
ART I C L E

Sampling a pika’s pantry: Temporal shifts in nutritional quality
andwinter preservation ofAmerican pika food caches

Johanna Varner1 | Zoe J. Carnes-Douglas1 | Emily Monk2 |

Lauren M. Benedict2,3 | Ashley Whipple2,4 | M. Denise Dearing5 |

Sabuj Bhattacharyya6 | Loren Griswold5 | Chris Ray2,4

1Department of Biological Sciences,
Colorado Mesa University, Grand
Junction, Colorado, USA
2Department of Ecology and Evolutionary
Biology, University of Colorado Boulder,
Boulder, Colorado, USA
3Department of Biology, University of
Nevada Reno, Reno, Nevada, USA
4Institute of Arctic and Alpine Research,
University of Colorado Boulder, Boulder,
Colorado, USA
5School of Biological Sciences, University
of Utah, Salt Lake City, Utah, USA
6Institute for Stem Cell Science and
Regenerative Medicine, Bangalore, India

Correspondence
Johanna Varner
Email: jvarner@coloradomesa.edu

Funding information
Colorado Mesa University; University of
Colorado Mountain Research Station;
Niwot Ridge Long-Term Ecologcial
Research program, Grant/Award Number:
DEB-1637686; NSF; Saccomanno Institute
Program for Biological Research;
University of Colorado; University of
Utah; Western North American Naturalist

Handling Editor: Rebecca J. Rowe

Abstract

Climate change is increasing temperature, decreasing precipitation, and increasing

atmospheric CO2 concentrations in many ecosystems. As atmospheric carbon

rises, plants may increase carbon-based defenses, such as phenolics, thereby poten-

tially affecting food quality, foraging habits, and habitat suitability for mammalian

herbivores. In alpine habitats, the American pika (Ochotona princeps) is a model

species for studying effects of changing plant chemistry on mammals. To survive

between growing seasons, pikas cache “haypiles” of plants rich in phenolics.

Although they are toxic to pikas, phenolic compounds facilitate retention of plant

biomass and nutrition during storage, and they degrade over time. Alpine avens

(Geum rossii, Rosales: Rosaceae) is a high-phenolic plant species that comprises up

to 75% of pika haypiles in Colorado. Here, we tested the hypothesis that contempo-

rary climate change has affected the nutritional value of alpine avens to pikas in

the last 30 years. Specifically, we compared phenolic activity, nutritional quality,

and overwinter preservation of plants collected at Niwot Ridge, Colorado (USA), in

1992 to those collected between 2010 and 2018, spanning nearly three decades of

climate change. Phenolic activity increased in alpine avens since 1992, while fiber

and nitrogen content decreased. Importantly, overwinter preservation of plant

biomass also increased, particularly on windblown slopes without long-lasting

snow cover. Previous studies indicate that pikas at this site still depend on alpine

avens for their winter food caches. Higher phenolic content in alpine avens could

therefore enhance the preservation of haypiles over winter; however, if pikas must

further delay consuming these plants to avoid toxicity or invest extra energy in

detoxification, then the nutritional gains from enhanced preservation may not be

beneficial. This study provides important insights into how climate-driven changes

in plant chemistry will affect mammalian herbivores in the future.
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INTRODUCTION

Anthropogenic climate change is affecting patterns of
biodiversity and habitats globally, and alpine ecosystems
are thought to be among the most vulnerable to these
changes due to their specialized adaptations to low tem-
peratures, short growing seasons, and low-nutrient soils
(e.g., Guisan et al., 2019; Hock et al., 2019). Increasing
temperature, decreasing precipitation, and shifting sea-
sonality have already affected plant communities in
alpine ecosystems through compositional changes, distri-
butional and range shifts, and invasions of nonnative
and/or lower elevation plant species (e.g., Verrall &
Pickering, 2020; Winkler et al., 2019). These changes are
also likely to affect plant phenology (Inouye, 2020) and
physiology (Pugnaire et al., 2020). Furthermore, if
changes in climate affect plant nutrient content and/or
defensive chemistry, then they could have important
implications for plant–herbivore interactions (Pellissier &
Rasmann, 2018; Stiling & Cornelissen, 2007; Zvereva &
Kozlov, 2006).

