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ABSTRACT The soil bacterium Myxococcus xanthus is a model organism with a set
of diverse behaviors. These behaviors include the starvation-induced multicellular
development program, in which cells move collectively to assemble multicellular
aggregates. After initial aggregates have formed, some will disperse, with smaller
aggregates having a higher chance of dispersal. Initial aggregation is driven by two
changes in cell behavior: cells slow down inside of aggregates and bias their motion
by reversing direction less frequently when moving toward aggregates. However, the
cell behaviors that drive dispersal are unknown. Here, we use fluorescent microscopy to
quantify changes in cell behavior after initial aggregates have formed. We observe that
after initial aggregate formation, cells adjust the bias in reversal timings by initiating
reversals more rapidly when approaching unstable aggregates. Using agent-based
modeling, we then show dispersal is predominantly generated by this change in bias,
which is strong enough to overcome slowdown inside aggregates. Notably, the change
in reversal bias is correlated with the nearest aggregate size, connecting cellular activity
to previously observed correlations between aggregate size and fate. To determine if
this connection is consistent across strains, we analyze a second M. xanthus strain with
reduced levels of dispersal. We find that far fewer cells near smaller aggregates modified
their bias. This implies that aggregate dispersal is under genetic control, providing a
foundation for further investigations into the role it plays in the life cycle of M. xanthus.

IMPORTANCE Understanding the processes behind bacterial biofilm formation,
maintenance, and dispersal is essential for addressing their effects on health and
ecology. Within these multicellular communities, various cues can trigger differentiation
into distinct cell types, allowing cells to adapt to their specific local environment. The soil
bacterium Myxococcus xanthus forms biofilms in response to starvation, marked by cells
aggregating into mounds. Some aggregates persist as spore-filled fruiting bodies, while
others disperse after initial formation for unknown reasons. Here, we use a combination
of cell tracking analysis and computational simulations to identify behaviors at the
cellular level that contribute to aggregate dispersal. Our results suggest that cells in
aggregates actively determine whether to disperse or persist and undergo a transition
to sporulation based on a self-produced cue related to the aggregate size. Identifying
these cues is an important step in understanding and potentially manipulating bacterial
cell-fate decisions.

KEYWORDS bacterial development, biofilms, collective behavior, myxobacteria

any bacterial species spend part of their life cycles as biofilms, surface-associated
multicellular communities, which are resistant to harsh environmental conditions
(1-3). Cells in these biofilms respond to environmental cues as well as biological
signals produced by nearby cells to coordinate collective behaviors (4-6), change gene
expression (7, 8), or undergo differentiation into distinct cell types (2, 9). Identifying
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how bacteria modulate their behavior in response to different cues can inform our
understanding of the drivers of biofilm formation, restructuring, and stability.
Biofilm formation by a Gram-negative bacterium Myxococcus xanthus is an important
model system to understand these phenomena.

M. xanthus is a model organism for studying multicellular coordination due to its
diverse range of emergent behaviors (10-12). These bacteria use both social motility
(S-motility) and adventurous motility (A-motility) to move on surfaces. S-motility relies on
type IV pili to attach to neighboring cells or extracellular polysaccharides (5, 13, 14), while
A-motility uses membrane-bound focal adhesion sites to propel individual cells (13, 15—
17). Cells periodically switch their motor’s polarity, reversing their direction of motion,
regardless of which motility system is used (18, 19). How cells adjust their motility
systems is influenced by both contact-dependent signaling and chemoattractants, each
of which transmits information about the nearby environment. Contact-dependent
signaling conveys information about the local environment, such as cellular density and
neighbor alignment, and also whether a cell is moving with or against its neighbors
(6, 20-23). Chemotaxis in M. xanthus allows cells to climb gradients of external lipid
concentrations, including phosphatidylethanolamine and diacylglycerol, by suppressing
directional reversals (24-26). By using these signaling pathways to inform the use of their
motility systems, M. xanthus cells can exhibit collective behaviors that include swarming
(10), rippling (27-29), and multicellular development (30-32).

Under starvation conditions, M. xanthus cells undergo a multicellular development
program, culminating in the formation of spore-filled fruiting bodies containing tens
of thousands of spores (1, 30-33). This process occurs over roughly 24 h and involves
distinct stages. Initially, cells exhibit low motility for several hours, after which, they
display a burst of motion, coordinating into streams of cells via adjustments in speed
and reversal frequency (33, 34). The intersections of these streams increase cell density
and often results in initial aggregates appearing nearby. Over the next 5-7 h, cells
build sequential layers that develop into the main mass of the nascent fruiting body.
During this phase, several cell behaviors contribute to the growth of initial aggregates
(35, 36). One of these behaviors is a density-dependent traffic jam effect, which slows
down movement in high-density regions and increases the likelihood of cells entering
a stopped state. Another important behavior is a biased random walk that influences
cells in the vicinity of existing aggregates, with persistent cells moving for longer when
oriented toward aggregates prior to reversing their polarity. These two behaviors interact
synergistically to enhance aggregate growth. The steady influx of cells resulting from
the biased random walk increases the local density, strengthening the jamming effect.
Aggregate development culminates in the differentiation of a subset of the cellular
population into environmentally resistant spores.

While the formation and protection of spores is the main goal of aggregation, not
every initial aggregate is stable and some disperse prematurely (37-39). Cells abandon
these unstable aggregates, migrating to other growing aggregates nearby. Thus, fruiting
body development can be split into two phases: initial aggregation, where aggregates
first appear and grow, and coarsening, where initial aggregates either disperse prema-
turely or remain and develop into full 3D structures with differentiated cell types (Fig. 1).
The start of the coarsening phase varies but is typically 10-15 h after plating cells on agar
(37-39).

It is unknown what triggers some aggregates to disperse midway through formation,
but certain aggregate features are highly correlated to stability (38). Among these, size
has been identified as the most distinctive feature that separates stable and unstable
aggregates. As a result, predictions of aggregate stability using size have been reasona-
bly successful (38, 39). However, no previous studies have quantified changes in cellular-
level behaviors accompanying aggregate dispersal and their links to aggregate features.

