

1 **Detecting clusters of high nontuberculous mycobacteria infection risk for persons with**
2 **cystic fibrosis – An analysis of U.S. counties.**

3

4 Rachel A Mercaldo ¹, Julia E Marshall ¹, D Rebecca Prevots ¹, Ettie M Lipner ¹, Joshua P French ²

5 ¹Division of Intramural Research, Epidemiology and Population Studies Unit, NIAID, NIH,
6 Rockville, MD, USA.

7 ²Department of Mathematical and Statistical Sciences, University of Colorado Denver, Denver,
8 CO, USA.

9

10

11 **Keywords**

12 nontuberculous mycobacteria; NTM; cystic fibrosis; clusters; clustering

13

14

15 **Abstract**

16 Nontuberculous mycobacteria are ubiquitous environmental bacteria that frequently cause
17 disease in persons with cystic fibrosis (pwCF). The risks for NTM infection vary geographically.
18 Detection of high-risk areas is important for focusing prevention efforts. In this study, we apply
19 five cluster detection methods to identify counties with high NTM infection risk. Four clusters
20 were detected by at least three of the five methods, including twenty-five counties in five states.
21 The geographic area and number of counties in each cluster depended upon the detection method
22 used. Identifying these clusters supports future studies of environmental predictors of infection
23 and will inform control and prevention efforts.

24

25 **Introduction**

26 Nontuberculous mycobacteria (NTM) include a broad range of ubiquitous environmental
27 bacteria species that cause chronic lung disease. Underlying host susceptibilities include genetic,
28 structural, and immunologic conditions that can put some persons at increased risk of disease.
29 These conditions include cystic fibrosis, with a 5-year prevalence of 20% for NTM infections [1-
30 3]. Treatment of NTM disease is challenging; prolonged antibiotic courses are required, and poor
31 treatment responses are common [4].

32 The risk of NTM infection varies by geographical area of the United States. The state of
33 Florida, for example, has the highest risk of NTM infection in the continental United States, both
34 in CF and non-CF populations [2, 5]. This risk has been associated with environmental variables,
35 such as evapotranspiration and percent coverage by surface water [5, 6]. In Colorado, Oregon,
36 and Hawaii, we have shown intra-state variability associated with water quality factors, namely
37 the concentrations of the trace metals vanadium and molybdenum in groundwater aquifers and
38 surface water [7-10]. Studies in Australia have described both geographic and temporal trends
39 associated with temperature and precipitation [11, 12]. In addition to climatic factors, high
40 population density is associated with increased risk, possibly because persons with CF (pwCF),
41 or other susceptible individuals, tend to be referred to tertiary care centers with specialized care
42 teams [13]. This association is complicated by confounding environmental factors, such as water
43 distribution systems that are very different in urban versus rural settings. To accurately identify
44 geographic areas of high NTM infection risk, analytic approaches must control for the
45 underlying population structure.

46 Studies among persons with CF offer invaluable insight regarding NTM epidemiology.
47 The Cystic Fibrosis Foundation's patient registry (CFFPR) has served as a valuable resource for
48 better understanding the epidemiology of NTM [14]. The registry acts as a repository of data for
49 approximately 90% of pwCF in the United States, who are approached for participation upon CF
50 diagnosis and continue to contribute data to the registry throughout their lifetimes, through their
51 care at CF care clinics. Annually, the CF Foundation also releases a report describing the
52 population of registrants. Since 2010, the registry has included data on NTM mycobacterial
53 cultures and results, allowing researchers to identify trends in screening or infection. Data on the

54 patient's geographic location of residence, at the zip code level, has been used for more precise
55 estimation of geographic risk [14].

56 In analyses of geographic patterns, researchers are often also interested in identifying
57 clusters of disease or infection. Clusters are collections of regions where incidence rates are
58 higher—or, sometimes, lower—than those of surrounding regions [15]. Identifying the location
59 of clusters offers researchers the opportunity to analyze environmental predictors at a broad level
60 and is a valuable first step in identifying predictors of infection or disease.

61 In this study, we apply five tests for geographic clustering to data provided by the
62 CFFPR, to identify high-risk areas of NTM infection in pwCF. These tests are the spatial scan
63 method originally proposed by Kulldorff and Nagarwalla in 1995 [16], and four extensions of
64 this method: the elliptic, flexibly-shaped, restricted flexible, and double connection scanning
65 methods. These cluster detection methods were identified as having desirable combinations of
66 sensitivity and positive predictive value [15]. In applying these methods, we describe the
67 geography of NTM incidence in pwCF in US counties.

68 **Methods**

69 The study population comprised persons with cystic fibrosis (pwCF) represented in the
70 Cystic Fibrosis Foundation Patient Registry (CFFPR) [14]. Approximately 90% of U.S. cystic
71 fibrosis patients (or their guardians) consent to enrollment in the CFFPR upon CF diagnosis. The
72 CFFPR offers the most complete and comprehensive data for cystic fibrosis and associated
73 conditions in the United States. Since 2010, this dataset has included variables representing
74 mycobacterial cultures and results for nontuberculous mycobacteria. We obtained a limited
75 dataset for the study period of 2010 through 2019. We extracted zip code and nontuberculous
76 mycobacteria isolation data for 29220 CFFPR patients in the United States aged ≥ 12 years.

