

1 **Suppressors of cGAS-STING are downregulated during fin-limb
2 regeneration and aging in aquatic vertebrates**

3
4 **Sabateeshan Mathavarajah¹, Andrew W. Thompson^{2,3,4}, Matthew R. Stoyek⁵, T. Alexander
5 Quinn^{5,6}, Stéphane Roy⁷, Ingo Braasch^{3,4}, Graham Dellaire^{*1,8}**

6
7 ¹Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada

8 ²Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA.

9 ³Department of Integrative Biology, Michigan State University, East Lansing, MI, USA.

10 ⁴Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA.

11 ⁵Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada

12 ⁶School of Biomedical Engineering, Dalhousie University, Halifax, Canada

13 ⁷Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, QC,
14 Canada.

15 ⁸Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS,
16 Canada

17
18
19
20
21
22 *Corresponding authors:

23 Dr. Graham Dellaire

24 Department of Pathology and Department of Biochemistry and Molecular Biology
25 Halifax, Nova Scotia, Canada

26 dellaire@dal.ca

27
28
29 **Keywords: cGAS-STING, Limb regeneration, Fin regeneration, PML, Plex9.1, TREX1**

30
31 **Abbreviations:** cGAS, cyclic guanosine monophosphate–adenosine monophosphate synthase;
32 STING, stimulator of interferon genes; PML, Promyelocytic Leukemia; Plex9.1, PML-like exon
33 9.1, TREX1, Three prime repair exonuclease 1; cGAMP, Cyclic guanosine monophosphate–
34 adenosine monophosphate

35
36

1 **Abstract**

2

3 During the early stages of limb and fin regeneration in aquatic vertebrates (i.e. fishes and
4 amphibians) blastema undergo transcriptional rewiring of innate immune signalling pathways to
5 promote immune cell recruitment. In mammals, a fundamental component of innate immune
6 signalling in mammals is the cytosolic DNA sensing pathway, cGAS-STING. However, to what
7 extent the cGAS-STING pathway influences regeneration in aquatic anamniotes is unknown. In
8 jawed vertebrates, negative regulation of cGAS-STING activity is accomplished by suppressors
9 of cytosolic DNA such as Trex1, Pml and PML-like exon 9 (Plex9) exonucleases. Here, we
10 examine the expression of these suppressors of cGAS-STING, as well as inflammatory genes
11 and cGAS activity during caudal fin and limb regeneration using the spotted gar (*Lepisosteus*
12 *oculatus*) and axolotl (*Ambystoma mexicanum*) model species, and during age-related senescence
13 in zebrafish (*Danio rerio*). In the regenerative blastema of wounded gar and axolotl, we observe
14 increased inflammatory gene expression, including interferon genes and interleukins 6 and 8. We
15 also observed a decrease in axolotl *Trex1* and gar *pml* expression during the early phases of
16 wound healing which correlates with a dramatic increase in cGAS activity. In contrast, the
17 *plex9.1* gene does not change in expression during wound healing in gar. However, we observed
18 decreased expression of *plex9.1* in the senescing cardiac tissue of aged zebrafish, where 2'3'-
19 cGAMP levels are elevated. Finally, we demonstrate a similar pattern of *Trex1*, *pml* and *plex9.1*
20 gene regulation across species in response to exogenous 2'3'-cGAMP. Thus, during the early
21 stages of limb-fin regeneration, Pml, Trex1 and Plex9.1 exonucleases are downregulated,
22 presumably to allow an evolutionarily old cGAS-STING activity to promote inflammation and
23 the recruitment of immune cells.

24

25

26

1 **Introduction**

2

3 Tissue regeneration occurs in many different animal species, with the capacity for
4 regeneration varying significantly among even highly related animals (Alibardi, 2017; Brockes
5 & Gates, 2014; Dwaraka & Voss, 2021; Goss & Holt, 1992; McLaughlin, Rathbone, Liversage,
6 & McLaughlin, 1983; Nogueira et al., 2016; Simon & Tanaka, 2013; Tomlinson, Tomlinson, &
7 Tassava, 1985). Not only do these different vertebrate species share an ability to regenerate but
8 there is an overlap in the molecular pathways involved in regeneration between the early
9 blastema of ray-finned fish and lobe-finned vertebrates (Darnet et al., 2019). For example, the
10 transcriptional changes are remarkably similar during the early stages of tetrapod limb and
11 actinopterygian fin regeneration between bichir (*Polypterus senegalus*) and axolotl (Darnet et al.,
12 2019) in pathways that control inflammatory responses and innate immune signalling (e.g.,
13 interferon α [IFNa]-like signalling). These pathways are critical for the recruitment of
14 macrophages and other immune cells to the wound (Brockes & Gates, 2014; Darnet et al., 2019;
15 Godwin, Pinto, & Rosenthal, 2013; Nogueira et al., 2016).

16

17 In addition to inflammation, numerous cellular pathways are involved in facilitating the
18 wound healing response such as the proliferation of progenitor cells, the maintenance of their
19 genome integrity, cell differentiation with positional memory, extracellular matrix remodelling
20 and the prevention of apoptosis (McCusker et al., 2015). Key signalling proteins and their
21 respective pathways such as fibroblast growth factors, bone morphogenetic proteins, and Wnt, all
22 contribute to the process (McCusker et al., 2015). Intriguingly, DNA damage response associated
23 genes are also activated in response to regeneration in these model systems (Darnet et al., 2019).
24 The DNA damage response is critical for early blastema proliferation during vertebrate
25 regeneration, presumably as a contributor to downstream immune signalling during wound
26 healing (Garcia-Lepe, Cruz-Ramirez, & Bermudez-Cruz, 2021; Garcia-Lepe, Torres-Dimas,
27 Espinal-Centeno, Cruz-Ramirez, & Bermudez-Cruz, 2022; Sousounis et al., 2020).

28

29 Innate immunity and the DNA damage response are united through the highly conserved
30 cyclic GMP-AMP synthase - stimulator of interferon response cGAMP interactor 1 (cGAS-
31 STING) pathway (Hopfner & Hornung, 2020; T. Li & Chen, 2018). The cGAS-STING axis is
32 activated to promote interferon (IFN) stimulated gene expression in response to stress in the form
33 of viral infection, DNA damage, mitochondrial dysfunction, and long interspersed nuclear
34 element 1 (LINE-1) retroelement expression (Hopfner & Hornung, 2020; T. Li & Chen, 2018;
35 Maekawa et al., 2019; Ni, Ma, & Damania, 2018). Linking all of these activators of cGAS-
36 STING is the sensing of cytosolic DNA; for example, DNA damage response proteins either
37 directly (e.g. MUS81, MRE11) or indirectly sense cytosolic DNA via other DNA sensors like
38 IFI16 (e.g. PARP1), which together contribute to activate cGAS-STING induce the expression of
39 type I IFN genes (reviewed in (Hopfner & Hornung, 2020) and (Lin, Tang, & Zheng, 2022)).

40

41 In mammals, the cGAS-STING pathway is also involved in the early stages of wound
42 healing and regeneration of the peripheral nervous system, liver and intestinal wall in mammals,
43 where it contributes to the inflammation and the recruitment of macrophages to the site of injury
44 (Leibowitz et al., 2021; Morozzi et al., 2021; X. Wang et al., 2023). During mammalian
45 regeneration, *CGAS* expression is upregulated to promote STING-dependent innate immune
46 signalling (Morozzi et al., 2021). During mammalian aging, cGAS-STING is also associated

47 with the activation of the senescence-associated secretory phenotype (SASP), and expression of
48 inflammatory cytokines such as interleukin 6 and 8 (*IL6*, *IL8*) which can promote aging (Hopfner
49 & Hornung, 2020; Hui Yang, Hanze Wang, Junyao Ren, Qi Chen, & Zhijian J Chen, 2017).

50
51 Several additional observations from aquatic models suggest that cGAS-STING has an
52 evolutionarily conserved role: During axolotl regeneration, progenitor limb blastema cells
53 secrete IL-8 (Tsai, Baselga-Garriga, & Melton, 2019) and STING-dependent IL-6 signalling (C.
54 Wang et al., 2023) is one of the most enriched overlapping pathways between fin and limb
55 regeneration (Darnet et al., 2019). Finally, similar changes in inflammatory gene expression have
56 also been observed in zebrafish, where immune cells accumulate in elderly animals in response
57 to STING, with numerous chemokines being upregulated (Reuter et al., 2022). This
58 phenomenon has been termed “inflammaging”, and the age-related activation of endogenous
59 retroelements such as LINE-1 in senescent cells can promote further aging by inducing
60 additional IFN and inflammatory cytokine production through the cGAS-STING pathway
61 (Andrade et al., 2022; Schmitz, Maurmann, Guma, Bauer, & Barbe-Tuana, 2023). Taken
62 together, the cGAS-STING axis plays a critical role in tissue homeostasis, facilitating both tissue
63 regeneration and senescence in both mammals and aquatic anamniotes.

64
65 Although DNA sensors are important for activating cGAS-STING, the molecular
66 “brakes” on this pathway are just as important for tissue homeostasis. A key brake on cGAS-
67 STING is mammalian TREX1, an exonuclease that degrades cytoplasmic DNA and suppresses
68 LINE-1 to prevent cGAS activation (Ablasser et al., 2014; Mathavarajah, Salsman, & Dellaire,
69 2019; Thomas et al., 2017). Recently, we showed that in aquatic vertebrates, the promyelocytic
70 leukemia (Pml) protein and newly discovered DEDDh exonucleases known as PML-like exon 9
71 (Plex9) proteins can suppress the cGAS-STING pathway through their exonuclease function and
72 through exonuclease-independent suppression of LINE-1, akin to mammalian TREX1
73 (Mathavarajah et al., 2023). Despite the known role of cGAS-STING in wound healing and
74 tissue regeneration discussed above, it remains unclear the extent to which the exonuclease
75 suppressors of this pathway play a deeply conserved role in tissue regeneration in other
76 vertebrate species, or if the pathway is an evolutionary innovation of the mammalian lineage.

77
78 Here, we survey the expression of inflammatory genes in three different anamniote
79 species, including fin and limb regeneration in the non-teleost fish spotted gar (*Lepisosteus*
80 *oculatus*) and the amphibian axolotl (*Ambystoma mexicanum*), and during zebrafish (*Danio*
81 *rerio*) cardiac aging. Taken together, our results indicate that Pml, Plex9.1, and Trex1 share
82 strikingly similar gene regulation in these aquatic vertebrate species during regeneration and
83 aging, where they are downregulated to promote cGAS-STING activity and downstream pro-
84 inflammatory signalling. This suggests an evolutionary old function of cGAS-STING program
85 that evolved in fish ancestor of living jawed vertebrates, if not earlier.

