
  

  

Abstract—Natural control of limb motion is continuous and 

progressively adaptive to individual intent. While intuitive 

interfaces have the potential to rely on the neuromuscular input 

by the user for continuous adaptation, continuous volitional 

control of assistive devices that can generalize across various 

tasks has not been addressed. In this study, we propose a 

method to use spatiotemporal ultrasound features of the rectus 

femoris and vastus intermedius muscles of able-bodied 

individuals for task-invariant learning of continuous knee 

kinematics during steady-state and transient ambulation. The 

task-invariant learning paradigm was statistically evaluated 

against a task-specific paradigm for the steady-state (1) level-

walk, (2) incline, (3) decline, (4) stair ascent, and (5) stair 

descent ambulation tasks. The transitions between steady-state 

stair ambulation and level-ground walking were also 

investigated. It was observed that the continuous knee 

kinematics can be learned using a task-invariant learning 

paradigm with statistically comparable accuracy to a task-

specific paradigm. Statistical analysis further revealed that 

incorporating the temporal ultrasound features significantly 

improves the accuracy of continuous estimations (p < 0.05). The 

average root mean square errors (RMSEs) of knee angle and 

angular velocity estimation were 7.06° and 53.1°/sec, 

respectively, for the task-invariant learning compared to 6.00° 

and 51.8°/sec for the task-specific models. High accuracy of 

continuous task-invariant paradigms overcome the barrier of 

task-specific control schemes and motivate the implementation 

of direct volitional control of lower-limb assistive devices using 

ultrasound sensing, which may eventually enhance the 

intuitiveness and functionality of these devices towards a “free 

form” control approach. 

I. INTRODUCTION 

Mobility problems affect the quality of life of an 

estimated 877 million people in the world [1]. For instance, 

individuals with a lower-limb amputation need to spend 30-

60% higher metabolic energy compared to able-bodied 

individuals walking at the same speed, depending on the 

level of amputation [2]. Lower-limb assistive devices have 

the potential to enhance function of these individuals during 

activities of daily living; yet, up to 40% of the users of 

lower-limb prostheses report difficulty in controlling their 

prosthesis [3], [4]. Hence, an intuitive control behavior is 

still required to achieve seamless integration of human and 
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assistive devices. 

Lower-limb assistive devices are often controlled using 

finite-state machines or pattern-recognition algorithms [4], 

where there are several controllers responsible for different 

segments of a gait cycle and tasks , and pattern-recognition 

is used to switch between the underlying controllers [4], [5]. 

While this control scheme has enabled the use of assistive 

devices for ambulation on various surfaces [6], it is 

inherently different from the natural control of human 

ambulation by the nervous system. Natural limb movements 

are fluid and continuously adapting to individual intent. 

Therefore, biologically inspired methods are required to 

facilitate intuitive volitional control of lower-limb assistive 

devices that can continuously adapt to the user’s intent. 

Intuitive human-machine interfaces for direct volitional 

control of assistive devices have the potential to address 

these limitations by continuously responding to the 

neuromuscular signals of the user [6], resembling a more 

natural behavior. For instance, direct myoelectric control has 

been investigated for continuous control during level 

walking [7], stair ambulation [8], non-weight-bearing knee 

flexion-extension [9], and postural control [10]. Transtibial 

amputees have further shown the ability to adapt their 

locomotor function to alter the mechanics of a prosthetic 

ankle under continuous myoelectric control [11]. Therefore, 

intuitive interfaces that respond to neural input by the user 

provide the possibility for an approach that can be 

generalized across various tasks, including steady-state and 

transient ambulation as well as unstructured movements. 

Ultrasound sensing has recently emerged as an intuitive 

interface that can access human neuromuscular information 

by measuring muscle activation and contraction [12], [13]. 