77 Zip codes of patient residence were converted into county FIPS code using the zip code
78 midpoint latitude and longitude, as provided by the United States Postal Services zip code
79 database [17]. If a patient's zip codes contained apparent typographic errors but were 1) similar
80 to their other listed zip codes and 2) were in the same state, that patient's zip codes were
81 corrected using that patient's accurately formatted zip codes. Of the 29220 patients initially
82 included in the dataset, 653 were excluded for missing zip codes or irreconcilable zip code

83 errors. Zip code longitude and latitude were geocoded to county FIPS code and county mid-point
84 longitude and latitude using R [18].

85 The baseline population for each county comprised all CF patients aged ≥ 12 years. Cases
86 of incident NTM infection were defined as a pwCF with a positive NTM culture result after two
87 consecutive negative results, who had lived in the same county for at least two years. The
88 definition required two consecutive negative results to correct for possible false negative results
89 and to reduce misclassification. For all other pwCF, the county in which they spent most of their
90 time during the study period was selected. We excluded pwCF who were persistently NTM
91 culture-positive or who had positive culture results after only a single negative culture. In
92 applying these inclusion criteria, we excluded 3262 pwCF from analysis, with data for 25305
93 pwCF remaining.

94 Spatial scan methods to detect clusters of NTM cases among pwCF at the county level
95 were performed in SaTScan [19] or in R, using the *smerc* or *rflexscan* packages [20, 21]. Spatial
96 scan methods “scan” the regions in the study area to identify collections of regions (candidate
97 zones) that have elevated incidence of disease relative to what is expected when the risk of
98 outbreak is identical everywhere (possibly after adjusting for relevant explanatory variables). A
99 suitable test statistic is computed for every candidate zone considered in the observed data set. If
100 two candidate zones overlap, then only the candidate zone with the largest test statistic is
101 retained. Many data sets are then simulated under the null hypothesis of no disease outbreak, for
102 each simulated data set, the largest test statistic across all candidate zones is determined. The test
103 statistics from the observed data set are compared to the test statistics from the simulated data
104 sets to compute Monte Carlo p-values. The p-values are used to determine the significance of
105 each region. The most likely cluster is the candidate zone observed with the largest test statistic
106 while secondary clusters are candidate zones observed with smaller test statistics. French et al.
107 provide an overview of many popular scan methods [15].

108 Applying scan methods to all potential candidate zones is computationally infeasible, so
109 in practice, scan methods are applied on a much smaller but flexible number of candidate zones.
110 In general, scan methods differ in the approach used to construct the set of candidate zones. Five
111 spatial scan methods were applied: the original, circular, spatial scan method, proposed by
112 Kulldorff and Nagarwalla, which detects circular clusters [16], and the elliptic [22], flexibly-

113 shaped [23], restricted flexibly-shaped [24, 25], and double connection (DC) [26] extensions,
114 which are better at detecting non-circular clusters. For all methods, the population upper-bound
115 was set to 0.01 (1%), to ensure that clusters did not include more than 1% of the overall pwCF
116 population. Default parameter values were otherwise selected for the circular, elliptic and DC
117 scan tests. For the flexibly-shaped method, which considers all possible sets of connected
118 counties within a given county's nearest neighbors, we set the limit of nearest neighbors to
119 fifteen ($k = 15$). Finally, for the restricted flexibly-shaped scan test, we additionally filtered
120 potential clusters by their middle p-value using $\alpha_1=0.2$ [24, 25], to identify those clusters with
121 the greatest risk.

122 County longitude and latitude were used directly for the circular, flexibly-shaped,
123 restricted flexibly-shaped, and DC scan tests, and all tests were conducted in R using the *smerc*
124 and *rflexscan* packages. As the elliptic scan test uses cartesian coordinates rather than longitude
125 and latitude, we converted longitude and latitude to cartesian coordinates. These transformed
126 coordinates were used within the SaTScan software for the elliptic scan method.

127 The results from the five cluster detection methods were compiled, and counties that were
128 included in high-risk clusters by at least three of the five testing methods were identified. All
129 high-risk clusters were mapped. These maps, and a table of all counties included in a high-risk
130 cluster, are reported as Supplementary Material.

131

132 **Results**

133 Of the 25305 pwCF included in our analysis, 13239 (52.3%) were male, and the mean
134 age was 30.22 years (sd: 13.5 years) at the beginning of 2019.

135 There were 3626 (14.3%) pwCF who met our definition of an incident NTM infection
136 case. While the overall population of pwCF lived across 2359 continental US counties, only
137 1099 (47%) had cases. Twenty-five counties within five states were identified as high-risk by at
138 least three of the five employed methods (Table 1, Figure 1). Areas in southern Florida, New
139 York City, and Kansas City were included in clusters using all five methods. The size of these
140 clusters, and the number of counties included in each, depended on the scanning method used
141 (see Supplementary Material).

142 The first of the spatial clustering methods employed, the circular spatial scan statistic,
143 returned four clusters of high NTM infection risk. Notably, these clusters were similar in size to
144 the clusters detected in the same regions by the elliptic scan method, but included different
145 counties. For example, the Kansas City cluster included 18 counties in Kansas and 14 in
146 Missouri when the circular method was used. The elliptic scan returned 11 Kansas counties and
147 22 Missouri counties (Table S1).

