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ABSTRACT The soil bacterium Myxococcus xanthus is a model organism with a set 
of diverse behaviors. These behaviors include the starvation-induced multicellular 
development program, in which cells move collectively to assemble multicellular 
aggregates. After initial aggregates have formed, some will disperse, with smaller 
aggregates having a higher chance of dispersal. Initial aggregation is driven by two 
changes in cell behavior: cells slow down inside of aggregates and bias their motion 
by reversing direction less frequently when moving toward aggregates. However, the 
cell behaviors that drive dispersal are unknown. Here, we use fluorescent microscopy to 
quantify changes in cell behavior after initial aggregates have formed. We observe that 
after initial aggregate formation, cells adjust the bias in reversal timings by initiating 
reversals more rapidly when approaching unstable aggregates. Using agent-based 
modeling, we then show dispersal is predominantly generated by this change in bias, 
which is strong enough to overcome slowdown inside aggregates. Notably, the change 
in reversal bias is correlated with the nearest aggregate size, connecting cellular activity 
to previously observed correlations between aggregate size and fate. To determine if 
this connection is consistent across strains, we analyze a second M. xanthus strain with 
reduced levels of dispersal. We find that far fewer cells near smaller aggregates modified 
their bias. This implies that aggregate dispersal is under genetic control, providing a 
foundation for further investigations into the role it plays in the life cycle of M. xanthus.

IMPORTANCE Understanding the processes behind bacterial biofilm formation, 
maintenance, and dispersal is essential for addressing their effects on health and 
ecology. Within these multicellular communities, various cues can trigger differentiation 
into distinct cell types, allowing cells to adapt to their specific local environment. The soil 
bacterium Myxococcus xanthus forms biofilms in response to starvation, marked by cells 
aggregating into mounds. Some aggregates persist as spore-filled fruiting bodies, while 
others disperse after initial formation for unknown reasons. Here, we use a combination 
of cell tracking analysis and computational simulations to identify behaviors at the 
cellular level that contribute to aggregate dispersal. Our results suggest that cells in 
aggregates actively determine whether to disperse or persist and undergo a transition 
to sporulation based on a self-produced cue related to the aggregate size. Identifying 
these cues is an important step in understanding and potentially manipulating bacterial 
cell-fate decisions.

KEYWORDS bacterial development, biofilms, collective behavior, myxobacteria

M any bacterial species spend part of their life cycles as biofilms, surface-associated 
multicellular communities, which are resistant to harsh environmental conditions 

(1–3). Cells in these biofilms respond to environmental cues as well as biological 
signals produced by nearby cells to coordinate collective behaviors (4–6), change gene 
expression (7, 8), or undergo differentiation into distinct cell types (2, 9). Identifying 
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how bacteria modulate their behavior in response to different cues can inform our 
understanding of the drivers of biofilm formation, restructuring, and stability. 
Biofilm formation by a Gram-negative bacterium Myxococcus xanthus is an important 
model system to understand these phenomena.

M. xanthus is a model organism for studying multicellular coordination due to its 
diverse range of emergent behaviors (10–12). These bacteria use both social motility 
(S-motility) and adventurous motility (A-motility) to move on surfaces. S-motility relies on 
type IV pili to attach to neighboring cells or extracellular polysaccharides (5, 13, 14), while 
A-motility uses membrane-bound focal adhesion sites to propel individual cells (13, 15–
17). Cells periodically switch their motor’s polarity, reversing their direction of motion, 
regardless of which motility system is used (18, 19). How cells adjust their motility 
systems is influenced by both contact-dependent signaling and chemoattractants, each 
of which transmits information about the nearby environment. Contact-dependent 
signaling conveys information about the local environment, such as cellular density and 
neighbor alignment, and also whether a cell is moving with or against its neighbors 
(6, 20–23). Chemotaxis in M. xanthus allows cells to climb gradients of external lipid 
concentrations, including phosphatidylethanolamine and diacylglycerol, by suppressing 
directional reversals (24–26). By using these signaling pathways to inform the use of their 
motility systems, M. xanthus cells can exhibit collective behaviors that include swarming 
(10), rippling (27–29), and multicellular development (30–32).

Under starvation conditions, M. xanthus cells undergo a multicellular development 
program, culminating in the formation of spore-filled fruiting bodies containing tens 
of thousands of spores (1, 30–33). This process occurs over roughly 24 h and involves 
distinct stages. Initially, cells exhibit low motility for several hours, after which, they 
display a burst of motion, coordinating into streams of cells via adjustments in speed 
and reversal frequency (33, 34). The intersections of these streams increase cell density 
and often results in initial aggregates appearing nearby. Over the next 5–7 h, cells 
build sequential layers that develop into the main mass of the nascent fruiting body. 
During this phase, several cell behaviors contribute to the growth of initial aggregates 
(35, 36). One of these behaviors is a density-dependent traffic jam effect, which slows 
down movement in high-density regions and increases the likelihood of cells entering 
a stopped state. Another important behavior is a biased random walk that influences 
cells in the vicinity of existing aggregates, with persistent cells moving for longer when 
oriented toward aggregates prior to reversing their polarity. These two behaviors interact 
synergistically to enhance aggregate growth. The steady influx of cells resulting from 
the biased random walk increases the local density, strengthening the jamming effect. 
Aggregate development culminates in the differentiation of a subset of the cellular 
population into environmentally resistant spores.

While the formation and protection of spores is the main goal of aggregation, not 
every initial aggregate is stable and some disperse prematurely (37–39). Cells abandon 
these unstable aggregates, migrating to other growing aggregates nearby. Thus, fruiting 
body development can be split into two phases: initial aggregation, where aggregates 
first appear and grow, and coarsening, where initial aggregates either disperse prema­
turely or remain and develop into full 3D structures with differentiated cell types (Fig. 1). 
The start of the coarsening phase varies but is typically 10–15 h after plating cells on agar 
(37–39).

It is unknown what triggers some aggregates to disperse midway through formation, 
but certain aggregate features are highly correlated to stability (38). Among these, size 
has been identified as the most distinctive feature that separates stable and unstable 
aggregates. As a result, predictions of aggregate stability using size have been reasona­
bly successful (38, 39). However, no previous studies have quantified changes in cellular-
level behaviors accompanying aggregate dispersal and their links to aggregate features.

