibrain. LCs form the bulk of the
portion of the optic lobe in the reconstructed volume of the
Hemibrain. There are many subtypes (Otsuna and Ito, 2006;
Panser et al.,, 2016), the most prevalent of which are grouped to-
gether by our method across multiple resolution scales (Fig. 8B).
KCs form the bulk of the mushroom body and the majority of
the high-completeness clusters in that region. They are densely,
but weakly connected (Takemura et al., 2017a), and thus do not
completely cluster together at higher values of y (Fig. 8B).

In the central complex, many of the ER cells which compose
the head direction circuit in the ellipsoid body form cliques, all-
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ence of this average on the minimum size of clusters included. Cluster diversity decreases as
x increases, which reflects the smaller cluster size overall. Cluster completeness remains
fairly constant regardless of y. Exduding small clusters raises the average completeness.
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to-all connections with cells of the same type (Scheffer, 2020;
Scheffer et al., 2020; Fisher, 2022). These are automatically iden-
tified by our method (Fig. 8B, dark green). At the coarser resolu-
tions, we find that nearly the entire central complex forms a
small number of high-completeness clusters while at the finest
scale, the communities we identified are composed of one or two
types of ring cells (Fig. 8B, bottom).

Cluster heterogeneity and cluster completeness are comple-
mentary measures that summarize the cell type composition of
clusters. Heterogeneity measures the diversity of cell types
within the cluster, while completeness measures how strongly
each type is represented. Plotting cluster heterogeneity against
completeness organizes clusters into four quadrants allowing us
to identify functional networks in a semiautomated fashion
(Fig. 8A, right column). In the top right (high heterogeneity,
high completeness) are clusters that are composed of nearly all
cells of multiple types, potentially indicating important func-
tional circuits. Clusters in the bottom right (low heterogeneity,
high completeness) are communities composed primarily of a
single cell type. In the bottom left (low heterogeneity, low com-
pleteness) are tightly linked subnetworks of a single cell type, or
potentially cell subtypes. In the top left (high heterogeneity, low
completeness) is noise — only the shuffled data appear here.
Interesting high-completeness clusters are easiest to identify
with this framework, as these are the clusters composed of
nearly all the cells of one or more types. Clusters in the bottom
left (low heterogeneity, low completeness) require a slightly dif-
ferent analysis, which we turn to next.

Clustering reveals cell type-specific wiring patterns

By definition, a high-completeness cluster contains most cells of
certain types in the brain. However, the abundance of low-com-
pleteness clusters suggests that many cell types form multiple
densely connected subclusters which may or may not be homo-
geneous. This may be a result of fine-scale organization within
the cells of one type, such as submodules composed of cells of a
single type, or repeated wiring patterns that could be revealed by
similarly structured clusters composed of multiple cell types. Our
approach can reveal these structures by partitioning cells of a
given type into separate clusters with increasing values of y.
These separate clusters would have low completeness scores, as
they would contain only a fraction of the cells of one type.
Moreover, such clusters might only become apparent at high re-
solution when clusters are smaller and more densely connected.
Thus, we sought to identify cell type-specific wiring patterns by
examining the partitioning of cell types into clusters and the de-
pendence of such partitioning on the resolution scale.

Such identification of wiring patterns requires us to quantify
the cluster composition of cell types. That is, we are interested in
finding multiple clusters that share cells of a given type to under-
stand the wiring patterns of that cell type. We do so by leveraging
the multiresolution nature of our modularity density measure,
considering the progressive partitioning found by increasing the
control parameter .

To this end, we considered measures analogous to homogene-
ity and completeness, now defined for cell types rather than clus-
ters, and examined their dependence on y. For a given cell type,
the Fraction of Type is what fraction of that type is represented
in each cluster, averaged over clusters which contain cells of that
type (see Materials and Methods). For low values of y, where the
network is partitioned into a few large clusters, most cell types
have a Fraction of Type score close to 1; for each cell type, all
cells of that type are grouped together in one of the large clusters.
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If Fraction of Type remains close to 1 across multiple values of
X, this suggests cells of that type form a single densely connected
network that may or may not include cells of other types.
Conversely, a decreasing Fraction of Type score indicates a cell
type that is partitioned into densely connected subnetworks.