148 The elliptic scan results included one additional cluster compared with the circular
149 method. This fifth cluster included the San Francisco Peninsula region, a collection of five
150 counties including San Francisco, Santa Clara, San Mateo, and Santa Cruz counties, as well as
151 Marin County across the Golden Gate strait. While both the southern Florida and Kansas City
152 clusters were also found to be significant using the elliptic scan statistic, the counties included
153 differed. The only cluster in which the same counties were identified in both the circular and
154 elliptic methods was the New York City region, including the counties of Kings, New York,
155 Queens, and Richmond.

156 The flexibly-shaped, restricted flexibly-shaped, and double connection scanning methods
157 were more specific than either the circular or elliptic scanning tests, identifying smaller clusters
158 where the elliptic or circular methods would include more counties and a larger overall area. In
159 our example of Kansas City, both the flexibly-shaped and restricted flexible scan methods
160 included only eighteen counties while the double connection method included only nine. The
161 flexibly-shaped and restricted flexible scanning methods also detected an additional cluster in
162 California and Arizona that was not significant in the circular, elliptic, or double-connection tests
163 (Table S1).

164 **Discussion**

165 A number of scanning methods can be used to detect clusters of an event of interest. In
166 this study, we employed five such methods based on a Poisson model, to identify clusters of US
167 counties with a higher than expected risk of NTM infection. Using the five methods
168 concurrently, we identified twenty-five US counties, within five states, with higher than expected
169 NTM infection risk among pwCF. NTM infection prevalence and incidence are increasing, both
170 in pwCF and the general population [5, 27-30]. As NTM are environmental organisms,
171 predicting the environmental conditions associated with infection will benefit prevention efforts.

172 The clusters of US counties described in this study may represent regions with optimal
173 environmental conditions for NTM. Future studies could leverage these insights for discovery of
174 significant environmental predictors of infection.

175 Previous studies have reported clusters of high-risk counties for NTM. California,
176 Florida, Hawaii, Louisiana, New York, Oklahoma, Pennsylvania, and Wisconsin contain such
177 counties, as reported by a study of Medicare Part B beneficiaries [5]. For pwCF, analysis of
178 CFFPR data spanning 2010-2011 detected high risk counties centered in Wisconsin, Arizona,
179 South Florida, and Maryland [3]. Our results are based on a longer time span, from 2010 to 2019,
180 which likely explains the different clusters detected in this study. Several prior studies have also
181 focused on prevalent infections, rather than incident, with greater sample sizes that could allow
182 for greater power to detect clusters. The different results also suggest a need for analyses
183 including a temporal component. The result of spatiotemporal clustering analyses may highlight
184 trends in NTM risk geography that are relevant to the study of environmental determinants in a
185 changing climate.

186 Our study also highlights the wisdom of using more than one method to detect relevant
187 clustering. Though still widely applied, the circular spatial scan statistic originally proposed by
188 Kulldorff and Nagarwalla detected fewer clusters than several of the extensions used in our
189 study. Of the clusters identified, the circular scan method tended to include a broad area to
190 maintain the circular shape required by the method, while the extensions were capable of more
191 specific selection.

192 Our study does have several limitations. We used patients' reported zip codes to
193 aggregate data by county and may have misclassified patients due to zip code errors even though
194 we made efforts to rectify erroneous zip codes in our analysis (see Methods). Additionally,
195 screening for NTM is not consistent across the US, and our clustering analysis is limited in that
196 the likelihood of identifying incident NTM infections may vary by region. When screening rates
197 are low, NTM cases may be overrepresented in the data, as only symptomatic individuals may be
198 screened. Nonetheless, the population of persons with cystic fibrosis represent a high risk group,
199 and annual screening for NTM is recommended by the American Thoracic Society.

200 By using data from this well-described population of high-risk individuals, we have
201 described four significant clusters of counties with higher-than-expected risk of NTM infection.

202 As NTM are environmental organisms, spatial clustering may indicate areas of optimal
203 environmental conditions for the bacteria. Further study of environments in these regions will
204 add to what is known of NTM biogeography and benefit prevention efforts.

205 The 5 scan methods used in this study have been shown to perform better than competing
206 scan methods [15]. The circular scan method [16] is the “original” spatial scan method. It
207 searches for clusters with a circular shape. It is fast to apply and powerful but can struggle to
208 identify irregularly shaped clusters. The elliptical scan method [16] adds elliptical candidate
209 zones to the circular candidate zones of the circular scan method. It retains many of the positives
210 of the circular scan method while being able to detect slightly more irregular clusters. However,
211 the elliptical scan method does take slightly longer to apply than the circular scan method and
212 still may not be able to detect highly irregular cluster shapes. The flexibly-shaped scan method
213 [23] is able to detect highly irregular clusters by considering as candidate zones all possible sets
214 of connected regions within a certain distance of each region. It takes longer to apply than the
215 previous two methods. For a single data set, this is typically not an issue but can become
216 problematic when applying the method to many data sets. The restricted flexibly-shaped scan
217 method [24, 25] seeks to improve the computational speed of the flexibly-shaped scan method by
218 pre-filtering certain regions from candidate zones. The clusters detected by the restricted
219 flexibly-shaped scan method are typically smaller than the other methods, and it has reduced
220 power to detect a cluster. The double connection scan method performs similarly to the restricted
221 flexibly-shaped scan method but uses a greedy algorithm to search for candidate zones that
222 maximize the test statistic. However, it too has less power than the circular, elliptical, and
223 flexibly-shaped scan methods.