86
87 **Methods**

88
89 *Cell Lines and 2'3'-cGAMP treatment*

90
91 Previously derived cell lines from the longnose gar, *Lepisosteus osseus* (GARL, liver
92 derived fibroblasts (F. Liu, Bols, Pham, Secombes, & Zou, 2019)), axolotl (AL-1 limb dermal

93 fibroblast derived cell line (Denis, Sader, Ferretti, & Roy, 2015)) and zebrafish (ZKS, zebrafish
94 kidney stromal cells (Stachura et al., 2009)) were used. Gar-L cells were maintained in Leibovitz
95 L15 (L-15) medium supplemented with 10% newborn bovine calf serum (NCBS, New Zealand
96 origin, ThermoFisher), and 1% Pen/Strep (100 U/ml penicillin and 100 µg/mL streptomycin) in
97 CO2-independent and dark conditions. AL-1 cells were grown in a mixed media (62.5% MEM
98 (Gibco) and 25% water) with 10% fetal bovine serum (ThermoFisher) supplemented with 100 U
99 penicillin-streptomycin, glutamine, and insulin within a humidified incubator at 25°C with 2%
100 CO2. ZKS cells were maintained in culture media consisting of 10% fetal bovine serum (FBS;
101 ThermoFisher), 55% L-15, 32.5% Dulbecco modified Eagle medium (DMEM) (Gibco) and
102 12.5% Ham F-12 (Gibco). ZKS media was supplemented with 150 mg/L sodium bicarbonate,
103 2% penicillin/streptomycin (10 U/mL stock), 1.5% N-2-hydroxyethylpiperazine-N'-2-
104 ethanesulfonic acid (HEPES), 1% l-glutamine and 0.1 mg/mL gentamycin. ZKS cells were
105 grown at 32°C and 5% CO2. 2'3'-cGAMP (InvivoGen) was transfected into cells using
106 Lipofectamine 2000 (Invitrogen) or JetPRIME (PolyPlus) at 100ng or 2 µg. Untreated cells
107 received the Lipofectamine 2000 or JetPRIME lacking 2'3'-cGAMP. For conditioned media
108 experiments, cells were transfected, and then media was collected 48 hours later. The
109 conditioned media was added to fresh media at a ratio of 1:1 and the naïve cells were incubated
110 for 24 hours, after which, RNA was collected. All cell lines were passaged at a 1:2 split when
111 cells reached 80-90% confluence.

112

113 *Regeneration experiments*

114 Spotted Gar (n=12, 19-25cm standard length) were anesthetized in 160mg/L MS-222 (Sigma)
115 and caudal fins were amputated via a vertical cut using the ventral apex as a landmark to begin
116 the cut. This amputated, posterior part of the caudal fin from 0dpa was put in RNA later and
117 stored at -80C. Gar with amputated fins were monitored until a time of secondary sampling at
118 7dpa (n=4), 16dpa (n=4), and 32dpa (n=4) upon which time the regenerating caudal fin was
119 sampled under anesthesia by via another vertical cut anterior to the initial 0dpa cut site. This
120 resulted in a thin strip of fin tissue (up to ~1cm in width) that contained original caudal fin tissue
121 as well as all regenerated tissue up to that time point. Day 0 samples were collected for all
122 animals and then matched to the animals for each timepoint when regenerating tissue was later
123 collected. Thus, we refer to day 0 as Amputated Fin (AF) for each individual animal and the re-
124 sampled regenerative blastema as Regenerative Blastema (RB) throughout the manuscript. All
125 7dpa, 16dpa, and 32dpa tissues was put in RNA later and stored at -80C. All gars were
126 euthanized at the end of the experiment in 300mg/L MS-222.

127

128 The axolotl limbs were amputated at the level of the zeugopod (forearm, through the radius and
129 ulna bones) under anesthesia using buffered MS222 0.1X dissolved in 40% Holtfreter's solution.
130 Blastema from the regenerating limb were then isolated at different stages of the regenerating
131 bud (early - ~6 days post amputation; medium – 8-9 days post amputation; late - 10-12 days post
132 amputation)(Stocum, 1979).

133

134 *RNA extractions from isolated tissue*

135

136 Dissected tissues were lysed and homogenized using Trizol reagent (Thermo) according
137 to the manufacturer's directions and frozen at -80°C for further analysis. Blastema RNA from gar
138 and axolotl were isolated from single tissue samples. Hearts were pooled from 3 animals for

139 zebrafish samples. Zebrafish included young adult (6-10 months post fertilization) and aged (20-
140 24 months post fertilization) cohorts. The samples were then processed for RNA using the
141 Ambion PureLink RNA Mini Kit (Thermo) according to the manufacturer's protocol and an on-
142 column DNase I digestion. Quality and quantity of RNA was measured using a Nanodrop 2000
143 spectrophotometer (Thermo). Absorbance measurements A260/A280 and A260/A230 with ratios
144 ~2.0 were accepted for downstream analysis by RT-qPCR.

145
146 *RT-qPCR*
147

148 cDNA was generated from 1 µg of RNA (for axolotl) or 500 ng of RNA (for zebrafish
149 and spotted gar) using the BioRad 5X iScript RT supermix kit (BioRad Laboratories Canada;
150 Mississauga, ON, CA) for RT-qPCR, after which samples were diluted 1:1 with nuclease-free
151 water. Control samples lacking reverse transcriptase were included to confirm no genomic DNA
152 contamination. Quantitative PCR (qPCR) was performed on cDNA samples using the 2X
153 SsoAdvanced Universal SYBR Green Supermix (BioRad). The reactions were performed using
154 BioRad CFX Connect and all experiments were done in triplicate. Primers were designed using
155 NCBI Primer Blast (<https://www.ncbi.nlm.nih.gov/tools/primer-blast/>) and are included in
156 Supplementary Table 1. Gene expression data were normalized to at least two reference genes
157 from each species (spotted gar -*actb* and *gapdh*; axolotl - *gapdh* and *rpl4*; zebrafish - *rplp0* and
158 *actb1*) and analyzed using the BioRad CFX Maestro Software. Data were collected and analyzed
159 as per the MIQE guidelines (Bustin et al., 2009).

160
161 *2'3'-cGAMP quantification*
162

163 Gar blastema and axolotl blastema were weighed, washed 3x with PBS and then lysed
164 using M-PER (Thermo Scientific). Individual zebrafish hearts were washed 3x with PBS,
165 homogenized using a grinder and then lysed using M-PER. Lysates were incubated on ice for 30
166 minutes with gentle agitation every 10 minutes, before being spun down with 16,000 x g at 4° C
167 for 10 min. Samples were quantified using a 2'3'-cGAMP ELISA kit (Cayman Chemical)
168 according to the manufacturer's instructions.

169
170 *Immunohistochemistry*
171

172 For immunofluorescence assessment of the presence and distribution of γ-H2AX in the zebrafish
173 heart, ventricles were isolated from zebrafish expressing eGFP under the myocyte-specific *myl7*
174 promoter (*tg(myl7:eGFP)*) for visualisation of the cardiac musculature. As previously described
175 (Stoyek, Rog-Zielinska, & Quinn, 2018), the hearts were fixed overnight in 4%
176 paraformaldehyde (Electron Microscopy Sciences) with 1% DMSO (Sigma-Aldrich) in
177 phosphate-buffered saline (Sigma-Aldrich). The hearts were then rinsed three times for 15 min
178 each in PBS and transferred to a solution containing 0.1% Triton X-100 (PBS-T; T9284, Sigma-
179 Aldrich) in PBS with mouse monoclonal anti-H2a.x (1:100; JBW301; Millipore) and incubated
180 for 3 days with agitation at 4°C. Tissues were rinsed three times for 15 min each in PBS-T and
181 transferred to PBS-T containing the appropriate secondary antibody (1:300, AlexaFluor555; A-
182 21429, Fisher Scientific) for 2 days with agitation at 4°C. Final rinsing was done in PBS and
183 specimens were placed in Scale CUBIC-R1 clearing solution (Susaki et al., 2014) overnight at
184 room temperature with gentle agitation. Ventricles were sectioned roughly in half with midline

185 cut on the axial plane and hearts were then mounted on glass slides in CUBIC-R1 for confocal
186 microscopy. Processed specimens were examined as whole-mounts using an LSM 710 confocal
187 microscope using Zeiss Zen software (Carl Zeiss, Toronto, Canada).

188

189

190

191 *Animal ethics*

192

193 Spotted gar work was approved by the Institutional Animal Care and Use Committee at
194 Michigan State University (protocol no. PROTO201900309). All the experiments done with
195 axolotls were approved by the Université de Montréal institutional animal care committee in
196 accordance with the Canadian Council on Animal Care. All experimental procedures with
197 zebrafish were approved by the Dalhousie University Committee for Laboratory Animals
198 (protocol number 20-074) and followed the guidelines of the Canadian Council on Animal Care.

199

200

201 *Statistical analyses*

202

203 For statistical analyses between groups of 3 or more (for gar, axolotl and cell line
204 experiments), significance was determined using a One-way ANOVA, with Tukey's post-hoc
205 analysis used for comparison. For zebrafish aging experiments where comparison was made
206 between 2 cohorts, significance was determined using a Student's t-test (two-tailed). All
207 statistical analyses were completed using GraphPad Prism 9.

208

209

210 **Results**

211

212 *Immune signalling is upregulated in the early stages of gar caudal fin regeneration*

213

214 We examined regenerative blastema isolated from spotted gar at various stages of caudal
215 fin regeneration and assessed whether innate immune signalling associated genes differed in
216 expression (Figure 1A). We found changes to Ifn genes such as *ifnb* and *ifnc1*, which were
217 upregulated ~98-fold and ~96-fold respectively at the earliest stage of 7 days post-amputation (7
218 dpa) (Figure 1B). In addition, orthologs of inflammatory interleukins *Il6* and *Il8*, were also found
219 to be significantly upregulated 7 dpa in the regenerative blastema. By 16 dpa, *ifnb*, *ifnc1*, *il6* and
220 *il8* returned to baseline levels.

221

222 Since cGAS-STING is a conserved regulator of type I IFNs and interleukins such as IL6
223 and IL8 in mammals (Chernyavskaya et al., 2017; Ge et al., 2015; Glück et al., 2017), we next
224 measured cGAS activity in our gar model by measuring the levels of 2'3'-cGAMP, the product of
225 cGAS. Consistent with cGAS-STING activation, we found that the 7 dpa blastema had
226 significantly elevated amounts of 2'3'-cGAMP (Figure 1C). However, the expression of cGAS
227 and STING orthologs in the gar fin regenerative blastema did not significantly change. We next
228 surveyed two recently identified suppressor proteins of cGAS activity in gar, *Plex9.1* and *Pml*
229 (Mathavarajah et al., 2023). While we observed no changes to *plex9.1* expression, there was a
230 ~8-fold reduction in *pml* gene expression at 7 dpa.

231
232

233 *Cross-species conservation of cGAS-STING activation in early stages of regeneration*

234

235 We next examined inflammatory gene expression, cGAS-STING activity, and the
236 expression of cGAS suppressors during axolotl limb regeneration. First, we measured the gene
237 expression of axolotl *il6* and *il8* in tissue isolated from regenerating axolotl at the early stages of
238 regeneration (timepoints of 0h, 6h, 24h, 48h, 96h) and at three major stages of limb regeneration
239 (i.e. the early, medium and late bud stage) (Figure 2A). Intriguingly, *il8* was significantly
240 upregulated within the first 48 hours of regeneration and remained elevated throughout the
241 medium and late bud stage (Figure 2B). In contrast, *il6* was upregulated within 96 hours (Figure
242 2B) and remained elevated only through the early bud stage.