Although many studies focus on how temperature
(Fazlioglu & Wan, 2021), precipitation (Jackson & Colmer,
2005), drought (Seleiman et al., 2021), or snowpack (Rixen
et al., 2022) affect alpine plant communities, another impor-
tant change affecting plant physiology and defensive chem-
istry is the increase in atmospheric CO2. Specifically, when
atmospheric CO2 concentrations are higher and tempera-
tures are warmer, photosynthesis becomes more efficient,
allowing plants to generate surplus carbon compounds
(Drake et al., 1997). These extra carbon compounds are
often invested in differentiation (including the pro-
duction of fiber or secondary defensive compounds),
particularly if growth is limited by nutrients or other
environmental factors (Holopainen et al., 2018).
Because nutrients are typically more limiting than
light in alpine ecosystems, alpine plants are likely to
rely on carbon-based defenses over nitrogen-based
defenses (Bryant et al., 1983). In particular, phenolic
compounds are typically the most common class of
plant secondary compounds in alpine specialists, possi-
bly because these compounds also play a protective role
against stressful abiotic conditions at high elevations
(e.g., freezing temperatures and/or high UV exposure;
Defossez et al., 2021).

Several studies have highlighted changes in the con-
centration of phenolic compounds in alpine plants over
time (e.g., Albert et al., 2009; Alonso-Amelot et al., 2007;
Nybakken et al., 2008); however, few studies have inves-
tigated how this shifting plant chemistry might affect
plant–herbivore interactions in alpine ecosystems. In
addition to becoming increasingly toxic, many alpine
plants are also likely to decrease in nitrogen content,

either through “dilution” by increased carbon biomass
(Zvereva & Kozlov, 2006) or through reduction in the
concentration of nitrogen-rich photosynthesis machinery
(Owensby et al., 1996). Mammalian herbivores are
typically nitrogen limited (Karasov & del Rio, 2007;
Robbins, 1992), so a reduction in nitrogen content could
result in a significant decline in nutritional quality for
these animals (Turunen et al., 2009). Furthermore, plants
may also invest excess carbon in fiber (Rothman
et al., 2015), thereby further reducing their nutritional
value for herbivores. Together, such potential shifts in
nitrogen, fiber, and toxicity could cause important
changes in food quality, foraging habits, and ultimately
habitat suitability for herbivores, particularly those in the
alpine zone (Moore et al., 2015). Indeed, historical expan-
sions of C4 grasses that replaced C3 plants in the
Miocene have been implicated in range retractions and
extinctions of small mammals, likely due to the nutri-
tional differences between these two types of plants (Ge
et al., 2012).

Here, we investigate changes in the defensive chemis-
try and nutrient content of an important food resource for
American pikas (Ochotona princeps), hereafter “pikas.”
Pikas are small mammalian herbivores in the Lagomorph
order that are distributed across western North America,
primarily in alpine talus habitats (Smith & Weston, 1990).
Pikas represent a unique system for evaluating the effects
of climate change on food quality because their annual diet
is partitioned between forage that is consumed immedi-
ately after harvest (the “summer diet”) and forage that
is stored for winter consumption (the “winter diet”;
Dearing, 1996a). Unlike many alpine mammals, pikas do
not hibernate during winter (Smith & Weston, 1990).
Instead, they spend the short alpine summer amassing a
large food cache called a haypile, which they then con-
sume over winter (Dearing, 1996a, 1997b). Importantly,
summer and winter diets differ in the plant species
selected for consumption (Dearing, 1996a, 1997a, 1997b;
Smith & Erb, 2013). The summer diet of pikas typically
consists of graminoids and forbs that are nitrogen rich and
nontoxic (Dearing, 1996a). In contrast, their winter diet
is typically rich in plants known to contain high levels of
secondary compounds, particularly phenolics (Dearing,
1996a, 1997b). Although phenolics are toxic to pikas
(Dearing, 1996b), pikas manipulate these plant toxins by
caching the most toxic species, which have antimicrobial
properties that help preserve biomass through the winter
(Dearing, 1997a). In addition, phenolic toxins break down
during storage, making the plants more palatable when
consumed later in the winter (Dearing, 1997a).

Although the response of pikas to climate change is
idiosyncratic and regionally variable (Smith et al., 2019),
this species is widely considered a climate sentinel
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species (Wilkening & Ray, 2015). Specifically, pikas have
experienced population declines (Beever et al., 2013),
upslope range retractions (Billman et al., 2021), and
local extinctions in parts of their geographic range
(Beever et al., 2016; Stewart et al., 2017). While these
changes appear to be the most pronounced at lower
elevations and/or in more-isolated mountain ranges
(Beever et al., 2016), evidence of demographic decline is
also evident in parts of the species’ core range (Billman
et al., 2021; Stewart et al., 2017). Although pika declines
have been associated with microhabitat features and
changing vegetation communities, particularly reduced
forb cover (Wilkening et al., 2011, 2019), no studies have
examined the effects of climate change on the nutri-
tional quality of these plants, which could provide a
key mechanistic link between changes in vegetation and
changes in pika distribution, density, behavior, or
physiology.

