

1 **Title:** Environmental Risk of Nontuberculous Mycobacterial Infection: Strategies for Advancing
2 Methodology

3
4 **Authors:** Rachel A. Mercaldo^a, Julia E. Marshall^a, Gerard A. Cangelosi^{b*}, Maura Donohue^{c*},
5 Joseph O. Falkinham III^{d*}, Noah Fierer^{e*}, Joshua P. French^{f*}, Matthew J. Gebert^{e*}, Jennifer R.
6 Honda^{g*}, Ettie M. Lipner^{a*}, Theodore K. Marras^{h*}, Kozo Morimoto^{i*}, Max Salfinger^{i*}, Janet
7 Stout^{k,l*}, Rachel Thomson^{m*}, D. Rebecca Prevots^a

8 **Affiliations:** ^aDivision of Intramural Research, Epidemiology and Population Studies Unit,
9 NIAID, NIH, Rockville, MD, USA. ^bDepartment of Environmental and Occupational Health
10 Sciences, University of Washington, Seattle, WA, USA. ^cUnited States Environmental Protection
11 Agency, Center for Environmental Solutions and Emergency Response, Cincinnati, OH, USA.

12 ^dDepartment of Biological Sciences, Virginia Tech, Blacksburg, VA, USA. ^eDepartment of
13 Ecology and Evolutionary Biology, Cooperative Institute for Research in Environmental
14 Sciences, University of Colorado, Boulder, CO, USA. ^fDepartment of Mathematical and
15 Statistical Sciences, University of Colorado Denver, Denver, CO, USA. ^gCenter for Genes,
16 Environment, and Health, National Jewish Health, Denver, CO, USA. ^hDepartment of Medicine,
17 University of Toronto and University Health Network, Toronto, Canada. ⁱDivision of Clinical
18 Research, Fukujiji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan. ^jCollege of
19 Public Health & Morsani College of Medicine, University of South Florida, Tampa, FL, USA.

20 ^kSpecial Pathogens Laboratory, Pittsburgh, PA, USA. ^lDepartment of Civil and Environmental
21 Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
22 ^mGallipoli Medical Research Institute & Greenslopes Clinical School, The University of
23 Queensland, Brisbane, Australia.

24 * *Environmental Risks for Nontuberculous Mycobacterial Lung Infections* symposium panelist,
25 listed alphabetically.

26
27 **Contact information (e-mail):**

28 Rachel A. Mercaldo: rachel.mercaldo@nih.gov

29 Julia E. Marshall: julia_marshall@nih.gov

30 Gerard A. Cangelosi: gcang@uw.edu

31 Noah Fierer: noah.fierer@colorado.edu

32 Joshua French: joshua.french@ucdenver.edu

33 Matthew J. Gebert: matthew.gebert@colorado.edu

34 Jennifer R. Honda: HondaJ@njhealth.org

35 Ettie M. Lipner: ettie.lipner@nih.gov

36 Theodore K. Marras: ted.marras@uhn.ca

37 Kozo Morimoto: morimotok@fukujiji.org

38 Max Salfinger: max@usf.edu

39 Janet Stout: jstout@specialpathogenslab.com

40 Rachel Thomson: r.thomson@uq.edu.au

41 Joseph O. Falkinham III: jofiii@vt.edu

42 Maura Donohue: donohue.maura@epa.gov

43 D. Rebecca Prevots: rprevots@nih.gov

44
45 **Corresponding author:** Rachel A. Mercaldo

46

47 Abstract:
48 The National Institute of Allergy and Infectious Diseases organized a symposium in June
49 2022, to facilitate discussion of the environmental risks for nontuberculous mycobacteria
50 exposure and disease. The expert researchers presented recent studies and identified numerous
51 research gaps. This report summarizes the discussion and identifies six major areas of future
52 research related to culture-based and culture independent laboratory methods, alternate culture
53 media and culturing conditions, frameworks for standardized laboratory methods, improved
54 environmental sampling strategies, validation of exposure measures, and availability of high-
55 quality spatiotemporal data.

56

57 I. Introduction

58 Nontuberculous mycobacteria (NTM) are ubiquitous environmental pathogens,
59 frequently causing disease in those with underlying health conditions, such as cystic fibrosis
60 (CF) [1-3]. NTM pulmonary disease rates have increased in recent decades, in both these high-
61 risk populations and the general population [4-8]. Preventing infection and disease from NTM,
62 both among persons with CF and others, is a significant public health need.