The complementary Fraction of Cluster score measures what
fraction of each cluster is composed of cells of a given type, aver-
aged over clusters which contain cells of that type. This is analo-
gous to the completeness score for clusters, with the role of cell
type and cluster identity reversed (see Materials and Methods). If
Fraction of Cluster is close to 1, then all clusters that contain cells
of a given type are predominantly composed of cells of that type.
A low Fraction of Cluster score indicates that clusters containing
cells of a given type also contain many cells of other types. For a
fixed value of y, Fraction of Cluster is not easily interpretable.
However, considering how this score changes with varying y,
and moreover how Fraction of Type and Fraction of Cluster
jointly vary, may reveal biologically relevant network structure.

As x varies, the Fraction of Type and Fraction of Cluster
vary, tracing out a curve (Fig. 10A). For most cell types, this
curve starts in the top left corner (high Fraction of Type, low
Fraction of Cluster) and moves to the right and down as y
increases (Fig. 11). Motion purely to the right indicates that our
method is identifying progressively smaller networks containing
all cells of the given type. Motion purely downward indicates a
certain regularity of connectivity: While the cells of that type are
partitioned into disjoint networks by our clustering method, the
average composition of those networks remains unchanged. A
cell type curve which moves purely rightward then purely down-
ward thus might identify a wiring pattern involving multiple cell
types. Computing the area swept out by the curve (Fig. 104, gray
shading) provides a simple heuristic for identifying cell types
that are possibly hierarchically organized in this way. Many of
the cell types with the largest swept area values are those that
form high-completeness clusters. We therefore focus on the cell
types that tend to be part of low-completeness clusters, that is,
those types that are partitioned into subsets by the clustering
algorithm.

Using this area score heuristic, hAK and PFGs neurons stood
out as cell types which potentially partition into type-specific
wiring patterns (Fig. 10A). The FB has a grid-like layout with dis-
tinct layers and columns (Hanesch et al., 1989; Lin et al., 2013;
Hulse et al., 2021). At a moderate resolution scale (y = 0.5), we
find a single cluster consisting of 31 hAK, 18 PFGs, 6 FB6A, 2
FB6D, 4 FB6M, and 2 ExR3 cells, which represents all cells of
those types in the Hemibrain. For higher values of y, the clus-
ters containing the hAK and PFG cells tile the middle layers of
the FB, with each cluster composed of a small number of cells
which arborize in two contralateral columns (Fig. 10B). PFG
cells connect the PB and the FB; each PFG cell arborizes in one
glomerulus of the PB and one dorsal columnar patch of the FB
(Hulse et al., 2021). Each hAK cell arborizes in two contralateral
columns of the FB (Fig. 10D). Together, these two cell types
form a roughly bipartite network with sparse, weak connectivity
between cells of the same type (Fig. 10C). At the finest resolu-
tion scale we examined, corresponding to y = 1, each of these
clusters consists of at most two PFG cells and at most three
hAK cells per PFG cell. One cluster contains an additional four
neurons, the two ExR3 neurons and two of the FB6A neurons,
which are strongly, reciprocally connected with all hAK cells
and all PFG cells (Fig. 10F). The PFG-hAK-ExR3 circuit and its
putative role in regulating sleep were previously described in
Hulse et al. (2021). Our automated method recovers this
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Figure 10.  Algorithmically identified type-specific wiring pattems. A, For each cell type, the communities we find partition the cells of that type. This partition is summarized by the Fraction of Type
and Fraction of Cluster scores. As the resolution scale parameter, y/, varies, each cell type traces out a curve in the Fraction of Type (y axis) versus Fraction of Cluster (x axis) plane. Shown here are these
curves for four cell types: the cell type which sweeps out the largest area (KCab-c), a randomly selected type (LC20), and two highlighted curves which indicate the possible presence of a repeated type-
specific wiring pattern (hAK, MC61). Curves for all cell types with at least 10 exemplars are shown in Figure 11. Gray shading represents how the area score is computed for LC20. B, Clustering at y =
1.0 reveals the columnar structure of the FB. Pictured are all dusters containing hAK cells, which includes all hAK neurons and all PFGs neurons. PFG cells connect the PB to the FB, while hAK cells are
local to the FB. Not shown are five cells which are part of these clusters (a left-right pair of EXR neurons and three FB neurons), but would otherwise obscure the figure. ¢, The undirected network of
hAK neurons and PFGs neurons in these clusters. The network is roughly bipartite, with strong connections between cells of different types, but only sparse and weak connections among cells of the
same type. Each cluster is composed of one or two PFG cells and several hAK cells. The 18 PFG cells (top row) are ordered according to their spatial arrangement in the FB. D, Morphologic rendering of
the cells in the cluster marked *, colored by cell type. E, Directed network representation of cluster marked *, with edges colored by source cell. £, The cluster marked ** contains four additional neurons,
two ExR3 neurons and two FB6A neurons. These neurons form reciprocal connections to all hAK and PFG cells, in all clusters. Shown here is the cell type connectivity graph of the indicated cluster.
Nodes represent cell types, and edge weights are given by the average connection strength between cells of the two types. Edges are colored according to the source node.