Alpine avens (Geum rossii, Rosales: Rosacea) is an alpine
forb that is high in phenolics and comprises 50%–75% of
pika winter diet in Colorado (Bhattacharyya & Ray, 2015;
Dearing, 1996a). Beyond pikas, alpine avens is also an
important component of the summer diet of other alpine
herbivores, including mountain goats (Hibbs, 1967), elk
(Baker & Hobbs, 1982), and ptarmigan (May & Braun,
1972). Here, we investigated changes in the chemistry of this
plant and its overwinter preservation as they pertain to
changes in food quality for pikas and other herbivores over
the last three decades. Importantly, alpine avens has
decreased in its relative abundance in the last 30 years but
remains a preferred winter food source for pikas at this site
(Bhattacharyya & Ray, 2015). We collected samples of this
species from the West Knoll of Niwot Ridge, Colorado,
between 2010 and 2018 to compare the phenolic activity,
fiber, and nitrogen contents of these “recent” samples to
“historical” samples collected in the same location in the
early 1990s (Dearing, 1996a, 1997a). We also repeated an
experiment by Dearing (1997a) to investigate whether
changes in plant chemistry may have resulted in
enhanced overwinter preservation of this plant in pika
haypiles, and we extended this experiment to investigate
howmicrohabitat (aspect and slope angle) affects preser-
vation. We hypothesized that changes in climate
have affected the nutritional value of this plant species.
Specifically, in accordance with previous studies
(e.g., Couture et al., 2014; Rice et al., 2021; Rothman
et al., 2015), we expected to see an increase in phenolic
activity, a decrease in nitrogen content, and an increase
in fiber content. Understanding changes in the chemis-
try and nutritional profile of this species is an important
step towards a more mechanistic understanding of how
climate change may affect the mammalian herbivores in
this changing ecosystem.

METHODS

Study sites and plant sampling

This study was conducted at the Niwot Ridge Long-Term
Ecological Research site (40�030 N, 105�350 W, elevation
3520 m), located in the Front Range and specifically
in the Roosevelt National Forest, Boulder County,
Colorado. We worked on the West Knoll, the site of
Dearing’s previous studies on pikas and alpine avens
(Dearing, 1996a, 1996b, 1997a, 1997b). At this site, the
west-facing slopes are generally wind-blown and support
dry-meadow and fellfield vegetation. In contrast, snow
accumulates on the east-facing slopes, where scattered
snow beds remain until midsummer (Suding et al., 2015).

Recent samples

In late July or early August of 2010, 2013, 2014, 2017, and
2018, we collected 1–2 leaves (0.3–0.5 g) from each of
10–15 individual alpine avens plants located in foraging
areas in active pika territories on the West Knoll.
Sampled plants were at least 50 m apart, and we targeted
leaves that were green and fully intact. Leaves were cut
just above the ground and kept on ice in the field, then
transferred to a −80�C freezer until analysis. A subset of
leaves was weighed fresh and then dried to measure
subset water content, as described in detail below. In
2018, we also collected leaves of alpine avens from five
additional locations, including one additional site in the
Front Range and four other mountain ranges in the
southern Rocky Mountains (San Juan, Cimarron, La Sal,
and West Elk). In each of these five mountain ranges, we
collected samples from at least three sampling locations
(separated from one another by >500 m), and at each
sampling location, we collected 1–2 leaves from each of
at least three individual plants. We did not have histori-
cal samples from any of these five extra locations, but this
sampling allowed us to investigate spatial variation in
plant chemistry within a year.

Historical samples

We also analyzed “historical samples” of alpine avens
that were collected by Dearing on the West Knoll of
Niwot Ridge in 1992. These samples (frozen alpine avens
leaves) had been stored at –80�C until 2014, when they
were tested as described below. We analyzed these frozen
leaves collected in 1992 as an assay control and compared
our results to the values reported by Dearing (1996a,
1997a, 1997b).
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Plant chemistry and nutrition assays