In this study, we set to identify cell behaviors that drive aggregate dispersal. Based on
our analysis of tracked cell data, we investigated how the traffic jam effect and the biased
random walk vary as aggregates disperse. To identify the main source of dispersal, we
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FIG 1 Initial aggregation and aggregate dispersal over a period of 13.5 h starting 6 h after plating cells on starvation agar.
(Top) Phase contrast images at 6, 11.5, and 19.5 h. (Bottom) Fluorescent images at the same time points. Initial aggregation
starts around 6 h, continuing up to 11.5 h. At 11.5 h, some stationary aggregates begin to destabilize, continuing over 8 h until

the last unstable aggregate has finished dispersing.

utilized a computational approach adapted from Cotter et al. (35). The results indicated
that dispersal is primarily driven by the changes in the biased random walk—cells near
smaller aggregates tend to move for longer when going away from the aggregates.
Finally, to determine if the relationship between the biased random walk and aggregate
dispersal is consistent across strains, we analyzed the behaviors of our tracked cells
mixed with an alternate wild-type strain with low levels of dispersal and analyzed how
cell behavior changed.

RESULTS

Quantification of aggregation and coarsening behaviors for the entire
wild-type bacterial population

We employed fluorescent microscopy and a mixture of fluorescently labeled cells to
collect data on cell trajectories and local cell density during both the initial aggregation
and coarsening phases. Approximately 0.1% of cells were labeled with tdTomato (see
Materials and Methods for more details). These cells were sparse enough to allow
their trajectories to be extracted and used for behavior quantification. The remainder
of the mixture consisted of green fluorescent protein (GFP)-expressing cells capable
of producing many dispersing aggregates. These cells were used to detect aggregate
locations and features, with GFP fluorescent intensity serving as a proxy for cell density.
To quantify tracked cell behavior, we adapted the approach taken in references (35)
to coarse-grain cell trajectories. Each cell trajectory was divided into run vectors based
on the cell’s motile state: persistent or non-persistent. A cell was assigned a persistent
state when moving steadily along its long axis, while a non-persistent state was assigned
instead if the cell was determined to have little net displacement due to low velocity
or high reversal frequency (see Materials and Methods for more details). Reversals in
a persistent cell’s direction of motion along its long axis were used to further divide
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trajectories so that each run started and ended with either a change of state or a reversal
in the persistent state. Cell behavior for each run was then quantified using the duration
of the run, the cell's mean speed, the distance traveled, and the orientation. We also
recorded data for a number of variables associated to each run such as time, local cellular
density, local strength of cell alignment, the change in orientation between consecutive
runs, cell position and orientation relative to the nearest aggregate, and the nearest
aggregate features. Each of these variables represents a possible cue that M. xanthus
cells could be using during aggregation. By investigating correlations between these
cues and the cellular dynamics, we can infer what behaviors are important for aggregate
development.

We first verified whether the cell behaviors identified in a previous study (35) were
also present in our data since our mixture of fluorescent strains differed from theirs (see
Methods and Materials for our strain details). The first check was to confirm that the
mean duration of tracked cells’ persistent runs was longer when cells moved toward
aggregates compared to when they moved away. The second was to quantify the traffic
jam effect, which manifests as a decreased run speed and an increased proportion
of non-persistent cells inside aggregates. We started by quantifying the bias in the
persistent random walk, termed the reversal bias, using the relative difference between
the mean time spent moving toward the nearest aggregate, t,,uqq, and the mean time
spent moving away, fquay

Lioward — taway

reversal bias =
Lan

The value t,; here is the mean duration of all persistent runs. Calculating the reversal
bias in a 1-h moving window, we found that it was positive throughout initial aggrega-
tion (Fig. S1A, purple lines), indicating that cells bias their persistent movement toward
aggregates as found previously (35, 36). We then quantified the strength of the traffic
jam effect using the difference in persistent speeds, transition probabilities into the
non-persistent state, and the durations of the non-persistent state between cells inside
versus outside aggregates (Fig. S1B through D, purple lines). Measurements of all three
metrics during initial aggregate development were similar to those reported previously
(35, 36).

During the coarsening phase, our data analysis showed no significant changes in
the behaviors mediating aggregate formation. The reversal bias dropped but remained
positive, indicating cells were, on average, still biasing their motion toward aggregates
(Fig. S1A, green lines). The measurements of the traffic jam effect showed slight changes,
with the run speed increasing, the probability of entering the non-persistent state
decreasing, and the duration of the non-persistent state rising slightly near the center of
aggregates (Fig. S1B through D, green lines).

Existing agent-based simulation without aggregate features captures
aggregation but not dispersal

To test if the quantified cell behaviors could explain aggregate formation and disper-
sal, we used a data-driven agent-based model (ABM) (35). The approach follows the
methodology of reference (35) and can be found in Materials and Methods. We ran ABM
simulations using cell data drawn from a single experimental movie (see Movie S1). All
simulations were run with the full set of cues for cell behavior used in reference 35:
the current time, distance to the nearest aggregate, orientation relative to the nearest
aggregate, local density, and the local strength of cellular alignment. In our simulation,
agents formed initial aggregates over the course of 5.5 h. Aggregation continued over
another 8 h, resulting in a set of final aggregates containing the majority of agent cells
(Fig. 2A). The statistics of the six independent runs of the model were then averaged to
capture their variation. The results indicate that during initial aggregate formation, the
fraction of agent cells inside aggregates increased over time, matching the experimental
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FIG 2 (A) Simulation at the experimental equivalent of 6 h (aggregation start), 11.5 h (coarsening start), and 19.5 h
(coarsening end) in the experiment. Detected aggregates are indicated in red. (B) Fraction of simulated cells in aggregates
for the experiment (black) and simulation (green) during the initial aggregation phase. The shaded area for the green curve
marks one standard deviation from the mean, which is quite small. (C) Aggregate area distribution for simulation (green) and
experiment (black) at the start and end of the coarsening phase. (D) Aggregate count over the course of the simulation (green)
and experimental equivalent (black). The shaded area marks the 95% confidence interval.

fraction after a 3.5-h delay (Fig. 2B). The distribution of aggregate sizes in the simulation
also agreed with the experimental distribution at the end of both the aggregation and
coarsening phases, although the variance in size was less pronounced in simulations (Fig.
2Q).