In this study, we set to identify cell behaviors that drive aggregate dispersal. Based on 
our analysis of tracked cell data, we investigated how the traffic jam effect and the biased 
random walk vary as aggregates disperse. To identify the main source of dispersal, we 
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utilized a computational approach adapted from Cotter et al. (35). The results indicated 
that dispersal is primarily driven by the changes in the biased random walk—cells near 
smaller aggregates tend to move for longer when going away from the aggregates. 
Finally, to determine if the relationship between the biased random walk and aggregate 
dispersal is consistent across strains, we analyzed the behaviors of our tracked cells 
mixed with an alternate wild-type strain with low levels of dispersal and analyzed how 
cell behavior changed.

RESULTS

Quantification of aggregation and coarsening behaviors for the entire 
wild-type bacterial population

We employed fluorescent microscopy and a mixture of fluorescently labeled cells to 
collect data on cell trajectories and local cell density during both the initial aggregation 
and coarsening phases. Approximately 0.1% of cells were labeled with tdTomato (see 
Materials and Methods for more details). These cells were sparse enough to allow 
their trajectories to be extracted and used for behavior quantification. The remainder 
of the mixture consisted of green fluorescent protein (GFP)-expressing cells capable 
of producing many dispersing aggregates. These cells were used to detect aggregate 
locations and features, with GFP fluorescent intensity serving as a proxy for cell density.

To quantify tracked cell behavior, we adapted the approach taken in references (35) 
to coarse-grain cell trajectories. Each cell trajectory was divided into run vectors based 
on the cell’s motile state: persistent or non-persistent. A cell was assigned a persistent 
state when moving steadily along its long axis, while a non-persistent state was assigned 
instead if the cell was determined to have little net displacement due to low velocity 
or high reversal frequency (see Materials and Methods for more details). Reversals in 
a persistent cell’s direction of motion along its long axis were used to further divide 

FIG 1 Initial aggregation and aggregate dispersal over a period of 13.5 h starting 6 h after plating cells on starvation agar. 

(Top) Phase contrast images at 6, 11.5, and 19.5 h. (Bottom) Fluorescent images at the same time points. Initial aggregation 

starts around 6 h, continuing up to 11.5 h. At 11.5 h, some stationary aggregates begin to destabilize, continuing over 8 h until 

the last unstable aggregate has finished dispersing.
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trajectories so that each run started and ended with either a change of state or a reversal 
in the persistent state. Cell behavior for each run was then quantified using the duration 
of the run, the cell’s mean speed, the distance traveled, and the orientation. We also 
recorded data for a number of variables associated to each run such as time, local cellular 
density, local strength of cell alignment, the change in orientation between consecutive 
runs, cell position and orientation relative to the nearest aggregate, and the nearest 
aggregate features. Each of these variables represents a possible cue that M. xanthus 
cells could be using during aggregation. By investigating correlations between these 
cues and the cellular dynamics, we can infer what behaviors are important for aggregate 
development.

We first verified whether the cell behaviors identified in a previous study (35) were 
also present in our data since our mixture of fluorescent strains differed from theirs (see 
Methods and Materials for our strain details). The first check was to confirm that the 
mean duration of tracked cells’ persistent runs was longer when cells moved toward 
aggregates compared to when they moved away. The second was to quantify the traffic 
jam effect, which manifests as a decreased run speed and an increased proportion 
of non-persistent cells inside aggregates. We started by quantifying the bias in the 
persistent random walk, termed the reversal bias, using the relative difference between 
the mean time spent moving toward the nearest aggregate, ttoward, and the mean time 
spent moving away, taway

reversal bias = ttoward − tawaytall .
The value tall here is the mean duration of all persistent runs. Calculating the reversal 

bias in a 1-h moving window, we found that it was positive throughout initial aggrega­
tion (Fig. S1A, purple lines), indicating that cells bias their persistent movement toward 
aggregates as found previously (35, 36). We then quantified the strength of the traffic 
jam effect using the difference in persistent speeds, transition probabilities into the 
non-persistent state, and the durations of the non-persistent state between cells inside 
versus outside aggregates (Fig. S1B through D, purple lines). Measurements of all three 
metrics during initial aggregate development were similar to those reported previously 
(35, 36).

During the coarsening phase, our data analysis showed no significant changes in 
the behaviors mediating aggregate formation. The reversal bias dropped but remained 
positive, indicating cells were, on average, still biasing their motion toward aggregates 
(Fig. S1A, green lines). The measurements of the traffic jam effect showed slight changes, 
with the run speed increasing, the probability of entering the non-persistent state 
decreasing, and the duration of the non-persistent state rising slightly near the center of 
aggregates (Fig. S1B through D, green lines).

Existing agent-based simulation without aggregate features captures 
aggregation but not dispersal

To test if the quantified cell behaviors could explain aggregate formation and disper­
sal, we used a data-driven agent-based model (ABM) (35). The approach follows the 
methodology of reference (35) and can be found in Materials and Methods. We ran ABM 
simulations using cell data drawn from a single experimental movie (see Movie S1). All 
simulations were run with the full set of cues for cell behavior used in reference 35: 
the current time, distance to the nearest aggregate, orientation relative to the nearest 
aggregate, local density, and the local strength of cellular alignment. In our simulation, 
agents formed initial aggregates over the course of 5.5 h. Aggregation continued over 
another 8 h, resulting in a set of final aggregates containing the majority of agent cells 
(Fig. 2A). The statistics of the six independent runs of the model were then averaged to 
capture their variation. The results indicate that during initial aggregate formation, the 
fraction of agent cells inside aggregates increased over time, matching the experimental 
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fraction after a 3.5-h delay (Fig. 2B). The distribution of aggregate sizes in the simulation 
also agreed with the experimental distribution at the end of both the aggregation and 
coarsening phases, although the variance in size was less pronounced in simulations (Fig. 
2C).