243

244 We then assessed cGAS activity and found elevated levels of 2'3'-cGAMP only during
245 the early bud stage of limb regeneration (Figure 2C). Similar to the gar regenerative blastema,
246 we did not observe significant changes in the expression of axolotl *cgas* or *sting* during the 4
247 days of wound healing or at the different limb bud stages (Figure 2D). Since the axolotl genome
248 does not encode *plex9.1* or *pml* paralogs (Mathavarajah et al., 2023), we next examined the
249 expression of axolotl Trex1, which suppresses axolotl cGAS-STING as in mammals (Figure 2E)
250 (2). We observed a significant and immediate ~48-fold decrease in *Trex1* gene expression in the
251 blastema within 6 hours of limb removal, with *Trex1* expression only restored at the late bud
252 stage (Figure 2D). Collectively, these data indicate that during limb-fin regeneration, Trex1 and
253 Pml, appear to be downregulated to promote type I IFN signalling during regeneration in axolotl
254 and gar, respectively.

255

256

257 *Plex9 enzymes have elevated expression in the cardiac tissue of aged fish*

258

259 The Plex9.1 enzyme is also capable of suppressing cGAS-STING (Mathavarajah et al.,
260 2023); however, we did not observe significant changes in Plex9.1 expression during gar
261 regeneration. Therefore, we sought to determine if Plex9.1 may be differentially regulated to
262 influence cGAS-STING signalling in another biological process, such as aging. During aging,
263 the cGAS-STING pathway promotes SASP and inflammatory cytokine expression that underlies
264 cellular senescence (Hui Yang et al., 2017). However, since the spotted gar is collected from
265 wild spawns, we used the laboratory spawned and maintained zebrafish model for comparing
266 young versus elderly fish. Another experimental advantage of the zebrafish and other teleost
267 fishes is a lack of orthologs for either Pml and Trex1 (Mathavarajah et al., 2023), making it an
268 ideal model to observe *plex9.1* gene expression and its impact on cGAS-STING activity without
269 overlapping contributions of Pml and Trex1 to cGAS suppression.

270

271 Zebrafish Plex9.1 expression is highest in the adult heart (data not shown) and for that
272 reason, we used hearts from young and elderly zebrafish as our model for studying cGAS-
273 STING in senescence. When we examined the hearts of aged zebrafish for STING-dependent
274 immune signalling genes, we found elevated levels of *ifnphi1*, *il8* and *isg15* (Figure 3A).
275 Similarly, markers of senescence such as *p21* and *p53* were also upregulated in the hearts of
276 elderly fish (Figure 3B). In addition, γ H2AX, a cellular senescence marker, is upregulated in the

277 elderly fish cardiomyocytes (Figure 3C). When we examined cGAS activity in hearts from
278 young versus aged zebrafish, we found significantly increased levels of 2'3'-cGAMP in the
279 hearts from aged animals (Figure 3D). However, we did not observe changes in either *cgasa* or
280 *sting1* expression relative to age (Figure 3E), and we could not detect any *cgasb* expression in
281 cardiac tissue. In contrast, we did observe a ~68-fold drop in *plex9.1* expression between the
282 young and aged zebrafish hearts (Figure 3E).

283
284

285 *Pml, plex9.1 and Trex1 are downregulated in response to 2'3'-cGAMP*

286

287 Since spotted gar *pml* and axolotl *Trex1* expression is reduced during the early stages of
288 fin and limb regeneration, and zebrafish *plex9.1* expression is reduced in the cardiac tissue of
289 aged zebrafish, we hypothesized that 2'3'-cGAMP may play a feedback role in controlling the
290 expression of these suppressors of cGAS-STING. To address this hypothesis, we employed cell
291 culture models derived from gar, axolotl and zebrafish (GARL, AL-1 and ZKS cells,
292 respectively) to decipher which stimuli alter *pml*, *Trex1* and *plex9.1* expression. We transfected
293 cells with 2'3'-cGAMP at low (100 ng) and high (2 μ g) concentrations to activate the cGAS-
294 STING pathway and examined gene expression of the exonucleases. We found that in gar,
295 axolotl and zebrafish cells, *pml*, *Trex1* and *plex9.1* gene expression (respectively) decreased in
296 response to low 2'3'-cGAMP levels (Figure 3F). However, at higher concentration of 2'3'-
297 cGAMP, the expression of all three enzymes significant increased. This increase in exonuclease
298 expression at higher 2'3'-cGAMP concentrations, however, did not correspond to further changes
299 in the expression of interferon or senescence-associated genes from each species (Supplementary
300 Figure 1). Thus, 2'3'-cGAMP levels and therefore resulting the activity of cGAS, directly
301 impacts the gene expression of *pml*, *Trex1* and *plex9.1*.

302 We also further examined if the cGAMP response we observed was cell intrinsic or had a
303 paracrine signalling component in the three species. For these experiments, we focused on
304 *interleukin 8 (Il8)* expression as it was significantly upregulated in response to aging and
305 regeneration across the three species, and in response to low dose 2'3'-cGAMP treatment
306 (Supplementary Figure 2). Consistent with a paracrine component to the cGAMP response,
307 conditioned media from transfected cells when applied to naïve untreated cells, induced a
308 significant increase in *Il8* expression in the gar, zebrafish and axolotl cells (Supplementary
309 Figure 2). There was no significant difference between incubation with conditioned media and
310 transfection with 2'3'-cGAMP for zebrafish and axolotl (Supplementary Figure 1). However,
311 while we observed a ~15-fold increase in *il8* expression in response to cGAMP treatment in gar
312 cells, conditioned media elicited an attenuated but significant increase of only ~5 fold
313 (Supplementary Figure 2). Although the reason for the reduced *il8* induction in gar cells treated
314 with conditioned media is unclear, we do note that gar cells are grown at room temperature
315 which we speculate may affect secretion of paracrine factors.

316

317 **Discussion**

318

319 The spotted gar was recently shown to be capable of regenerating its caudal fin after
320 amputation to the endoskeleton (Darnet et al., 2019). In axolotl, a similar regenerative blastema
321 is associated with activation of innate immune signalling (Darnet et al., 2019), however, it is
322 unclear whether activation of innate immune signalling in regenerative blastema is conserved

323 across species. We found that the early stage of regenerative blastema in the spotted gar and
324 axolotl share similarities in the transcriptional changes that promote STING-dependent immune
325 signalling during regeneration. Specifically, Il-6 and Il-8, two key cytokines expressed in
326 response to STING activation are upregulated in both gar and axolotl regenerative blastema
327 (Figure 1 and 2). Il-8 was recently shown to be essential for axolotl limb regeneration (Tsai et al.,
328 2019), and IL-6 is a well-established factor involved in mammalian liver regeneration, which has
329 been shown to also be involved in fin regeneration in axolotl and bichir (Streetz, Luedde, Manns, &
330 Trautwein, 2000). Therefore, there is conserved reprogramming of regenerative blastema
331 towards a highly active innate immune signalling state in the early stages of spotted gar fin
332 regeneration, similar to what has been observed in other species capable of regeneration.
333

334 The similar upregulation of both in early gar fin regeneration seen in the current study
335 suggests that STING activity is increased by cells at the site of injury is a conserved program
336 across bony vertebrates, which corresponds to an increase in 2'3'-cGAMP as we observed in gar
337 blastema (Figure 2). However, while not examined in the current study, it is possible that the
338 downregulation of exonucleases could impact other DNA-based sensors in the cytoplasm. This
339 could include AIM2 that promotes inflammatory signalling via the inflammasome after sensing
340 (Motwani et al., 2019). In addition, sensing of RNA could also influence this process as the RNA
341 sensor RIG-I has been shown to promote type I IFN signalling during intestinal regeneration in
342 mice (Fischer et al., 2015). While we establish cGAS as a contributing factor to limb-fin
343 regeneration, more work is required to understand how these other sensors could also be
344 involved in vertebrate tissue regeneration.
345

346 IFN genes likely arose in the earliest jawed vertebrates, as these genes are present in
347 extant cartilaginous and bony fish (Redmond, Zou, Secombes, Macqueen, & Dooley, 2019).
348 Paralogous genes representing all three IFN subgroups (I-III) can be found in the spotted gar
349 genome (Braasch et al., 2016). In a gar cell line, IFNc1 but not IFNb paralogs are upregulated in
350 response to viral mimicry using poly (I:C) treatment that activates IFN gene expression via the
351 retinoic acid inducible gene I (RIG-I) pattern recognition receptor and the mitochondrial antiviral
352 signalling protein (MAVS) (F. Liu et al., 2019). However, here, both IFNc1 and IFNb are
353 expressed in the regenerative blastema, which is regulated by cGAS activation (Figure 1). Thus,
354 in gar it appears that IFNc1 responds to both viral mimicry and fin damage, whereas IFNb
355 expression is specific to wound healing and cGAS activation. In the future, it will be of interest
356 to determine if these differences in IFN gene regulation can be exploited to further explore the
357 evolutionary conservation of specialized innate immune responses to different cell stresses (viral
358 infection, DNA damage, wound healing) and their corresponding pattern recognition receptors in
359 early jawed vertebrates.
360

361 In fishes, the cGAS-STING pathway has been shown to play an important role in their
362 antiviral and antibacterial immune responses (de Oliveira Mann et al., 2019; Z. F. Liu et al.,
363 2020; Sellaththurai et al., 2023). Our results extend these observations to the conservation of
364 cGAS-STING function in tissue regeneration and aging. Moreover, we also provide the first data
365 regarding the regulation of key suppressors of cGAS (Pml, Trex1 and Plex9.1) in jawed
366 vertebrates during wound healing and aging. Specifically, during ray-finned fish and amphibian
367 fin and limb regeneration, we demonstrate that the expression of *pml*, *Trex1* and *plex9.1* is tied to
368 the activity of cGAS, providing a potential feedback mechanism to potentiate or dampen

369 downstream IFN and senescence gene regulation (Figure 3). Importantly, our study demonstrates
370 that in diverse bony vertebrates the cellular response to tissue damage or aging appears to rely on
371 the initial downregulation of suppressor exonucleases, to promote cGAS-STING signalling.
372

373 Another important element of these conserved responses to tissue damage and aging, is
374 the contribution of specific cell types to inflammatory signalling during injury and regeneration.
375 Although there is little published work on *plex9.1* and *pml* regarding tissue level expression in
376 zebrafish and gar, we did find that *Trex1* is specifically expressed in the epithelial cells of
377 different axolotl tissues (Ye et al., 2022). Thus, it appears that epithelial cells are likely important
378 players in initiating inflammatory signalling through cGAS-STING within damaged tissues, but
379 generalization of these data to other species requires further study.
380

381 We also observe that key cytokines involved in inflamming (i.e. IL6 and IL8) are
382 upregulated in our aquatic vertebrate models during both tissue regeneration (Figure 1 and 2) and
383 aging (Figure 3). The secretion of cGAMP-stimulated factors contributes to induction of
384 interferon and senescencerelated genes in the cell lines derived from the different animals
385 (Supplementary Figure 2). This is consistent with the fact that a significant number of cells at
386 the site of injury senesce (H. Li et al., 2021). These cells are then cleared by macrophages after
387 their recruitment (H. Li et al., 2021). In addition, recent work on axolotl limb regeneration has
388 revealed that senescent cells create a pro-proliferative niche for progenitor cell expansion and
389 blastema outgrowth (Yu et al., 2022). Thus, cGAS-STING activation and cGAS suppressor
390 downregulation during regeneration promotes cell senescence while simultaneously creating an
391 environment primed for immune cell recruitment and tissue remodelling.
392