Despite good quantitative matches in the aggregation rate and sizes of aggregates
produced, our simulations showed few aggregates dispersing (Fig. 2A, second and third
panels). We confirmed that initial aggregation in simulations followed the experimental
trend, although there were a greater number of aggregates that formed in simulations
(Fig. 2D). This discrepancy was due to the appearance of new stable aggregates between
hours 2 and 5 in the simulation. No new aggregates formed in the experiment past
this time, with any increase in the aggregate count resulting from a motile aggregate
settling down. Also, unlike the experimental movie where 50% of aggregates dispersed
during the coarsening phase, the number of simulated aggregates remained unchanged
after 5 h with little destabilization. Furthermore, the range of aggregate sizes produced
in simulations was broad enough to include aggregate sizes that dispersed in the
experiment. We conclude that correlations of the quantified cell behaviors with the local
density, cell alignment, and distance to the nearest aggregate are insufficient to capture
aggregate dispersal.

Cell behaviors near stable and unstable aggregates during coarsening phase
are distinct

To identify any key differences in cell behaviors around unstable aggregates, we
separated our data set into two categories based on the nearest aggregate stability.
We then systematically looked for differences in any of the cell behaviors known to be
important for aggregation, such as those relevant to the traffic jam effect, the biased
random walk relative to aggregates, and local cell alignment. This process identified two
differences in cell behavior that could potentially destabilize an aggregate.

The first difference is that the reversal bias for cells near unstable aggregates is
weaker in strength (Fig. 3A) and range of effect than near stable aggregates (Fig. 3B). This
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FIG 3 (A) Reversal bias as a function of time for cells near stable (blue) and unstable (red) aggregates
in the experiment. (B) Reversal bias as a function of the distance from the nearest aggregate boundary
(set to be 0) for cells near stable (blue) and unstable (red) aggregates in the experiment. (C) Transition
probability for entering the non-persistent state from the persistent state instead of reversing for cells
near stable (blue) and unstable (red) aggregates. (D) Transition rate for exiting the non-persistent state
for cells near stable (blue) and unstable (red) aggregates. The shaded regions denote 95% confidence
intervals for the mean, and the vertical red lines mark the start of the coarsening phase.

strength difference also holds when only considering cells oriented less than 45 degrees
away from the aggregate (Fig. S2A and B), indicating it is not just an effect from cells
moving perpendicular to the aggregate. Additionally, around the start coarsening phase,
the reversal bias decreases by approximately 0.1 near stable aggregates and by 0.2 near
unstable aggregates (Fig. 3A). As the reversal bias for unstable aggregates is initially
lower, this often leads to negative mean reversal bias values, indicating that cells move
away from unstable aggregates for longer than toward them. This negative reversal bias
is strong enough to deplete these aggregates of cells during the coarsening phase. We
also observed that the decrease in the mean reversal bias was not maintained through-
out the coarsening phase. The aggregates that caused the initial drop to negative bias
disperse quickly, with the remaining unstable aggregates still having a positive mean
reversal bias. However, when these remaining aggregates destabilize after 15 h, we
observe a drop in the mean reversal bias again.

The second difference in cell behavior that we identified was a reduction in the
proportion of cells in the non-persistent state around unstable aggregates, which was
the result of two factors. First, cells near unstable aggregates showed a consistent
decrease in the probability of transitioning to the non-persistent state instead of
reversing (Fig. 3C). Second, these cells had a shorter residence time in the non-persistent
state (Fig. 3D). Both the probability of stopping and the time in the non-persistent state
increase with density, so these observations likely reflect that unstable aggregates are
typically smaller and less dense than stable ones.

To incorporate stability-dependent cell behaviors in our simulations without prior
knowledge of aggregate stability, we utilized the correlation between aggregate fate
and size. Since smaller aggregates tend to be unstable and larger ones tend to be
stable, we inferred that there were aggregate area-dependent effects on cells resulting
in changes in reversal bias and the traffic jam effect (38). To test this, we plotted the
reversal bias, transition probability to the non-persistent state, and non-persistent state
residence time for the largest and smallest 50% of aggregates in the experiment (Fig. S2C
through F). The results showed that separating the data by aggregate area and stability
produced similar outcomes, indicating that the nearest aggregate size is a crucial cue
for determining appropriate cell behaviors. The cells near small aggregates showed a
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change in the sign of the mean reversal bias as aggregates destabilized, decreased the
probability of entering a non-persistent state, and reduced residence times in that state.
The results of the above analysis suggested that our agent simulations did not
properly account for some of the observed differences in cell behavior based on nearest
aggregate size. We confirmed this for the reversal bias by comparing its strength in
simulations near stable and unstable aggregates (Fig. S3A). The mean reversal bias
in simulations matched the mean experimental reversal bias regardless of aggregate
stability, indicating that the original agent-based model lacked the necessary cues to
properly select cell behavior. Although our model used cues such as local density and
distance from the nearest aggregate boundary that could theoretically capture some
size-dependent effects, these cues were insufficient to replicate aggregate dispersal.