Despite good quantitative matches in the aggregation rate and sizes of aggregates 
produced, our simulations showed few aggregates dispersing (Fig. 2A, second and third 
panels). We confirmed that initial aggregation in simulations followed the experimental 
trend, although there were a greater number of aggregates that formed in simulations 
(Fig. 2D). This discrepancy was due to the appearance of new stable aggregates between 
hours 2 and 5 in the simulation. No new aggregates formed in the experiment past 
this time, with any increase in the aggregate count resulting from a motile aggregate 
settling down. Also, unlike the experimental movie where 50% of aggregates dispersed 
during the coarsening phase, the number of simulated aggregates remained unchanged 
after 5 h with little destabilization. Furthermore, the range of aggregate sizes produced 
in simulations was broad enough to include aggregate sizes that dispersed in the 
experiment. We conclude that correlations of the quantified cell behaviors with the local 
density, cell alignment, and distance to the nearest aggregate are insufficient to capture 
aggregate dispersal.

Cell behaviors near stable and unstable aggregates during coarsening phase 
are distinct

To identify any key differences in cell behaviors around unstable aggregates, we 
separated our data set into two categories based on the nearest aggregate stability. 
We then systematically looked for differences in any of the cell behaviors known to be 
important for aggregation, such as those relevant to the traffic jam effect, the biased 
random walk relative to aggregates, and local cell alignment. This process identified two 
differences in cell behavior that could potentially destabilize an aggregate.

The first difference is that the reversal bias for cells near unstable aggregates is 
weaker in strength (Fig. 3A) and range of effect than near stable aggregates (Fig. 3B). This 

FIG 2 (A) Simulation at the experimental equivalent of 6 h (aggregation start), 11.5 h (coarsening start), and 19.5 h 

(coarsening end) in the experiment. Detected aggregates are indicated in red. (B) Fraction of simulated cells in aggregates 

for the experiment (black) and simulation (green) during the initial aggregation phase. The shaded area for the green curve 

marks one standard deviation from the mean, which is quite small. (C) Aggregate area distribution for simulation (green) and 

experiment (black) at the start and end of the coarsening phase. (D) Aggregate count over the course of the simulation (green) 

and experimental equivalent (black). The shaded area marks the 95% confidence interval.
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strength difference also holds when only considering cells oriented less than 45 degrees 
away from the aggregate (Fig. S2A and B), indicating it is not just an effect from cells 
moving perpendicular to the aggregate. Additionally, around the start coarsening phase, 
the reversal bias decreases by approximately 0.1 near stable aggregates and by 0.2 near 
unstable aggregates (Fig. 3A). As the reversal bias for unstable aggregates is initially 
lower, this often leads to negative mean reversal bias values, indicating that cells move 
away from unstable aggregates for longer than toward them. This negative reversal bias 
is strong enough to deplete these aggregates of cells during the coarsening phase. We 
also observed that the decrease in the mean reversal bias was not maintained through­
out the coarsening phase. The aggregates that caused the initial drop to negative bias 
disperse quickly, with the remaining unstable aggregates still having a positive mean 
reversal bias. However, when these remaining aggregates destabilize after 15 h, we 
observe a drop in the mean reversal bias again.

The second difference in cell behavior that we identified was a reduction in the 
proportion of cells in the non-persistent state around unstable aggregates, which was 
the result of two factors. First, cells near unstable aggregates showed a consistent 
decrease in the probability of transitioning to the non-persistent state instead of 
reversing (Fig. 3C). Second, these cells had a shorter residence time in the non-persistent 
state (Fig. 3D). Both the probability of stopping and the time in the non-persistent state 
increase with density, so these observations likely reflect that unstable aggregates are 
typically smaller and less dense than stable ones.

To incorporate stability-dependent cell behaviors in our simulations without prior 
knowledge of aggregate stability, we utilized the correlation between aggregate fate 
and size. Since smaller aggregates tend to be unstable and larger ones tend to be 
stable, we inferred that there were aggregate area-dependent effects on cells resulting 
in changes in reversal bias and the traffic jam effect (38). To test this, we plotted the 
reversal bias, transition probability to the non-persistent state, and non-persistent state 
residence time for the largest and smallest 50% of aggregates in the experiment (Fig. S2C 
through F). The results showed that separating the data by aggregate area and stability 
produced similar outcomes, indicating that the nearest aggregate size is a crucial cue 
for determining appropriate cell behaviors. The cells near small aggregates showed a 

FIG 3 (A) Reversal bias as a function of time for cells near stable (blue) and unstable (red) aggregates 

in the experiment. (B) Reversal bias as a function of the distance from the nearest aggregate boundary 

(set to be 0) for cells near stable (blue) and unstable (red) aggregates in the experiment. (C) Transition 

probability for entering the non-persistent state from the persistent state instead of reversing for cells 

near stable (blue) and unstable (red) aggregates. (D) Transition rate for exiting the non-persistent state 

for cells near stable (blue) and unstable (red) aggregates. The shaded regions denote 95% confidence 

intervals for the mean, and the vertical red lines mark the start of the coarsening phase.

Research Article mSystems

Month XXXX  Volume 0  Issue 0 10.1128/msystems.00425-23 6

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.a

sm
.o

rg
/jo

ur
na

l/m
sy

st
em

s o
n 

25
 S

ep
te

m
be

r 2
02

3 
by

 1
68

.7
.2

48
.2

39
.

https://doi.org/10.1128/msystems.00425-23


change in the sign of the mean reversal bias as aggregates destabilized, decreased the 
probability of entering a non-persistent state, and reduced residence times in that state.

The results of the above analysis suggested that our agent simulations did not 
properly account for some of the observed differences in cell behavior based on nearest 
aggregate size. We confirmed this for the reversal bias by comparing its strength in 
simulations near stable and unstable aggregates (Fig. S3A). The mean reversal bias 
in simulations matched the mean experimental reversal bias regardless of aggregate 
stability, indicating that the original agent-based model lacked the necessary cues to 
properly select cell behavior. Although our model used cues such as local density and 
distance from the nearest aggregate boundary that could theoretically capture some 
size-dependent effects, these cues were insufficient to replicate aggregate dispersal.