Kinetic and kinematic ultrasound features of muscle have 

been shown to correlate to muscle function and joint motion 

[12], [14]; hence, they may be used for continuous 

estimation of cyclic and volitional movements. Rabe et al. 

successfully demonstrated the potential of transverse 

ultrasound images of the quadriceps for continuous 

estimation of knee angular velocity, as well as hip, knee, and 

ankle moments during steady-state treadmill ambulation 

[15], [16]. Longitudinal ultrasound features of muscle have 

been used for continuous estimation of human ankle moment 

[17], [18]; and to estimate and predict the knee kinematics, 

both during non-weight-bearing volitional movements [19], 

[20]. Based on the promise shown by ultrasound sensing as 

an intuitive interface for continuous estimation of motion, 

more investigation towards an approach that can eventually 

generalize across various tasks is desirable. 
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Here, we present a novel method to encode spatiotemporal 

longitudinal ultrasound features of the rectus femoris (RF) 

and vastus intermedius (VI) muscles within a task-invariant 

learning paradigm for continuous estimation of steady-state 

and transient ambulation kinematics. We hypothesize that 

spatiotemporal ultrasound features of the proximal muscles 

can be used for task-invariant learning of the knee joint 

kinematics with an accuracy that is comparable to a task-

specific learning paradigm.  

II. MATERIALS AND METHODS 

A. Subjects and Experiment 

Seven healthy able-bodied individuals participated in the 

present study (4 males, 3 females; mean (SD) age: 29.6 

(12.2) years). Dynamic anatomical data of the subjects, 

including joint movements, were recorded using a Vicon 

motion capture system that tracked the spatial location of the 

reflective markers located on the lower limbs, pelvis, and 

trunk of the individuals (spatial accuracy: ±0.142 mm). A 

custom 3D printed ultrasound probe holder was placed 

longitudinally over the RF muscle of the non-dominant leg, 

Fig. 1a. Ultrasound images of the RF and VI muscles were 

captured using a handheld wearable ultrasound device 

(Lonshine Technologies, China), Fig. 1b. Standard B-mode 

ultrasound images were collected with a sampling rate of 20 

Hz in real-time using a transmit frequency of 7.5 MHz and a 

dynamic range of 50 dB. A custom software interface was 

used to stream the frames to a computer in real-time and 

timestamp each frame with a resolution of 1 ms. 

The participants walked on an instrumented treadmill 

(Bertec, OH, USA), simulating level, and 10º incline or 

decline walking. Subjects completed one-minute trial for 

each task. Each subject chose a comfortable walking speed 

before the start of data collection; therefore, treadmill speed 

varied for different subjects. The mean (SD) speed of the 

treadmill during the three different tasks was: 1) level-walk: 

0.76 (0.09) m/s, 2) incline: 0.59 (0.07) m/s, and 3) decline: 

0.56 (0.06) m/s.  

Five stair ambulation trials were performed on a 4-step 

staircase where the subjects were instructed to start with 

over ground walking, take one stride of level walking, and 

then transition to stair ambulation with the leading leg of 

their choice. Subjects were asked to perform two repetitions 

of a 4-stair ascent followed by a 4-stair descent with the 

reciprocal gait during each trial, for a total of ten 4-stair 

ascents and ten 4-stair descents per subject. The heel-strike 

and toe-off events were identified within Visual3D software 

(C-Motion, MD, USA) and the gait events specific to the 

stair transition strides were marked for further analysis. The 

mean (SD) number of strides during each ambulation task 

are as follows, level-walk: 40.7 (4.1), incline: 37.7 (6.4), 

decline: 41.7 (3.1), steady-state stair ascent: 12.6 (1.8), 

transient stair ascent: 7.4 (1.8), steady-state stair descent: 

14.8 (2.2), and transient stair descent 5.2 (2.2). 

B. Spatiotemporal Ultrasound Features 

Ultrasound echogenicity has been shown to correlate with 

muscle contraction and joint motion [14]. Therefore, 

ultrasound images can be used to create time-intensity 

features of the muscle which could be used as predictors of 

the motion [21]. The thickness of muscle aponeuroses has 

been determined to vary between 1-3 mm [22]; hence, the 

mean image intensity of 3 mm x 3 mm kernels was extracted 

from each ultrasound frame to create a feature set consisting 

of n values, where n is the number of kernels per frame. The 

feature set was further reshaped into a nx1 column 

representing time-intensity features of the superficial muscle 

tissue at the top and the features of deep muscle tissue at the 

bottom. To grasp the contribution of temporal information 

from the sequence of ultrasound images during a gait cycle, 

the time-derivative of the intensity features was calculated 

between every consecutive frame pairs. Hereafter, we refer 

to these time-derivatives as temporal features. Figures 2a 

and 2b illustrate the progression of the intensity and 

temporal features across the gait cycle of a representative 

 
 