Total phenolic activity of alpine avens was measured using
the Folin–Ciocalteu method (Waterman & Mole, 1994) for
both recent and historical alpine avens samples. Although
this method is less accurate in measuring absolute phenol
content compared with more sophisticated analytical
approaches (e.g., LC–MS), it provides a consistent estimate
of biological activity in ecological studies where activity
depends on phenolic oxidation, such as in plant–herbivore
interactions (Appel et al., 2001; Moreira et al., 2020).
Furthermore, we wanted to directly compare our results
with those of previous studies that used the same assay
(Dearing 1996a, 1997a, 1997b). Phenolic content of ~0.2 g
of frozen plant material was extracted into a solution of
95% methanol by grinding with a Polytron PT3100 Mixer
(Kinematica, Lucerne, Switzerland) at 12,000 rpm for 30 s.
After 48 h in the dark at room temperature, samples were
centrifuged for 5 min at 3300 rpm, and the supernatant
was used in the Folin–Ciocalteu reaction, following the
protocol of Ainsworth and Gillespie (2007). As in
Dearing’s previous studies, tannic acid was used as the
standard for the standard curve. We used a subsample of
each plant sample to calculate water content by weighing
fresh samples in the field (fresh mass [FM]) and reweighing
after drying for 24 h at 40�C (dry mass [DM]). All phenolic
activity values were converted to phenolic activity per gram
DM. Total phenolic activity is expressed as milligrams
of tannic acid equivalent (TAE) per gram DM of plant
material.

Total fiber content (neutral detergent fiber, NDF) and
cellulose/lignin content (acid detergent fiber, ADF) of
recent and historical alpine avens samples were measured
in a fiber analyzer according to the manufacturer’s instruc-
tions (ANKOM 200 Fiber Analyzer; ANKOM Technology,
Macedon, NY). Fiber analyses required 0.5 g of dried plant
material. Nitrogen content was measured by combusting
5 mg of dried, ground plant material in an elemental
combustion system (Costech Analytical Technologies,
Valencia, CA) coupled to a Delta Plus Advantage mass
spectrometer (Thermo Finnigan, San Jose, CA) operating
in the continuous-flow mode. Nitrogen analyses were
conducted for both historical samples and for recent sam-
ples collected in 2013 and 2017; however, additional rep-
licates of avens collected in 2017 failed in the instrument,
leaving only one measurement of nitrogen content for
that year.

Overwinter preservation experiment

We also tested whether changes in plant chemistry or
microhabitat characteristics (e.g., duration of snowpack

or insolation) would affect overwinter preservation of
pika haypiles (i.e., the amount of biomass remaining in early
summer after snowmelt). To do so, we repeated an experi-
ment originally conducted in 1992–1993 by Dearing (1997b),
in which samples of a high-phenolic plant species (alpine
avens) and a low-phenolic plant species were exposed to
winter haypile conditions. Specifically, we collected alpine
avens and mixed graminoid samples (Carex spp. and
Deschampsia spp.) in August 2017 fromWest Knoll.We then
created two types of “artificial haypiles,” each consisting of
15–25 g FM of either avens or graminoids (n = 5 artificial
haypiles of each sample type, as in Dearing, 1997b). Each
artificial haypile was contained in a bag constructed of fiber-
glass window-screen mesh, which was then placed in a wire
suet-feeder cage, allowing sample exposure to free air while
preventing damage to or theft of samples by rodents or pikas.
These cages were placed in the talus to mimic the placement
of pika haypiles (i.e., each was positioned under a large rock
where it was exposed to air but not to direct sunlight).
These cages were left in place fromAugust 2017 to July 2018,
when their contents were dried at 40�C for 48 h and
reweighed. The % biomass remaining was calculated as:
(DM remaining, in grams)/(starting FM, grams × dry mat-
ter, in percentage). We recognize that many other factors
could affect preservation of actual pika haypiles, including
the size, structure, and composition of the haypile (Jakopak
et al., 2017) or pika activities, such as deposition of
feces/urine or reorganization, but by controlling these extra-
neous factors, this simple experiment provides important
insight into the basic preservation ability of the plants that
comprise the pika haypile.

We placed these artificial haypiles (n = 10 total) at vary-
ing aspects around theWest Knoll so that potential effects of
microhabitat (slope aspect and slope angle, which affect
insolation, microclimate, and snowpack duration) on over-
winter preservation could also be investigated. Although we
did not directly measure microclimate or snowpack dura-
tion at each location, we calculated an insolation index
to capture the effects of incident sunlight on each artifi-
cial haypile. Following Jeffress et al. (2013), we calcu-
lated insolation as sin(aspect) × cos(slope angle). Thus,
insolation values range from −1 (indicating a steep,
south-facing slope with high sun exposure) to 0 (indicat-
ing a flat slope) to +1 (indicating a steep, north-facing
slope with very little sun exposure).