structure at higher resolutions, and suggests a possible role for
First Quartile Second Quartile other neuron types (FB6D, FB6M) by their inclusion at moder-
ate resolution scales.

Investigating another cell type identified using the area score
heuristic revealed spatial and circuit organization in the inputs to
the anterior visual pathway. The small clusters in the anterior visual
pathway that emerge at higher values of y (Fig. 6D, brown) are
composed mostly of MC61 cells, which project visual information
directly from the medulla to the central brain (Otsuna et al., 2014;

. Omoto et al., 2017). This algorithmically discovered partition cor-
1 0 Cluster 1 responds to a spatial tiling pattern in the small unit of the anterior
optic tubercle (Fig. 12A). The spatial tiling corresponds to a wiring
pattern involving MC61 cells and tubercle-bulb cells (TuBu) (Fig.
12B). The clusters that are primarily composed of MC61 cells typi-
cally include one or two TuBu cells, each of which receives input
from all MC61 cells in the cluster (Fig. 12C). TuBu cells innervate
EB ring neurons, conveying visual information to the central com-
plex in a retinotopically organized manner (Seelig and Jayaraman,
2013; Omoto et al,, 2017). The striking tiling uncovered by our
method provides a high-resolution view of findings previously
' . descrgll)ed (Hulse et al.u, 20211) (Fig. 6). The Iﬁetwork structure, ;wﬂi;h

one tile per TuBu cell, implies a topographic organization of the
. Cluster ! i Cluster 1 MC61 dendritic arbors in the medulla, which is consistent with
Figure 11.  Fraction of Type—Fraction of Cluster curves for all cell types with at least 10 previous findings (Otsuna et al, 2014; Omoto et al, 2017).
neurons in the Hemibrain, grouped by area score quartile. Unfortunately, MC61 cells are at the edge of the reconstructed

Type
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Figure 12. A, Clustering at y = 0.75 reveals a distinct spatial tiling pattern in MC61 cells and their outputs, with each tile receiving inputs from spatially congregated input fibers from the
medulla. Shown are 293 cells, comprising all clusters which are at least 80% MC61 cells. This includes 258 of 346 MC61 cells (75%) in the Hemibrain dataset. B, The neurons in A form a highly
organized network: Each cluster of MC61 cells converges on a common TuBu cell. Two of the clusters are shown in C, with edges colored by the presynaptic neuron.
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Figure 13.  Cell body fiber (CBF) groups partition the neurons in the fly brain based on

cell body location and clonal origin. For each CBF group, we computed what fraction of that
group belonged to each cluster. Shown here is the distribution of the top fraction across
groups. At lower resolutions, RenEEL clusters most neurons in one CBF group together, while
at higher resolutions, these groups are split among several clusters.

volume and the medulla is not reconstructed, so we cannot
describe the relationship between the spatial extent of MC61 cells
in the medulla with their cluster identity.

Our method is thus capable of identifying fine, cell type-
specific microcircuits, consisting of as few as three neurons.
By comparing the partition of the network induced by cell
type annotations to the partitions found by our method
across several resolution scales, we can identify cell types
that are progressively partitioned into functional modules.
The intricate spatial topography revealed by the connec-
tome’s community structure in this way reveals striking
fine-scale organization in the fly brain.

Discussion

We have shown that clustering by maximizing Generalized
Modularity Density both recovers known anatomic structures
and infers novel organizational principles from connectome
data. Our approach allows us to uncover such structure auto-
matically, unsupervised, solely from the network architecture.
We also discover cell type-specific wiring patterns when we add
node labels.