224 It is unlikely that all 5 scan methods considered will find the same clusters. There is no
225 singular recommended approach for resolving this inconsistency; it is a result of the fact that the
226 different methods use different sets of candidate zones. In principle, the candidate zones from all
227 methods could simultaneously be considered, but this has never been done in practice and would
228 take considerably longer. We suggest using the clusters returned by these competing approaches
229 for hypothesis generation of possible causative factors explaining the why clusters appear in
230 certain parts of the study area. The information returned by the different spatial scan methods is
231 complementary rather than competitive.

233 **Acknowledgements**

234 RAM, JEM, DRP, and EML were supported by the Division of Intramural Research, National
235 Institute of Allergy and Infectious Diseases, National Institutes of Health. JPF was partially
236 supported by NSF award 1915277 and NIH NIAID subcontract 75N93021P00818.

237

238 **References**

- 239 1. Floto, R.A., et al., *US Cystic Fibrosis Foundation and European Cystic Fibrosis Society*
240 *consensus recommendations for the management of non-tuberculous mycobacteria in individuals*
241 *with cystic fibrosis*. Thorax, 2016. **71 Suppl 1**: p. i1-22.
- 242 2. Adjemian, J., K.N. Olivier, and D.R. Prevots, *Epidemiology of Pulmonary Nontuberculous*
243 *Mycobacterial Sputum Positivity in Patients with Cystic Fibrosis in the United States, 2010-2014*.
244 Ann Am Thorac Soc, 2018. **15**(7): p. 817-826.
- 245 3. Adjemian, J., K.N. Olivier, and D.R. Prevots, *Nontuberculous mycobacteria among patients with*
246 *cystic fibrosis in the United States: screening practices and environmental risk*. Am J Respir Crit
247 Care Med, 2014. **190**(5): p. 581-6.
- 248 4. Daley, C.L., et al., *Treatment of Nontuberculous Mycobacterial Pulmonary Disease: An Official*
249 *ATS/ERS/ESCMID/IDSA Clinical Practice Guideline*. Clin Infect Dis, 2020. **71**(4): p. 905-913.
- 250 5. Adjemian, J., et al., *Spatial clusters of nontuberculous mycobacterial lung disease in the United*
251 *States*. Am J Respir Crit Care Med, 2012. **186**(6): p. 553-8.
- 252 6. Foote, S.L., et al., *Environmental predictors of pulmonary nontuberculous mycobacteria (NTM)*
253 *sputum positivity among persons with cystic fibrosis in the state of Florida*. Plos One, 2021.
254 **16**(12).
- 255 7. Lipner, E.M., et al., *Nontuberculous mycobacterial infection and environmental molybdenum in*
256 *persons with cystic fibrosis: a case-control study in Colorado*. J Expo Sci Environ Epidemiol,
257 2022. **32**(2): p. 289-294.
- 258 8. Lipner, E.M., et al., *Nontuberculous Mycobacterial Disease and Molybdenum in Colorado*
259 *Watersheds*. Int J Environ Res Public Health, 2020. **17**(11).
- 260 9. Lipner, E.M., et al., *Vanadium in groundwater aquifers increases the risk of MAC pulmonary*
261 *infection in O'ahu, Hawaii*. Environmental Epidemiology, 2022.
- 262 10. Lipner, E.M., et al., *Nontuberculous Mycobacteria Infection Risk and Trace Metals in Surface*
263 *Water: A Population-based Ecologic Epidemiologic Study in Oregon*. Ann Am Thorac Soc, 2022.
264 **19**(4): p. 543-550.
- 265 11. Thomson, R.M., et al., *Factors associated with the isolation of Nontuberculous mycobacteria*
266 *(NTM) from a large municipal water system in Brisbane, Australia*. Bmc Microbiology, 2013. **13**.
- 267 12. Thomson, R.M., et al., *Influence of climate variables on the rising incidence of nontuberculous*
268 *mycobacterial (NTM) infections in Queensland, Australia 2001-2016*. Sci Total Environ, 2020.
269 **740**: p. 139796.

270 13. McBennett, K.A., P.B. Davis, and M.W. Konstan, *Increasing life expectancy in cystic fibrosis: Advances and challenges*. Pediatr Pulmonol, 2022. **57 Suppl 1**: p. S5-S12.

271 14. Cystic Fibrosis Foundation, *Patient Registry*. 2022.

272 15. French, J.P., et al., *A comparison of spatial scan methods for cluster detection*. Journal of Statistical Computation and Simulation, 2022.

273 16. Kulldorff, M., *A spatial scan statistic*. Communications in Statistics-Theory and Methods, 1997. **26**(6): p. 1481-1496.

274 17. Codes, U.S.Z., *ZIP Code Database*. <https://www.unitedstateszipcodes.org/zip-code-database/>.