Although Dearing’s original experiment used clover
(Trifolium parryi) as the low-phenolic plant sample, we
chose to include graminoids instead in this experiment
because graminoids are now much more common than
T. parryi in haypiles and in the environment, and they
make up a significant part of the pika’s summer diet at
this site (Bhattacharyya & Ray, 2015). Dearing (1997b)
included the low-phenolic plant in her experiment to
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test (1) whether high-phenolic plant species preserved
better than low-phenolic plant species and (2) whether
high-phenolic plant species could enhance preservation of
low-phenolic plant species in a mixed sample. We did not
attempt to determine whether avens affected graminoid
preservation in a mixed sample, nor did we compare cur-
rent graminoid preservation to past clover preservation.
Thus, while it is possible that pikas have shifted to using
graminoids more than clover because nutritional shifts
have made clover a less palatable food source (e.g., through
increased phenolics), this substitution should not affect the
conclusions of our experiment, which tested for changes
in preservation of avens and for how microhabitat affects
overwinter preservation of haypiles.

Statistical analyses

Differences in phenolic activity, nitrogen, and fiber content
between historical alpine avens samples analyzed in differ-
ent decades (1992 analyses reported in Dearing [1996a,
1997b] vs. analysis of additional historical samples in 2014)
were assessed using a Student’s t test. Differences in phe-
nolic activity and nitrogen content between historical
avens samples and recent avens samples with >2 years of
recent sampling were assessed using ANOVA, including a
Tukey honestly significant difference post hoc test.
Differences in fiber between historical and recent avens
samples were tested by t test. To assess changes in over-
winter preservation, we used a t test to compare the per-
centage of biomass remaining after 1 year between recent

(2017–2018) and historical (1992–1993) artificial haypile
exposure experiments. All statistical analyses were
conducted in R (v 4.0.1; R Core Team, 2020).

RESULTS

Analysis of historical samples

We found no difference in chemistry or nutritional value
between alpine avens leaves collected and analyzed in 1992,
and additional alpine avens leaves collected and frozen in
1992 and analyzed in 2014. With respect to year of analysis
for these historical samples, there was no significant
difference in phenolic content (t = −0.65, df = 11,
p = 0.52), nitrogen content (t = −2.5, df = 3, p = 0.09),
total fiber (NDF; t = −0.32, df = 4, p = 0.76) or cellulose/
lignin content (ADF; t = −0.28, df = 4, p = 0.79).
Hereafter, values reported for “historical samples” come
from the samples that we analyzed in 2014 (n = 10), for
which we had larger sample sizes than the original values
reported inDearing (1996a; n = 3).

Phenolic analyses

We observed a significant and sustained increase in phe-
nolic activity of alpine avens in recent years (2010–2018),
compared with 1992 (Figure 1; ANOVA: F5,38 = 21.6,
p < 0.001). Phenolic activity in recent samples was gener-
ally about twice as high as in historical samples, except

F I GURE 1 Changes in phenolic content (activity) of alpine avens on Niwot Ridge. Phenolic content is reported as milligrams of tannic

acid equivalent (TAE) per gram of dry plant tissue (dry mass [DM]). Error bars indicate the 95% confidence interval. Means that do not share

the same letter are significantly different by Tukey’s honestly significant difference test.
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in 2013, when phenolic activity was nearly three times
higher. Alpine avens from Niwot Ridge also had higher
phenolic activity than avens collected in several other
ranges in 2018 (Appendix S1: Figure S1; ANOVA:
F4,21 = 7.74, p = 0.0005), but phenolic activity was
similar between samples collected at Niwot and those
collected within the Front Range at a separate location
approximately 50 km away.

Fiber and nitrogen analyses

Compared with historical samples (collected in 1992), avens
collected in 2013 had significantly lower total fiber (NDF;
t = 3.04, df = 8, p = 0.01; Figure 2a) and significantly less
cellulose/lignin content (ADF; t = 5.1, df = 8, p = 0.03;
Figure 2b). Likewise, avens collected in 2013 and 2017 had
21% lower nitrogen content compared with the historical
samples (ANOVA: F2,4 = 10.97, p = 0.02; Figure 2c).

Overwinter preservation experiment

Alpine avens preservation in artificial haypiles signifi-
cantly increased by 10% in 2017–2018, compared with
1992–1993 (Figure 3; t = −3.5, df = 7, p = 0.01). There
was no difference in preservation between avens and
graminoids (t = −0.6, df = 8, p = 0.56) in the 2017–2018
experiment. Insolation was not a significant predictor of
overwinter preservation in haypiles for avens or graminoids
(R2 = 0.07, p = 0.95), but avens and graminoids in recent
samples preserved better on west-facing slopes (>90%
remaining) compared with east-facing slopes (<85%
remaining; Figure 4). Overwinter exposure of avens in arti-
ficial haypiles did not result in nitrogen enhancement, as
was observed for historical samples (Dearing, 1997b;
Appendix S1: Figure S2).

