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Abstract—Natural control of limb motion is continuous and
progressively adaptive to individual intent. While intuitive
interfaces have the potential to rely on the neuromuscular input
by the user for continuous adaptation, continuous volitional
control of assistive devices that can generalize across various
tasks has not been addressed. In this study, we propose a
method to use spatiotemporal ultrasound features of the rectus
femoris and vastus intermedius muscles of able-bodied
individuals for task-invariant learning of continuous knee
kinematics during steady-state and transient ambulation. The
task-invariant learning paradigm was statistically evaluated
against a task-specific paradigm for the steady-state (1) level-
walk, (2) incline, (3) decline, (4) stair ascent, and (5) stair
descent ambulation tasks. The transitions between steady-state
stair ambulation and level-ground walking were also
investigated. It was observed that the continuous knee
kinematics can be learned using a task-invariant learning
paradigm with statistically comparable accuracy to a task-
specific paradigm. Statistical analysis further revealed that
incorporating the temporal ultrasound features significantly
improves the accuracy of continuous estimations (p < 0.05). The
average root mean square errors (RMSEs) of knee angle and
angular velocity estimation were 7.06° and 53.1°%sec,
respectively, for the task-invariant learning compared to 6.00°
and 51.8%sec for the task-specific models. High accuracy of
continuous task-invariant paradigms overcome the barrier of
task-specific control schemes and motivate the implementation
of direct volitional control of lower-limb assistive devices using
ultrasound sensing, which may eventually enhance the
intuitiveness and functionality of these devices towards a “free
form” control approach.

I. INTRODUCTION

Mobility problems affect the quality of life of an
estimated 877 million people in the world [1]. For instance,
individuals with a lower-limb amputation need to spend 30-
60% higher metabolic energy compared to able-bodied
individuals walking at the same speed, depending on the
level of amputation [2]. Lower-limb assistive devices have
the potential to enhance function of these individuals during
activities of daily living; yet, up to 40% of the users of
lower-limb prostheses report difficulty in controlling their
prosthesis [3], [4]. Hence, an intuitive control behavior is
still required to achieve seamless integration of human and
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assistive devices.

Lower-limb assistive devices are often controlled using
finite-state machines or pattern-recognition algorithms [4],
where there are several controllers responsible for different
segments of a gait cycle and tasks , and pattern-recognition
is used to switch between the underlying controllers [4], [5].
While this control scheme has enabled the use of assistive
devices for ambulation on various surfaces [6], it is
inherently different from the natural control of human
ambulation by the nervous system. Natural limb movements
are fluid and continuously adapting to individual intent.
Therefore, biologically inspired methods are required to
facilitate intuitive volitional control of lower-limb assistive
devices that can continuously adapt to the user’s intent.

Intuitive human-machine interfaces for direct volitional
control of assistive devices have the potential to address
these limitations by continuously responding to the
neuromuscular signals of the user [6], resembling a more
natural behavior. For instance, direct myoelectric control has
been investigated for continuous control during level
walking [7], stair ambulation [8], non-weight-bearing knee
flexion-extension [9], and postural control [10]. Transtibial
amputees have further shown the ability to adapt their
locomotor function to alter the mechanics of a prosthetic
ankle under continuous myoelectric control [11]. Therefore,
intuitive interfaces that respond to neural input by the user
provide the possibility for an approach that can be
generalized across various tasks, including steady-state and
transient ambulation as well as unstructured movements.

Ultrasound sensing has recently emerged as an intuitive
interface that can access human neuromuscular information
by measuring muscle activation and contraction [12], [13].
Kinetic and kinematic ultrasound features of muscle have
been shown to correlate to muscle function and joint motion
[12], [14]; hence, they may be used for continuous
estimation of cyclic and volitional movements. Rabe et al.
successfully demonstrated the potential of transverse
ultrasound images of the quadriceps for continuous
estimation of knee angular velocity, as well as hip, knee, and
ankle moments during steady-state treadmill ambulation
[15], [16]. Longitudinal ultrasound features of muscle have
been used for continuous estimation of human ankle moment
[17], [18]; and to estimate and predict the knee kinematics,
both during non-weight-bearing volitional movements [19],
[20]. Based on the promise shown by ultrasound sensing as
an intuitive interface for continuous estimation of motion,
more investigation towards an approach that can eventually
generalize across various tasks is desirable.
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Here, we present a novel method to encode spatiotemporal
longitudinal ultrasound features of the rectus femoris (RF)
and vastus intermedius (VI) muscles within a task-invariant
learning paradigm for continuous estimation of steady-state
and transient ambulation kinematics. We hypothesize that
spatiotemporal ultrasound features of the proximal muscles
can be used for task-invariant learning of the knee joint
kinematics with an accuracy that is comparable to a task-
specific learning paradigm.