275 18. Team, R.C., *R: A Language and Environment for Statistical Computing*. 2022, R Foundation for Statistical Computing: Vienna, Austria.

276 19. Kulldorff, M. and I. Information Management Services, *SatScan v9.7: Software for the spatial and space-time scan statistics*. 2021.

277 20. French, J. and M. Meysami, *smerc: Statistical Methods for Regional Counts*. 2022.

278 21. Otani, T. and K. Takahashi, *rflexscan: The Flexible Spatial Scan Statistic*. 2021.

279 22. Kulldorff, M., et al., *An elliptic spatial scan statistic*. Statistics in Medicine, 2006. **25**(22): p. 3929-3943.

280 23. Tango, T. and K. Takahashi, *A flexibly shaped spatial scan statistic for detecting clusters*. Int J Health Geogr, 2005. **4**: p. 11.

281 24. Tango, T. and K. Takahashi, *A flexible spatial scan statistic with a restricted likelihood ratio for detecting disease clusters*. Statistics in Medicine, 2012. **31**(30): p. 4207-4218.

282 25. Tango, T., *A Spatial Scan Statistic with a Restricted Likelihood Ratio*. Japanese Journal of Biometrics, 2008. **29**(2): p. 75-95.

283 26. Costa, M.A., R.M. Assuncao, and M. Kulldorff, *Constrained spanning tree algorithms for irregularly-shaped spatial clustering*. Computational Statistics and Data Analysis, 2012. **56**(6): p. 1771-1783.

284 27. Adjemian, J., et al., *Prevalence of nontuberculous mycobacterial lung disease in U.S. Medicare beneficiaries*. Am J Respir Crit Care Med, 2012. **185**(8): p. 881-6.

285 28. Strollo, S.E., et al., *The Burden of Pulmonary Nontuberculous Mycobacterial Disease in the United States*. Ann Am Thorac Soc, 2015. **12**(10): p. 1458-64.

286 29. Thomson, R.M., N.T.M.w.g.a.Q.T.C. Centre, and L. Queensland Mycobacterial Reference, *Changing epidemiology of pulmonary nontuberculous mycobacteria infections*. Emerg Infect Dis, 2010. **16**(10): p. 1576-83.

302 30. Winthrop, K.L., et al., *Incidence and Prevalence of Nontuberculous Mycobacterial Lung Disease*
303 *in a Large U.S. Managed Care Health Plan, 2008-2015*. Ann Am Thorac Soc, 2020. **17**(2): p.
304 178-185.

305

306 **Declarations of interest**

307 None.

Table 1: Counties included in clusters of high NTM infection risk areas. Asterisk (*) indicates the county was identified as part of a cluster by the given scan test. Shaded cells indicate the county was not included in a cluster by the given scan test.

State/County	Spatial scan method				
	Circular	Elliptic	Flexibly-shaped	Restricted Flexibly-shaped	Double Connection
CA					
Marin	*	*	*	*	
San Francisco	*	*	*	*	
Santa Clara	*	*	*	*	
Santa Cruz	*	*	*	*	
FL					
Charlotte	*	*	*	*	*
Collier	*	*	*	*	
Hendry	*	*	*	*	*
Martin	*	*	*	*	*
Okeechobee	*	*	*	*	*
Palm Beach	*	*	*	*	*
Sarasota		*	*	*	
St Lucie	*	*	*	*	*
KS					
Douglas	*	*	*	*	
Johnson	*	*	*	*	*
Wyandotte	*	*	*	*	*
MO					
Buchanan	*	*	*	*	
Clay	*	*	*	*	*
Clinton	*	*	*	*	*
Jackson		*	*	*	*
Johnson		*	*	*	*
Lafayette		*	*	*	*
NY					
Kings	*	*	*	*	*
New York	*	*	*	*	*
Queens	*	*	*	*	*
Richmond	*	*	*	*	*