393 Previous work identified *plex9.1* among the downregulated genes during cardiomyocyte
394 regeneration akin to *pml* during gar caudal fin regeneration (Wu et al., 2015). We observe that
395 ray-finned fish *plex9.1*, which functions akin to tetrapod *Trex1* (Mathavarajah et al., 2023) is
396 also downregulated in the hearts of aged zebrafish, which correlates to elevated cGAS activity
397 (Figure 3). This is consistent with *Plex9.1* playing a potentially important role in maintaining
398 cardiac function in teleost fish during aging, as previous work found that mice lacking *Trex1*
399 exhibit severe inflammatory myocarditis, cardiomyopathy and eventually circulatory failure
400 (Morita et al., 2004; Stetson, Ko, Heidmann, & Medzhitov, 2008). Thus, the reduced expression
401 of cGAS suppressor enzymes likely contributes to normal biological aging and senescence across
402 different bony vertebrate species (De Cecco et al., 2019; H. Yang, H. Wang, J. Ren, Q. Chen, &
403 Z. J. Chen, 2017). The de-repression of retroelements also occurs during aging and can activate
404 cGAS (De Cecco et al., 2019). For example, LINE-1 retroelements were recently shown to
405 promote the senescence associated secretory phenotype through the activation of cGAS-STING
406 (De Cecco et al., 2019). Previously, we have demonstrated that *Pml*, *Trex1* and *Plex9.1*
407 collectively suppress LINE retroelements as an exonuclease-independent function to limit cGAS
408 activation (Mathavarajah et al., 2023). Considering that cardiac tissue from older zebrafish had
409 higher levels of 2'3'-cGAMP, coupled with a decrease in cGAS-suppressor *plex9.1* expression,
410 the activation of cGAS-STING in senescent cells seems to be a conserved pathologic process in
411 vertebrates.

412 In the future, we anticipate that the comparative biomedical investigation of aquatic
413 vertebrate model systems such as the gar, zebrafish and axolotl will provide a useful
414 experimental paradigm for studying the co-evolution of endogenous retroelements and the genes

415 that suppress their pathological consequences during development, regenerative wound healing
416 and aging.

417

418 **Funding**

419

420 This work was funded by Discovery Grants from the Natural Sciences and Engineering Research
421 Council of Canada [NSERC, RGPIN 2020-04034 to G.D; and RGPIN-2022-03150 to T.A.Q.];
422 G.D. is a senior scientist of the Beatrice Hunter Cancer Research Institute (BHCRI); S.M. is a
423 trainee in the Cancer Research Training Program of the BHCRI, with funds provided by
424 GIVETOLIVE and The Linnea Veinotte Memorial Graduate Studentship. S.M. is also supported
425 by a Nova Scotia Graduate Scholarship, a Killam Doctoral Award and a Dalhousie University's
426 Presidents Award. Gar work is supported by NIH [R01OD011116]; NSF EDGE program award
427 [2029216 to I.B.].

428

429 **Acknowledgements**

430

431 We would like to thank Dr. David Stachura (California State University, Chico) and Dr. Neils C.
432 Bols (University of Waterloo) for the gift of zebrafish and gar cell lines (respectively). We also
433 thank Brett Racicot (Michigan State University) for spotted gar husbandry and facility
434 management.

435

436

References

1. Ablasser, A., Hemmerling, I., Schmid-Burgk, J. L., Behrendt, R., Roers, A., & Hornung, V. (2014). TREX1 deficiency triggers cell-autonomous immunity in a cGAS-dependent manner. *The Journal of Immunology*, 192(12), 5993-5997.
2. Alibardi, L. (2017). Hyaluronic acid in the tail and limb of amphibians and lizards recreates permissive embryonic conditions for regeneration due to its hygroscopic and immunosuppressive properties. *Journal of Experimental Zoology Part B: Molecular and Developmental Evolution*, 328(8), 760-771. doi:<https://doi.org/10.1002/jez.b.22771>
3. Andrade, B., Jara-Gutierrez, C., Paz-Araos, M., Vazquez, M. C., Diaz, P., & Murgas, P. (2022). The Relationship between Reactive Oxygen Species and the cGAS/STING Signaling Pathway in the Inflammaging Process. *Int J Mol Sci*, 23(23). doi:10.3390/ijms232315182
4. Braasch, I., Gehrke, A. R., Smith, J. J., Kawasaki, K., Manousaki, T., Pasquier, J., ... & Postlethwait, J. H. (2016). The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. *Nature genetics*, 48(4), 427-437.
5. Brockes, J. P., & Gates, P. B. (2014). Mechanisms underlying vertebrate limb regeneration: lessons from the salamander. *Biochem Soc Trans*, 42(3), 625-630. doi:10.1042/BST20140002
6. Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., ... Wittwer, C. T. (2009). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. *Clin Chem*, 55(4), 611-622. doi:10.1373/clinchem.2008.112797
7. Chernyavskaya, Y., Mudbhary, R., Zhang, C., Tokarz, D., Jacob, V., Gopinath, S., ... Sadler, K. C. (2017). Loss of DNA methylation in zebrafish embryos activates retrotransposons to trigger antiviral signaling. *Development*, 144(16), 2925-2939. doi:10.1242/dev.147629
8. Darnet, S., Dragalzew, A. C., Amaral, D. B., Sousa, J. F., Thompson, A. W., Cass, A. N., ... Schneider, I. (2019). Deep evolutionary origin of limb and fin regeneration. *Proc Natl Acad Sci U S A*, 116(30), 15106-15115. doi:10.1073/pnas.1900475116
9. De Cecco, M., Ito, T., Petrushen, A. P., Elias, A. E., Skvir, N. J., Criscione, S. W., ... Sedivy, J. M. (2019). L1 drives IFN in senescent cells and promotes age-associated inflammation. *Nature*, 566(7742), 73-78. doi:10.1038/s41586-018-0784-9
10. de Oliveira Mann, C. C., Orzalli, M. H., King, D. S., Kagan, J. C., Lee, A. S. Y., & Kranzusch, P. J. (2019). Modular Architecture of the STING C-Terminal Tail Allows Interferon and NF-κappaB Signaling Adaptation. *Cell Rep*, 27(4), 1165-1175 e1165. doi:10.1016/j.celrep.2019.03.098
11. Fischer, J. C., Bscheider, M., Eisenkolb, G., Wintges, A., Lindemans, C. A., Heidegger, S., ... & Poeck, H. (2015). RIG-I-induced type I IFNs promote regeneration of the intestinal stem cell compartment during acute tissue damage. *Blood*, 126(23), 3072.
12. Denis, J. F., Sader, F., Ferretti, P., & Roy, S. (2015). Culture and transfection of axolotl cells. *Methods Mol Biol*, 1290, 187-196. doi:10.1007/978-1-4939-2495-0_15
13. Dwaraka, V. B., & Voss, S. R. (2021). Towards comparative analyses of salamander limb regeneration. *J Exp Zool B Mol Dev Evol*, 336(2), 129-144. doi:10.1002/jez.b.22902
14. Garcia-Lepe, U. O., Cruz-Ramirez, A., & Bermudez-Cruz, R. M. (2021). DNA repair during regeneration in *Ambystoma mexicanum*. *Dev Dyn*, 250(6), 788-799. doi:10.1002/dvdy.276
15. Garcia-Lepe, U. O., Torres-Dimas, E., Espinal-Centeno, A., Cruz-Ramirez, A., & Bermudez-Cruz, R. M. (2022). Evidence of requirement for homologous-mediated DNA repair during *Ambystoma mexicanum* limb regeneration. *Dev Dyn*, 251(6), 1035-1053. doi:10.1002/dvdy.455
16. Ge, R., Zhou, Y., Peng, R., Wang, R., Li, M., Zhang, Y., ... Wang, C. (2015). Conservation of the STING-Mediated Cytosolic DNA Sensing Pathway in Zebrafish. *J Virol*, 89(15), 7696-7706. doi:10.1128/JVI.01049-15

484 17. Glück, S., Guey, B., Gulen, M. F., Wolter, K., Kang, T. W., Schmacke, N. A., . . . Ablasser, A. (2017).
485 Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence.
486 *Nat Cell Biol*, 19(9), 1061-1070. doi:10.1038/ncb3586

487 18. Godwin, J. W., Pinto, A. R., & Rosenthal, N. A. (2013). Macrophages are required for adult
488 salamander limb regeneration. *Proc Natl Acad Sci U S A*, 110(23), 9415-9420.
489 doi:10.1073/pnas.1300290110

490 19. Goss, R. J., & Holt, R. (1992). Epimorphic vs. tissue regeneration in *Xenopus* forelimbs. *Journal of*
491 *Experimental Zoology*, 261(4), 451-457. doi:<https://doi.org/10.1002/jez.1402610412>

492 20. Hopfner, K.-P., & Hornung, V. (2020). Molecular mechanisms and cellular functions of cGAS-
493 STING signalling. *Nature reviews Molecular cell biology*, 21(9), 501-521.

494 21. Leibowitz, B. J., Zhao, G., Wei, L., Ruan, H., Epperly, M., Chen, L., . . . Yu, J. (2021). Interferon b
495 drives intestinal regeneration after radiation. *Sci Adv*, 7(41), eabi5253.
496 doi:10.1126/sciadv.abi5253

497 22. Li, H., Wei, X., Zhou, L., Zhang, W., Wang, C., Guo, Y., . . . Xu, X. (2021). Dynamic cell transition
498 and immune response landscapes of axolotl limb regeneration revealed by single-cell analysis.
499 *Protein Cell*, 12(1), 57-66. doi:10.1007/s13238-020-00763-1

500 23. Li, T., & Chen, Z. J. (2018). The cGAS-cGAMP-STING pathway connects DNA damage to
501 inflammation, senescence, and cancer. *Journal of Experimental Medicine*, 215(5), 1287-1299.

502 24. Lin, F., Tang, Y. D., & Zheng, C. (2022). The crosstalk between DNA damage response
503 components and DNA-sensing innate immune signaling pathways. *Int Rev Immunol*, 41(2), 231-
504 239. doi:10.1080/08830185.2021.1898605

505 25. Liu, F., Bols, N. C., Pham, P. H., Secombes, C. J., & Zou, J. (2019). Evolution of IFN subgroups in
506 bony fish - 1:Group I-III IFN exist in early ray-finned fish, with group II IFN subgroups present in
507 the Holostean spotted gar, *Lepisosteus oculatus*. *Fish & Shellfish Immunology*, 95, 163-170.
508 doi:<https://doi.org/10.1016/j.fsi.2019.10.032>

509 26. Liu, Z. F., Ji, J. F., Jiang, X. F., Shao, T., Fan, D. D., Jiang, X. H., . . . Shao, J. Z. (2020).
510 Characterization of cGAS homologs in innate and adaptive mucosal immunities in zebrafish gives
511 evolutionary insights into cGAS-STING pathway. *FASEB J*, 34(6), 7786-7809.
512 doi:10.1096/fj.201902833R

513 27. Maekawa, H., Inoue, T., Ouchi, H., Jao, T.-M., Inoue, R., Nishi, H., . . . Tanaka, Y. (2019).
514 Mitochondrial damage causes inflammation via cGAS-STING signaling in acute kidney injury. *Cell*
515 *reports*, 29(5), 1261-1273. e1266.