DISCUSSION

Here, we document changes across nearly three decades
in the nutritional profile of alpine avens (G. rossii), a pri-
mary food resource for pikas on Niwot Ridge. Compared
with historical samples collected in 1992, we found a 21%
decrease in nitrogen content and a 30% decrease in fiber
content, but a clear increase in phenolic activity.
Phenolic activity more than doubled between historical
and recent samples, and this increase was sustained from
2010 through 2018. Furthermore, increased phenolic
activity was correlated with significantly higher overwin-
ter preservation of biomass in artificial haypiles, particu-
larly on west-facing slopes. We hypothesized that

changes in atmospheric CO2 concentration, temperature,
and/or precipitation have affected the nutritional chemis-
try of this plant species and its value to pikas, and each of
these metrics has certainly changed at our study site.
Between 1992 and 2015, monthly mean atmospheric CO2

levels measured at Niwot Ridge increased from 356 to
397 ppm, and current levels are near 417 ppm (https://gml.
noaa.gov/dv/data/index.php?site=NWR). Likewise, the
average July temperature at the Niwot Ridge SNOTEL site
(40�030 N, 105�330 W) has increased by an average of 2.5�C,
from 10.2�C in 1992 to 12.7�C averaged across 2013–2018

F I GURE 2 Changes in nutrient content of alpine avens

collected at Niwot Ridge. Avens samples collected in 1992 and 2013

were tested for (a) total fiber content (neutral detergent fiber; % dry

mass [DM]), (b) cellulose/lignin content (acid detergent fiber;

% DM), and (c) nitrogen content (% DM). Mean ± 95% confidence

interval for each year is shown (in 2017, n = 1 measurement for

nitrogen due to failure of additional samples in the instrument).
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(https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=663), and
annual maximum temperature on Niwot Ridge has risen
~0.5�C/decade over the past 70 years (de Mesquita et al.,
2018; McGuire et al., 2012).

Our results are consistent with other studies demonstrat-
ing increases in carbon-based plant secondary compounds as
a response to these aspects of climate change (Rice

et al., 2021). Specifically, experiments in which CO2 concen-
trations were artificially elevated have reported similar
increases in both phenolics (Couture et al., 2014; Lindroth
et al., 1997) and other carbon-based plant secondary com-
pounds (Zhu et al., 2015). Meta-analyses (e.g., Robinson
et al., 2012) and reviews (e.g., Holopainen et al., 2018) have
also shown that phenolics have increased with increased
atmospheric CO2 in a variety of plant taxa. Conventionally,
increased CO2 is thought to allow surplus photosynthesis,
generating extra carbon that can be invested in differen-
tiation (including defense metabolites), especially when
growth is limited by soil nutrients or temperature
(Holopainen et al., 2018).

However, our results are not consistent with predicted
changes in phenolics with increased temperature. Warmer
temperature is conventionally thought to decrease foliar
phenolic contents because higher temperatures stimulate
growth, tipping carbon investment towards growth rather
than differentiation or defense (Holopainen et al., 2018), a
result seen in several experimental warming studies
(e.g., Nissinen et al., 2017). However, plant growth at this
site and in alpine tundra habitats more broadly, is likely
limited by a complex suite of abiotic factors as opposed to
temperature alone (Suding et al., 2015). Thus, while
warmer temperatures might stimulate plant growth to
some degree, we suggest that investing excess carbon in
defense compounds rather than growth may still be advan-
tageous to alpine plants as a defense against herbivory or
an antioxidant protectant against other abiotic stressors
(Defossez et al., 2021; Moreira et al., 2020).