Aggregate dispersal is recovered by the inclusion of the nearest aggregate 
area in the simulation’s cues for cell behavior

To investigate the effects of size-dependent variations in the reversal bias and the traffic 
jam effect on aggregate stability, we incorporated the nearest aggregate area as a cue for 
determining the state and state duration of agent cells in our simulations. This inclusion 
resulted in aggregate dispersal during the equivalent of the experimental coarsening 
phase (Fig. 4A and B). The observed decrease in simulated aggregate number during 
the coarsening phase was on average about 30%–40%, close to the observed value of 
50% seen in the experiment. Furthermore, aggregate sizes at the start of the coarsening 
phase still matched well with experiments (Fig. 4D). Finally, creating a logistic model 
of aggregate stability using size as the explanatory variable revealed that unstable 
aggregates produced by our updated ABM were typically small (Fig. 4D), in line with the 
experimental findings.

Although the updated ABM produced dispersal, it did not perfectly match all 
experimental observations. Notably, our simulations still produced more aggregates 
than seen experimentally (Fig. 4B). Also, the size of aggregates by the end of the 

FIG 4 (A) Simulation at the experimental equivalent of 6 h (aggregation start), 11.5 h (coarsening start), and 19.5 h 

(coarsening end). Detected aggregates are indicated in red. (B) Aggregate count over the course of the simulation (green) 

and experimental equivalent (black). The shaded area marks the 95% confidence interval. (C) Aggregate area distribution 

for simulations (green) and experiment (black) at the start and end of the coarsening phase. (D) Logistic regression using 

aggregate fate (stable or unstable) versus aggregate area at the start of the coarsening phase for the experiment (black) and 

the combined simulations (green). Asterisks mark the data points for the experiment, and circles mark the data points for the 

simulations.
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simulation was greater than those in the area-independent simulations and no longer 
matched the experimental data (Fig. 4C). Since larger aggregates possess a stronger 
reversal bias and can grow faster, having slightly larger aggregates in simulations early 
on can snowball into having a moderate size discrepancy by the end. There were two 
minor additional discrepancies regarding aggregate dispersal. Our updated simulations 
produced unstable aggregates during the coarsening phase that were typically smaller 
than those seen in the experiment, and some mid-sized dispersing aggregates were 
still present by the end of the simulations. Since aggregate area alone does not cleanly 
separate stable and unstable aggregates in the experiment, it is likely that our simula­
tions mixed together cell behaviors near both stable and unstable mid-sized aggregates, 
producing mid-sized unstable aggregates with longer dispersal times.

To identify whether the area-dependent reversal bias or the area-dependent traffic 
jam effect played a greater role in dispersal, we performed two sets of simulations with 
each behavior isolated. The first set included only an area-dependent reversal bias as 
a cue for an agent’s run speed and duration, while the second set included only an 
area-dependent traffic jam effect as a cue for an agent’s next motile state. We found 
that including only an area-dependent reversal bias accounted for nearly all dispersal 
seen previously. The agent cells also displayed a mean reversal bias that qualitatively 
matched the experimental data (Fig. S3B). The quantitative discrepancy in the reversal 
bias was likely due to differences in the distribution of simulated aggregate sizes, which 
now directly affects their development. However, running the simulations with just the 
area-dependent jamming resulted in very low levels of dispersal equivalent to those 
seen in the area-independent simulations (Fig. 5A) despite maintaining a wide range of 
developing aggregate sizes (Fig. 5B). Lastly, we found that the area-dependent reversal 
bias maintained the same size threshold of 3,000 µm2 for stable aggregates (correspond­
ing to a value of 0.5 on the logistic curve), while the area-dependent jamming decreased 
that threshold significantly (Fig. 5C). We conclude that the observed differences in cells’ 
non-persistent states based on aggregate size do little to affect aggregate dispersal, 
while the dependence of the mean reversal bias on size accounts for the majority of 
dispersal.

One discrepancy that persisted after simplifying the ABM to include an area-based 
reversal bias was that fewer mid-size aggregates dispersed compared to experiments. 
Many aggregates this size shrunk during the 8 h coarsening phase of our simulations, 
but they often did not fully disperse by the end. By extending the end of the simulated 
coarsening phase by 7.5 h to match 27 h experimentally, we were able to fully destabilize 
more mid-sized aggregates, increasing the mean stable size threshold to 4,000 µm2, 
closer to the experimental threshold of 5,000 µm2 (Fig. 5C).

FIG 5 (A) Aggregate count over the course of the area-based reversal bias simulation (green), area-based jamming simulation 

(blue), and the experimental equivalent (black). The shaded areas marks the 95% confidence intervals. (B) Aggregate area 

distribution for the area-based reversal bias simulation (green) and experiment (black) at the start and end of the coarsening 

phase. (C) Logistic regression using aggregate fate (stable or unstable) versus aggregate area at the start of the coarsening 

phase for the experiment (black), the combined area-based reversal bias simulations (solid green), the extended area-based 

reversal bias simulations (dashed green), and the combined area-based jamming simulations (dotted blue). Asterisks mark the 

data points for the experiment, and circles mark the data points for the non-extended area-based reversal bias simulations 

(green).
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Dispersal mechanism is the same across experimental replicates despite 
heterogeneity in aggregate dispersal, timing, and sizes of unstable aggre­
gates

Our cell mixture produces aggregates that can vary wildly in size from replicate to 
replicate. Because of this, combining data sets with different aggregate sizes can affect 
the unstable aggregate size threshold and initial aggregate sizes, resulting in diminished 
dispersal even with the updated model. We designed our initial analysis around the 
behaviors of a specific replicate (data set 1) to avoid averaging size-dependent behaviors 
and potentially obscuring their source (Fig. S4A and B). Therefore, to expand our results, 
we repeated our data analysis and simulations individually on time-lapse data from two 
additional experiments (data sets 2 and 3).

The aggregate-level analyses of the replicates revealed that the mean size of unstable 
aggregates ranged from less than 1,000 µm2 to over 3,000 µm2 (Fig. 6A). Interestingly, the 
mean size of unstable aggregates was smaller when the population consisted of smaller 
aggregates, and larger for populations of larger aggregates. This correlation suggests 
that aggregate dispersal depends on the relative size of aggregates rather than on a fixed 
size threshold that is consistent across experiments.