Our methods are scalable and can be applied to existing con-
nectomes and to those that will be reconstructed in the future.
Our community detection method is fully automated, but bio-
logical interpretation is required to fully appreciate the results.
Including cell type data with clustering can help generate testable
hypotheses about the organization of the network, hypotheses
that can be tested using electrophysiology, imaging, genetics
(Panser et al., 2016), and other methods. Thus, our methods are
an important tool that can be used to help understand the orga-
nization and the function of neural populations and circuits.

There are multiple approaches to finding community struc-
ture in complex networks, each identifying communities with
different attributes (Fortunato and Hric, 2016). Alternative clus-
tering methods could account for link direction and use other in-
formation about the connectome. However, such methods
would also require the development of efficient computational
algorithms similar to the RenEEL algorithm we used. The results
would also need to be validated using the known anatomy of the
Drosophila brain. Maximizing Generalized Modularity Density
identifies communities that are more densely connected than a
random graph null model (Guo et al., 2019). We validated its use
for finding connectome structure by analyzing the structure of
the Larval Mushroom Body and comparing the results with those
found previously with other methods (Chung et al., 2021). Our
results identified a detailed hierarchical structure of nested com-
munities consisting of heterogeneous cell types in the hemi-
spheres that follows anatomy. The structure we found contrasts
with that found using spectral embedding methods, for example,
which generally identify single cell type clusters. Although our
method of community detection finds structure that has an
appealing, “straightforward” interpretation, it is not necessarily
better than other methods. Rather, community structure found
by different approaches should be considered complementary.

Brains inherit a degree of hierarchy and modularity during
the course of development from neural stem cells (Molyneaux et
al., 2007; K. Ito and Awasaki, 2008; Lai et al., 2008; Sawa, 2010).
The fly brain, in particular, is composed of clonal units, densely
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Figure 14.  We perturbed the network to investigate the possible effects of reconstruction errors on our results. Community identification at the coarse scale did not significantly change
when low-confidence synapses were dropped from the network. 4, Comparison of the clusters found in the original network with those found in the perturbed network. Each box represents
the neurons assigned to the cluster given on the x axis in the original network and the cluster given on the y axis in the perturbed network. Box width represents the fraction of the cluster in
the original network; box height represents the fraction of the cluster in the new network. Clusters from the original network consisting of <5 neurons are not shown. At the lower values of
x presented here, the clusters found in the perturbed network are usually wholly contained in a cluster in the original network, shown by the full height of the boxes. B, The intercommunity

connectivity is also fairly similar in the perturbed networks (compare to Figure 64,8).

connected populations of cells derived from a single neural stem
cell (Hartenstein et al., 2008; K. Ito and Awasaki, 2008). Since
our approach partitions the network into densely connected
clusters, many of the communities we find in the Hemibrain
align closely with previously described clonal units (M. Ito et al.,
2013; Omoto et al.,, 2017). A precise quantitative comparison to
the systematic analysis by M. Ito et al. (2013), however, is diffi-
cult because we cannot perform a cell-by-cell alignment between
their results and ours. Still, there are notable similarities between
their Figure 1 (M. Ito et al., 2013) and our Figure 5: A visual
inspection shows that many of the identified clonal units are
strictly contained within the clusters we find at the coarsest scale
parameter y = 0. Our method can thus be used to develop and
refine hypotheses about the development of the brain. In particu-
lar, the subnetworks we identify by increasing the resolution of
the clustering may identify structures which emerge at different
stages of development.

In the Hemibrain, cell body fiber annotations group cells by
the location of their cell body on the outer layer of the brain,
which correlates with a cell’s clonal origin (Scheffer et al., 2020).

At lower resolutions, cell body fibers tend to form subsets of sin-
gle clusters, while at higher resolutions they tend to be split up
(Fig. 13). In other species, clonally related neurons may give rise
to a large structure, such as a cortical column (Costa and Hedin-
Pereira, 2010), while having a fine-scale organization more simi-
lar to a bipartite or multipartite network (Cadwell et al., 2020).

By combining our analysis with cell type data, we were able to
identify repeated microcircuits composed of as few as three neu-
rons. This relied not only on our ability to overcome the resolu-
tion limit problem (e.g., by optimizing Q.(x) with any particular
value of y > 0), but also on our ability to analyze the network at
multiple different resolutions. For any fixed partition of the net-
work into communities, a single community of three nodes
could potentially be random noise. However, the small commun-
ities that we highlighted as emerging hierarchically appear to be
real biological structures because they have reliable cell type
composition.