516 28. Mathavarajah, S., Salsman, J., & Dellaire, G. (2019). An emerging role for calcium signalling in
517 innate and autoimmunity via the cGAS-STING axis. *Cytokine Growth Factor Rev*, 50, 43-51.
518 doi:10.1016/j.cytogfr.2019.04.003

519 29. Mathavarajah, S., Vergunst, K. L., Habib, E. B., Williams, S. K., He, R., Maliougina, M., . . . Dellaire,
520 G. (2023). PML and PML-like exonucleases restrict retrotransposons in jawed vertebrates.
521 *Nucleic Acids Res*. doi:10.1093/nar/gkad152

522 30. McCusker, C., Bryant, S. V., & Gardiner, D. M. (2015). The axolotl limb blastema: cellular and
523 molecular mechanisms driving blastema formation and limb regeneration in tetrapods.
524 *Regeneration*, 2(2), 54-71.

525 31. McLaughlin, H. M. G., Rathbone, M. P., Liversage, R. A., & McLaughlin, D. S. (1983). Levels of
526 cyclic GMP and cyclic AMP in regenerating forelimbs of adult newts following denervation.
527 *Journal of Experimental Zoology*, 225(2), 175-185. doi:<https://doi.org/10.1002/jez.1402250202>

528 32. Morita, M., Stamp, G., Robins, P., Dulic, A., Rosewell, I., Hrvnak, G., . . . Barnes, D. E. (2004).
529 Gene-targeted mice lacking the Trex1 (DNase III) 3'-->5' DNA exonuclease develop inflammatory
530 myocarditis. *Mol Cell Biol*, 24(15), 6719-6727. doi:10.1128/MCB.24.15.6719-6727.2004

531 33. Morozzi, G., Rothen, J., Toussaint, G., De Lange, K., Westritschnig, K., Doelemeyer, A., . . .
532 Fornaro, M. (2021). STING regulates peripheral nerve regeneration and colony stimulating factor
533 1 receptor (CSF1R) processing in microglia. *iScience*, 24(12), 103434.
534 doi:10.1016/j.isci.2021.103434

535 34. Motwani, M., Pesiridis, S., & Fitzgerald, K. A. (2019). DNA sensing by the cGAS–STING pathway in
536 health and disease. *Nature Reviews Genetics*, 20(11), 657–674.

537 35. Ni, G., Ma, Z., & Damania, B. (2018). cGAS and STING: At the intersection of DNA and RNA virus-
538 sensing networks. *PLoS pathogens*, 14(8), e1007148.

539 36. Nogueira, A. F., Costa, C. M., Lorena, J., Moreira, R. N., Frota-Lima, G. N., Furtado, C., . . .
540 Schneider, I. (2016). Tetrapod limb and sarcopterygian fin regeneration share a core genetic
541 programme. *Nat Commun*, 7, 13364. doi:10.1038/ncomms13364

542 37. Redmond, A. K., Zou, J., Secombes, C. J., Macqueen, D. J., & Dooley, H. (2019). Discovery of All
543 Three Types in Cartilaginous Fishes Enables Phylogenetic Resolution of the Origins and Evolution
544 of Interferons. *Front Immunol*, 10, 1558. doi:10.3389/fimmu.2019.01558

545 38. Reuter, H., Perner, B., Wahl, F., Rohde, L., Koch, P., Groth, M., . . . Englert, C. (2022). Aging
546 Activates the Immune System and Alters the Regenerative Capacity in the Zebrafish Heart. *Cells*,
547 11(3). doi:10.3390/cells11030345

548 39. Schmitz, C. R. R., Maurmann, R. M., Guma, F., Bauer, M. E., & Barbe-Tuana, F. M. (2023). cGAS-
549 STING pathway as a potential trigger of immunosenescence and inflammaging. *Front Immunol*,
550 14, 1132653. doi:10.3389/fimmu.2023.1132653

551 40. Sellaththurai, S., Jung, S., Kim, M. J., Nadarajapillai, K., Ganeshalingam, S., Jeong, J. B., & Lee, J.
552 (2023). CRISPR/Cas9-Induced Knockout of Sting Increases Susceptibility of Zebrafish to Bacterial
553 Infection. *Biomolecules*, 13(2). doi:10.3390/biom13020324

554 41. Simon, A., & Tanaka, E. M. (2013). Limb regeneration. *Wiley Interdiscip Rev Dev Biol*, 2(2), 291–
555 300. doi:10.1002/wdev.73

556 42. Sousounis, K., Bryant, D. M., Martinez Fernandez, J., Eddy, S. S., Tsai, S. L., Gundberg, G. C., . . .
557 Whited, J. L. (2020). Eya2 promotes cell cycle progression by regulating DNA damage response
558 during vertebrate limb regeneration. *eLife*, 9. doi:10.7554/eLife.51217

559 43. Stachura, D. L., Reyes, J. R., Bartunek, P., Paw, B. H., Zon, L. I., & Traver, D. (2009). Zebrafish
560 kidney stromal cell lines support multilineage hematopoiesis. *Blood*, 114(2), 279–289.
561 doi:10.1182/blood-2009-02-203638

562 44. Stetson, D. B., Ko, J. S., Heidmann, T., & Medzhitov, R. (2008). Trex1 prevents cell-intrinsic
563 initiation of autoimmunity. *Cell*, 134(4), 587–598. doi:10.1016/j.cell.2008.06.032

564 45. Stocum, D. L. (1979). Stages of forelimb regeneration in *Ambystoma maculatum*. *Journal of
565 Experimental Zoology*, 209(3), 395–416. doi:https://doi.org/10.1002/jez.1402090306

566 46. Stoyek, M. R., Rog-Zielinska, E. A., & Quinn, T. A. (2018). Age-associated changes in electrical
567 function of the zebrafish heart. *Progress in Biophysics and Molecular Biology*, 138, 91–104.
568 doi:https://doi.org/10.1016/j.pbiomolbio.2018.07.014

569 47. Streetz, K. L., Luedde, T., Manns, M. P., & Trautwein, C. (2000). Interleukin 6 and liver
570 regeneration. *Gut*, 47(2), 309–312. doi:10.1136/gut.47.2.309

571 48. Susaki, Etsuo A., Tainaka, K., Perrin, D., Kishino, F., Tawara, T., Watanabe, Tomonobu M., . . .
572 Ueda, Hiroki R. (2014). Whole-Brain Imaging with Single-Cell Resolution Using Chemical Cocktails
573 and Computational Analysis. *Cell*, 157(3), 726–739. doi:10.1016/j.cell.2014.03.042

574 49. Thomas, C. A., Tejwani, L., Trujillo, C. A., Negraes, P. D., Herai, R. H., Mesci, P., . . . Muotri, A. R.
575 (2017). Modeling of TREX1-Dependent Autoimmune Disease using Human Stem Cells Highlights
576 L1 Accumulation as a Source of Neuroinflammation. *Cell Stem Cell*, 21(3), 319–331 e318.
577 doi:10.1016/j.stem.2017.07.009

578 50. Tomlinson, B. L., Tomlinson, D. E., & Tassava, R. A. (1985). Pattern-deficient forelimb
579 regeneration in adult bullfrogs. *Journal of Experimental Zoology*, 236(3), 313-326.
580 doi:<https://doi.org/10.1002/jez.1402360309>

581 51. Tsai, S. L., Baselga-Garriga, C., & Melton, D. A. (2019). Blastemal progenitors modulate immune
582 signaling during early limb regeneration. *Development*, 146(1), dev169128.

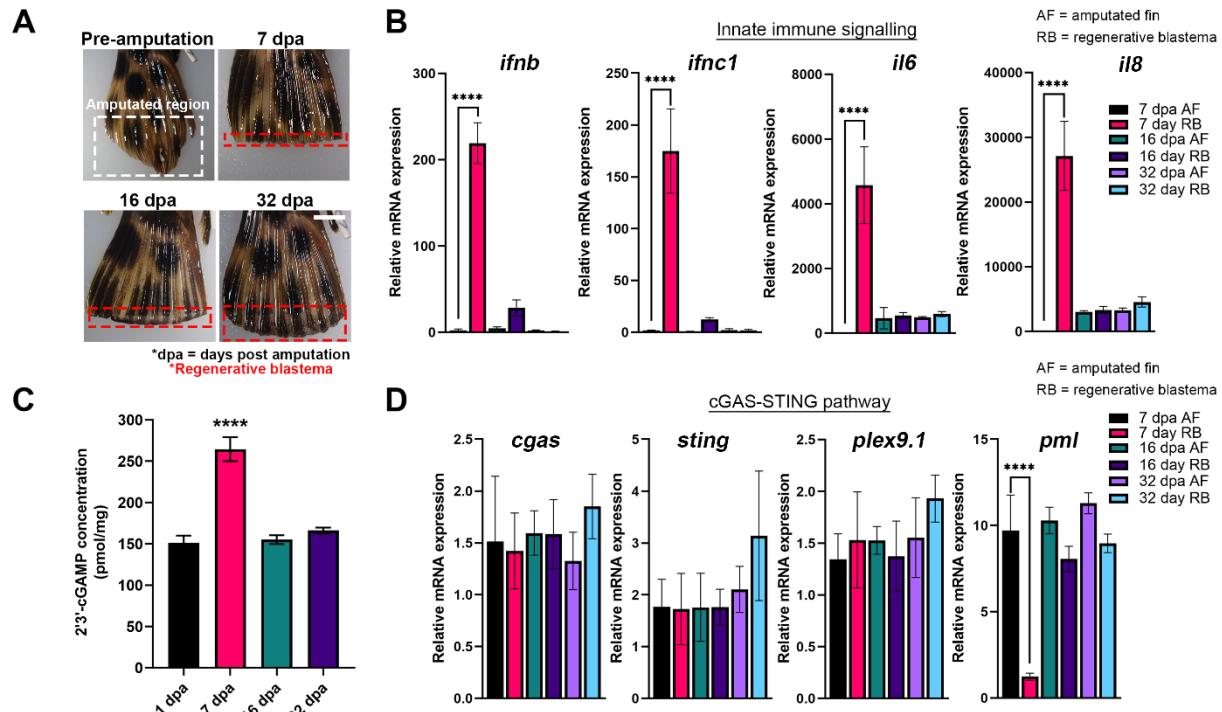
583 52. Wang, C., Nan, J., Holvey-Bates, E., Chen, X., Wightman, S., Latif, M. B., . . . Wang, Y. (2023).
584 STAT2 hinders STING intracellular trafficking and reshapes its activation in response to DNA
585 damage. *Proc Natl Acad Sci U S A*, 120(16), e2216953120. doi:10.1073/pnas.2216953120

586 53. Wang, X., Yang, C., Wang, X., Miao, J., Chen, W., Zhou, Y., . . . Liu, K. (2023). Driving axon
587 regeneration by orchestrating neuronal and non-neuronal innate immune responses via the
588 IFNgamma-cGAS-STING axis. *Neuron*, 111(2), 236-255 e237. doi:10.1016/j.neuron.2022.10.028