FIG 6 (A) Distribution of stable (blue) and unstable (red) aggregate areas at the start of the coarsening 

phase for the high dispersal (HD) replicates. The mean sizes of both populations scale together. (B) The 

reversal bias for cells near the aggregates below a threshold size for the HD strain replicates: set 1 (red), 

set 2 (blue), and set 3 (yellow). All three means decrease near the start of the coarsening phase, increase 

as the first wave of unstable aggregates disperse, then drop again as the rest of them start to destabilize. 

Size thresholds (smallest 50%, 30%, and 50%, for sets 1, 2 and 3 respectively) were chosen to capture this 

first wave of dispersing aggregates. (C) Percentage of dispersing aggregates for the HD strain (green) and 

the low dispersal (LD) strain (purple). (D) Distribution of stable (blue) and unstable (red) aggregate areas 

at the start of the coarsening phase for the LD replicates. (E) Reversal bias for tracked cells near stable 

(blue) and unstable (red) LD strain aggregates combined across all four replicates and aligned at the start 

of the coarsening phase (0 h on the horizontal axis). (F) Reversal bias during the coarsening phase varies 

with aggregate size for HD and LD aggregates (data from the all replicates combined). The reversal bias 

for small aggregate in the LD mixture is highers than the HD mixture.
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The experimental replicates differed in both the mean aggregate size of dispersing 
aggregates and the start of the coarsening phase, leading us to conjecture that the 
reversal bias could have also changed in strength or timing. We investigated the biased 
random walks near smaller aggregates, finding that the mean reversal bias dropped in 
a window of about an hour from the start of the coarsening phase despite differences 
in the size of aggregates and the timing of dispersal (Fig. 6B). As time progressed, 
the reversal bias again fluctuated between negative and positive values based on 
the number of unstable aggregates currently dispersing. The total percentage of the 
aggregates that dispersed among the three data sets was consistently high, ranging 
from 40% to 60% (Fig. 6C green bars). These results indicate that changes in the reversal 
bias serve as a consistent mechanism for dispersal and suggest that our ABM, using 
tracking data from each experiment, should also reproduce aggregate dispersal in that 
experiment.

To test if the reversal bias was the driving factor behind aggregate dispersal across 
experiments, we ran our agent-based simulations using both additional data sets. We 
found that simulations implementing area-based reversal bias faithfully produced good 
approximations for both the percentage of unstable aggregates and their size thresh­
old regardless of the data set used. These simulations showed both high levels of 
aggregate dispersal (Fig. S5A) and a high size threshold for stable aggregates (Fig. S5B). 
Interestingly, running simulations with no dependence on area produced dispersal levels 
of ~20% (data set 2) and ~60% (data set 3), with the likeliest cause of data set 3’s 
high dispersal (HD) percentage being the high proportion of cell data near unstable 
aggregates. Not unexpectedly, with few exceptions, the actual number of aggregates 
produced still had some inaccuracies when compared to experiments, especially when 
the area was used in the persistent state duration search (Fig. S6 and S7).

Analysis of a second wild-type strain implies genetic changes that affect the 
reversal bias change aggregate dispersal

It was previously demonstrated that interlaboratory evolution of DK1622 strains has led 
to some phenotypic differences between wild-type strains (40). To investigate whether 
other wild-type strains exhibit different coarsening phenotypes, we conducted a study 
comparing various wild-type strains with ours. We found a low dispersal (LD) strain that 
consistently showed a reduced level of dispersal compared to our HD strain (Fig. S8; 
Movie S2), providing an opportunity to compare how tracked cell reversal bias differs in 
different mixtures. Over four experimental replicates, the LD strain displayed an average 
dispersal level of less than 10% (Fig. 6C, purple bars), producing a higher proportion of 
small, stable aggregates compared to the HD strain. This finding suggests that genetic 
differences between the two strains affect aggregate dispersal and could shift tracked 
cell behaviors related to aggregate destabilization.

To determine if tracked cells change their reversal bias during dispersal in a consistent 
way in both the HD and LD strains, we analyzed cell behavior in the LD mixture using 
the same methodology as before. Due to the small number of unstable aggregates and 
cells per aggregate in each LD data set, the mean reversal bias near unstable aggregates 
was not statistically significant from zero. To circumvent this, we combined the cell 
data among LD replicates, aligning them in time based on the start of the coarsening 
phase. Our findings show that the reversal bias in the LD mixture (Fig. 6E) and the HD 
mixture (Fig. 5A) match qualitatively. During the coarsening phase, tracked cells in the LD 
mixture, on average, exhibit a biased random walk toward stable aggregates and away 
from unstable aggregates.

Since LD aggregates rarely destabilize even if they are small, it is not apparent that 
the mechanism for dispersal is the same. A time-dependent change in the reversal bias 
was previously required for the destabilization of aggregates, so we hypothesized that 
if our tracked cells respond to the LD mixture consistently, then their reversal bias near 
small aggregates must remain positive on average. To test this hypothesis, we compared 
the reversal bias of tracked cells near aggregates of similar sizes between both mixtures 
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during the coarsening phase. We found that cells near small LD aggregates exhibit a 
higher mean reversal bias during coarsening than near small HD aggregates (Fig. 6F). 
As the aggregate size is increased, the mean reversal bias of cells near HD aggregates 
increases steadily, overtaking the bias of cells in the LD mixture. Overall, this observa­
tion suggests that the level of aggregate dispersal in different strains is controlled by 
aggregate size-dependent variations in the strength of the reversal bias.