63 Identifying NTM sources and routes of transmission and subsequent infection are central
64 to prevention efforts. NTM have been isolated from a variety of environmental reservoirs,
65 including soil, natural water bodies, and water and biofilms in the built environment and premise
66 plumbing. However, not all have been definitively linked to human disease [9]. A better
67 understanding of how environmental exposure contributes to disease is needed [10]. In 2017, the
68 National Institute of Allergy and Infectious Diseases (NIAID) held a workshop attended by
69 diverse experts and published a roadmap for future research [11]. The experts at these workshops
70 identified numerous research gaps and suggested foci for the future.

71 In the intervening years between the 2017 workshop and this report, a significant amount
72 has been done to fill the gaps identified. In June 2022, NIAID organized a symposium in Fort
73 Collins, Colorado, in conjunction with the 2022 Colorado State Mycobacterial meeting, to
74 summarize research related to the environmental risks of NTM disease and discuss critical
75 research gaps. In this report, we summarize key developments and remaining research questions
76 related to environmental risk factors for NTM disease (Table 1). We anticipate that this summary
77 will guide future research efforts and policy decisions.

78

79 II. Recent advances in NTM environmental risk research

80 **Environmental sampling and laboratory methods.**

81 The geographic distribution of NTM is predicted by a number of environmental and
82 climatic factors [12]; specific environmental conditions are likely optimal for different
83 mycobacteria species/strains. Researchers at the University of Colorado, Boulder have been
84 quantifying the pH and temperature growth optima of a variety of mycobacteria, investigating
85 different optima for pathogenic versus non-pathogenic species/strains. Because pH and
86 temperature influence NTM biogeography, these variables have been found to predict the
87 presence or virulence of mycobacteria across different systems [13-15]. While the effects of
88 other environmental factors, such as oxygen availability or soil features [16, 17], on NTM
89 distribution are under study, the research will benefit from broader sampling strategies.

90 Sampling efforts have been varied across the landscape. In Hawai'i, an area with high
91 disease incidence, community science efforts have promoted sampling in a variety of geographic
92 niches including natural and indoor environments [18-21]. Community science is being used in
93 other areas, and greater efforts are being made to sample widely. Efforts should also include
94 sampling of various locations within the built environments where most humans spend the
95 majority of their time [22, 23]. Studies of colonization in the built environment have historically
96 been focused on premise plumbing but, as with outdoor environments, data from diverse
97 sampling efforts, such as air and aerosol sampling, will further elucidate sources of NTM
98 exposures [24, 25]. A valid method for measuring human exposure to NTM, rather than disease,
99 will also propel the field forward. For *Mycobacterium tuberculosis* (TB), noninvasive oral swabs
100 were used in a 2019 study as an alternative sample type to sputum to detect up to 90% of cases
101 [26]. Sputum can be difficult and hazardous to collect and challenging to process in the
102 laboratory. Using oral swabs to detect NTM exposures, rather than infection, may be feasible
103 and could be further explored.

104 For any study to succeed, laboratory methods must have high sensitivity and specificity
105 for the presence of mycobacteria in samples. These requirements are affected by contamination
106 and overgrowth of bacteria and fungi in culture. In the last few years, new NTM isolation media
107 that have entered the commercial market may improve NTM recovery [27].

108

109 **Epidemiology and analytic methods**

110 NTM incidence has been increasing worldwide. In Canada, increases of both culture
111 positivity and disease are a growing concern. The cause of the 2014 surge in *Mycobacterium*
112 *avium* isolation in the Toronto area is still unknown [28]. Drinking water source-type and
113 treatment and quality variables among the 42 largest water treatment systems in the province of
114 Ontario, Canada, were used in modeling regional rates of NTM disease. Although numerous
115 trends were identified, the power to identify significant effects may have been limited by
116 methodology and the small sample size. With the analysis at the level of the region, each water
117 treatment region in the province contributed its own rate and models were constructed based on
118 only 42 rates. With so few regions, the sample size may have been too small to see an effect [29].