II. MATERIALS AND METHODS

A. Subjects and Experiment

Seven healthy able-bodied individuals participated in the
present study (4 males, 3 females; mean (SD) age: 29.6
(12.2) years). Dynamic anatomical data of the subjects,
including joint movements, were recorded using a Vicon
motion capture system that tracked the spatial location of the
reflective markers located on the lower limbs, pelvis, and
trunk of the individuals (spatial accuracy: +0.142 mm). A
custom 3D printed ultrasound probe holder was placed
longitudinally over the RF muscle of the non-dominant leg,
Fig. 1a. Ultrasound images of the RF and VI muscles were
captured using a handheld wearable ultrasound device
(Lonshine Technologies, China), Fig. 1b. Standard B-mode
ultrasound images were collected with a sampling rate of 20
Hz in real-time using a transmit frequency of 7.5 MHz and a
dynamic range of 50 dB. A custom software interface was
used to stream the frames to a computer in real-time and
timestamp each frame with a resolution of 1 ms.

The participants walked on an instrumented treadmill
(Bertec, OH, USA), simulating level, and 10° incline or
decline walking. Subjects completed one-minute trial for
each task. Each subject chose a comfortable walking speed
before the start of data collection; therefore, treadmill speed
varied for different subjects. The mean (SD) speed of the
treadmill during the three different tasks was: 1) level-walk:

37 mm N

60 mm

(a) (b)
Fig. 1. (a) Experimental setup on a human subject. 3D printed probe holder
was placed over the rectus femoris (RF) muscle of the non-dominant leg.
(b) Sample longitudinal ultrasound image highlighting the RF and vastus
intermedius (VI) muscles.

0.76 (0.09) m/s, 2) incline: 0.59 (0.07) m/s, and 3) decline:
0.56 (0.06) m/s.

Five stair ambulation trials were performed on a 4-step
staircase where the subjects were instructed to start with
over ground walking, take one stride of level walking, and
then transition to stair ambulation with the leading leg of
their choice. Subjects were asked to perform two repetitions
of a 4-stair ascent followed by a 4-stair descent with the
reciprocal gait during each trial, for a total of ten 4-stair
ascents and ten 4-stair descents per subject. The heel-strike
and toe-off events were identified within Visual3D software
(C-Motion, MD, USA) and the gait events specific to the
stair transition strides were marked for further analysis. The
mean (SD) number of strides during each ambulation task
are as follows, level-walk: 40.7 (4.1), incline: 37.7 (6.4),
decline: 41.7 (3.1), steady-state stair ascent: 12.6 (L.8),
transient stair ascent: 7.4 (1.8), steady-state stair descent:
14.8 (2.2), and transient stair descent 5.2 (2.2).

B. Spatiotemporal Ultrasound Features

Ultrasound echogenicity has been shown to correlate with
muscle contraction and joint motion [14]. Therefore,
ultrasound images can be used to create time-intensity
features of the muscle which could be used as predictors of
the motion [21]. The thickness of muscle aponeuroses has
been determined to vary between 1-3 mm [22]; hence, the
mean image intensity of 3 mm x 3 mm kernels was extracted
from each ultrasound frame to create a feature set consisting
of n values, where # is the number of kernels per frame. The
feature set was further reshaped into a »xl column
representing time-intensity features of the superficial muscle
tissue at the top and the features of deep muscle tissue at the
bottom. To grasp the contribution of temporal information
from the sequence of ultrasound images during a gait cycle,
the time-derivative of the intensity features was calculated
between every consecutive frame pairs. Hereafter, we refer
to these time-derivatives as temporal features. Figures 2a
and 2b illustrate the progression of the intensity and
temporal features across the gait cycle of a representative

High
Echogenicity

Depth (mm)

Low

50 00
Echogenicity

(a) % Gait (b) % Gait

Fig. 2. The progression of the (a) intensity and (b) temporal ultrasound
features of the RF and VI muscles during the level walking gait of a sample
subject. The features are averaged across 1 min of walking strides.
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subject, respectively, where each pixel column represents the
ultrasound features at a certain time point.