The function of these structures in the fly brain network is
currently unknown and will require additional experiments and
more complete connectomes to uncover. The bipartite network



Kunin etal. o Structure of the Drosophila Connectome

we described (Fig. 10) connects to many cell types and brain
regions that play a role in vector calculations related to spatial
navigation and sleep/wake regulation (Hulse et al, 2021),
although their exact role in this circuit is unknown. The regular
tiling pattern we describe in the anterior optic tubercle (Fig. 12)
suggests a regular pattern of inputs from the medulla. However,
the medulla and structures upstream from it are not included in
the Hemibrain. The neural circuitry of these structures has been
previously described, with many distinct wiring patterns con-
necting the ommatidia to downstream structures, including the
medulla (Takemura et al., 2015). The regularity of wiring in these
peripheral structures may serve a computational purpose that is
conserved across space (Takemura et al.,, 2013, 2017b), and so
the computational role of the tiling in anterior optic tubercle will
require a more complete connectome to infer.

It is possible that some of our results are biased by reconstruc-
tion errors and the incompleteness of the dataset. For instance,
Cluster 8 at y = 0 is at the edge of the reconstructed volume,
and consists of many neurons which are only partially recon-
structed (see Fig. 5). We choose to include the cluster in our
analysis because it identifies the portion of the lobula plate that is
reconstructed in the Hemibrain volume. Similarly, other clusters
composed of cells that are only partially contained in the
Hemibrain dataset could be affected by the incompleteness of the
data. In the Hemibrain, automated synapse detection has an av-
erage precision of 0.8 and average recall of 0.8, although accuracy
varies between brain regions (Scheffer et al., 2020). In order to
determine whether our results are robust with respect to missing
or misidentified synapses, we perturbed a comparable fraction of
edges in numerical experiments, and observed no large changes
in the identified communities, especially on the larger scale
(Fig. 14). However, if reconstruction errors are systematic,
they could change the finer structures detected using commu-
nity detection methods. Further analysis could be done to esti-
mate the impact of such errors, perhaps by perturbing the
synapses in a way mimicking the errors known to occur in
network reconstruction (Vasa and Misi¢, 2022). Our perturba-
tion analysis also suggests that false negatives in identifying
synapses can lead to a greater number of smaller clusters at
higher resolutions (Fig. 2B); therefore, our ability to find true
communities at these scales is limited by the accuracy of the
data. Thus, our findings should only be interpreted in the pos-
itive: where we find certain kinds of structure, we are confi-
dent it is truly there; where we do not find structure, that may
reflect the incompleteness of the data.

To help us identify communities of interest, we have made
use of cell type data in addition to the architecture of the connec-
tome. However, methods that directly incorporate such informa-
tion could be used to identify network community structure. For
instance, spatial information about the cells could be included to
preferentially detect clustering between proximal or distal cells.
Moreover, we could look at different modes of organization: A
core—periphery analysis could identify cores of strongly intercon-
nected cells, and peripheries of cells connected to the core
(Rombach et al., 2014). Similarly, we could search for anti-com-
munities of cells that are connected weakly to each other, but
strongly to those in other anti-communities (M. Chen et al,
2014). An analogous bipartite or multipartite method that first
distinguishes cells based on their type and then looks for struc-
ture within sets of cells of the same type would allow the direct
inclusion of cell type information in the clustering, but would
require the development of new generalized modularity meas-
ures and algorithmic methods.
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Neurons do not interact only via synaptic connections, but
can influence each other through gap junctions, expression of
neuromodulators, and possibly ephaptic and other types of inter-
actions. Moreover, in mammals, glia can play an important role
in neuronal interactions. Currently available connectomes are
based only on synapses between neurons, and thus offer only a
partial picture of the interactions between neurons and sub-
groups. We view our results, and those of similar approaches, as
an initial step in characterizing the structure of interactions in
the brain, providing a picture that will both change and become
more detailed as more complete data becomes available.

To interpret the results of the network analysis, it is impor-
tant to consider and integrate additional information, such as
cell type, spatial location, directionality of edges, and location
within the reconstructed volume. Such tools are effective when
used in conjunction with other analysis methods, and validated
with synthetic and ground truth data. They can be used to gener-
ate concrete predictions which need to be independently verified.
A slate of tuned and validated automated methods will be essen-
tial for progress, given the volume and complexity of new con-
nectomics data.
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