Aggregate dispersal is recovered by the inclusion of the nearest aggregate
area in the simulation’s cues for cell behavior

To investigate the effects of size-dependent variations in the reversal bias and the traffic
jam effect on aggregate stability, we incorporated the nearest aggregate area as a cue for
determining the state and state duration of agent cells in our simulations. This inclusion
resulted in aggregate dispersal during the equivalent of the experimental coarsening
phase (Fig. 4A and B). The observed decrease in simulated aggregate number during
the coarsening phase was on average about 30%-40%, close to the observed value of
50% seen in the experiment. Furthermore, aggregate sizes at the start of the coarsening
phase still matched well with experiments (Fig. 4D). Finally, creating a logistic model
of aggregate stability using size as the explanatory variable revealed that unstable
aggregates produced by our updated ABM were typically small (Fig. 4D), in line with the
experimental findings.

Although the updated ABM produced dispersal, it did not perfectly match all
experimental observations. Notably, our simulations still produced more aggregates
than seen experimentally (Fig. 4B). Also, the size of aggregates by the end of the
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FIG 4 (A) Simulation at the experimental equivalent of 6 h (aggregation start), 11.5 h (coarsening start), and 19.5 h

(coarsening end). Detected aggregates are indicated in red. (B) Aggregate count over the course of the simulation (green)

and experimental equivalent (black). The shaded area marks the 95% confidence interval. (C) Aggregate area distribution

for simulations (green) and experiment (black) at the start and end of the coarsening phase. (D) Logistic regression using

aggregate fate (stable or unstable) versus aggregate area at the start of the coarsening phase for the experiment (black) and

the combined simulations (green). Asterisks mark the data points for the experiment, and circles mark the data points for the

simulations.
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simulation was greater than those in the area-independent simulations and no longer
matched the experimental data (Fig. 4C). Since larger aggregates possess a stronger
reversal bias and can grow faster, having slightly larger aggregates in simulations early
on can snowball into having a moderate size discrepancy by the end. There were two
minor additional discrepancies regarding aggregate dispersal. Our updated simulations
produced unstable aggregates during the coarsening phase that were typically smaller
than those seen in the experiment, and some mid-sized dispersing aggregates were
still present by the end of the simulations. Since aggregate area alone does not cleanly
separate stable and unstable aggregates in the experiment, it is likely that our simula-
tions mixed together cell behaviors near both stable and unstable mid-sized aggregates,
producing mid-sized unstable aggregates with longer dispersal times.

To identify whether the area-dependent reversal bias or the area-dependent traffic
jam effect played a greater role in dispersal, we performed two sets of simulations with
each behavior isolated. The first set included only an area-dependent reversal bias as
a cue for an agent’s run speed and duration, while the second set included only an
area-dependent traffic jam effect as a cue for an agent’s next motile state. We found
that including only an area-dependent reversal bias accounted for nearly all dispersal
seen previously. The agent cells also displayed a mean reversal bias that qualitatively
matched the experimental data (Fig. S3B). The quantitative discrepancy in the reversal
bias was likely due to differences in the distribution of simulated aggregate sizes, which
now directly affects their development. However, running the simulations with just the
area-dependent jamming resulted in very low levels of dispersal equivalent to those
seen in the area-independent simulations (Fig. 5A) despite maintaining a wide range of
developing aggregate sizes (Fig. 5B). Lastly, we found that the area-dependent reversal
bias maintained the same size threshold of 3,000 um? for stable aggregates (correspond-
ing to a value of 0.5 on the logistic curve), while the area-dependent jamming decreased
that threshold significantly (Fig. 5C). We conclude that the observed differences in cells’
non-persistent states based on aggregate size do little to affect aggregate dispersal,
while the dependence of the mean reversal bias on size accounts for the majority of
dispersal.

One discrepancy that persisted after simplifying the ABM to include an area-based
reversal bias was that fewer mid-size aggregates dispersed compared to experiments.
Many aggregates this size shrunk during the 8 h coarsening phase of our simulations,
but they often did not fully disperse by the end. By extending the end of the simulated
coarsening phase by 7.5 h to match 27 h experimentally, we were able to fully destabilize
more mid-sized aggregates, increasing the mean stable size threshold to 4,000 pm?,
closer to the experimental threshold of 5,000 um? (Fig. 5C).
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FIG5 (A) Aggregate count over the course of the area-based reversal bias simulation (green), area-based jamming simulation
(blue), and the experimental equivalent (black). The shaded areas marks the 95% confidence intervals. (B) Aggregate area
distribution for the area-based reversal bias simulation (green) and experiment (black) at the start and end of the coarsening
phase. (C) Logistic regression using aggregate fate (stable or unstable) versus aggregate area at the start of the coarsening
phase for the experiment (black), the combined area-based reversal bias simulations (solid green), the extended area-based
reversal bias simulations (dashed green), and the combined area-based jamming simulations (dotted blue). Asterisks mark the
data points for the experiment, and circles mark the data points for the non-extended area-based reversal bias simulations

(green).
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Dispersal mechanism is the same across experimental replicates despite
heterogeneity in aggregate dispersal, timing, and sizes of unstable aggre-
gates

Our cell mixture produces aggregates that can vary wildly in size from replicate to
replicate. Because of this, combining data sets with different aggregate sizes can affect
the unstable aggregate size threshold and initial aggregate sizes, resulting in diminished
dispersal even with the updated model. We designed our initial analysis around the
behaviors of a specific replicate (data set 1) to avoid averaging size-dependent behaviors
and potentially obscuring their source (Fig. S4A and B). Therefore, to expand our results,
we repeated our data analysis and simulations individually on time-lapse data from two
additional experiments (data sets 2 and 3).