309 **Figures**

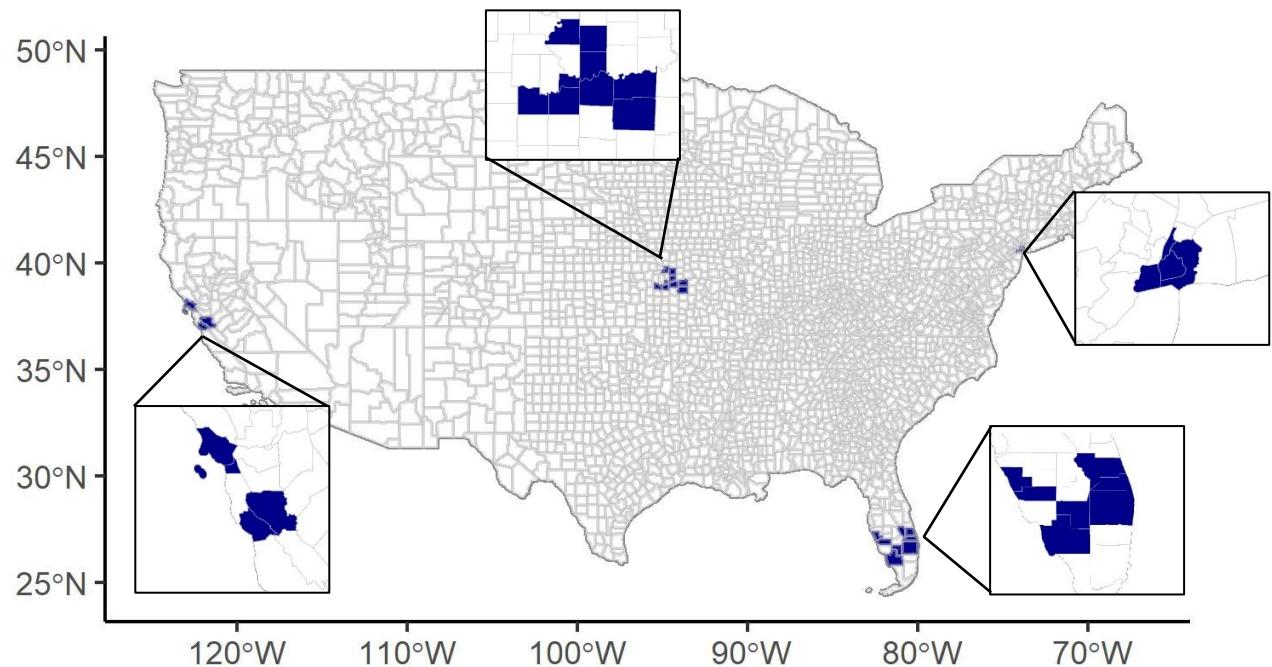


Figure 1: Counties found in significant clusters by at least three of the five scanning methods.

310

311

312 **Supplementary Material**

313

314 Table S1:

State/County	Spatial scan method				
	Circular	Elliptic	Flexibly-shaped	Restricted Flexibly-shaped	Double Connection
AZ					
Coconino			*		
Gila			*		
La Paz			*	*	
Mohave			*		
Pinal			*		
CA					
Alameda			*	*	
Contra Costa			*	*	
Marin	*	*	*		
Monterey			*		
Riverside			*	*	
San Bernardino				*	
San Diego			*	*	
San Francisco	*	*	*		
San Mateo	*				
Santa Clara	*	*		*	
Santa Cruz	*	*		*	
CO					
Adams			*	*	
Arapahoe			*	*	
Broomfield			*	*	
Denver			*	*	
Douglas			*	*	
El Paso			*	*	
Elbert			*	*	
Jefferson			*	*	
Morgan			*	*	
Pueblo			*	*	
Washington			*	*	
FL					
Charlotte	*	*	*	*	*

Collier	*	*	*	*	
Desoto	*	*			
Glades	*				*
Hardee	*	*			
Hendry	*	*	*	*	*
Highlands	*	*			
Lee	*	*			
Martin	*	*	*	*	*
Miami Dade			*	*	
Okeechobee	*	*	*	*	*
Palm Beach	*	*	*	*	*
Sarasota		*	*	*	
St Lucie	*	*	*	*	*
GA					
Appling	*	*			
Bryan	*	*			
Bullock	*	*			
Burke	*	*			
Candler	*	*			
Chatham	*	*			
Columbia	*	*			
Effingham	*	*			
Emanuel	*	*			
Evans	*	*			
Glascock	*				
Glynn		*			
Hancock	*				
Jefferson	*	*			
Jenkins	*				
Johnson	*				
Laurens	*				
Liberty	*	*			
Lincoln	*				
Long	*				
Mcduffie	*	*			
Montgomery	*	*			
Richmond	*	*			
Screven	*	*			
Taliaferro	*				
Tattnall	*	*			
Toombs	*	*			

Treutlen	*				
Warren	*	*			
Washington	*	*			
Wayne		*			
Wheeler	*				
Wilkes	*				
IA					
Fremont	*				
Page	*				
Taylor	*				
KS					
Atchison	*	*			
Brown	*				
Doniphan	*				
Douglas	*	*	*	*	
Franklin		*			
Jackson	*				
Jefferson	*	*			
Johnson	*	*	*	*	*
Leavenworth	*	*			
Marshall	*				
Miami		*			
Nemaha	*				
Pottawatomie	*				
Riley	*				
Shawnee	*				
Wabaunsee	*				
Wyandotte	*	*	*	*	*
MO					
Andrew	*	*			
Atchison	*				
Benton		*			
Buchanan	*	*	*	*	
Caldwell		*			
Cass		*			
Cedar		*			
Clay	*	*	*	*	*
Clinton	*	*	*	*	*
Dekalb	*				
Gentry	*				
Henry		*			

Holt	*				
Jackson		*	*	*	*
Johnson		*	*	*	*
Lafayette		*	*	*	*
Nodaway	*	*			
Pettis					*
Platte	*	*			
Ray		*			*
St Clair		*			
Worth	*				
NE					
Gage	*				
Johnson	*				
Nemaha	*				
Otoe	*				
Pawnee	*				
Richardson	*				
NJ					
Hudson	*	*			
Mercer			*	*	
Middlesex			*	*	
Somerset			*	*	
Union			*	*	
NV					
Clark			*	*	
NY					
Kings	*	*	*	*	*
New York	*	*	*	*	*
Queens	*	*	*	*	*
Richmond	*	*	*	*	*
SC					
Aiken	*	*			
Allendale	*				
Bamberg	*				
Barnwell	*				
Beaufort	*	*			
Berkeley	*	*			
Calhoun	*				
Charleston	*	*			
Clarendon	*	*			
Colleton	*	*			