C. Motion Estimation: Task-Specific vs Task-Invariant

The ultrasound feature sets were used to investigate the
feasibility of continuous task-invariant learning of knee
kinematics during the steady-state and transient ambulation
trials. Gaussian Process Regression (GPR) models with a
quadratic kernel were trained using the ultrasound intensity
and temporal features as predictors to continuously estimate
the kinematics of the knee joint as the target variables based
on two different task-specific and task-invariant learning
paradigms. Task-specific learning was achieved by training
a GPR model for each specific task. Conversely, a single
GPR model was trained using all ambulation tasks during
the task-invariant learning. Additionally, all models were
trained with and without temporal features. The trained
models were then evaluated using a leave-N-strides-out
cross-validation, where 5-6 consecutive strides of the
treadmill trials were left out for testing during each round of
cross-validation (~20% of all the strides). In the case of stair
ambulation, a leave-one-trial-out scheme was used during
each round of cross-validation (20% of all the repetitions).

Both task-specific and task-invariant models were tested
separately on the steady-state stair strides as well as the
walk-to-stair and stair-to-walk transition strides.

The overall effect of the learning paradigm and the effect
of temporal features on the accuracy of estimation were
statistically evaluated using the repeated-measures two-way
analysis of variance (ANOVA) test. Multiple posthoc
comparisons were performed to statistically compare each
condition, and the p-values were adjusted using a Bonferroni
correction for multiple comparisons (a = 0.05).

III. RESULTS

A. Learning Knee Kinematics during Ambulation

The root mean square error (RMSE) of continuous task-
specific and task-invariant learning of the knee joint
kinematics was evaluated for level walking, incline walking,
decline walking, stair ascent and stair descent. For stair
ascent and stair descent trials, both steady-state and
transition strides were included for estimation of overall
performance. Overall, the average RMSEs of knee angle and
angular velocity estimation across tasks and subjects were
7.06 (1.29)° and 53.1 (8.1)°/sec for the task-invariant

TABLE L MEAN (SD) RSME (DEG) OF KNEE ANGLE ESTIMATION ACROSS AMBULATION TASKS AND LEARNING PARADIGMS
Task: Level Incline Decline Stair Ascent Stair Descent
Feature Set: Intensity | Temporal ¢ | Intensity | Temporal¢ | Intensity | Temporal© | Intensity | Temporal¢ | Intensity | Temporal ¢
Task-Specific | 4.9 (0.5) 4.0 (0.9) 3.8(0.7) 2.7 (0.6) 4.6 (1.0) 3.8(0.5) 11.5(2.3) 9.8(2.2) 12.4(2.5) | 11.6(2.8)
Task-Invariant| 5.2 (1.1) 4.7 (1.0) 40(1.1) | 350.7)° | 54(1.D)° | 44(0.7) 12.5(3.1) | 10.7(2.7) | 13.7(29)*| 12.1(3.0)

“and ® indicate p < 0.05 and p < 0.01 for the significant effect of the learning paradigm on the RMSE of estimations, respectively. ¢and ¢ indicate p < 0.05 and p < 0.01 for the main significant effect
associated with incorporating the temporal features for training, respectively.
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Fig. 3. Continuous estimation of the knee joint angle based on the task-specific (first row) and task-invariant (second row) learning paradigms. The dashed
black lines show the mean + 1 SD recorded trajectories and the solid colored lines show the predicted trajectories. The trajectories are averaged across all
subjects and the shaded areas represent mean + 1 SD.
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learning paradigm, respectively. These results were not
significantly different from the average RMSEs of 6.00
(1.62)° and 51.8 (9.2)°/sec for the task-specific models (p =
0.11 for angle and p = 0.66 for angular velocity estimations).