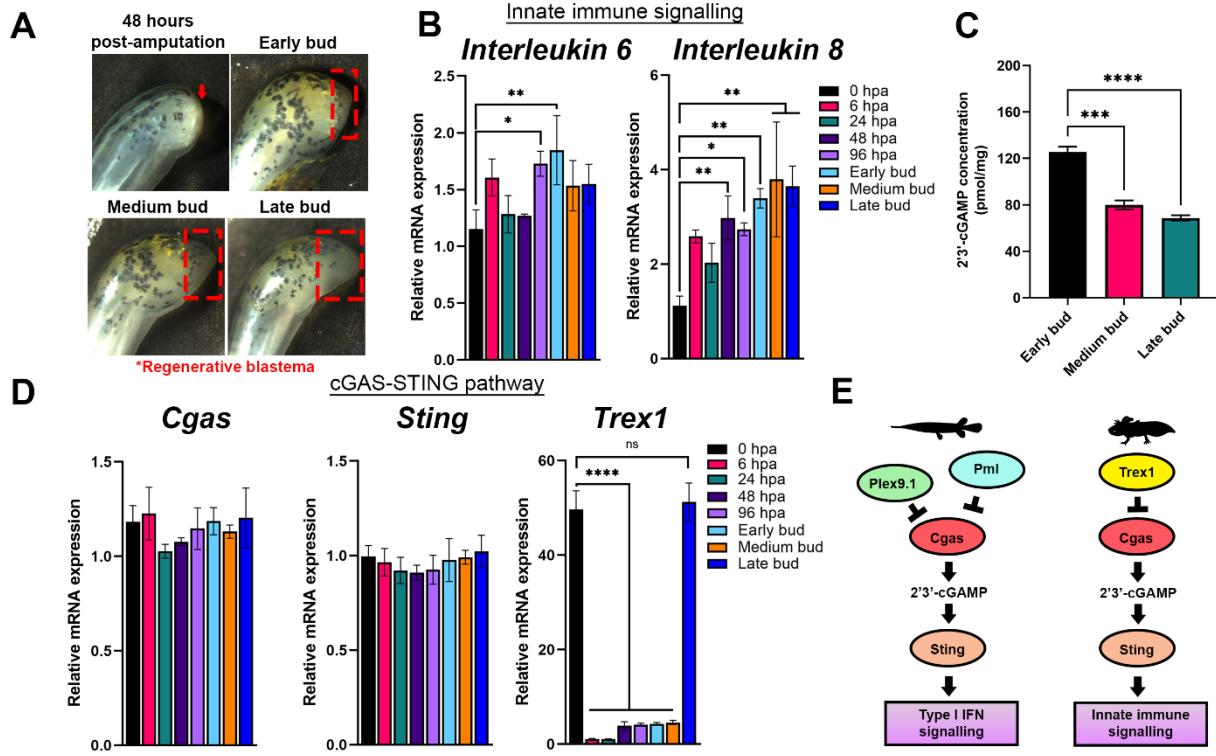
589 54. Wu, C. C., Kruse, F., Vasudevarao, M. D., Junker, J. P., Zebrowski, D. C., Fischer, K., . . . & Bakkers,
590 J. (2016). Spatially resolved genome-wide transcriptional profiling identifies BMP signaling as
591 essential regulator of zebrafish cardiomyocyte regeneration. *Developmental cell*, 36(1), 36-49.

592 55. Yang, H., Wang, H., Ren, J., Chen, Q., & Chen, Z. J. (2017). cGAS is essential for cellular
593 senescence. *Proceedings of the National Academy of Sciences*, 114(23), E4612-E4620.

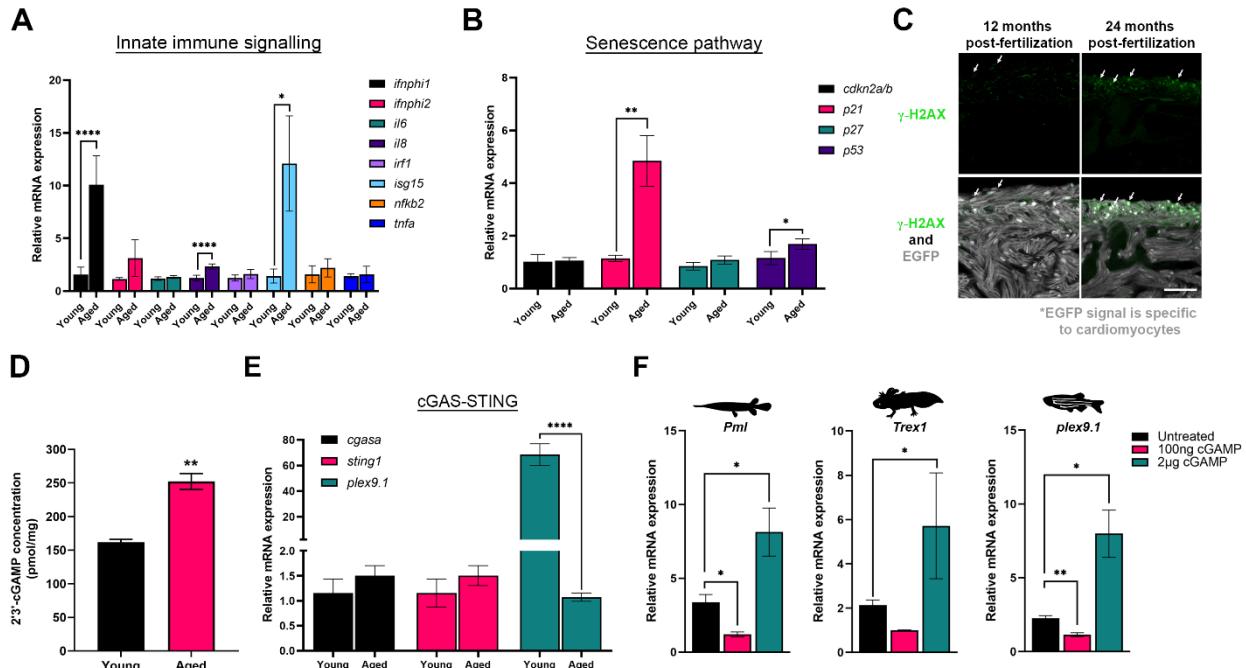
594 56. Yang, H., Wang, H., Ren, J., Chen, Q., & Chen, Z. J. (2017). cGAS is essential for cellular
595 senescence. *Proc Natl Acad Sci U S A*, 114(23), E4612-E4620. doi:10.1073/pnas.1705499114


596 57. Ye, F., Zhang, G., E, W., Chen, H., Yu, C., Yang, L., . . . & Guo, G. (2022). Construction of the axolotl
597 cell landscape using combinatorial hybridization sequencing at single-cell resolution. *Nature
598 Communications*, 13(1), 4228.

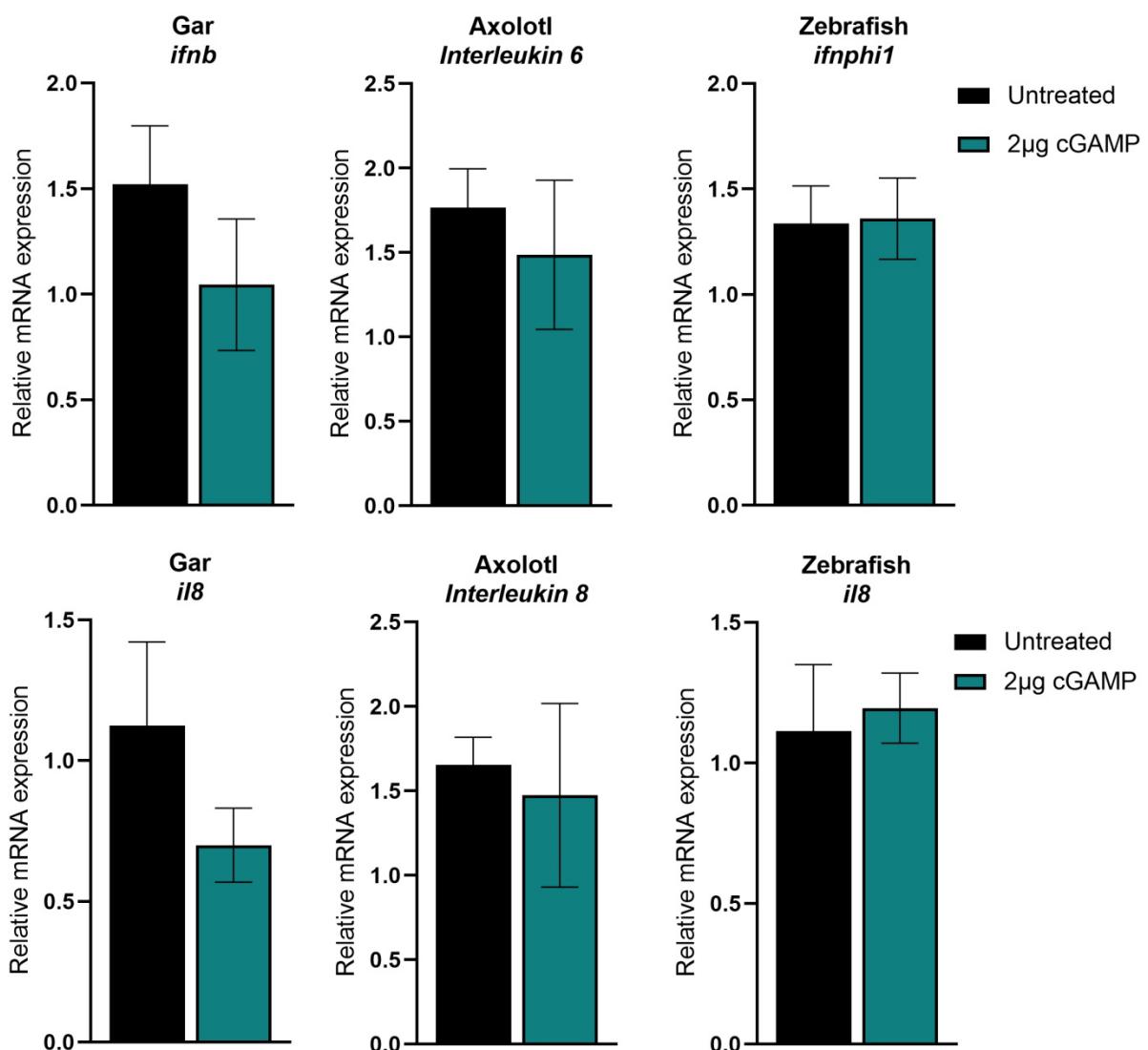
599 58. Yu, Q., Walters, H. E., Pasquini, G., Singh, S. P., León-Periñán, D., Petzold, A., . . . Yun, M. H.
600 (2022). Cellular senescence modulates progenitor cell expansion during axolotl limb
601 regeneration. *bioRxiv*, 2022.2009.2001.506196. doi:10.1101/2022.09.01.506196