Although we observed a significant and sustained
increase in phenolic activity among recent samples com-
pared with historical samples, we also observed signifi-
cant interannual variation in phenolic activity in recent
years, which we believe might be linked to precipitation.
Phenolic activity in our study was by far the highest in
2013, an abnormally dry year in which approximately
25% of the state of Colorado was in D4 Exceptional
Drought conditions (http://drought.gov). Specifically,
total year-to-date precipitation by August 1, 2013 was
approximately 50 mm lower than in other recent years
(632 mm in 2013 vs. 688 mm average between 2014 and
2018). Because the water content of alpine avens sampled
in 2013 (37%) was well within the range of values of
water content in other years (31%–48%), the increased
phenolic activity from that year was likely not an artifact
of the plants being drier, wherein more plant material
would be represented per gram FM in the assay. Rather, a
large body of literature indicates that dry conditions
increase leaf phenolic content across a variety of plant taxa
(Alonso-Amelot et al., 2007; Bautista et al., 2015; Sarker &
Oba, 2018), perhaps as a protection against physiological
stress caused by drought. Importantly, environmental

F I GURE 4 Overwinter preservation of avens (black bars) and

graminoids (gray bars) as a function of slope aspect around the

west knoll of Niwot Ridge, 2017–2018. The wind tends to remove

snow from west-facing slopes and deposit it on east-facing slopes at

this site.

F I GURE 3 Changes in overwinter preservation of alpine

avens at Niwot Ridge. Overwinter preservation is measured by

percent dry matter remaining in artificial haypiles in spring. Mean

± 95% confidence interval for each year is shown.
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conditions (i.e., temperature, soil nutrients, water avail-
ability, and/or sunlight) have a bigger effect on foliar phe-
nolic content than genetics (Steen et al., 2021), suggesting
that phenolic content is regulated via phenotypic plasticity
and can be adjusted by plants, given the abiotic stressors of a
given year. This finding is also consistent with our observa-
tions of higher interannual variation in phenolic activity
(Figure 1), compared with spatial/geographic variation in
phenolic activity within a year (Appendix S1: Figure S1).
Since phenolics are toxic to pikas (Dearing, 1996b) andmany
other herbivores (Karasov & del Rio, 2007), this interannual
variability in phenolic activity may require herbivores to
adjust the relative amount of high-phenolic plants included
in summer vs. winter diets each year. In particular, higher
phenolic activity in the diet ofmammalian herbivores during
years of low precipitation could compound other stress asso-
ciated with drought, particularly because water is critical for
detoxification of phenolics and other plant toxins in small
mammals (Torregrossa et al., 2011). Stress related tomeeting
the metabolic demands of detoxification should be consid-
ered as a potential mechanism for explaining pika losses that
have been correlated with drought metrics, such as vapor
pressure deficit and actual evapotranspiration (Billman
et al., 2021; Johnston et al., 2019).

This increase in phenolic activity of recent samples is
also consistent with the enhancement we observed in arti-
ficial haypile preservation (compared with the 1990s,
Figure 3). Phenolics have antimicrobial properties, thereby
slowing degradation of alpine avens in winter food caches
(Dearing, 1997a). However, a variety of other factors may
also be responsible for the enhanced overwinter preserva-
tion of recent samples, including changing microclimatic
conditions and/or microbial processes. Interestingly, we
observed a strong east–west gradient in preservation dur-
ing this experiment, wherein plants on west-facing slopes
preserved better than those on east-facing slopes
(Figure 4). We hypothesize that this gradient may be due
to differences in snowpack and humidity. Specifically, on
Niwot Ridge, the typically westerly winds redistribute large
amounts of snow from west to east. Thus, the west-facing
slopes are typically wind-scoured and bare, whereas
east-facing slopes accumulate a deeper snowpack that per-
sists later into the summer. This pattern may have caused
the haypiles placed on west-facing slopes to experience
colder and drier winter conditions, whereas those placed
on east-facing slopes may have experienced relatively
warmer and moister conditions. Together, these conditions
could have enhanced microbial degradation processes on
east-facing slopes, leading to faster biomass decay and
reduced preservation over winter.

The decreases that we observed in foliar nitrogen are
also consistent with previous studies. Artificially elevated
CO2 concentrations produce similar decreases in foliar

nitrogen (9%–18%; Couture et al., 2014; Lindroth et al.,
1997). Likewise, nitrogen levels have decreased in many
plant genera that serve as hosts for arthropod herbivores
(Robinson et al., 2012). Conventionally, decreased nitrogen
content under elevated CO2 is thought to be caused by one of
three processes: nitrogen “dilution” (i.e., due to increased car-
bon biomass; Robinson et al., 2012; Zvereva & Kozlov, 2006),
reduction in the concentration of photosynthetic enzymes in
leaf tissue (which can comprise up to 25% of total leaf nitro-
gen), or reduction in chlorophyll content of leaf tissue
(e.g., Owensby et al., 1996). Mammalian herbivores are typi-
cally nitrogen limited, and a reduction in nitrogen con-
tent of this magnitude in an important component of
their diet could be detrimental to pikas. However, the
increased phenolic activity of alpine avens (and its con-
comitant enhanced overwinter preservation) may off-
set these decreases in nitrogen since this plant is not
typically consumed until winter (Dearing, 1996a) and
nitrogen is not depleted during storage (Appendix S1:
Figure S2).