The aggregate-level analyses of the replicates revealed that the mean size of unstable
aggregates ranged from less than 1,000 um? to over 3,000 um? (Fig. 6A). Interestingly, the
mean size of unstable aggregates was smaller when the population consisted of smaller
aggregates, and larger for populations of larger aggregates. This correlation suggests
that aggregate dispersal depends on the relative size of aggregates rather than on a fixed
size threshold that is consistent across experiments.
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FIG 6 (A) Distribution of stable (blue) and unstable (red) aggregate areas at the start of the coarsening
phase for the high dispersal (HD) replicates. The mean sizes of both populations scale together. (B) The
reversal bias for cells near the aggregates below a threshold size for the HD strain replicates: set 1 (red),
set 2 (blue), and set 3 (yellow). All three means decrease near the start of the coarsening phase, increase
as the first wave of unstable aggregates disperse, then drop again as the rest of them start to destabilize.
Size thresholds (smallest 50%, 30%, and 50%, for sets 1, 2 and 3 respectively) were chosen to capture this
first wave of dispersing aggregates. (C) Percentage of dispersing aggregates for the HD strain (green) and
the low dispersal (LD) strain (purple). (D) Distribution of stable (blue) and unstable (red) aggregate areas
at the start of the coarsening phase for the LD replicates. (E) Reversal bias for tracked cells near stable
(blue) and unstable (red) LD strain aggregates combined across all four replicates and aligned at the start
of the coarsening phase (0 h on the horizontal axis). (F) Reversal bias during the coarsening phase varies
with aggregate size for HD and LD aggregates (data from the all replicates combined). The reversal bias
for small aggregate in the LD mixture is highers than the HD mixture.
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The experimental replicates differed in both the mean aggregate size of dispersing
aggregates and the start of the coarsening phase, leading us to conjecture that the
reversal bias could have also changed in strength or timing. We investigated the biased
random walks near smaller aggregates, finding that the mean reversal bias dropped in
a window of about an hour from the start of the coarsening phase despite differences
in the size of aggregates and the timing of dispersal (Fig. 6B). As time progressed,
the reversal bias again fluctuated between negative and positive values based on
the number of unstable aggregates currently dispersing. The total percentage of the
aggregates that dispersed among the three data sets was consistently high, ranging
from 40% to 60% (Fig. 6C green bars). These results indicate that changes in the reversal
bias serve as a consistent mechanism for dispersal and suggest that our ABM, using
tracking data from each experiment, should also reproduce aggregate dispersal in that
experiment.

To test if the reversal bias was the driving factor behind aggregate dispersal across
experiments, we ran our agent-based simulations using both additional data sets. We
found that simulations implementing area-based reversal bias faithfully produced good
approximations for both the percentage of unstable aggregates and their size thresh-
old regardless of the data set used. These simulations showed both high levels of
aggregate dispersal (Fig. S5A) and a high size threshold for stable aggregates (Fig. S5B).
Interestingly, running simulations with no dependence on area produced dispersal levels
of ~20% (data set 2) and ~60% (data set 3), with the likeliest cause of data set 3's
high dispersal (HD) percentage being the high proportion of cell data near unstable
aggregates. Not unexpectedly, with few exceptions, the actual number of aggregates
produced still had some inaccuracies when compared to experiments, especially when
the area was used in the persistent state duration search (Fig. S6 and S7).

Analysis of a second wild-type strain implies genetic changes that affect the
reversal bias change aggregate dispersal

It was previously demonstrated that interlaboratory evolution of DK1622 strains has led
to some phenotypic differences between wild-type strains (40). To investigate whether
other wild-type strains exhibit different coarsening phenotypes, we conducted a study
comparing various wild-type strains with ours. We found a low dispersal (LD) strain that
consistently showed a reduced level of dispersal compared to our HD strain (Fig. S§;
Movie S2), providing an opportunity to compare how tracked cell reversal bias differs in
different mixtures. Over four experimental replicates, the LD strain displayed an average
dispersal level of less than 10% (Fig. 6C, purple bars), producing a higher proportion of
small, stable aggregates compared to the HD strain. This finding suggests that genetic
differences between the two strains affect aggregate dispersal and could shift tracked
cell behaviors related to aggregate destabilization.

To determine if tracked cells change their reversal bias during dispersal in a consistent
way in both the HD and LD strains, we analyzed cell behavior in the LD mixture using
the same methodology as before. Due to the small number of unstable aggregates and
cells per aggregate in each LD data set, the mean reversal bias near unstable aggregates
was not statistically significant from zero. To circumvent this, we combined the cell
data among LD replicates, aligning them in time based on the start of the coarsening
phase. Our findings show that the reversal bias in the LD mixture (Fig. 6E) and the HD
mixture (Fig. 5A) match qualitatively. During the coarsening phase, tracked cells in the LD
mixture, on average, exhibit a biased random walk toward stable aggregates and away
from unstable aggregates.

Since LD aggregates rarely destabilize even if they are small, it is not apparent that
the mechanism for dispersal is the same. A time-dependent change in the reversal bias
was previously required for the destabilization of aggregates, so we hypothesized that
if our tracked cells respond to the LD mixture consistently, then their reversal bias near
small aggregates must remain positive on average. To test this hypothesis, we compared
the reversal bias of tracked cells near aggregates of similar sizes between both mixtures
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during the coarsening phase. We found that cells near small LD aggregates exhibit a
higher mean reversal bias during coarsening than near small HD aggregates (Fig. 6F).
As the aggregate size is increased, the mean reversal bias of cells near HD aggregates
increases steadily, overtaking the bias of cells in the LD mixture. Overall, this observa-
tion suggests that the level of aggregate dispersal in different strains is controlled by
aggregate size-dependent variations in the strength of the reversal bias.

DISCUSSION

In this study, we showed that the premature dispersal of M. xanthus aggregates is driven
by cells changing their reversal bias to move away from aggregates. Our analysis was
done in several stages, the first of which focused on investigating cell trajectories in a
high dispersal mixture. We quantified how cell behaviors changed both between the
vicinities of stable and unstable aggregates and between the initial aggregation and
coarsening phases. This resulted in a short list of relevant behaviors, out of which,
only differences in the reversal bias proved relevant to dispersal. The maximal drop
in the mean reversal bias was about 0.2 (Fig. 3A), corresponding to roughly a 20%
drop in the average reversal period when moving toward aggregates. This might seem
like a small change; however, previous studies have shown that despite high levels
of heterogeneity in the behavior of individual cells, such small changes in mean cell
behavior can dramatically affect aggregation (35). This was especially true regarding
the effect of a bias toward aggregates on the aggregation rate, so, unsurprisingly, a
small bias away from aggregates can disrupt aggregate formation to the extent seen.
Importantly, the strength of the bias away was enough to overcome the drop in motility
inside aggregates. Since aggregation is theoretically possible, if more gradual, with just
a density-driven slowdown (41), any dispersal mechanism must either circumvent or
overcome this slowdown.