602
603
604

605
606
607


Figures

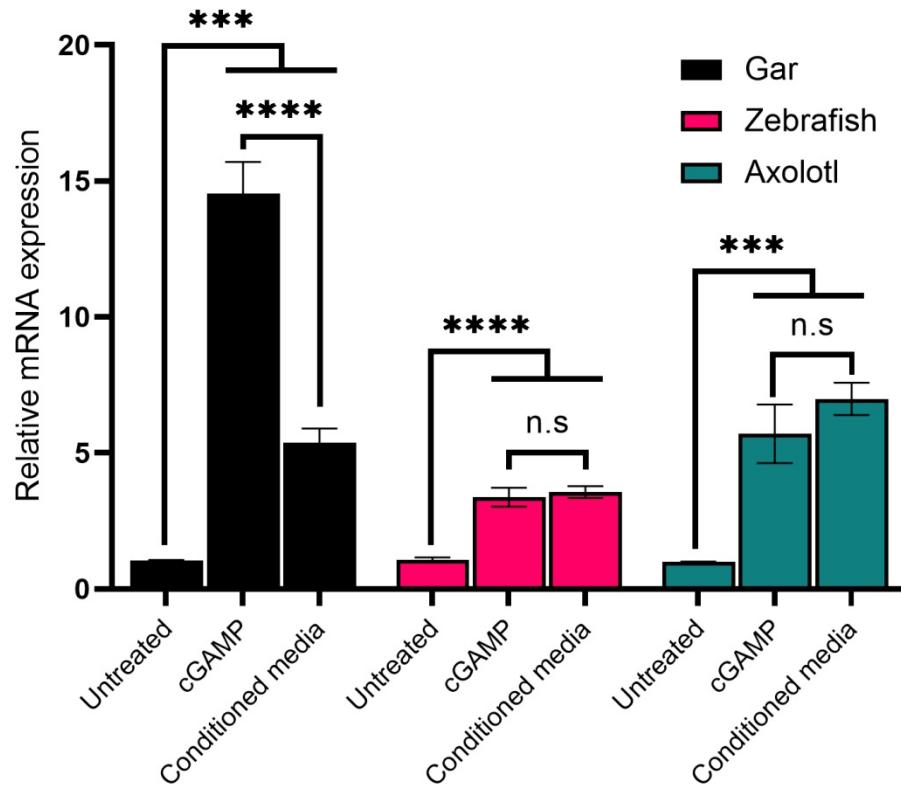
608
609 **Figure 1. Early-stage gar regenerative blastema transition into a pro-inflammatory state**
610 with elevated cGAS activity. **(a)** Spotted gar caudal fins were amputated and regeneration was
611 observed over a 32-day period, with regenerative blastema being collected at the indicated
612 timepoints for molecular analysis. Scale bar indicates 1 cm **(b)** Interferons and Interleukins are
613 upregulated in blastema at 7dpa before returning to baseline levels (n=3). Gene expression of
614 *ifnb*, *ifnc1*, *il6* (Interleukin 6), and *il8* (Interleukin 8-like) was assessed and significantly different
615 from the original amputated fin (AF) only a 7 dpa. **(c)** 2'3'-cGAMP levels are elevated
616 specifically at 7dpa in regenerative blastema. 2'3'-cGAMP concentrations were determined from
617 the same caudal fins used for RNA isolation. **(d)** Gene expression analysis of cGAS-STING
618 pathway orthologs in gar indicate that *pml* is downregulated to facilitate immune signalling via
619 the cGAS-STING axis. Variation between groups was assessed with a one-way ANOVA, with
620 Tukey's post-hoc analysis for pairwise comparison between groups. ****p < 0.0001
621


Figure 2. Trex1 is downregulated in the limb regenerative blastema of axolotl. (a) Axolotl limbs were amputated at the level of zeugopod and regeneration was observed at different stages of limb regeneration. (b) An increase in the expression of interleukin 6 (*Il6*) and interleukin 8 (*Il8*) was observed in the early stages of axolotl limb regeneration. Blastema from the regenerating limb was isolated within the first 96 hours and then at three different stages of limb regeneration (early, medium and late bud). (c) 2'3'-cGAMP levels are elevated in the early bud of the regenerating axolotl limb. 2'3'-cGAMP concentrations were determined from the same axolotl regenerative blastema used for RNA isolation. (d) Gene expression analysis of the cGAS-STING pathway orthologs in axolotl indicate that *Trex1* is downregulated during the stages of regeneration where cGAS activity is elevated. (e) Comparison of the cGAS-STING pathway in the spotted gar and axolotl. Variation between groups was assessed with a one-way ANOVA, with Tukey's post-hoc analysis for pairwise comparison between groups. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001

637
638

Figure 3. cGAMP is elevated in hearts from elderly zebrafish and regulates the expression of *pml*, *Trex1*, and *plex9.1*. (a,b) Gene expression analysis of zebrafish hearts from young and aged cohorts shows differences in innate immune signalling markers (a) and senescence markers (b). (c) γ -H2AX foci, a marker of senescence are present in a greater abundance of cells in the hearts of elderly zebrafish. Myocytes were visualized using a *tg(myl7:eGFP)* reporter that the transgenic animals express. Scale bar is 50 μ m. (d) cGAS activity is elevated in the elderly zebrafish. 2'3'-cGAMP concentrations were determined from individual hearts isolated from young and aged zebrafish. (e) Gene expression analysis of the cGAS-STING pathway orthologs in axolotl indicate that *plex9.1* expression is reduced in hearts from aged zebrafish. *cgasb* expression could not be detected in the zebrafish heart samples. (f) Treating cell lines derived from gar (GARL), axolotl (AL1) and zebrafish (ZKS) with cGAMP altered expression of the different cGAS suppressors. Gene expression in zebrafish hearts was compared with an unpaired, two-tailed Student's t-test (two-tailed). Variations between treatment groups was assessed with a one-way ANOVA, with Tukey's post-hoc analysis for pairwise comparisons between treatments.
*p < 0.05, **p < 0.01, ****p < 0.0001

653
654

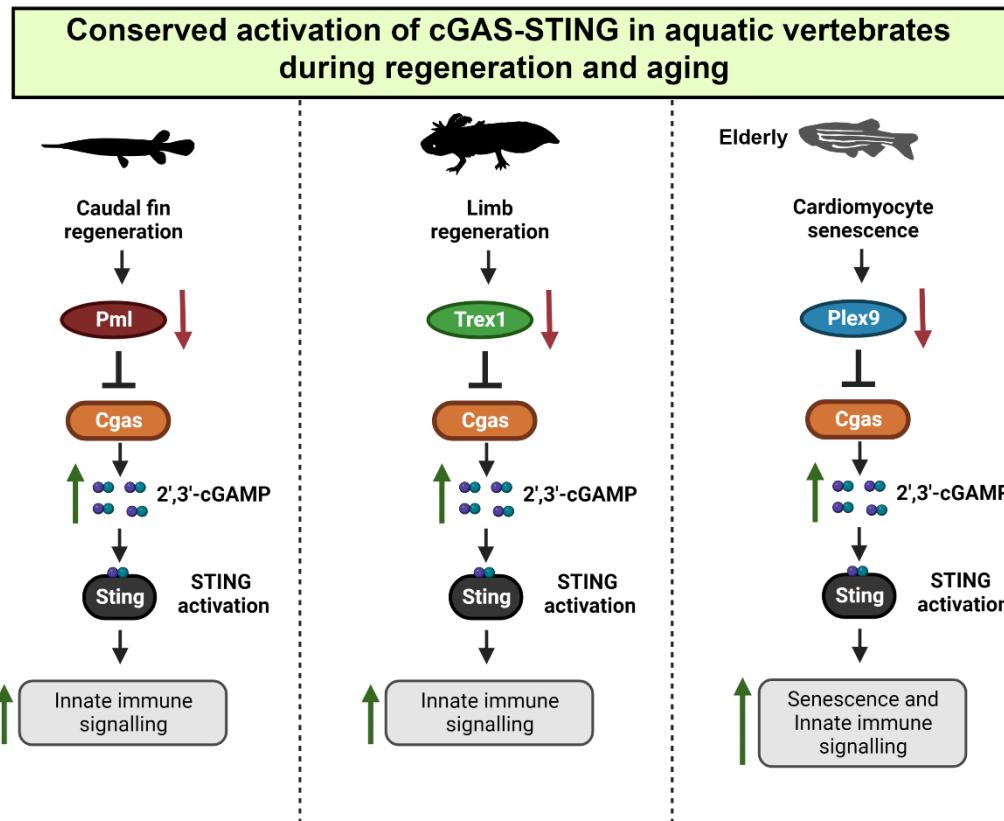


655

656 **Supplementary Figure 1. High levels of cGAMP transfection does not impact basal**
 657 **interferon and senescence-related gene expression.** Gene expression analysis of different
 658 interferon and senescence-associated genes in gar, axolotl, and zebrafish cell lines after
 659 transfection with a high amount of 2'3'-cGAMP (2 μg). Gene expression was compared with an
 660 unpaired, two-tailed Student's t-test (two-tailed).

661

Interleukin 8



662
663 **Supplementary Figure 2. Conditioned media from cGAMP treated cells induces the**
664 **upregulation of interleukin 8.** Gene expression analysis of interleukin 8 orthologs in gar,
665 axolotl and zebrafish cell lines after transfection with 2'3'-cGAMP (100 ng) or with conditioned
666 media from transfected cells. The conditioned media was obtained from each cell line 48 hours
667 after 2'3'-cGAMP transfection and added to naïve cells with fresh media (1:1 ratio), then
668 expression was analyzed 24 hours post-treatment. Variation between groups was assessed with a
669 one-way ANOVA, with Tukey's post-hoc analysis for pairwise comparison between groups.
670 ***p < 0.0001, ***p < 0.001

671

672

673

674

675 **Graphical abstract**

1 **Suppressors of cGAS-STING are downregulated during fin-limb
2 regeneration and aging in aquatic vertebrates**

3
4 **Sabateeshan Mathavarajah¹, Andrew W. Thompson^{2,3,4}, Matthew R. Stoyek⁵, T. Alexander
5 Quinn^{5,6}, Stéphane Roy⁷, Ingo Braasch^{3,4}, Graham Dellaire^{*1,8}**

6
7 ¹Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada

8 ²Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA.

9 ³Department of Integrative Biology, Michigan State University, East Lansing, MI, USA.

10 ⁴Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA.