Dorchester	*	*			
Edgefield	*	*			
Fairfield	*				
Greenwood	*	*			
Hampton	*	*			
Jasper	*				
Laurens		*			
Lexington	*	*			
Mccormick	*				
Newberry	*	*			
Orangeburg	*	*			
Richland	*	*			
Saluda	*	*			
Sumter	*	*			

315

316

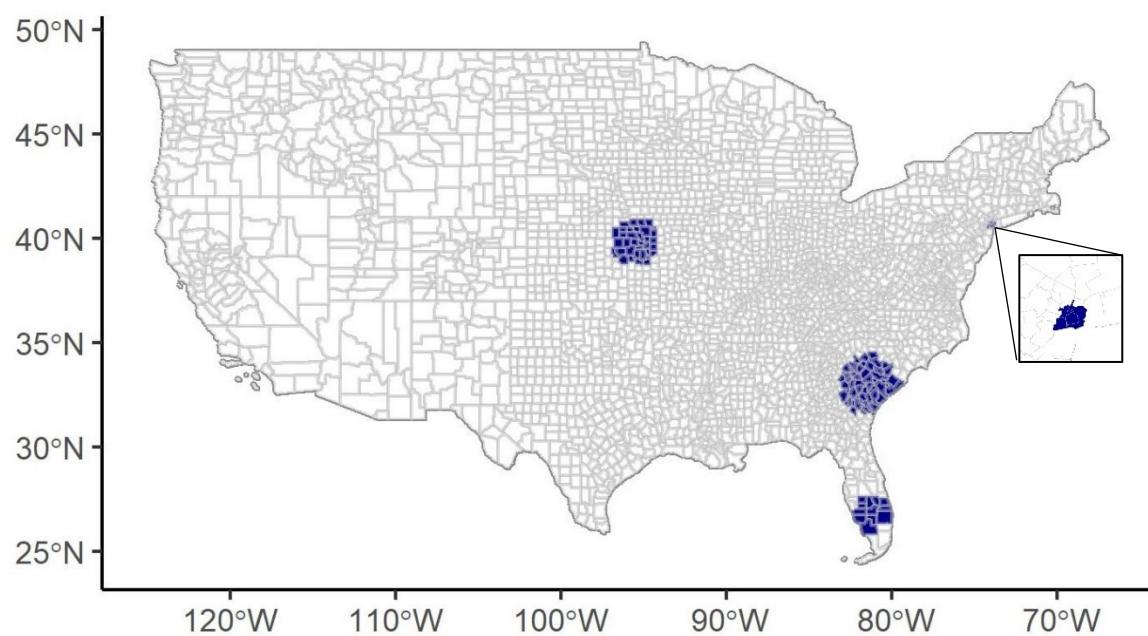


Figure S1: Circular scan results

317