(a) (b) 

Fig. 1. (a) Experimental setup on a human subject. 3D printed probe holder 

was placed over the rectus femoris (RF) muscle of the non-dominant leg. 
(b) Sample longitudinal ultrasound image highlighting the RF and vastus 

intermedius (VI) muscles. 
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Fig. 2. The progression of the (a) intensity and (b) temporal ultrasound 
features of the RF and VI muscles during the level walking gait of a sample 

subject. The features are averaged across 1 min of walking strides. 
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subject, respectively, where each pixel column represents the 

ultrasound features at a certain time point. 

C. Motion Estimation: Task-Specific vs Task-Invariant 

The ultrasound feature sets were used to investigate the 

feasibility of continuous task-invariant learning of knee 

kinematics during the steady-state and transient ambulation 

trials. Gaussian Process Regression (GPR) models with a 

quadratic kernel were trained using the ultrasound intensity 

and temporal features as predictors to continuously estimate 

the kinematics of the knee joint as the target variables based 

on two different task-specific and task-invariant learning 

paradigms. Task-specific learning was achieved by training 

a GPR model for each specific task. Conversely, a single 

GPR model was trained using all ambulation tasks during 

the task-invariant learning. Additionally, all models were 

trained with and without temporal features. The trained 

models were then evaluated using a leave-N-strides-out 

cross-validation, where 5-6 consecutive strides of the 

treadmill trials were left out for testing during each round of 

cross-validation (~20% of all the strides). In the case of stair 

ambulation, a leave-one-trial-out scheme was used during 

each round of cross-validation (20% of all the repetitions). 

Both task-specific and task-invariant models were tested 

separately on the steady-state stair strides as well as the 

walk-to-stair and stair-to-walk transition strides.  

The overall effect of the learning paradigm and the effect 

of temporal features on the accuracy of estimation were 

statistically evaluated using the repeated-measures two-way 

analysis of variance (ANOVA) test. Multiple posthoc 

comparisons were performed to statistically compare each 

condition, and the p-values were adjusted using a Bonferroni 

correction for multiple comparisons (𝛼 = 0.05).  

III. RESULTS 

A. Learning Knee Kinematics during Ambulation 

The root mean square error (RMSE) of continuous task-

specific and task-invariant learning of the knee joint 

kinematics was evaluated for level walking, incline walking, 

decline walking, stair ascent and stair descent. For stair 

ascent and stair descent trials, both steady-state and 

transition strides were included for estimation of overall 

performance. Overall, the average RMSEs of knee angle and 

angular velocity estimation across tasks and subjects were 

7.06 (1.29)° and 53.1 (8.1)°/sec for the task-invariant 

  Level Walk Incline Decline Stair Ascent Stair Descent 
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Fig. 3. Continuous estimation of the knee joint angle based on the task-specific (first row) and task-invariant (second row) learning paradigms. The dashed 
black lines show the mean ± 1 SD recorded trajectories and the solid colored lines show the predicted trajectories. The trajectories are averaged across all 

subjects and the shaded areas represent mean ± 1 SD. 

 

TABLE I.  MEAN (SD) RSME (DEG) OF KNEE ANGLE ESTIMATION ACROSS AMBULATION TASKS AND LEARNING PARADIGMS 

Task: Level Incline Decline Stair Ascent Stair Descent 

Feature Set: Intensity Temporal d Intensity Temporal d Intensity Temporal c Intensity Temporal d Intensity Temporal c 

Task-Specific 4.9 (0.5) 4.0 (0.9) 3.8 (0.7) 2.7 (0.6) 4.6 (1.0) 3.8 (0.5) 11.5 (2.3) 9.8 (2.2) 12.4 (2.5) 11.6 (2.8) 

Task-Invariant 5.2 (1.1) 4.7 (1.0) 4.0 (1.1) 3.5 (0.7) b 5.4 (1.1) b 4.4 (0.7) 12.5 (3.1) 10.7 (2.7) 13.7 (2.9) a 12.1 (3.0) 

a and b indicate p < 0.05 and p < 0.01 for the significant effect of the learning paradigm on the RMSE of estimations, respectively. c and d indicate p < 0.05 and p < 0.01 for the main significant effect 

associated with incorporating the temporal features for training, respectively. 
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learning paradigm, respectively. These results were not 

significantly different from the average RMSEs of 6.00 

(1.62)° and 51.8 (9.2)°/sec for the task-specific models (p = 

0.11 for angle and p = 0.66 for angular velocity estimations). 