Contrary to our expectations, we also observed a 30%
decrease in cellulose/lignin content of alpine avens leaves
over the last 20 years. In contrast, most previous studies
have shown increases in either fiber content (10%–15%;
Rothman et al., 2015) or leaf toughness (a proxy for fiber
content; Robinson et al., 2012). The implications of these
nutritional changes for pikas and other herbivores are
unclear. Importantly, because we observed similar declines
in both nitrogen and fiber content, the protein-to-fiber
ratio may not have changed significantly in alpine avens.
The protein-to-fiber ratio is a strong driver of forage
selection for many mammalian herbivores (Owensby
et al., 1996; Rothman et al., 2015), so stasis in this ratio
would be consistent with the observation that alpine avens
has dominated pika food caches at this site for decades
(Bhattacharyya & Ray, 2015; Dearing, 1997a). Our observa-
tion of higher phenolic activity in recent samples also sug-
gests that alpine avens is investing extra carbon resources
in soluble carbohydrates (e.g., defense compounds like
phenolics), rather than fiber.

Although the sample size in our exposure experiment
was small, if the patterns that we observed in this experi-
ment hold across years and in different ecoregions, then
these results could have important implications for pikas
during continued climate change. A leading hypothesis to
explain pika declines at lower elevations is that warmer
summer temperatures lead pikas to restrict their summer
foraging activity, thereby amassing small or insufficient
overwinter food caches (Mathewson et al., 2015; Smith &
Erb, 2013; Wilkening et al., 2011). However, if increased
phenolic content of stored plants also results in better pres-
ervation, then smaller food caches may still provide pikas
with adequate nutrition during winter. Likewise, our
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results suggest that changes in winter snowpack may also
affect preservation of haypiles. In particular, warmer and
moister conditions during the winter may accelerate degra-
dation of haypiles, whereas colder and drier conditions may
enhance preservation. Although climate models generally
forecast reduced winter snowpack across the intermountain
west (e.g., Ikeda et al., 2021; Mote et al., 2018), the increased
frequency of rain-on-snow events (Musselman et al., 2018)
could also affect sub-surface humidity and duration of
snowpack, as could changes in wind that affect how
snowpack is distributed across the landscape (Breslow &
Sailor, 2002). These interacting factors underscore the
importance of considering spatial heterogeneity when fore-
casting how changes in climate will affect species, particu-
larly in topographically complex regions like the Rocky
Mountains.

CONCLUSIONS

This study highlights the complex interactions between
alpine plant chemistry and herbivory in the context of cli-
mate change: increased plant phenolics are likely to have
both costs and benefits for mammalian herbivores. For
example, pikas could benefit from increased plant preser-
vation, but elevated phenolics could also cause alpine
avens to become less digestible, particularly if these
chemicals become more toxic at warmer temperatures
(Dearing, 2013). Thus, pikas could be forced either to
delay consuming cached plants or to expend additional
energy on detoxification conjugates when consuming
plants at a higher phenolic level (Dearing, 1996b). In this
case, the nutritional gains from better preservation dur-
ing storage might not exceed the energetic costs of detoxi-
fication or delayed consumption. Likewise, the decline in
foliar nitrogen observed in this study could also be detrimen-
tal because alpine mammalian herbivores are generally
nitrogen limited andmay need to change their foraging strat-
egy to maintain body mass (Stiling & Cornelissen, 2007).
Food-caching herbivores, such as pikas, might avoid this
trade-off if the increase in phenolic-mediated plant toxicity is
countered by better retention of plant material and nutrients
in the cache (Dearing, 1997a). However, the numerous her-
bivores that do not cache food may not have similar avenues
for mitigating these changes in plant chemistry and thus
may experience differing impacts under future climate
change scenarios.

If the patterns that we observed in alpine avens in
this study are shared among other alpine forb species,
then many other herbivorous species could also be
affected by increased toxicity and reduced nitrogen in
their food sources. Due to the wide-ranging implications
of changes in available nitrogen for any ecosystem, we

encourage additional study of potential feedbacks
between climate and plant chemistry that might be
impacting herbivores in other environments. In particu-
lar, we suggest that alpine environments should be prime
targets for such studies, given that phenolics are the most
common defensive compound in alpine plants and stud-
ies of food-caching herbivores are particularly amenable
to experimentation.
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