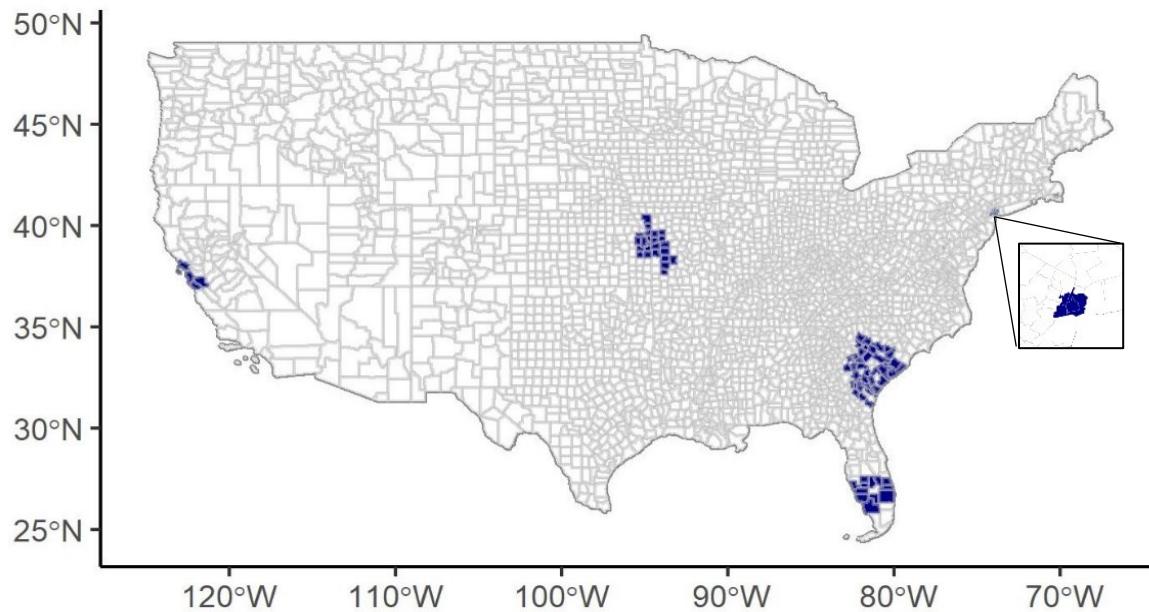


Figure S2: Elliptic scan results

318

319

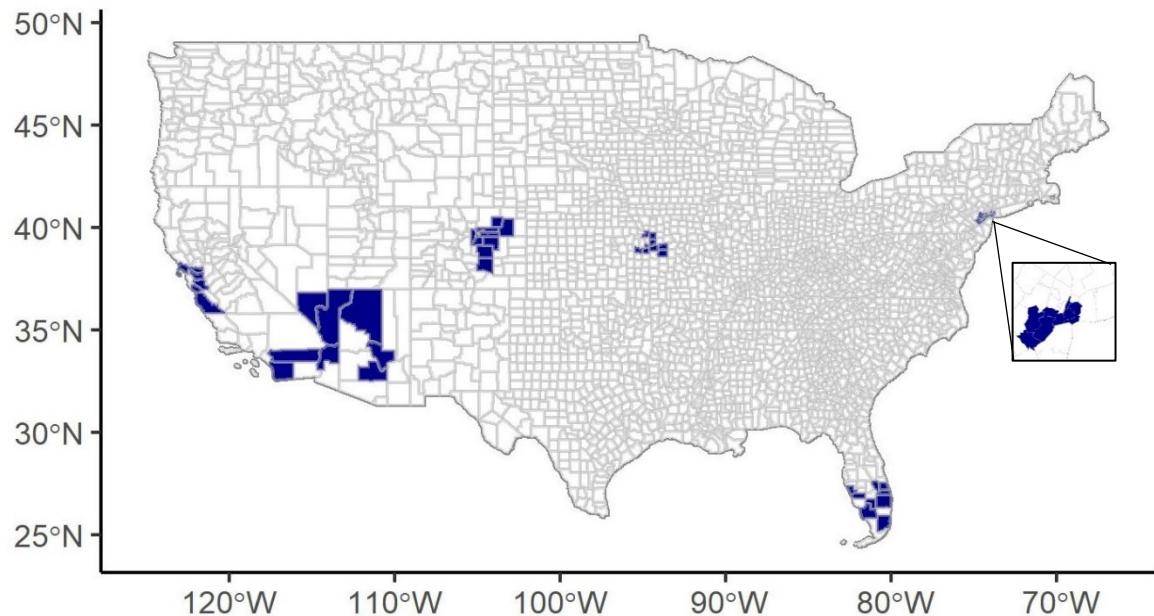


Figure S3: Flexibly-shaped scan results

320



Figure S4: Restricted flexible scan results

321

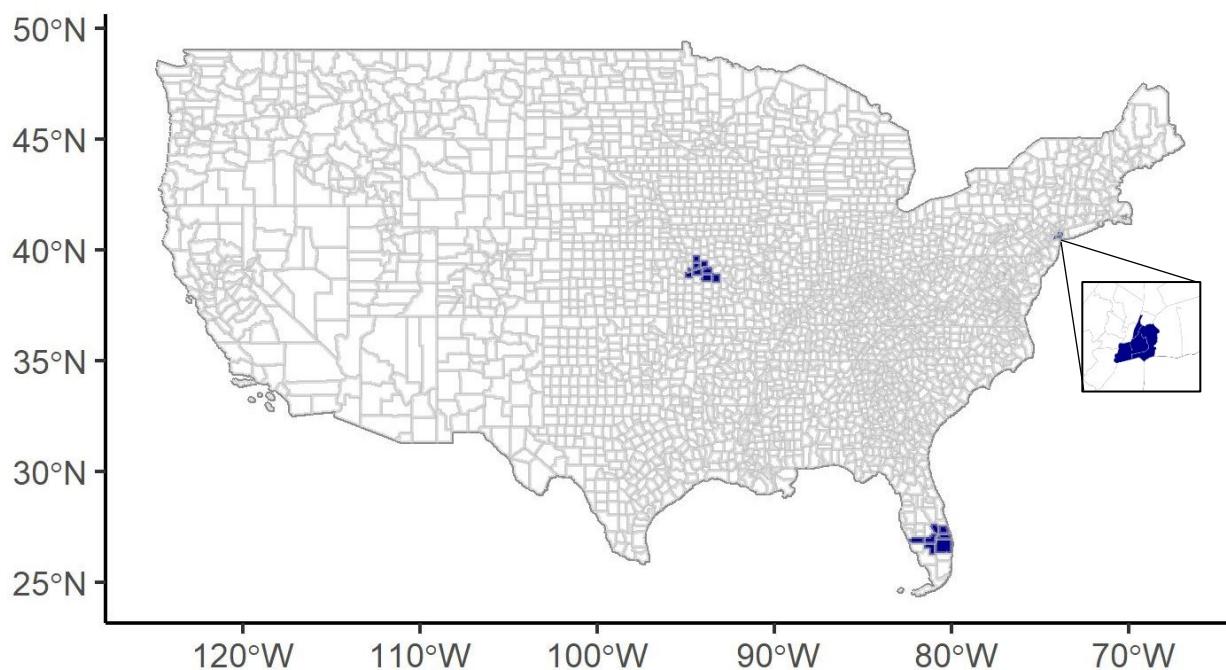


Figure S5: Double connection scan results