The first rows in Tables I and II show the RMSE of the
continuous task-specific estimation of the knee angle and
angular velocity, respectively. The second rows in Tables I
and II represent continuous task-invariant learning of the
ambulation kinematics. Additionally, the RMSEs of the
models trained with and without the temporal ultrasound
feature sets are shown side-by-side for each task. Statistical
analysis revealed that continuous task-invariant learning of
ambulation kinematics did not introduce a significant
difference in the RMSE of estimations (p = 0.12 for angle
estimation, and p = 0.66 for angular velocity estimation). It
was further discovered that including the temporal
ultrasound features of the muscle not only significantly
improved reduced the RMSE (p < 0.05) in comparison to
intensity features only, but also helped reduce the difference
between the RMSE of task-specific and task-invariant
learning models. Similarly, the first rows in Figs. 3 and 4
illustrate the continuous estimation of the knee joint angle
and angular velocity based on task-specific learning models.

Second rows in Figs. 3 and 4 show the continuous estimation
of ambulation kinematics using task-invariant learning
models. While there are a few points during the gait cycle
where the task-invariant learning does not perform as well as
the task-specific learning (e.g. at the very beginning of the
stair descent gait, Fig. 3), the estimations have similar
overall trends for all tasks when comparing the two learning
paradigms. In the case of stair ambulation, both steady-state
and transition strides were included for estimation of overall
performance; therefore, the standard deviation bands are
larger due to the higher stride-to-stride variability.

B. Effect of Transient Stair Ambulation on Task-Invariant
Learning

Tables III and IV report the RMSEs of the knee angle and
angular velocity estimations when evaluating transition and
steady-state strides separately, using each of the two learning
paradigms and ultrasound feature sets. Figure 5 illustrates
the continuous estimation of knee kinematics during the stair
ascent task averaged across all subjects. Data from the stair
descent task have not been shown for brevity. The strides
shown in Fig. 5 are time-normalized based on the gait
progression, where the walk-to-stair, steady-state, and stair-

TABLE II. MEAN (SD) RSME (DEG/S) OF KNEE ANGULAR VELOCITY ESTIMATION ACROSS AMBULATION TASKS AND LEARNING PARADIGMS
Task: Level Incline Decline Stair Ascent Stair Descent
Feature Set: Intensity Temporal Intensity Temporal Intensity Temporal Intensity | Temporal ¢ | Intensity Temporal
Task-Specific | 40.9 (7.5) | 36.8(7.5) | 29.8 (11.5) | 23.8(5.4) | 37.4(7.9) | 36.1(6.4) | 71.1(16.5) | 65.8 (16.2) [101.8 (22.2)| 96.3 (20.7)
Task-Invariant| 41.3 (6.8) | 42.8(6.3) | 25.8(3.2) | 26.7(4.8) | 423 (4.7) | 39.8(4.5) | 72.8 (15.6) | 63.1 (14.2) | 99.6 (18.9) | 92.9 (19.2)

dindicates p < 0.01 for the main significant effect associated with incorporating the temporal features for training.

Level Walk Incline Decline Stair Ascent Stair Descent

— 400 400 400 400 400

8

2
ol = 200 200 200 200 200
=1
5| 2
D X -
2l < of 0 0 0 0
©n| >
= B
S| 5p-200 -200 -200 -200 -200
==

<

3

5 400 -400 -400 -400 400

0 50 100 0 50 100 0 50 100 0 50 100

— 400 400 400 400 400

8

Eﬂ “\,
2| 2 200 200 200 200 200 AR
] e SN, A
o= = 7N \
= £ \
g 3 i =7\
5l & o 0 0 0 0~ 3
S| > /
- -
| E
&| 5200 -200 -200 -200 -200
| 2

8

N -400 -400 -400 -400 -400

0 50 100 0 50 100 0 50 100 0 50 100 0 50
% Gait % Gait % Gait % Gait % Gait

Fig. 4. Continuous estimation of the knee joint angular velocity based on the task-specific (first row) and task-invariant (second row) learning paradigms.
The dashed black lines show the mean = 1 SD recorded trajectories and the solid colored lines show the predicted trajectories. The trajectories are averaged
across all subjects and the shaded areas represent mean + 1 SD.
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to-walk strides are shown by [-100-0%], [0-100%], and
[100-200%], respectively. Interestingly, the combination of
using task-invariant learning models along with the temporal
ultrasound features consistently improved the estimation
accuracy of both joint angle and angular velocity during
transition strides, compared to the task-specific learning
paradigm (Tables III and IV). However, this effect was not
significant (p = 0.68).