119 In the US, research regarding water quality factors and NTM infections have identified an
120 association between concentrations of the trace metals vanadium and molybdenum in the
121 municipal water supply and NTM pulmonary infection risk [30-32]. Although the specific
122 factors influencing this increased risk have not been elucidated, some evidence suggests that the
123 presence of these metals is important for mycobacterial metabolism, thereby increasing NTM
124 abundance, and subsequently increasing the risk of exposure and infection. This hypothesis is
125 supported by prior studies showing a significant correlation nationally between state-specific
126 disease prevalence and showerhead mycobacterial relative abundance [15]. Alternatively, or in
127 addition, these metals may confer increased host susceptibility in humans [32, 33].

128 In Queensland, Australia, NTM infections have remained notifiable since the inception of
129 statewide TB services. The increasing incidence of *M. avium* complex (MAC) cases spurred an
130 evaluation of geospatial risk [8]. NTM clusters have been found, with the best models including
131 a spatial component. Adjusted models revealed geographic and temporal trends, with cyclic
132 incidence patterns associated with temperature and rainfall [34]. Conversely, in the US, state-
133 level NTM reporting is not consistently required. Only twenty states have some form of
134 mandatory reporting, with few specifying the *Mycobacterium* species (Figure 1). To identify
135 burden, trends, and clusters in the US, researchers must combine data from multiple independent
136 sources including federal and state sources, as well as patient registries and electronic health
137 records.

138 Some variables have consistent effects across space. Disease is associated with
139 population density [4, 35], possibly due to more susceptible individuals living in high-density

140 areas near specialized health care providers or clinics. Higher population density is also
141 associated with more complicated water distribution systems and premise plumbing that may be
142 associated with enhanced growth of NTM in pipe biofilm and dissemination of NTM to
143 households [36]. With limited understanding of the incubation period for NTM in a host, i.e. the
144 lag time between NTM exposure and disease onset, it is difficult to determine the true effect of
145 events related to time, such as time spent in a specific geographic area [37] or temporal changes
146 made to water treatment. As the environment changes and more extreme weather events are
147 predicted, frequent screening in susceptible populations will provide invaluable temporal data
148 [38].

149 To analyze geographic trends, methods are needed to systematically identify high-risk
150 areas where the risk of disease incidence is significantly higher than what is expected under
151 some hypothesis of constant risk across all geographic regions (potentially after adjusting for
152 explanatory variables). For these approaches, precise location information for cases is necessary,
153 and standardized data are ideal for consistency across studies. To date, more precise spatial data
154 has not been readily available, but more recent studies have used large linked deidentified
155 datasets with patient residence geocoded to latitude and longitude within 1 km [39].

156

157 III. Knowledge gaps and areas of future research

158 **1. Culture-based and culture-independent laboratory methods complement each other and 159 should be used in tandem.**

160 The choice between culture-based and culture-independent methods for detection of
161 NTM typically depends on the proposed research or clinical question. For environmental
162 samples, the yield from culture-based methods is limited by the potential for bacterial and fungal
163 overgrowth, requiring harsh decontamination steps and/or selective media suppressing the
164 growth of non-acid-fast bacilli, that can further impede mycobacterial growth. These steps and
165 the slow growing nature of NTM, makes culture-based methods time-consuming. Additionally,
166 culture-based methods may miss clinically relevant NTM that are difficult to cultivate. Culture
167 independent methods may provide a broader landscape of NTM from different samples.
168 However, to ascertain if a species/strain of NTM from the environment is disease-causing,
169 genomic similarity with strains causing human disease is required.

170 Direct detection using qPCR (quantitative polymerase chain reaction) has been explored
171 as an alternative to culture for detection of NTM in environmental samples [40]. While culturing
172 can allow for the detection of NTM, even if they are in low abundance, culture-independent methods can
173 allow for more rapid detection of diverse NTM taxa in environmental samples. Additionally, culture-
174 independent methods may aid detection of clinically relevant NTM that are difficult to cultivate.

175 PCR methods perform more efficiently as a monitoring tool, and PCR positivity may then
176 prompt further investigation using a culture-based method better for more targeted or in-depth
177 analyses. Culture-based approaches additionally allow for variation in experimental methods,
178 such as the use of selective media or cultivation across ranges of pH, temperature, or other
179 environmental factors of interest. As studies evolve to investigate strain-specific optima of
180 environmental factors, culturing methods will remain indispensable.