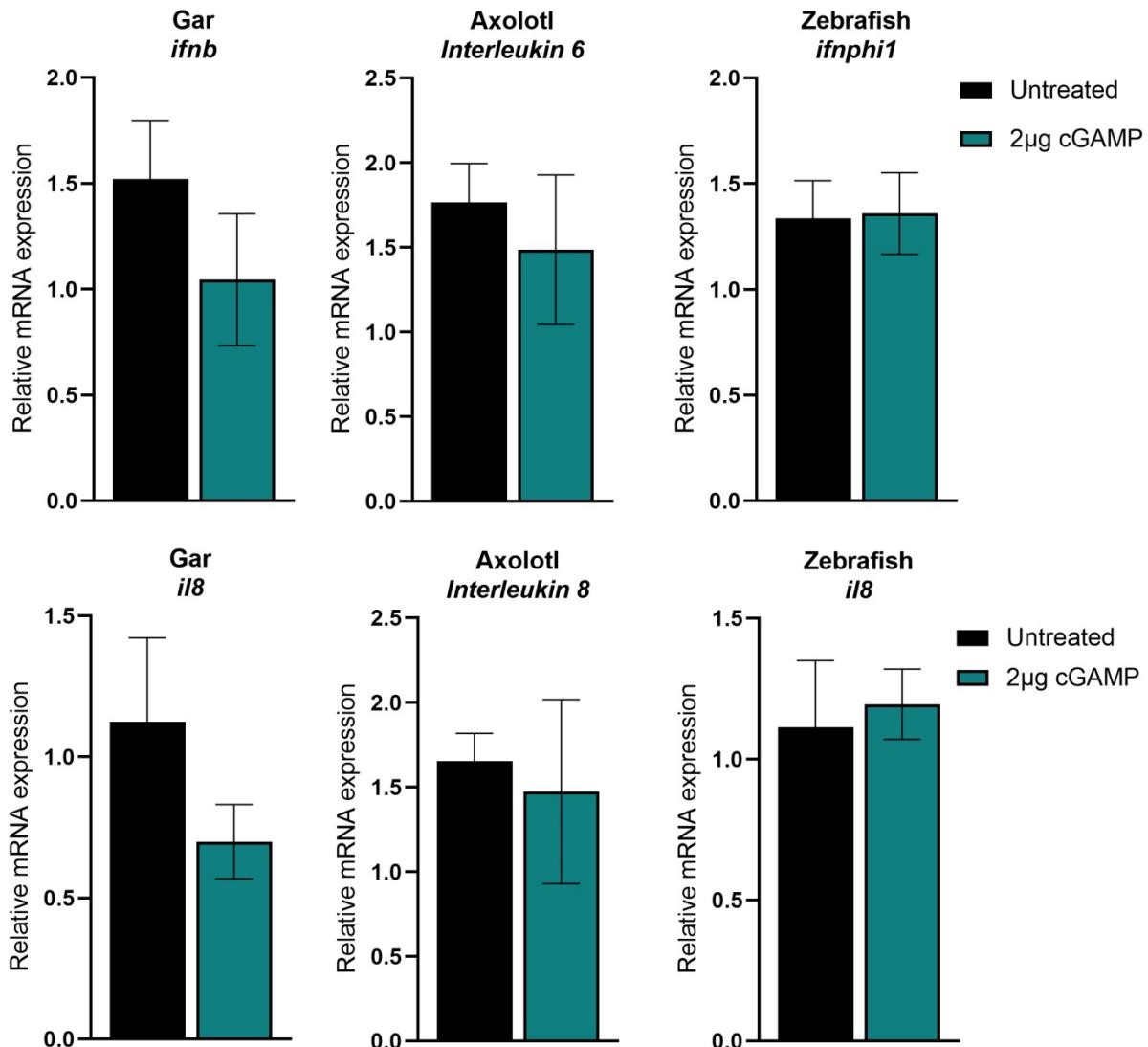
11 ⁵Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada

12 ⁶School of Biomedical Engineering, Dalhousie University, Halifax, Canada

13 ⁷Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, QC,
14 Canada.

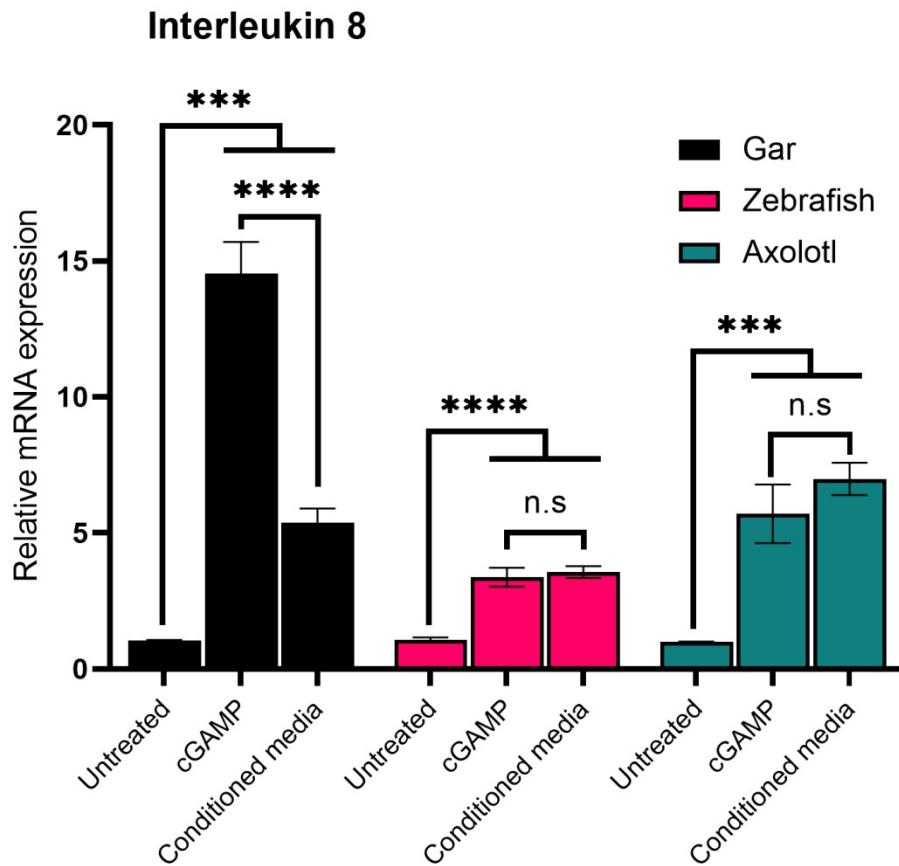
15 ⁸Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada

16
17
18
19
20 *Corresponding authors:


21 Dr. Graham Dellaire

22 Department of Pathology and Department of Biochemistry and Molecular Biology

23 Halifax, Nova Scotia, Canada


24 dellaire@dal.ca

1 **Supplementary Material**

2 **Supplementary Figure 1. High levels of cGAMP transfection does not impact basal**
3 **interferon and senescence-related gene expression.** Gene expression analysis of different
4 interferon and senescence-associated genes in gar, axolotl, and zebrafish cell lines after
5 transfection with a high amount of 2'3'-cGAMP (2 μg). Gene expression was compared with an
6 unpaired, two-tailed Student's t-test (two-tailed).

7

Supplementary Figure 2. Conditioned media from cGAMP treated cells induces the upregulation of interleukin 8. Gene expression analysis of interleukin 8 orthologs in gar, axolotl and zebrafish cell lines after transfection with 2'3'-cGAMP (100 ng) or with conditioned media from transfected cells. The conditioned media was obtained from each cell line 48 hours after 2'3'-cGAMP transfection and added to naïve cells with fresh media (1:1 ratio), then expression was analyzed 24 hours post-treatment. Variation between groups was assessed with a one-way ANOVA, with Tukey's post-hoc analysis for pairwise comparison between groups. ***p < 0.0001, **p < 0.001.

****p < 0.0001, ***p < 0.001

25 **Supplementary Table 1**

26

27 **qPCR Primers**

Species	Gene	Forward Sequence 5'-3'
Zebrafish	<i>cgasa</i>	GGCTACAGACCTCCCATAACAA
	<i>sting1</i>	CGTGTCAAAGCTAATTCAAGATGT
	<i>plex9.1</i>	CAGTGGATCACGAGCGGTAA
	<i>p53</i>	GATGGTGAAGGACGAAGGAA
	<i>p21</i>	AACGCTGCTACGAGACGAAT
	<i>p27</i>	TGAAGCCTGGAACCTCGACT
	<i>cdk2na/b</i>	TGAACGTCGAGGATGAAGTG
	<i>irf1b</i>	TGAAATCATGCCGTGTCCA
	<i>tnfa</i>	ATGAAGCTTGAGAGTCGGGC
	<i>isg15</i>	AGAAGGGCCAGGTCAAAACT
	<i>ifnphi1</i>	AGAATGTGTGGCAAGATCCAC
	<i>ifnphi2</i>	ACTTGAGAGTATGGCGGTC
	<i>il6</i>	TCAACTTCTCCAGCGTGTATG
	<i>il8</i>	GAAAGCCGACGCATTGGAAA
	<i>nfkb2</i>	TGGCTGGAGCACTAAGGATG
	<i>actb1</i>	TTCACCACCACAGCCGAAAGA
	<i>rplp0</i>	CTGAACATCTCGCCCTTCTC
Spotted gar	<i>plex9.1</i>	ACAAAGACCGCGAATAAGAATTAA
	<i>pml</i>	TGGAGACCACAGGATTGGATCT
	<i>cgas</i>	GTTGGCCATCTGCACCAAA
	<i>sting</i>	ATGGGGTTATGTGACCCTGC
	<i>il6</i>	CGCAGGTTACAGCTCTCCTC
	<i>il8</i>	CCGTTGAAGTCATTGCGCTT
	<i>ifnb</i>	AGACAGCTAAAATGCCAAGAACG
	<i>ifnc1</i>	CTTACCGATGGCTCGCAGAATG
	<i>actb1</i>	GAAATTGCCGCACTGGTTGT
Axolotl	<i>gapdh</i>	CTTCAGGGTTCCCACTCCC
	<i>cgas</i>	GATAGCGGCTGGTAGTTCCC
	<i>sting</i>	GTTCTCCCTGTTCCCTTCC
	<i>trex1</i>	TAGCTGAAGGTATGGCCCT
	<i>gapdh</i>	TTGTCCTACGTGTGCTGTCTGT
	<i>rpl4</i>	TGAAGAACTTGAGGGTCATGG
	<i>il8</i>	CCAGAGAGAGCAGGCAAATGG
	<i>il6</i>	ATGCCAGCCCAGTCCAGACT

28

Reverse Sequence 5'-3'
CAGCTTGCACGGTGAACCTT
AGCAACGGCCAGAGTAAGAA
GAGACGCTCCCTCCGTTATG
AAATGACCCCTGTGACAAGC
CGCAAACAGACCAACATCAC
TGTGAATATCGGAGCCCTTC
AAGGTGCGTTACCCATCATC
TACCTGTGTGAATGGCCCAC
CCTGGGTCTTATGGAGCGTG
CGAGCTGTCTGCCTTGAAA
CCTTGCCTTGCTTGCATG
TCCGGATAACTGTCGTTGGC
TCTTCCCTTTCCCTCCTG
TTAACCCATGGAGCAGAGGG
CCTCTCTGCTTGGCTCCTC
TACCGCAAGATTCCATACCCA
TAGCCGATCTGCAGACACAC
CCACTTACAGCGGACAAC TG
ACTGGCTCTGAGTGCAGAAG
ATTGCCATGCATCTTGC
TACCCGGTGTAGAAGGACCA
GGCTGGCTAAGCACTCTCT
AGTTGTTCCCCGTTCACTTT
TCATTCGCTCCCTGCGCAA
TGTCCGATTCCCTCAGAGC
ATACCAACCATCACACCCCTGG
AGTCGGATGAGACGACCTGG
CGGGGTCCAGGAGTCTTTC
GGTTATCCAATCGTCACGCC
ACCCTCTACCACGTACCTCC
TCACACAGTGCCAAGATAAGTGT
CTTGGCGTCTGCAGATTTTT
CACACAGAACCGACCGACCA
TGCCAGGGACTCGTATTTGGT