DISCUSSION

In this study, we showed that the premature dispersal of M. xanthus aggregates is driven 
by cells changing their reversal bias to move away from aggregates. Our analysis was 
done in several stages, the first of which focused on investigating cell trajectories in a 
high dispersal mixture. We quantified how cell behaviors changed both between the 
vicinities of stable and unstable aggregates and between the initial aggregation and 
coarsening phases. This resulted in a short list of relevant behaviors, out of which, 
only differences in the reversal bias proved relevant to dispersal. The maximal drop 
in the mean reversal bias was about 0.2 (Fig. 3A), corresponding to roughly a 20% 
drop in the average reversal period when moving toward aggregates. This might seem 
like a small change; however, previous studies have shown that despite high levels 
of heterogeneity in the behavior of individual cells, such small changes in mean cell 
behavior can dramatically affect aggregation (35). This was especially true regarding 
the effect of a bias toward aggregates on the aggregation rate, so, unsurprisingly, a 
small bias away from aggregates can disrupt aggregate formation to the extent seen. 
Importantly, the strength of the bias away was enough to overcome the drop in motility 
inside aggregates. Since aggregation is theoretically possible, if more gradual, with just 
a density-driven slowdown (41), any dispersal mechanism must either circumvent or 
overcome this slowdown.

To measure the impact of cell behaviors on aggregate dispersal, we implemented 
a series of agent-based simulations focused on gauging whether different behaviors 
contributed to dispersal. We found that dispersal is essentially unaffected by the 
observed changes in the non-persistent state for cells in small aggregates (Fig. 5). 
However, it is worth noting that the proportion of non-persistent cells in small aggre­
gates was still elevated compared to outside aggregates. Similarly, a previous study­
showed that longer, non-persistent stops inside aggregates are not the main reasons 
for successful aggregation. These two results together suggest that decreasing the 
proportion of non-persistent cells in aggregates has little impact on the initial or 
coarsening phases of aggregate development, with the reversal bias playing a more 
influential role in both phases.

The genetic basis of the reversal bias observed in tracked cell behavior near M. 
xanthus aggregates is unknown, but the bias is reliably demonstrable and differs 
significantly when tracked cells are mixed with HD or LD strains. We hypothesize that 
the reversal bias is the result of an unidentified attractant signal originating from the 
cells within each aggregate, which results in a self-reinforcing cycle of aggregation 
by increasing the bias toward each aggregate as the number of cells composing it 
increases. Evidence supporting this hypothesis is based on the observation that the 
distance from the aggregate boundary to where the reversal bias vanishes increases 
with an aggregate size (Fig. S2B), indicating a direct relationship between the proposed 
signal and the number of cells in the aggregate. The dependence of bias strength on 
aggregate size (Fig. S2A) further suggests that the corresponding signaling pathway 
may not be capable of robust adaptation (42–44). However, the average size of unstable 
aggregates is based on their relative size to the average size of all aggregates. Therefore, 
the signaling pathway would need to be capable of population-level sensing since the 
size threshold for unstable aggregates scales with the size of all aggregates (Fig. 6A). 
Therefore, the reversal bias would result from local differences from a baseline signal 
across the whole population. There is evidence from prior work in support of M. xanthus 
exhibiting chemotaxis, both from experiments (24–26) and computational studies (45), 
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but full molecular pathways have not been determined. Regardless of what the signal 
and the molecular pathway are, our results indicate the sensing mechanism must be 
capable of measuring both an aggregate’s absolute and relative size.

By analyzing the behaviors of tracked cells in the LD mixture, we showed that the 
reduction in dispersal is linked to an increase in reversal bias toward aggregates (Fig. 
6F). This link indicates that the dependence of the reversal bias on aggregate size is 
genotype dependent, but on its own does not identify a gene or set of genes that control 
aggregate dispersal. It is possible that one or more of the genes that differ between 
the LD wild type and HD wild type directly control aggregate dispersal. However, it is 
also possible that the reduction in dispersal results from compensatory changes in gene 
expression in response to mutations that don’t directly affect the reversal bias. Further 
studies analyzing the differences in gene expression between the two strains could help 
resolve this uncertainty. In the future studies, this approach to identifying the biological 
source of the reversal bias could be supplemented by additional mutant screening, 
fractionating cells to test the response of aggregates to different molecular subsets, and 
testing how aggregation dynamics vary in different chemical and physical environments 
using, for instance, a flow chamber.

If genetically controlled signaling is responsible for the observed reversal bias, the 
natural question is what triggers the change in bias that leads to aggregate dispersal. 
We speculate that M. xanthus might change either its production of or its response to 
a hypothetical signal due to some time-dependent change in gene expression (8). The 
near-simultaneous drop in the bias strength regardless of aggregate size and stability 
(Fig. 3A and Fig. S2A) could then result from cellular differentiation or a loss of cells due 
to programmed cell death during aggregate development (46, 47). The evidence from 
our time course data is that the drop happens at a similar time to both the development 
of aggregate layers and the start of cell lysis. A change in gene expression, and thus 
response, is more likely than a change in production since the gradient produced by a 
chemotactic signal is unlikely to change significantly on the timescale the reversal bias 
drops.

While changes in gene expression provide a reasonable hypothesis for what triggers 
dispersal, it does not explicitly explain why cells actively migrate away from dispersing 
aggregates rather than gradually reverting to a bias-free random walk. If cells abandon­
ing a dispersing aggregate changed their response to move away from a signal source, 
then it seems reasonable that they would actively avoid approaching another neighbor­
ing aggregate. However, abandoning cells are observed to move toward neighboring 
aggregates (39). This observation could be accounted for if small aggregates stop 
producing a strong signal and there are also nearby aggregates capable of influencing 
nearby cells. The caveat to this conjecture is that some aggregates disperse with no 
neighboring aggregates nearby, suggesting that whatever factors cells use to determine 
if they should disperse are internal to the aggregate. This is supported by a previ­
ous study on aggregate stability that showed that proximity and size of neighboring 
aggregates have minimal effect on stability (38).

As an alternative to the chemotaxis hypothesis, an aggregation model based on 
Ostwald ripening (48, 49) was previously developed as a feasibility test for the minimum 
number of genetic inputs required to achieve both initial aggregation and dispersal (39). 
It succeeded in predicting the appearance and relative stability of developing M. xanthus 
aggregates with high accuracy, but the requisite conditions for Ostwald ripening do not 
match observations of cell motility and the active nature of developing cells in general. 
These discrepancies accumulate over time so that predictions based on the Ostwald 
ripening model tend to deviate significantly from predicted aggregation behavior over 
longer timescales (50).