To measure the impact of cell behaviors on aggregate dispersal, we implemented
a series of agent-based simulations focused on gauging whether different behaviors
contributed to dispersal. We found that dispersal is essentially unaffected by the
observed changes in the non-persistent state for cells in small aggregates (Fig. 5).
However, it is worth noting that the proportion of non-persistent cells in small aggre-
gates was still elevated compared to outside aggregates. Similarly, a previous study-
showed that longer, non-persistent stops inside aggregates are not the main reasons
for successful aggregation. These two results together suggest that decreasing the
proportion of non-persistent cells in aggregates has little impact on the initial or
coarsening phases of aggregate development, with the reversal bias playing a more
influential role in both phases.

The genetic basis of the reversal bias observed in tracked cell behavior near M.
xanthus aggregates is unknown, but the bias is reliably demonstrable and differs
significantly when tracked cells are mixed with HD or LD strains. We hypothesize that
the reversal bias is the result of an unidentified attractant signal originating from the
cells within each aggregate, which results in a self-reinforcing cycle of aggregation
by increasing the bias toward each aggregate as the number of cells composing it
increases. Evidence supporting this hypothesis is based on the observation that the
distance from the aggregate boundary to where the reversal bias vanishes increases
with an aggregate size (Fig. S2B), indicating a direct relationship between the proposed
signal and the number of cells in the aggregate. The dependence of bias strength on
aggregate size (Fig. S2A) further suggests that the corresponding signaling pathway
may not be capable of robust adaptation (42-44). However, the average size of unstable
aggregates is based on their relative size to the average size of all aggregates. Therefore,
the signaling pathway would need to be capable of population-level sensing since the
size threshold for unstable aggregates scales with the size of all aggregates (Fig. 6A).
Therefore, the reversal bias would result from local differences from a baseline signal
across the whole population. There is evidence from prior work in support of M. xanthus
exhibiting chemotaxis, both from experiments (24-26) and computational studies (45),
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but full molecular pathways have not been determined. Regardless of what the signal
and the molecular pathway are, our results indicate the sensing mechanism must be
capable of measuring both an aggregate’s absolute and relative size.

By analyzing the behaviors of tracked cells in the LD mixture, we showed that the
reduction in dispersal is linked to an increase in reversal bias toward aggregates (Fig.
6F). This link indicates that the dependence of the reversal bias on aggregate size is
genotype dependent, but on its own does not identify a gene or set of genes that control
aggregate dispersal. It is possible that one or more of the genes that differ between
the LD wild type and HD wild type directly control aggregate dispersal. However, it is
also possible that the reduction in dispersal results from compensatory changes in gene
expression in response to mutations that don't directly affect the reversal bias. Further
studies analyzing the differences in gene expression between the two strains could help
resolve this uncertainty. In the future studies, this approach to identifying the biological
source of the reversal bias could be supplemented by additional mutant screening,
fractionating cells to test the response of aggregates to different molecular subsets, and
testing how aggregation dynamics vary in different chemical and physical environments
using, for instance, a flow chamber.

If genetically controlled signaling is responsible for the observed reversal bias, the
natural question is what triggers the change in bias that leads to aggregate dispersal.
We speculate that M. xanthus might change either its production of or its response to
a hypothetical signal due to some time-dependent change in gene expression (8). The
near-simultaneous drop in the bias strength regardless of aggregate size and stability
(Fig. 3A and Fig. S2A) could then result from cellular differentiation or a loss of cells due
to programmed cell death during aggregate development (46, 47). The evidence from
our time course data is that the drop happens at a similar time to both the development
of aggregate layers and the start of cell lysis. A change in gene expression, and thus
response, is more likely than a change in production since the gradient produced by a
chemotactic signal is unlikely to change significantly on the timescale the reversal bias
drops.

While changes in gene expression provide a reasonable hypothesis for what triggers
dispersal, it does not explicitly explain why cells actively migrate away from dispersing
aggregates rather than gradually reverting to a bias-free random walk. If cells abandon-
ing a dispersing aggregate changed their response to move away from a signal source,
then it seems reasonable that they would actively avoid approaching another neighbor-
ing aggregate. However, abandoning cells are observed to move toward neighboring
aggregates (39). This observation could be accounted for if small aggregates stop
producing a strong signal and there are also nearby aggregates capable of influencing
nearby cells. The caveat to this conjecture is that some aggregates disperse with no
neighboring aggregates nearby, suggesting that whatever factors cells use to determine
if they should disperse are internal to the aggregate. This is supported by a previ-
ous study on aggregate stability that showed that proximity and size of neighboring
aggregates have minimal effect on stability (38).

As an alternative to the chemotaxis hypothesis, an aggregation model based on
Ostwald ripening (48, 49) was previously developed as a feasibility test for the minimum
number of genetic inputs required to achieve both initial aggregation and dispersal (39).
It succeeded in predicting the appearance and relative stability of developing M. xanthus
aggregates with high accuracy, but the requisite conditions for Ostwald ripening do not
match observations of cell motility and the active nature of developing cells in general.
These discrepancies accumulate over time so that predictions based on the Ostwald
ripening model tend to deviate significantly from predicted aggregation behavior over
longer timescales (50).