The first rows in Tables I and II show the RMSE of the 

continuous task-specific estimation of the knee angle and 

angular velocity, respectively. The second rows in Tables I 

and II represent continuous task-invariant learning of the 

ambulation kinematics. Additionally, the RMSEs of the 

models trained with and without the temporal ultrasound 

feature sets are shown side-by-side for each task. Statistical 

analysis revealed that continuous task-invariant learning of 

ambulation kinematics did not introduce a significant 

difference in the RMSE of estimations (p = 0.12 for angle 

estimation, and p = 0.66 for angular velocity estimation). It 

was further discovered that including the temporal 

ultrasound features of the muscle not only significantly 

improved reduced the RMSE (p < 0.05) in comparison to 

intensity features only, but also helped reduce the difference 

between the RMSE of task-specific and task-invariant 

learning models. Similarly, the first rows in Figs. 3 and 4 

illustrate the continuous estimation of the knee joint angle 

and angular velocity based on task-specific learning models. 

Second rows in Figs. 3 and 4 show the continuous estimation 

of ambulation kinematics using task-invariant learning 

models. While there are a few points during the gait cycle 

where the task-invariant learning does not perform as well as 

the task-specific learning (e.g. at the very beginning of the 

stair descent gait, Fig. 3), the estimations have similar 

overall trends for all tasks when comparing the two learning 

paradigms. In the case of stair ambulation, both steady-state 

and transition strides were included for estimation of overall 

performance; therefore, the standard deviation bands are 

larger due to the higher stride-to-stride variability. 

B. Effect of Transient Stair Ambulation on Task-Invariant 

Learning 

Tables III and IV report the RMSEs of the knee angle and 

angular velocity estimations when evaluating transition and 

steady-state strides separately, using each of the two learning 

paradigms and ultrasound feature sets. Figure 5 illustrates 

the continuous estimation of knee kinematics during the stair 

ascent task averaged across all subjects. Data from the stair 

descent task have not been shown for brevity. The strides 

shown in Fig. 5 are time-normalized based on the gait 

progression, where the walk-to-stair, steady-state, and stair-
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Fig. 4. Continuous estimation of the knee joint angular velocity based on the task-specific (first row) and task-invariant (second row) learning paradigms. 

The dashed black lines show the mean ± 1 SD recorded trajectories and the solid colored lines show the predicted trajectories. The trajectories are averaged 

across all subjects and the shaded areas represent mean ± 1 SD. 

 

TABLE II.  MEAN (SD) RSME (DEG/S) OF KNEE ANGULAR VELOCITY ESTIMATION ACROSS AMBULATION TASKS AND LEARNING PARADIGMS 

Task: Level Incline Decline Stair Ascent Stair Descent 

Feature Set: Intensity Temporal Intensity Temporal Intensity Temporal Intensity Temporal d Intensity Temporal 

Task-Specific 40.9 (7.5) 36.8 (7.5) 29.8 (11.5) 23.8 (5.4) 37.4 (7.9) 36.1 (6.4) 71.1 (16.5) 65.8 (16.2) 101.8 (22.2) 96.3 (20.7) 

Task-Invariant 41.3 (6.8) 42.8 (6.3) 25.8 (3.2) 26.7 (4.8) 42.3 (4.7) 39.8 (4.5) 72.8 (15.6) 63.1 (14.2) 99.6 (18.9) 92.9 (19.2) 

d indicates p < 0.01 for the main significant effect associated with incorporating the temporal features for training. 
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to-walk strides are shown by [-100-0%], [0-100%], and 

[100-200%], respectively. Interestingly, the combination of 

using task-invariant learning models along with the temporal 

ultrasound features consistently improved the estimation 

accuracy of both joint angle and angular velocity during 

transition strides, compared to the task-specific learning 

paradigm (Tables III and IV). However, this effect was not 

significant (p = 0.68).  