181

182 **2. Additional study is needed for novel media that may improve culture validity.**

183 Improved sensitivity and specificity of culture media is needed to improve the recovery
184 and identification of mycobacteria in environmental samples. Each combination of NTM species
185 and sampling matrix, such as water, biofilm or soil, presents a unique culturing challenge. Novel
186 selective media have been described [27, 41, 42] and additional study of the costs and benefits of
187 their use is warranted. The Rapidly Growing Mycobacteria (RGM) media (NTM Elite agar,
188 bioMerieux, Marcy-l'Etoile France), for example, has shown promise in early studies [27], but
189 has not yet been tested extensively across laboratories or in the context of diverse sample types.

190 The move toward more selective media is driven, in part, by the high concentration of
191 competing bacteria in environmental samples, and the labor and materials required by the use of
192 traditional NTM media. Depending on sample type, a decontamination step may be required
193 before culture with Middlebrook 7H10/7H11 or Lowenstein-Jensen, and a proportion of plates
194 may yet be eliminated due to contamination or overgrowth. Concerns that decontamination steps
195 may remove NTM from samples also encourage development of selective media. The purpose of
196 the culture will ultimately determine the media used, specific to NTM species, sample matrix,
197 and study goals. The role played by more selective media in the future will depend on the results
198 of further cost-benefit analyses comparing these media to traditional options.

199

200 **3. Standardized laboratory methods are recommended, but effort and cooperation is
201 necessary to establish a framework.**

202 All laboratory methods have relative advantages and disadvantages, and their utility
203 depends upon the research goals of a specific study or surveillance effort. A classic approach to
204 limit bias is to standardize methods across studies. Clinical studies of NTM have some level of
205 standardization, but such standardization for environmental monitoring efforts do not currently
206 exist.

207 Historically, establishing standards for other bacterial genera has been difficult.
208 Variations within standards result in lengthier approval times. At the same time, care should also
209 be taken to assure that standards do not inhibit the implementation of new, improved methods,
210 but allow for deviations. Methodological improvement must be measured against some baseline,
211 however, and standardized methods provide such a baseline. This baseline does not currently
212 exist for NTM.

213 Specific standard protocols are likely necessary for individual mycobacterial species and
214 for various sample types. Decontamination or extraction steps will vary between soil and water
215 samples. Culturing pH and temperature optima will differ among *Mycobacterium* species/strains.
216 With culture-independent methods, standard target genes should be determined for each species.
217 These standards, however, may still select for specific species and will not describe the entire
218 microbial diversity (microbiome) in a sample, even in a culture-independent framework.
219 Typically single genes are used for identification. Without appropriate reference databases, some
220 samples sent for analysis may remain unspciated. For example, matrix-assisted laser
221 desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) methods have
222 limited specificity, as results are only as good as the reference database. Expanding the reference
223 library of MALDI-TOF MS to include more environmentally relevant species will improve
224 success for environmental monitoring and epidemiologic investigations.

225 Improving laboratory standards will require cooperation among all relevant institutions,
226 including clinical and public health laboratories, industry partners, and regulatory and public
227 health agencies such as the FDA and CDC, both in the initial standardization phase as well as in
228 the maintenance of robust reference databases. Efforts in other fields, such as food safety
229 laboratories use of standardized methods for food and environmental sample analyses or the
230 CDC's protocols for *Legionella*, may provide useful models moving forward.

231

232 **4. The utility of exposure data depends on environmental sampling strategy.**

233 The statistical power and generalizability of environmental findings regarding
234 environmental exposures, infections, or disease will depend upon the number of samples taken
235 and the strategy used to choose sampling locations. Much work has focused on sampling within
236 the homes of NTM pulmonary disease cases. Such studies are important because most people
237 spend most of their time within built environments. Within homes, site and mode of sampling
238 can be important considerations. For example, a disease association study found that NTM
239 isolation from shower aerosols is highly associated with MAC pulmonary disease, while
240 isolation from bulk tapwater and soils, environments found in or near homes, was not [43]. In
241 contrast, a cross-sectional study in Florida found an association between duration of soil
242 exposure, particularly soil-related occupations, and *Mycobacterium avium* exposure [44].
243 Isolation of NTM from soil has been linked to patients with NTM disease [45, 46]. A
244 combination of indoor and outdoor samples provides a broader view of NTM biogeography.
245 Large-scale studies are needed in diverse locations, with samples from various substrates. In
246 homes, samples of household dust and air filters would complement those obtained from premise
247 plumbing. Sampling efforts focused on quantifying NTM distributions in soils or waterbodies
248 would benefit from collaborations with state or federal agencies that sample widely. This
249 approach may lower the expense and increase the feasibility of obtaining fine-scale
250 environmental data.