Studying emergent behavior in microbial communities involves analyzing differen-
ces in cell behavior that result in significant shifts in cell dynamics. These changes
are influenced by various factors including mechanical forces, signaling pathways, and
alterations in gene expression. Our findings suggest that M. xanthus aggregation is
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sensitive enough that a modest difference in how reversal bias changes near small and
large aggregates can lead to a large difference in dispersal levels between wild-type
strains. There may be no specific genetic mechanism directly controlling this change in
reversal bias, meaning that any number of otherwise inconsequential genetic differences
could cause a strain to have high or low dispersal rates. Those differences would only
become important if evolutionary selection favored one set of differences over another.
For M. xanthus bacteria, laboratory strains are typically discarded only if they fail to
produce aggregates for no discernable reason, removing selective pressure from strains
that undergo coarsening but still produce final aggregates. These findings may have
implications beyond M. xanthus for other developmental model organisms displaying
emergent behaviors.

MATERIALS AND METHODS
Strains and culture conditions

Three different M. xanthus DK1622 strains were used in this study. Both tdTomato-
expressing LS3908 (35) and GFP-expressing DK10547 (27) commonly exhibit ~50%
of aggregates dispersing during the coarsening phase, while S4 (40) shows minimal
aggregate dispersal. We refer to DK10547 as the high dispersal wild-type strain and S4 is
referred to as the low dispersal wild-type strain. tdTomato-expressing LS3908 was diluted
into both the high and low dispersal strains to track differences in cell behavior.

All cells were grown overnight in CTTYE broth [1% casein peptone (Remel, San Diego,
CA, USA), 0.5% Bacto yeast extract (BD Biosciences, Franklin Lakes, NJ, USA), 10 mM
Tris (pH 8.0), T mM KH(H;)POg4, 8 mM MgSOy4] at 32°C with vigorous shaking. tdTomato-
expressing strain LS3908 and GFP-expressing strain DK10547 were supplemented with
10 pg/mL oxytetracycline and 40 pg/mL kanamycin, respectively, for selection. Addition-
ally, LS3908 was supplemented with 1 mM isopropyl 3-D-1-thiogalactopyranoside (IPTG)
to induce tdTomato expression.

To identify cell behaviors linked with aggregate dispersal, we set up development
assays with a fraction of LS3908 cells diluted into the high dispersal strain DK10547.
LS3908 cells were used for tracking individual cell behaviors while aggregate position
and local density estimations came from the DK10547 cells. Cells were harvested from
overnight CTTYE cultures as described above at mid-log phase, washed twice in TPM
starvation buffer [10 mM Tris (pH 7.6), 1 mM KH(H5)PO4, 8 mM MgSQ4], and resuspended
in TPM buffer to a cell concentration of 5 x 109 cells/mL. LS3908 cells were diluted 1:800
into high dispersal strain DK10547. A 5 uL droplet of cells was spotted on agarose slide
complexes as previously described (51), containing 1% agarose-TPM medium supple-
mented with T mM IPTG. Imaging conditions are described below.

Low dispersal strain S4 reproducibly displays minimal aggregate dispersal during
the coarsening phase. LS3908 was diluted 1:800 in the low dispersal S4 strain to
determine if LS3908 cells changed their behavior when placed in a low-dispersing
population. Development assays were performed on the LS3908-54 mixture on agarose
slide complexes as described above. Since the low dispersal S4 strain does not have a
fluorescent label, local cell density estimates and aggregate segmentation were done
using autofluorescence in the GFP channel.

Time-lapse capture

The data presented in this paper represent three replicates of LS3908 mixed with
DK10547 and four replicates of LS3908 mixed with S4, collected under the same
experimental conditions on different days. Imaging was performed on a Nikon Eclipse
E400 microscope with a pco.panda 4.2 sCMOS camera and NIS-Elements software. For
cell tracking experiments, LS3908 samples were imaged with 400 ms exposure with
a Sola LED light source at 75% intensity, and DK10547 and S4 samples were imaged
with 200 ms exposure at 35% intensity. Control of the fluorescent filter wheel and
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autofocus mechanism was managed with a MAC6000 system filter wheel controller
and focus control module (Ludl Electronic Products, Ltd.). Images in the phase contrast
and tdTomato channels were captured every 60 s over 24 h. Since aggregates do not
change significantly on a timescale of minutes and frequent blue-light exposure can slow
aggregation dynamics, images in the GFP channel were captured every 15 min to track
the position of aggregates and changes in local cell densities.

The three replicates of the LS3908-DK10547 mixture were selected from a larger set
of experiments based on two criteria: (i) the experiment must show coarsening (this
phenotype occurs about 50% of the time for DK10547) with the time-lapse images
capturing the whole coarsening phase (sometimes dispersal continued past the end of
the movie), and (ii) there must be enough tracked cells during the coarsening phase
to run simulations (simulations usually require several thousand cell runs every 2-3
h of simulated time). The second criterion was established since tracked cells disap-
pear over time due to cell lysis, diminished fluorescence, or were being hidden inside
dense aggregates. The first criteria removed about half of our initial 24 replicates from
consideration, while the second narrowed it further to three replicates. For the movies of
the LS3908-S4 mixtures, these two criteria were not applicable. Therefore, no selection
was performed to acquire those four replicates.

Aggregate detection and thresholding

The mean intensity of each image was subtracted, then the total intensity of the image
was scaled to 1 so that the total intensity from frame to frame remained invariant. For
consistency, a single time point was chosen to determine a threshold for segmenting
aggregates from the background density. The chosen time point was halfway between
aggregate initiation and the start of the coarsening phase. The corresponding image
was rescaled so its maximum intensity was 1 and its minimum was 0; after which, Otsu’s
method (51) was used to calculate the threshold I, - This threshold was then rescaled
using the minimum and maximum pixel values, a,,;, and a,,,,, , the image had when its
total intensity was 1. This produced a threshold Iyqedinresh = (Qmax — min) Linresh + Qmin
that could be used on every frame in the movie. Aggregates were then segmented
and tracked following reference (35). We then removed both aggregates that were
only partially in the field of view and cells near those aggregates from the data set to
prevent the data sets from containing inaccurate correlations between cell behaviors and
aggregate size.