IV. DISCUSSION 

In this study, we demonstrated the feasibility of using the 

spatiotemporal ultrasound features of muscle for the 

continuous task-invariant learning of knee joint kinematics 

during steady-state and transient ambulation. The task-

invariant learning paradigm demonstrated statistically 

comparable performance to task-specific models during 

various ambulation tasks, especially after the temporal 

ultrasound features of the muscles were included for 

training. However, it appears that letting the models learn 

from the steady-state treadmill strides specifically improves 

the continuous estimation of knee kinematics during 

transient stair ambulation (Tables III and VI). This effect 

was noticeable in the continuous knee angle estimation 

during the first 50% of the walk-to-stair strides, where task-

invariant learning presented a more accurate estimation of 

the knee angle compared to task-specific models (see Fig. 5). 

Previous work on the volitional myoelectric control of a 

knee prosthetic has shown RMSE of 6.2° for trajectory 

tracking during non-weight-bearing flexion/extension 

movements, compared to a RMSE of 5.2° for the intact knee 

[9]. We have also shown in a previous work that an 

ultrasound-based approach can continuously estimate the 

knee joint kinematics with an RMSE of 7.45° during the 

same movement [19]. Recently, Rai et al. proposed a mode-

free control method that can estimate the ankle joint angle 

with an RMSE of 7° during level-walking and stair 

ambulation [23]. However, their approach does not integrate 

the neuromuscular signals from the user and requires 

instrumentation of both lower limbs with inertial sensors. 

Our proposed ultrasound-based approach improves upon 

these works by addressing their limitations while 

maintaining a mean RMSE of 7.06° for the task-invariant 

learning of steady-state and transient ambulation kinematics. 

While the task-invariant models fully capture the motion 

trajectories regardless of the activity, they seem to fail to 

capture the full range of motion during the knee swing 

flexion of the steady-state stair ambulation (Figs. 3 and 5). 

However, the task-invariant models still performed better 

than the performance metrics threshold for smooth stair 

ambulation by Azocar et al. [24]. They have shown that 

knee-swing flexion angles of 71.9° and 70.5° are effective 

for the reciprocal gait during stair ascent and descent, 

respectively. Therefore, our ultrasound-based task-invariant 

models with average estimated knee-swing flexions of 81.9° 

for stair ascent and 79.0° for stair descent would still 

maintain smooth reciprocal gait during stair ambulation. 

Interestingly, task-invariant models did not have any trouble 

learning the full range of motion during transition strides. 

Effect of Temporal Ultrasound Features  

While the task-invariant models trained using only the 

ultrasound intensity features showed statistically comparable 

performance to most task-specific models, including the 

temporal ultrasound features within the task-invariant 

TABLE IV.  MEAN (SD) RSME (DEG/S) OF KNEE ANGULAR VELOCITY ESTIMATION DURING STEADY-STATE AND TRANSIENT STAIR AMBULATION 

Task: Stair Ascent Stair Descent 

 Walk-to-Stair Steady-State Stair-to-Walk Walk-to-Stair Steady-State Stair-to-Walk 

Feature Set: Intensity Temporal Intensity Temporal c Intensity Temporal d Intensity Temporal d Intensity Temporal c Intensity Temporal 

Task-Specific 80.2 (21.5) 74.8 (22.6) 77.4 (21.4) 73.8 (17.9) 
113.3 

(28.7) 
99.2 (31.1) 

128.4 

(28.2) 

113.1 

(23.4) 

101.5 

(26.1) 
95.5 (21.8) 

114.3 

(26.3) 

109.4 

(23.1) 

Task-Invariant 79.4 (19.9) 74.4 (18.6) 78.3 (19.3) 70.9 (16.0) 
115.9 

(24.3) 

95.2 (30.1) 
a 

118.5 

(25.0) a 

106.8 

(30.2) 

103.9 

(23.9) 
94.6 (20.5) 

108.2 

(19.5) 

108.9 

(18.4) 

a indicates p < 0.05 for the significant effect of the learning paradigm on the RMSE of estimations. c and d indicate p < 0.05 and p < 0.01 for the main significant effect associated with incorporating the 

temporal features for training, respectively. 