IV. DISCUSSION

In this study, we demonstrated the feasibility of using the
spatiotemporal ultrasound features of muscle for the
continuous task-invariant learning of knee joint kinematics
during steady-state and transient ambulation. The task-
invariant learning paradigm demonstrated statistically
comparable performance to task-specific models during
various ambulation tasks, especially after the temporal
ultrasound features of the muscles were included for
training. However, it appears that letting the models learn
from the steady-state treadmill strides specifically improves
the continuous estimation of knee kinematics during
transient stair ambulation (Tables III and VI). This effect
was noticeable in the continuous knee angle estimation
during the first 50% of the walk-to-stair strides, where task-
invariant learning presented a more accurate estimation of
the knee angle compared to task-specific models (see Fig. 5).

Previous work on the volitional myoelectric control of a
knee prosthetic has shown RMSE of 6.2° for trajectory
tracking during non-weight-bearing flexion/extension
movements, compared to a RMSE of 5.2° for the intact knee
[9]. We have also shown in a previous work that an
ultrasound-based approach can continuously estimate the

TABLE IIL

knee joint kinematics with an RMSE of 7.45° during the
same movement [19]. Recently, Rai et al. proposed a mode-
free control method that can estimate the ankle joint angle
with an RMSE of 7° during level-walking and stair
ambulation [23]. However, their approach does not integrate
the neuromuscular signals from the user and requires
instrumentation of both lower limbs with inertial sensors.
Our proposed ultrasound-based approach improves upon
these works by addressing their limitations while
maintaining a mean RMSE of 7.06° for the task-invariant
learning of steady-state and transient ambulation kinematics.
While the task-invariant models fully capture the motion
trajectories regardless of the activity, they seem to fail to
capture the full range of motion during the knee swing
flexion of the steady-state stair ambulation (Figs. 3 and 5).
However, the task-invariant models still performed better
than the performance metrics threshold for smooth stair
ambulation by Azocar et al. [24]. They have shown that
knee-swing flexion angles of 71.9° and 70.5° are effective
for the reciprocal gait during stair ascent and descent,
respectively. Therefore, our ultrasound-based task-invariant
models with average estimated knee-swing flexions of 81.9°
for stair ascent and 79.0° for stair descent would still
maintain smooth reciprocal gait during stair ambulation.
Interestingly, task-invariant models did not have any trouble
learning the full range of motion during transition strides.

Effect of Temporal Ultrasound Features

While the task-invariant models trained using only the
ultrasound intensity features showed statistically comparable
performance to most task-specific models, including the
temporal ultrasound features within the task-invariant

MEAN (SD) RSME (DEG) OF KNEE ANGLE ESTIMATION DURING STEADY-STATE AND TRANSIENT STAIR AMBULATION

Task: Stair Ascent

Stair Descent

Walk-to-Stair Steady-State

Stair-to-Walk

Walk-to-Stair Steady-State Stair-to-Walk

Feature Set: | Intensity |Temporal ¢

Intensity |Temporal | Intensity |Temporal¢| Intensity [Temporal?| Intensity

Temporal | Intensity | Temporal

Task-Specific | 18.0 (5.2) | 14.5 (3.5)| 15.7 (1.6) | 13.0 2.0) | 14.5 (3.3)

13.6 (3.6)

18.4(6.5)| 172 82) [ 127 27| 11.6 2.1) | 15.5 (4.6) | 15.8 (4.9)

Task-Invariant| 17.2 (5.1)| 14.4 3.4)| 16.7 (1.8) | 142 2.3) [ 153 3.2)

13.1(3.2)

18.3(5.8) | 16.6 (6.6) [15.3 (3.5) "[12.9 (2.3)?| 17.4 (5.0) | 15.9 (4.8)

2and ® indicate p < 0.05 and p < 0.01 for the significant effect of the learning paradigm on the RMSE of estimations, respectively. ©and ¢ indicate p < 0.05 and p < 0.01 for the main significant effect

associated with incorporating the temporal features for training, respectively.