251

252 **5. High-risk populations allow for efficient epidemiology, while a measure of exposure, not
253 infection, will allow for more precise associations.**

254 NTM have been identified in numerous sources to which human populations are exposed,
255 including water, soil, and aerosols. Future studies will be needed to test the efficacy of additional
256 behavior modifications, point-of-use interventions, or other prevention efforts. Such studies
257 should be conducted in cohorts where the incidence rate is high enough to obtain statistical
258 power needed to detect the effect of the intervention [47, 48]. For example, patients with CF or
259 individuals previously infected who have experienced culture conversion undoubtedly comprise
260 the highest risk, while people with non-CF bronchiectasis and chronic obstructive pulmonary
261 disease may also comprise feasible study populations

262 Epidemiological studies in these populations will necessarily be observational;
263 randomizing high-risk patients to avoid potentially protective tools or behaviors may not be
264 ethical. A validated method to detect exposure, not infection, would facilitate broader
265 epidemiological studies possible in the general population. In such individuals, who are not at
266 high risk, randomized intervention studies would be possible.

267

268 **6. Environmental epidemiology studies require high-quality spatiotemporal resolution**

269 Statistical methods focused on geographic areas are particularly useful for determining
270 the effect of environmental variables on disease risk. Results vary, however, depending on how
271 patients are grouped. The goal of analyses should be flexibility, to show any possible clustering,
272 while remaining computationally feasible.

273 Standardized data with well-defined geographic information are not readily available.
274 The optimal data comprise geocoded patient addresses, with residence information geocoded to
275 some radius to protect the participants' privacy. Data are more often aggregated by zip code or
276 county, and the best statistical methods are chosen based on the data available. The quality of
277 available data, in particular groupings at broader spatial levels, limits analytic flexibility and
278 hampers discovery of meaningful associations.

279 Analysis of temporal associations could also yield important information on the
280 epidemiology of NTM. However, because the incubation period for NTM disease in a host is
281 unknown, and is likely influenced by the exposure dose and the virulence of the infecting
282 strain/species, these analyses have been limited. Nonetheless, one analysis of a large linked
283 dataset representing Kaiser beneficiaries in Hawai'i did find a positive association between time
284 of residence and risk of NTM infection [37]. Analysts with access to time-series or other
285 temporally-structured datasets may find associations between disease incidence and water
286 treatment or other historical changes. Such analyses, in turn, may give researchers clues about
287 the host incubation period for NTM, as well as factors influencing disease risk.

288

289 IV. Summary and conclusions

290 NTM are ubiquitous environmental organisms that increasingly pose risk across diverse
291 populations. This report summarizes the input of expert researchers of NTM environmental
292 predictors who identified six major areas of focus for future research:

- 293 1. Simultaneous use of both culture-based and culture-independent laboratory methods.
- 294 2. Increased use of alternate media and broader culturing conditions, in addition to
- 295 traditional media, to select for mycobacteria in culture.
- 296 3. Establishing a framework for standardizing laboratory methods.
- 297 4. Improved environmental sampling strategies with population-based or other sampling
- 298 frameworks, to define the geographic area and allow increased generalizability.
- 299 5. Validation of a measure of exposure to conduct epidemiological studies in low-disease-
- 300 risk populations.
- 301 6. Availability of high-quality spatiotemporal data for models of host NTM incubation
- 302 periods and for flexible, yet efficient, identification of disease clustering.

303 The authors provide these recommendations to help guide future research and fill the knowledge
304 gaps necessary for prevention and control of NTM lung disease.

305

306

307 **Acknowledgements:**

308 This work was supported in part by the Intramural Research Program at the National Institute of
309 Allergy and Infectious Diseases, National Institutes of Health.

310 The authors thank the conference organizers, speakers, and attendees for their contributions to
311 the symposium and manuscript.