Studying emergent behavior in microbial communities involves analyzing differen-
ces in cell behavior that result in significant shifts in cell dynamics. These changes 
are influenced by various factors including mechanical forces, signaling pathways, and 
alterations in gene expression. Our findings suggest that M. xanthus aggregation is 
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sensitive enough that a modest difference in how reversal bias changes near small and 
large aggregates can lead to a large difference in dispersal levels between wild-type 
strains. There may be no specific genetic mechanism directly controlling this change in 
reversal bias, meaning that any number of otherwise inconsequential genetic differences 
could cause a strain to have high or low dispersal rates. Those differences would only 
become important if evolutionary selection favored one set of differences over another. 
For M. xanthus bacteria, laboratory strains are typically discarded only if they fail to 
produce aggregates for no discernable reason, removing selective pressure from strains 
that undergo coarsening but still produce final aggregates. These findings may have 
implications beyond M. xanthus for other developmental model organisms displaying 
emergent behaviors.

MATERIALS AND METHODS

Strains and culture conditions

Three different M. xanthus DK1622 strains were used in this study. Both tdTomato-
expressing LS3908 (35) and GFP-expressing DK10547 (27) commonly exhibit ~50% 
of aggregates dispersing during the coarsening phase, while S4 (40) shows minimal 
aggregate dispersal. We refer to DK10547 as the high dispersal wild-type strain and S4 is 
referred to as the low dispersal wild-type strain. tdTomato-expressing LS3908 was diluted 
into both the high and low dispersal strains to track differences in cell behavior.

All cells were grown overnight in CTTYE broth [1% casein peptone (Remel, San Diego, 
CA, USA), 0.5% Bacto yeast extract (BD Biosciences, Franklin Lakes, NJ, USA), 10 mM 
Tris (pH 8.0), 1 mM KH(H2)PO4, 8 mM MgSO4] at 32°C with vigorous shaking. tdTomato-
expressing strain LS3908 and GFP-expressing strain DK10547 were supplemented with 
10 µg/mL oxytetracycline and 40 µg/mL kanamycin, respectively, for selection. Addition­
ally, LS3908 was supplemented with 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) 
to induce tdTomato expression.

To identify cell behaviors linked with aggregate dispersal, we set up development 
assays with a fraction of LS3908 cells diluted into the high dispersal strain DK10547. 
LS3908 cells were used for tracking individual cell behaviors while aggregate position 
and local density estimations came from the DK10547 cells. Cells were harvested from 
overnight CTTYE cultures as described above at mid-log phase, washed twice in TPM 
starvation buffer [10 mM Tris (pH 7.6), 1 mM KH(H2)PO4, 8 mM MgSO4], and resuspended 
in TPM buffer to a cell concentration of 5 × 109 cells/mL. LS3908 cells were diluted 1:800 
into high dispersal strain DK10547. A 5 µL droplet of cells was spotted on agarose slide 
complexes as previously described (51), containing 1% agarose-TPM medium supple­
mented with 1 mM IPTG. Imaging conditions are described below.

Low dispersal strain S4 reproducibly displays minimal aggregate dispersal during 
the coarsening phase. LS3908 was diluted 1:800 in the low dispersal S4 strain to 
determine if LS3908 cells changed their behavior when placed in a low-dispersing 
population. Development assays were performed on the LS3908-S4 mixture on agarose 
slide complexes as described above. Since the low dispersal S4 strain does not have a 
fluorescent label, local cell density estimates and aggregate segmentation were done 
using autofluorescence in the GFP channel.

Time-lapse capture

The data presented in this paper represent three replicates of LS3908 mixed with 
DK10547 and four replicates of LS3908 mixed with S4, collected under the same 
experimental conditions on different days. Imaging was performed on a Nikon Eclipse 
E400 microscope with a pco.panda 4.2 sCMOS camera and NIS-Elements software. For 
cell tracking experiments, LS3908 samples were imaged with 400 ms exposure with 
a Sola LED light source at 75% intensity, and DK10547 and S4 samples were imaged 
with 200 ms exposure at 35% intensity. Control of the fluorescent filter wheel and 
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autofocus mechanism was managed with a MAC6000 system filter wheel controller 
and focus control module (Ludl Electronic Products, Ltd.). Images in the phase contrast 
and tdTomato channels were captured every 60 s over 24 h. Since aggregates do not 
change significantly on a timescale of minutes and frequent blue-light exposure can slow 
aggregation dynamics, images in the GFP channel were captured every 15 min to track 
the position of aggregates and changes in local cell densities.

The three replicates of the LS3908-DK10547 mixture were selected from a larger set 
of experiments based on two criteria: (i) the experiment must show coarsening (this 
phenotype occurs about 50% of the time for DK10547) with the time-lapse images 
capturing the whole coarsening phase (sometimes dispersal continued past the end of 
the movie), and (ii) there must be enough tracked cells during the coarsening phase 
to run simulations (simulations usually require several thousand cell runs every 2–3 
h of simulated time). The second criterion was established since tracked cells disap­
pear over time due to cell lysis, diminished fluorescence, or were being hidden inside 
dense aggregates. The first criteria removed about half of our initial 24 replicates from 
consideration, while the second narrowed it further to three replicates. For the movies of 
the LS3908-S4 mixtures, these two criteria were not applicable. Therefore, no selection 
was performed to acquire those four replicates.

Aggregate detection and thresholding

The mean intensity of each image was subtracted, then the total intensity of the image 
was scaled to 1 so that the total intensity from frame to frame remained invariant. For 
consistency, a single time point was chosen to determine a threshold for segmenting 
aggregates from the background density. The chosen time point was halfway between 
aggregate initiation and the start of the coarsening phase. The corresponding image 
was rescaled so its maximum intensity was 1 and its minimum was 0; after which, Otsu’s 
method (51) was used to calculate the threshold Itℎresℎ . This threshold was then rescaled 
using the minimum and maximum pixel values, amin and amax , the image had when its 
total intensity was 1. This produced a threshold Iscaledtℎresℎ = amax − amin *Itℎresℎ + amin
that could be used on every frame in the movie. Aggregates were then segmented 
and tracked following reference (35). We then removed both aggregates that were 
only partially in the field of view and cells near those aggregates from the data set to 
prevent the data sets from containing inaccurate correlations between cell behaviors and 
aggregate size.