TABLE IV. MEAN (SD) RSME (DEG/S) OF KNEE ANGULAR VELOCITY ESTIMATION DURING STEADY-STATE AND TRANSIENT STAIR AMBULATION
Task: Stair Ascent Stair Descent
Walk-to-Stair Steady-State Stair-to-Walk Walk-to-Stair Steady-State Stair-to-Walk
Feature Set: | Intensity | Temporal | Intensity |Temporal¢| Intensity |Temporal¢| Intensity [Temporal¢| Intensity [Temporal ¢| Intensity | Temporal
Task-Specific [80.2 (21.5)]74.8 (22.6)|77.4 (21.4)[73.8 (17.9) (12183..73) 99.2 (31.1) (12288.'24) (12133.41) (12061..15) 95.5(21.8) (1212'33) (12039.'14)
Task-Invariant|79.4 (19.9)|74.4 (18.6)[78.3 (19.3)[70.9 (16.0) (121‘3'39) 95:2 £30'1) (;80)53 (13006.'28) (12033.'99) 94.6 (20.5) (110;'52) (11088.49)

#indicates p < 0.05 for the significant effect of the learning paradigm on the RMSE of estimations. ¢ and ¢ indicate p < 0.05 and p < 0.01 for the main significant effect associated with incorporating the

temporal features for training, respectively.
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mean + 1 SD recorded trajectories and the solid colored lines show the predicted trajectories. The trajectories are averaged across all subjects and the

shaded areas represent mean + 1 SD.

paradigm resulted in comparable performance for all
ambulation tasks. Moreover, incorporating the temporal
ultrasound features consistently narrowed the margin of
error between continuous estimation of the two learning
paradigms, and helped task-invariant models to outperform
their counterparts in the continuous estimation of transient
ambulation. This is consistent with previous studies that
have shown the positive effect of incorporating the time
history of neural and mechanical signals on the accuracy of
motion control and estimation during ambulation [25]-[27].

Limitations and Future Work

This study demonstrates the feasibility of an ultrasound-
based approach for the continuous task-invariant learning of
steady-state and transient ambulation using able-bodied
subjects. Future work needs to focus on translating the same
paradigm to the target populations for lower-limb assistive
devices, i.e. populations with mobility-related pathology or
limb-loss. While our approach demonstrated useful for
continuous transient ambulation, there are still some
common volitional activities such as sit-to-stand, non-
weight-bearing, and unstructured movements that need to be
incorporated within a task-invariant learning paradigm for a
truly “free form” control scheme. The positive effect of
incorporating the temporal features on the accuracy of task-
invariant learning suggests that the sequence-to-sequence
prediction models might prove particularly useful to encode
the spatiotemporal features of ultrasound data for the task-
invariant learning of continuous ambulation. Furthermore,
subject-specific models were trained for this study. While it
has been shown difficult to rely solely on neuromuscular
signals [15], [28] for a subject-independent approach, it may

be feasible to combine the temporal ultrasound features with
anatomically normalized intensity features to obtain the
desired performance based on a subject-independent
approach. Due to the high between-subject variability of the
neuromuscular  signals, partially  subject-independent
schemes with a larger sample size might be more feasible for
task-invariant learning of continuous volitional ambulation.

V. CONCLUSION

This study demonstrated the feasibility of using
spatiotemporal ultrasound features of the RF and VI muscles
for task-invariant learning of continuous knee kinematics
during various steady-state and transient ambulation tasks. It
was observed that the continuous joint kinematics can be
learned using a task-invariant paradigm with statistically
comparable accuracy to a task-specific paradigm. Statistical
analysis further revealed that incorporating the temporal
ultrasound features significantly improves the accuracy of
continuous estimations (p < 0.05). These results motivate the
future work toward using ultrasound sensing as an intuitive
interface for a more biologically inspired “free form” control
approach, and its implementation on lower-limb assistive
devices. Intuitive interfaces that can continuously respond to
the user’s intent may eventually enhance the -clinical
outcome and functionality of assistive devices.
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