312 References

313

- 314 1. Floto, R.A., et al., *US Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus*
315 *recommendations for the management of non-tuberculous mycobacteria in individuals with*
316 *cystic fibrosis*. Thorax, 2016. **71 Suppl 1**: p. i1-22.
- 317 2. Adjemian, J., K.N. Olivier, and D.R. Prevots, *Epidemiology of Pulmonary Nontuberculous*
318 *Mycobacterial Sputum Positivity in Patients with Cystic Fibrosis in the United States, 2010-2014*.
319 Ann Am Thorac Soc, 2018. **15**(7): p. 817-826.
- 320 3. Adjemian, J., K.N. Olivier, and D.R. Prevots, *Nontuberculous mycobacteria among patients with*
321 *cystic fibrosis in the United States: screening practices and environmental risk*. Am J Respir Crit
322 Care Med, 2014. **190**(5): p. 581-6.
- 323 4. Adjemian, J., et al., *Spatial clusters of nontuberculous mycobacterial lung disease in the United*
324 *States*. Am J Respir Crit Care Med, 2012. **186**(6): p. 553-8.
- 325 5. Adjemian, J., et al., *Prevalence of nontuberculous mycobacterial lung disease in U.S. Medicare*
326 *beneficiaries*. Am J Respir Crit Care Med, 2012. **185**(8): p. 881-6.
- 327 6. Strollo, S.E., et al., *The Burden of Pulmonary Nontuberculous Mycobacterial Disease in the*
328 *United States*. Ann Am Thorac Soc, 2015. **12**(10): p. 1458-64.
- 329 7. Winthrop, K.L., et al., *Incidence and Prevalence of Nontuberculous Mycobacterial Lung Disease in*
330 *a Large U.S. Managed Care Health Plan, 2008-2015*. Ann Am Thorac Soc, 2020. **17**(2): p. 178-
331 185.
- 332 8. Thomson, R.M., N.T.M.w.g.a.Q.T.C. Centre, and L. Queensland Mycobacterial Reference,
333 *Changing epidemiology of pulmonary nontuberculous mycobacteria infections*. Emerg Infect Dis,
334 2010. **16**(10): p. 1576-83.
- 335 9. Halstrom, S., P. Price, and R. Thomson, *Review: Environmental mycobacteria as a cause of*
336 *human infection*. International Journal of Mycobacteriology, 2015. **4**(2): p. 81-91.
- 337 10. Falkinham, J.O., 3rd, *Ecology of nontuberculous mycobacteria--where do human infections come*
338 *from?* Semin Respir Crit Care Med, 2013. **34**(1): p. 95-102.
- 339 11. Daniel-Wayman, S., et al., *Advancing Translational Science for Pulmonary Nontuberculous*
340 *Mycobacterial Infections A Road Map for Research*. American Journal of Respiratory and Critical
341 Care Medicine, 2019. **199**(8): p. 947-951.
- 342 12. Prevots, D.R. and T.K. Marras, *Epidemiology of human pulmonary infection with nontuberculous*
343 *mycobacteria: a review*. Clin Chest Med, 2015. **36**(1): p. 13-34.
- 344 13. Walsh, C.M., et al., *A Global Survey of Mycobacterial Diversity in Soil*. Appl Environ Microbiol,
345 2019. **85**(17).
- 346 14. Webster, T.M., et al., *Structure and Functional Attributes of Bacterial Communities in Premise*
347 *Plumbing Across the United States*. Environ Sci Technol, 2021. **55**(20): p. 14105-14114.
- 348 15. Gebert, M.J., et al., *Ecological Analyses of Mycobacteria in Showerhead Biofilms and Their*
349 *Relevance to Human Health*. Mbio, 2018. **9**(5).
- 350 16. Parsons, A.W., et al., *Soil Properties and Moisture Synergistically Influence Nontuberculous*
351 *Mycobacterial Prevalence in Natural Environments of Hawai'i*. Applied and Environmental
352 Microbiology, 2022. **88**(9).
- 353 17. Glickman, C.M., et al., *Assessment of Soil Features on the Growth of Environmental*
354 *Nontuberculous Mycobacterial Isolates from Hawai'i*. Applied and Environmental Microbiology,
355 2020. **86**(21).
- 356 18. Honda, J.R., et al., *Inaugural nontuberculous mycobacterial lung disease education and research*
357 *conference, Honolulu, Hawai'i, February 1-2, 2020*. Microbes Infect, 2021. **23**(1): p. 104763.