Identification of the start of the coarsening phase

The start of the coarsening phase was identified by first filtering out motile and short-
lived aggregates during the start of the initial aggregation. Motile aggregates were 
defined as those whose centroid moved more than 3 µm per minute, while short-lived 
aggregates were identified as those that either were stationary and dispersed after less 
than 2 h from initial detection or dispersed while counted as motile aggregates. Further 
filtering out stable aggregates left a set of unstable, non-motile, long-lived aggregates in 
each frame. The start of the coarsening phase was then defined as when the total area of 
these unstable aggregates started to continually decrease. This was typically between 9 
and 12 h after the initial plating of cells on starvation agar.

Cell behavior data extraction

To quantify cell behavior, we performed the same procedures found in reference 35 to 
track fluorescently labeled tdTomato cells and classify both cellular transitions between 
non-persistent and persistent states and reversals in the persistent state. Each trajectory 
segment with a start and end defined by a state transition or reversal, called a cell run, 
was then labeled, and the cell position, orientation, speed, and local alignment to other 
cells were recorded in a database. We only collected cell behaviors after initial aggregate 
formation at 4–5 h after plating. We then augmented the cell run database with the 
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nearest aggregate size, position, distance, and relative orientation from the cell at the 
start and end of each run.

Agent-based model implementation

We implemented an extension of the agent-based model found in reference 35, which 
used a simulated domain equal in size to the experimental field of view. This model 
assumes that cells move in straight lines between reversals and stops, with a change in 
orientation upon each state transition. Therefore, an agent cell’s behavior was deter­
mined by its change in motile state, its change in orientation when switching states, and 
the speed and duration of its next motile state.

The implementation of the closed-loop ABM relied on sets of internally measured 
cues to determine agent cell behavior. These cues were time, local density, cell state 
(persistent or non-persistent), the nearest aggregate area, distance from the nearest 
aggregate boundary, the relative angle to the nearest aggregate, and strength of local 
cell alignment. The strength of local alignment (γ) was calculated for each cell by first 
finding all neighboring cells in a 12 µm radius in space and a 7-min window backward 

in time. We then calculated a mean nematic angle θ− following reference 35. Finally, we 
calculated γ as

γ = cos 2(θi − θ−) ,
where θi is the orientation of the ith tracked cell.
The cues listed above were used as search variables in nearest neighbor (NN) searches 

of the compiled database of experimental cell runs. Three sequential searches were 
performed to determine an agent cell’s state transition, change in orientation, and both 
the speed and duration of its next run. We used multiple searches since changes in 
orientation, speed, and duration depend on the agent’s state, and since speed and 
duration further depend on an agent’s relative orientation to aggregates after reorient­
ing. Using the methods in reference 35 as guidelines, we implemented cues in the same 
way in our simulations with the exception of time and local density. The necessary 
timespan needed to simulate both aggregation and aggregate dispersal was, on average, 
about 13–15 h, nearly three times longer than initial aggregation alone. Since each cue 
was weighted equally when performing NN searches, longer simulations resulted in time 
differences receiving less weight, producing agent behavior that was out of sync. To 
avoid this, we binned cell behavior in the database into intervals and performed the NN 
search within each bin. Pre-coarsening phase time intervals were 100 min in length due 
to the more rapid changes occurring during initial development, while the coarsening 
phase was divided into two bins of equal length due to more gradual changes in time 
and fewer cell data in total. This binning approach had the additional advantage of 
speeding up the simulation by reducing the scopes of the NN searches. Local density 
was implemented during initial aggregation as in reference 35, but it was removed 
as a cue during the coarsening phase to reduce search parameters and speed up the 
simulation. As aggregates have already formed by that point, the distance from the 
aggregate boundary captures the local density accurately enough to search correctly 
for cell behaviors. Depending on the type of simulation, the cues used in the three NN 
searches were supplemented as needed with the nearest aggregate area.

Each simulation started with randomly placed cells in the simulated field of view at 
the equivalent of 6 h in the movie. We then ran a 90-min initialization using only two 
parameters: local density and local cell alignment. This initialization helps develop initial 
variations in density and gives cells time to align into streams. Cell behaviors in the 
initialization were sampled from the first 20 min of the experimental data. The agent 
cell positions and orientations at the end of the initialization were then used as initial 
conditions for the main simulation.
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Selection of bandwidth and aggregate size threshold in simulations

The density profile of agent cells in simulations was calculated using a kernel density 
estimator with a fixed bandwidth. We choose this bandwidth so that (i) the fraction of 
simulated cells inside aggregates matched the experimental equivalent by the start of 
the coarsening phase and (ii) the size of aggregates at the beginning of the coarsening 
phase approximated that seen in the equivalent movie. We selected a bandwidth of 7 µm 
for HD data set 1 and a smaller bandwidth of 5 µm for the replicate HD data sets 2 and 3. 
This smaller bandwidth for the second and third data sets was needed to reproduce the 
numerous small aggregates seen in those experiments.

The aggregate threshold inside simulations was selected similarly, starting with the 
threshold used to segment aggregates in the movies and adjusting slightly as needed. 
For HD data set 1, the threshold remained unadjusted from 2.16e–6. For HD data sets 
2 and 3, which had a bandwidth of 5 µm, the density threshold was raised to 2.32e–6 
to help control the initial number of aggregates from becoming too high. We explored 
using a greater number of agent cells as an alternative to changing the threshold 
but ultimately found it inferior due to it causing a discrepancy in measured local cell 
alignment between the simulations and the experimental data. This discrepancy resulted 
from having a much denser set of cells with which to measure the local alignment in 
simulations.

Density fluctuations in simulations sometimes resulted in the formation of pinpoint 
aggregates with unrealistically small sizes. Since cell behavior is determined by the 
nearest aggregate, such aggregates are undesirable. We filtered out these pinpoint 
aggregates by removing any detected aggregate below 300 µm2 when calculating the 
aggregate nearest a given cell. This threshold was confirmed to remove noisy artifacts 
while still being small enough to initiate aggregate formation.
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