Identification of the start of the coarsening phase

The start of the coarsening phase was identified by first filtering out motile and short-
lived aggregates during the start of the initial aggregation. Motile aggregates were
defined as those whose centroid moved more than 3 pm per minute, while short-lived
aggregates were identified as those that either were stationary and dispersed after less
than 2 h from initial detection or dispersed while counted as motile aggregates. Further
filtering out stable aggregates left a set of unstable, non-motile, long-lived aggregates in
each frame. The start of the coarsening phase was then defined as when the total area of
these unstable aggregates started to continually decrease. This was typically between 9
and 12 h after the initial plating of cells on starvation agar.

Cell behavior data extraction

To quantify cell behavior, we performed the same procedures found in reference 35 to
track fluorescently labeled tdTomato cells and classify both cellular transitions between
non-persistent and persistent states and reversals in the persistent state. Each trajectory
segment with a start and end defined by a state transition or reversal, called a cell run,
was then labeled, and the cell position, orientation, speed, and local alignment to other
cells were recorded in a database. We only collected cell behaviors after initial aggregate
formation at 4-5 h after plating. We then augmented the cell run database with the
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nearest aggregate size, position, distance, and relative orientation from the cell at the
start and end of each run.

Agent-based model implementation

We implemented an extension of the agent-based model found in reference 35, which
used a simulated domain equal in size to the experimental field of view. This model
assumes that cells move in straight lines between reversals and stops, with a change in
orientation upon each state transition. Therefore, an agent cell’s behavior was deter-
mined by its change in motile state, its change in orientation when switching states, and
the speed and duration of its next motile state.

The implementation of the closed-loop ABM relied on sets of internally measured
cues to determine agent cell behavior. These cues were time, local density, cell state
(persistent or non-persistent), the nearest aggregate area, distance from the nearest
aggregate boundary, the relative angle to the nearest aggregate, and strength of local
cell alignment. The strength of local alignment (y) was calculated for each cell by first
finding all neighboring cells in a 12 um radius in space and a 7-min window backward
in time. We then calculated a mean nematic angle 6 following reference 35. Finally, we
calculated y as

y= cos(z(ei - é)),

where 6; is the orientation of the ith tracked cell.

The cues listed above were used as search variables in nearest neighbor (NN) searches
of the compiled database of experimental cell runs. Three sequential searches were
performed to determine an agent cell’s state transition, change in orientation, and both
the speed and duration of its next run. We used multiple searches since changes in
orientation, speed, and duration depend on the agent’s state, and since speed and
duration further depend on an agent’s relative orientation to aggregates after reorient-
ing. Using the methods in reference 35 as guidelines, we implemented cues in the same
way in our simulations with the exception of time and local density. The necessary
timespan needed to simulate both aggregation and aggregate dispersal was, on average,
about 13-15 h, nearly three times longer than initial aggregation alone. Since each cue
was weighted equally when performing NN searches, longer simulations resulted in time
differences receiving less weight, producing agent behavior that was out of sync. To
avoid this, we binned cell behavior in the database into intervals and performed the NN
search within each bin. Pre-coarsening phase time intervals were 100 min in length due
to the more rapid changes occurring during initial development, while the coarsening
phase was divided into two bins of equal length due to more gradual changes in time
and fewer cell data in total. This binning approach had the additional advantage of
speeding up the simulation by reducing the scopes of the NN searches. Local density
was implemented during initial aggregation as in reference 35, but it was removed
as a cue during the coarsening phase to reduce search parameters and speed up the
simulation. As aggregates have already formed by that point, the distance from the
aggregate boundary captures the local density accurately enough to search correctly
for cell behaviors. Depending on the type of simulation, the cues used in the three NN
searches were supplemented as needed with the nearest aggregate area.

Each simulation started with randomly placed cells in the simulated field of view at
the equivalent of 6 h in the movie. We then ran a 90-min initialization using only two
parameters: local density and local cell alignment. This initialization helps develop initial
variations in density and gives cells time to align into streams. Cell behaviors in the
initialization were sampled from the first 20 min of the experimental data. The agent
cell positions and orientations at the end of the initialization were then used as initial
conditions for the main simulation.
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Selection of bandwidth and aggregate size threshold in simulations

The density profile of agent cells in simulations was calculated using a kernel density
estimator with a fixed bandwidth. We choose this bandwidth so that (i) the fraction of
simulated cells inside aggregates matched the experimental equivalent by the start of
the coarsening phase and (ii) the size of aggregates at the beginning of the coarsening
phase approximated that seen in the equivalent movie. We selected a bandwidth of 7 um
for HD data set 1 and a smaller bandwidth of 5 um for the replicate HD data sets 2 and 3.
This smaller bandwidth for the second and third data sets was needed to reproduce the

numerous small aggregates seen in those experiments.

The aggregate threshold inside simulations was selected similarly, starting with the
threshold used to segment aggregates in the movies and adjusting slightly as needed.
For HD data set 1, the threshold remained unadjusted from 2.16e—6. For HD data sets
2 and 3, which had a bandwidth of 5 um, the density threshold was raised to 2.32e-6
to help control the initial number of aggregates from becoming too high. We explored
using a greater number of agent cells as an alternative to changing the threshold
but ultimately found it inferior due to it causing a discrepancy in measured local cell
alignment between the simulations and the experimental data. This discrepancy resulted
from having a much denser set of cells with which to measure the local alignment in

simulations.

Density fluctuations in simulations sometimes resulted in the formation of pinpoint
aggregates with unrealistically small sizes. Since cell behavior is determined by the
nearest aggregate, such aggregates are undesirable. We filtered out these pinpoint
aggregates by removing any detected aggregate below 300 pm? when calculating the
aggregate nearest a given cell. This threshold was confirmed to remove noisy artifacts

while still being small enough to initiate aggregate formation.
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