358 19. Virdi, R., et al., *Lower Recovery of Nontuberculous Mycobacteria from Outdoor Hawai'i*
359 *Environmental Water Biofilms Compared to Indoor Samples*. *Microorganisms*, 2021. **9**(2).

360 20. Nelson, S.T., et al., *Exposure Pathways of Nontuberculous Mycobacteria Through Soil, Streams,*
361 *and Groundwater, Hawai'i, USA*. *Geohealth*, 2021. **5**(4).

362 21. Honda, J.R., et al., *Environmental Nontuberculous Mycobacteria in the Hawaiian Islands*. *Plos*
363 *Neglected Tropical Diseases*, 2016. **10**(10).

364 22. Klepeis, N.E., et al., *The National Human Activity Pattern Survey (NHAPS): a resource for*
365 *assessing exposure to environmental pollutants*. *J Expo Anal Environ Epidemiol*, 2001. **11**(3): p.
366 231-52.

367 23. Prussin, A.J., 2nd and L.C. Marr, *Sources of airborne microorganisms in the built environment*.
368 *Microbiome*, 2015. **3**: p. 78.

369 24. Maki, T., et al., *Long-range transport of airborne bacteria over East Asia: Asian dust events carry*
370 *potentially nontuberculous Mycobacterium populations*. *Environment International*, 2022.
371 **168**(107471).

372 25. Morimoto, K., et al., *Prevention of aerosol isolation of nontuberculous mycobacterium from the*
373 *patient's bathroom*. *ERJ Open Res*, 2018. **4**(3).

374 26. Luabeya, A.K., et al., *Noninvasive Detection of Tuberculosis by Oral Swab Analysis*. *J Clin*
375 *Microbiol*, 2019. **57**(3).

376 27. Alexander, K.J., et al., *Evaluation of a new culture medium for isolation of nontuberculous*
377 *mycobacteria from environmental water samples*. *PLoS One*, 2021. **16**(3): p. e0247166.

378 28. Raats, D., et al., *Increasing and More Commonly Refractory Mycobacterium avium Pulmonary*
379 *Disease, Toronto, Ontario, Canada*. *Emerg Infect Dis*, 2022. **28**(8): p. 1589-1596.

380 29. Marras, T.K., *Drinking water and NTM-PD in Ontario*, in *Environmental Risks for Nontuberculous*
381 *Mycobacterial Lung Infections Symposium*. 2022: Fort Collins, CO.

382 30. Lipner, E.M., et al., *Nontuberculous mycobacterial infection and environmental molybdenum in*
383 *persons with cystic fibrosis: a case-control study in Colorado*. *J Expo Sci Environ Epidemiol*, 2022.
384 **32**(2): p. 289-294.

385 31. Lipner, E.M., et al., *Nontuberculous Mycobacterial Disease and Molybdenum in Colorado*
386 *Watersheds*. *Int J Environ Res Public Health*, 2020. **17**(11).

387 32. Lipner, E.M., et al., *Nontuberculous Mycobacteria Infection Risk and Trace Metals in Surface*
388 *Water: A Population-based Ecologic Epidemiologic Study in Oregon*. *Ann Am Thorac Soc*, 2022.
389 **19**(4): p. 543-550.

390 33. Oh, J., et al., *Assessment of 7 trace elements in serum of patients with nontuberculous*
391 *mycobacterial lung disease*. *J Trace Elem Med Biol*, 2019. **53**: p. 84-90.

392 34. Thomson, R.M., et al., *Influence of climate variables on the rising incidence of nontuberculous*
393 *mycobacterial (NTM) infections in Queensland, Australia 2001-2016*. *Sci Total Environ*, 2020.
394 **740**: p. 139796.

395 35. Lee, H., et al., *Epidemiology of Nontuberculous Mycobacterial Infection, South Korea, 2007-2016*.
396 *Emerg Infect Dis*, 2019. **25**(3): p. 569-572.

397 36. Thomson, R.M., et al., *Factors associated with the isolation of Nontuberculous mycobacteria*
398 *(NTM) from a large municipal water system in Brisbane, Australia*. *Bmc Microbiology*, 2013. **13**.