 

TABLE III.  MEAN (SD) RSME (DEG) OF KNEE ANGLE ESTIMATION DURING STEADY-STATE AND TRANSIENT STAIR AMBULATION 

Task: Stair Ascent Stair Descent 

 Walk-to-Stair Steady-State Stair-to-Walk Walk-to-Stair Steady-State Stair-to-Walk 

Feature Set: Intensity Temporal c Intensity Temporal d Intensity Temporal d Intensity Temporal d Intensity Temporal Intensity Temporal 

Task-Specific 18.0 (5.2) 14.5 (3.5) 15.7 (1.6) 13.0 (2.0) 14.5 (3.3) 13.6 (3.6) 18.4 (6.5) 17.2 (8.2) 12.7 (2.7) 11.6 (2.1) 15.5 (4.6) 15.8 (4.9) 

Task-Invariant 17.2 (5.1) 14.4 (3.4) 16.7 (1.8) 14.2 (2.3) 15.3 (3.2) 13.1 (3.2) 18.3 (5.8) 16.6 (6.6) 15.3 (3.5) b 12.9 (2.3) a 17.4 (5.0) 15.9 (4.8) 

a and b indicate p < 0.05 and p < 0.01 for the significant effect of the learning paradigm on the RMSE of estimations, respectively. c and d indicate p < 0.05 and p < 0.01 for the main significant effect 

associated with incorporating the temporal features for training, respectively. 
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paradigm resulted in comparable performance for all 

ambulation tasks. Moreover, incorporating the temporal 

ultrasound features consistently narrowed the margin of 

error between continuous estimation of the two learning 

paradigms, and helped task-invariant models to outperform 

their counterparts in the continuous estimation of transient 

ambulation. This is consistent with previous studies that 

have shown the positive effect of incorporating the time 

history of neural and mechanical signals on the accuracy of 

motion control and estimation during ambulation [25]–[27]. 

Limitations and Future Work 

This study demonstrates the feasibility of an ultrasound-

based approach for the continuous task-invariant learning of 

steady-state and transient ambulation using able-bodied 

subjects. Future work needs to focus on translating the same 

paradigm to the target populations for lower-limb assistive 

devices, i.e. populations with mobility-related pathology or 

limb-loss. While our approach demonstrated useful for 

continuous transient ambulation, there are still some 

common volitional activities such as sit-to-stand, non-

weight-bearing, and unstructured movements that need to be 

incorporated within a task-invariant learning paradigm for a 

truly “free form” control scheme. The positive effect of 

incorporating the temporal features on the accuracy of task-

invariant learning suggests that the sequence-to-sequence 

prediction models might prove particularly useful to encode 

the spatiotemporal features of ultrasound data for the task-

invariant learning of continuous ambulation. Furthermore, 

subject-specific models were trained for this study. While it 

has been shown difficult to rely solely on neuromuscular 

signals [15], [28] for a subject-independent approach, it may 

be feasible to combine the temporal ultrasound features with 

anatomically normalized intensity features to obtain the 

desired performance based on a subject-independent 

approach. Due to the high between-subject variability of the 

neuromuscular signals, partially subject-independent 

schemes with a larger sample size might be more feasible for 

task-invariant learning of continuous volitional ambulation. 

V. CONCLUSION 

This study demonstrated the feasibility of using 

spatiotemporal ultrasound features of the RF and VI muscles 

for task-invariant learning of continuous knee kinematics 

during various steady-state and transient ambulation tasks. It 

was observed that the continuous joint kinematics can be 

learned using a task-invariant paradigm with statistically 

comparable accuracy to a task-specific paradigm. Statistical 

analysis further revealed that incorporating the temporal 

ultrasound features significantly improves the accuracy of 

continuous estimations (p < 0.05). These results motivate the 

future work toward using ultrasound sensing as an intuitive 

interface for a more biologically inspired “free form” control 

approach, and its implementation on lower-limb assistive 

devices. Intuitive interfaces that can continuously respond to 

the user’s intent may eventually enhance the clinical 

outcome and functionality of assistive devices. 
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