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To the editor: Innovation in mass spectrometry (MS) and the rapidly increasing throughput and 38 
sensitivity of MS instrumentation require adaptations and innovations in data processing tools. Here, 39 
we introduce MZmine 3, a scalable MS data analysis platform that supports hybrid datasets from 40 
various instrumental setups, including gas and liquid chromatography (GC and LC)-MS, ion mobility 41 
spectrometry (IMS)-MS, and MS imaging. In particular, the integration of IMS-MS imaging and LC-IMS-42 
MS datasets provides opportunities for spatial metabolomics analyses with increased annotation 43 
confidence. 44 

Over the past decade, the MZmine project has evolved into a community-driven, collaborative effort. 45 
As an open-source ecosystem for MS data processing, MZmine is a cross-platform software 46 
(Supplementary Note 1) that can be tuned for robust, scalable, and reproducible data analysis on 47 
personal computers as well as high-performance super computers. The project has seen continuous 48 
development since its inception in 2004.1,2 Community additions (Fig. 1a) introduced various 49 
functions, such as performant feature detection workflows,3,4 modules for lipid annotation,5 and 50 
strong ties to other community projects (Fig. 1b). Here, data exchange formats and direct interfaces 51 
(listed in Tool integration in the documentation) enable downstream analysis in external tools, such 52 
as compound annotation in SIRIUS,6 statistical analysis in MetaboAnalyst,7 and directly bind MZmine 53 
results into the molecular networking ecosystem of the Global Natural Products Social Molecular 54 
Networking (GNPS) web-platform (Supplementary Note 2).8–10  55 

 56 

 57 
Fig. 1 | MZmine, an open-source community project for integrative LC-IMS-MS and IMS-MS data processing. 58 
a, Overview of active developments and key additions to MZmine since the first publication, which led to over 59 
180 modules that now drive interactive, reproducible, and efficient data processing and visualization in MZmine 60 



 

 

3. b, Data exchange formats and direct interfaces enable downstream analysis with strong ties to projects like 61 
GNPS, SIRIUS, and MetaboAnalyst. c, The integrative LC- and IMS-MS imaging workflow applies feature detection 62 
in RT, ion mobility, and m/z dimension to MS data stored in open or vendor formats. Comprehensive processing 63 
and annotation results are merged into d, an aligned feature list with one ion feature detected in LC-IMS-MS 64 
samples and aligned to one MALDI-IMS-MS ion feature image. Annotation results (Lipid annotation column) and 65 
interactive charts include the table columns Shapes (extracted ion chromatograms), Mobilograms (extracted ion 66 
mobilograms), and Images (extracted ion images). 67 

 68 

Recent advances in MS instrumentation push sensitivity, resolving power, and data acquisition speed, 69 
resulting in increased data volume and complexity. Notably, IMS gains traction in the field by including 70 
an additional separation dimension to LC-MS or imaging-based techniques like matrix-assisted laser 71 
desorption/ionization (MALDI)-MS. These advances introduce new acquisition modes (e.g., parallel 72 
accumulation-serial fragmentation - PASEF)11, or enable hyphenation of IMS and imaging, which was 73 
shown to improve annotation quality in MS imaging.12 Furthermore, the number of large-scale cohort 74 
and multifactorial studies in clinical, environmental, and other fields is growing, as registered in the 75 
three major metabolomics data repositories, MassIVE/GNPS,8 MetaboLights, and Metabolomics 76 
Workbench.13 The need for scalable, reproducible, and flexible data analysis workflows that can 77 
combine mass spectrometry data from various sources, remains unaddressed by existing tools. For 78 
example, to combine LC- and imaging-(IMS)-MS results from the same sample, users are forced to 79 
master multiple software tools12 that divide the workflow and are specialized in either 80 
chromatography-MS (e.g., MS-DIAL, XCMS, OpenMS)14–16 or MS imaging (e.g., METASPACE, rMSI, 81 
Cardinal MSI, SpectralAnalysis).17  82 

The integrative spatial metabolomics workflow in MZmine 3 (Fig. 1c) imports LC-IMS-MS and IMS-MS 83 
imaging datasets stored in either open or vendor-specific formats and processes them by non-84 
targeted feature detection. This entails resolving peak shapes for ion features in both the retention 85 
time (RT) and ion mobility dimension in LC-IMS-MS and extracting mobility-resolved ion image 86 
features with spatial distributions in IMS-MS imaging (Supplementary Fig. 1). Individual features from 87 
both methodologies are subsequently represented and aligned by their RT (LC only), m/z, and ion 88 
mobility values. The resulting aligned feature list combines the strengths of the individual analytical 89 
methods by integrating the compound annotation capabilities of modern chromatography-based MS 90 
with spatial metabolite distributions that can be mapped to histological data, addressing the issue of 91 
missing MS2 data in most imaging studies. For data evaluation, MZmine organizes annotations in a 92 
feature table with interactive charts, exemplified in Fig. 1d for one ion feature detected in LC-IMS-MS 93 
samples and aligned to an ion image from one MALDI-IMS-MS imaging dataset. An exemplary spatial 94 
metabolomics workflow leading to LC-IMS-MS resolved molecular networks, enriched with spatial ion 95 
feature information is described in Supplementary Note 2 (Supplementary Fig. 4). Additional 96 
visualization modules (Supplementary Fig. 5) connect all available data dimensions; a fast memory-97 
mapped data backend enables interactive exploration. 98 

In MZmine 3, special attention was directed towards scalability due to the ever-increasing study sizes 99 
that lead to large raw data volumes, particularly in the case of LC-IMS-MS datasets. Efficient memory 100 
management and parallelization removed bottlenecks, resulting in an 89% reduction in processing 101 
time for 250 dissolved organic matter (DOM) samples when compared to MZmine 2. A stress test 102 
demonstrated in high sample throughput, where the mean processing times elapsed to 0.1% to 0.3% 103 
of the total data acquisition time for six different LC-MS datasets (Supplementary Note 3; 104 



 

 

Supplementary Fig. 6). Further, MZmine 3 was benchmarked using 8273 fecal LC-MS2 samples, 105 
requiring just 47 min of processing time (see hardware specifications in Supplementary Note 3).  106 

The improved performance of MZmine 3 over previous MZmine versions now allows processing of 107 
large datasets, including large-volume LC-IMS-MS data. For new users, the MZmine website contains 108 
detailed manuals and video tutorials, and the new processing wizard in MZmine provides starting 109 
points for various standard workflows and mass spectrometer types. In addition, a development 110 
tutorial is available for potential new contributors, and the modular design of MZmine enables testing 111 
and implementing new ideas within the MZmine framework. 112 

 113 



 

 

Data availability 114 

Datasets are available on MassIVE8 with their accession IDs: 115 
- MSV000088054, human cohort study, LC-MS, neg 116 
- MSV000087728, diverse plant extracts, LC-MS2, top-3 DDA, pos 117 
- MSV000090079, DOM, LC-MS2, top-5 DDA, pos 118 
- MSV000090328, sheep brain, LC-tims-MS, PASEF, pos  119 
- MSV000090327, piper plant extracts, LC-tims-MS, PASEF, pos 120 

 121 

IMS resolved ion identity molecular networking results are available through GNPS: 122 
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=7a06fa3dfadd4158bcb4ee300b574747  123 

Code availability 124 

The latest release of MZmine can be downloaded from www.mzmine.org. The complete source codes 125 
are available at https://github.com/mzmine/mzmine3/ under the MIT license.18 The MZmine 126 
documentation is hosted on GitHub and available at 127 
https://mzmine.github.io/mzmine_documentation/.  128 
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