399 37. Adjemian, J., et al., *Epidemiology of Nontuberculous Mycobacterial Lung Disease and*
400 *Tuberculosis, Hawaii, USA*. *Emerg Infect Dis*, 2017. **23**(3): p. 439-447.

401 38. Honda, J.R., J.N. Bernhard, and E.D. Chan, *Natural disasters and nontuberculous mycobacteria: a*
402 *recipe for increased disease?* *Chest*, 2015. **147**(2): p. 304-308.

403 39. Lipner, E.M., et al., *Vanadium in groundwater aquifers increases the risk of MAC pulmonary*
404 *infection in O'ahu, Hawaii*. *Environmental Epidemiology*, 2022.

405 40. Pfaller, S., et al., *Occurrence revisited: Mycobacterium avium and Mycobacterium intracellulare*
406 *in potable water in the USA*. Applied Microbiology and Biotechnology, 2022. **106**(7): p. 2715-
407 2727.

408 41. Preece, C.L., et al., *A novel culture medium for isolation of rapidly-growing mycobacteria from*
409 *the sputum of patients with cystic fibrosis*. J Cyst Fibros, 2016. **15**(2): p. 186-91.

410 42. Stephenson, D., et al., *An evaluation of methods for the isolation of nontuberculous*
411 *mycobacteria from patients with cystic fibrosis, bronchiectasis and patients assessed for lung*
412 *transplantation*. BMC Pulm Med, 2019. **19**(1): p. 19.

413 43. Tzou, C.L., et al., *Association between Mycobacterium avium Complex Pulmonary Disease and*
414 *Mycobacteria in Home Water and Soil A Case-Control Study*. Annals of the American Thoracic
415 Society, 2020. **17**(1): p. 57-62.

416 44. Reed, C., et al., *Environmental risk factors for infection with Mycobacterium avium complex*.
417 American Journal of Epidemiology, 2006. **164**(1): p. 32-40.

418 45. Fujita, K., et al., *Genetic relatedness of Mycobacterium avium-intracellulare complex isolates*
419 *from patients with pulmonary MAC disease and their residential soils*. Clinical Microbiology and
420 Infection, 2013. **19**(6): p. 537-541.

421 46. De Groote, M.A., et al., *Relationships between Mycobacterium isolates from patients with*
422 *pulmonary mycobacterial infection and potting soils*. Appl Environ Microbiol, 2006. **72**(12): p.
423 7602-6.

424 47. Wallace, R.J., Jr., et al., *Macrolide/Azalide therapy for nodular/bronchiectatic mycobacterium*
425 *avium complex lung disease*. Chest, 2014. **146**(2): p. 276-282.

426 48. Lee, B.Y., et al., *Risk factors for recurrence after successful treatment of Mycobacterium avium*
427 *complex lung disease*. Antimicrob Agents Chemother, 2015. **59**(6): p. 2972-7.

428

429

Table 1: Important foci of future environmental NTM research.

Research Focus	Needs
Culture-based and culture-independent laboratory methods	Increase complementary use of both culture-based and culture-independent methods in environmental studies.
Role of novel media	Additional studies to assess the sensitivity and specificity of novel media
Standardized laboratory methods	Greater cooperation and effort to establish a standard framework, such as specific protocols or genetic reference databases
Exposure data	Larger-scale sampling studies including locations both within the built environment and in external environments
Measures of exposure	Validation of a measure of human exposure, for example, identification of NTM from noninvasive oral swabs
High-quality spatiotemporal resolution	Inclusion of highly specific spatial and temporal components in environmental studies (as possible when protecting participant privacy)

430

431

432 **Figure 1 legend:**

433 Nontuberculous mycobacteria case reporting in the United States. Fourteen states have some
434 form of NTM reporting (CO, CT, LA, MD, ME, MN, MO, MS, NE, OR, TN, UT, VA, WI),
435 including two where pulmonary and extrapulmonary NTM infection is a reportable condition
436 (MN, CO). In addition, four states have extrapulmonary NTM infection only (MD, NE, OR,
437 TN), and eight have NTM infection type not specified, e.g., specimen type or NTM species may
438 not be reported (CT, LA, ME, MO, MS, UT, VA, WI). In MN and CO, Pulmonary NTM
439 infection is reportable only in some counties.