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Abstract. Algorithms to solve hard combinatorial problems often
exhibit complementary performance, i.e. where one algorithm fails,
another shines. Algorithm portfolios and algorithm selection take ad-
vantage of this by running all algorithms in parallel or choosing the
best one to run on a problem instance. In this paper, we show that
neither of these approaches gives the best possible performance and
propose the happy medium of running a subset of all algorithms in
parallel. We propose a method to choose this subset automatically
for each problem instance, and demonstrate empirical improvements
of up to 19% in terms of runtime, 81% in terms of misclassification
penalty, and 26% in terms of penalized averaged runtime on scenar-
ios from the ASlib benchmark library. Unlike all other algorithm se-
lection and scheduling approaches in the literature, our performance
measures are based on the actual performance for algorithms running
in parallel rather than assuming overhead-free parallelization based
on sequential performance. Our approach is easy to apply in practice
and does not require to solve hard problems to obtain a schedule, un-
like other techniques in the literature, while still delivering superior
performance.

1 Introduction

For many types of hard combinatorial problems, different algo-
rithms that exhibit complementary performance are available. In
these cases, a portfolio of algorithms often achieves better perfor-
mance than a single one [10, 7]. The algorithms can be run in paral-
lel, or a single one selected for each problem instance to solve. The
so-called Algorithm Selection Problem [28] is often solved using ma-
chine learning models which, given characteristics of the problem in-
stance to solve, decide which algorithm should be chosen [17, 14].
The machine learning models built for per-instance algorithm selec-
tion are not perfect, like most models. In some cases, they lead to
choosing an algorithm that does not provide the best overall perfor-
mance, resulting in wasted resources.

Running all algorithms in parallel avoids this issue, but again
wastes resources. Even if the user is only interested in optimizing
the elapsed time, i.e. it does not matter how many things are run in
parallel, results are sub-optimal as parallel executions compete for
shared resources such as caches. With more solvers running in paral-
lel, more runs time out, which results in a large overhead. Even for a
relatively small number of parallel runs, this overhead becomes pro-
hibitive, resulting in overall performance worse than using imperfect
machine learning models to choose a single algorithm [13].
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In this paper, we propose a middle path – select the most promising
subset of algorithms to be run in parallel on a single non-distributed
computing machine. This mitigates the impact of both imperfect ma-
chine learning models and overhead from parallel runs. We formalize
the problem of choosing a subset of algorithms from a portfolio, uni-
fying approaches from the literature. We propose a solution to this
problem based on the predictions of algorithm performance models
and their uncertainties and compare empirically to other approaches
from the literature. We demonstrate improvements of up to 81% in
terms of misclassification penalty, establishing a new state of the art
in per-instance algorithm selection with multiple algorithms. We as-
sume that the algorithms to run are not parallelized themselves, i.e.
each algorithm consumes the same computational resources, and we
run on a single machine. We do not consider the case of running al-
gorithms in a distributed setting on multiple machines.

2 Related Work

2.1 Algorithm Selection

The performance of algorithms designed to solve NP-complete prob-
lems, such as Boolean Satisfiability and the Traveling Salesman
Problem, can vary significantly depending on the specific problem
being addressed. There is no one algorithm that performs optimally
in all circumstances. However, we can take advantage of these per-
formance disparities by creating algorithm portfolios that incorporate
the complementing strengths of several algorithms [7, 10].

The algorithm portfolios proposed in [7, 10] run multiple algo-
rithms in parallel, however, they do not measure the actual execution
time when running in parallel but simulate parallel execution based
on sequential performance. [13] found that the performance of the
portfolio can deteriorate substantially when algorithms are executed
in parallel, in particular for more than 10 algorithms. [20] has also
determined that running various configurations of an algorithm in
parallel can introduce overhead, and this factor should be considered
when designing portfolios. Alternatively, we can choose a subset of
the best algorithms from the portfolio for a given problem instance to
avoid the overhead of running a large number of solvers in parallel.
In the case where we choose only a single algorithm, this is known as
the algorithm selection problem [28]. Typically, this is accomplished
through the use of machine learning techniques and features derived
from the instances [17, 14] and algorithms [27]. However, choosing
only a single algorithm to run often achieves suboptimal performance
because of incorrect choices. This can be addressed through better al-
gorithm selection models; in this paper, we explore the alternative of
choosing more than one algorithm to run in parallel on a single node.
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Algorithm selection has been applied successfully in many prob-
lem domains. Some of the most prominent systems are SATzilla, Hy-
dra, and Autofolio [34, 21, 32]. While these systems focus on SAT,
algorithm selection also has been used in the constraint programming
and mixed integer programming domains, where it has been shown
to achieve good performance [26, 35]. AutoFolio has been applied in
additional areas, e.g. ASP, MAXSAT, and QBF. [15] apply algorithm
selection for the TSP, and ME-ASP [24] apply algorithm selection
for answer set programming to create a multi-engine solver. Algo-
rithm selection has also been used to choose between evolutionary
algorithms [9, 37, 25, 36]. The ASlib benchmarking library [4] col-
lects benchmarks from many different problem domains and is the de
facto standard library for evaluating algorithm selection approaches.

Notation. We follow [22] in the notation we use in this paper.
Given a portfolio of algorithms (solvers) S, a set of instances I , and
a performance metric m : S×I → R

+, we aim to find a mapping s :
I → S from instances I to algorithms S such that the performance
across all instances is optimized. This performance metric can be for
example the time needed to solve the instance and we assume w.l.o.g.
that the performance metric should be minimized. In practice, we
estimate the value of the performance metric based on the predictions
of machine learning models for new problem instances; we denote
this estimate m̂. We want to select the solver with the best-predicted
performance for each instance:

min
1

|I|

∑

i∈I

m̂(s(i), i) (1)

2.2 Portfolio Scheduling

Different approaches have been proposed for sub-portfolio selection.
Some approaches choose a number of suitable solvers for sequential
execution and assign time slices that sum to the total available time
to each algorithm. Others have implemented parallel execution of
the selected solvers, while a few have combined these two methods,
utilizing parallelization across computing processors and splitting the
available time of each processor across different algorithms.

2.2.1 Time slice allocation on single processor

Typically, sub-portfolio selection strategies are built for sequential
solver runs, e.g. Sunny [2] creates a sub-portfolio of solvers using k-
nearest neighbor (kNN) models and builds a sequential schedule for
the selected solvers by allocating time slices based on the predicted
performance. CPHydra [26] also employs case-based reasoning and
allocates time slices for the selected CSP solvers to run sequentially.
3S [12] dynamically selects and sequentially schedules solvers for a
given SAT instance using integer programming. ASPEED [8] creates
static sequential schedules through answer set programming that op-
timizes a static sequential time budget allocation for solvers. Depend-
ing on the number of algorithms, solving the scheduling problem can
take substantial time. Building on the methodologies of 3S [12] and
ASPEED [8], ISA (Instance-Specific ASPEED) [18] uses kNN to
identify the closest training problem instances to a given problem in-
stance to solve. It then employs ASPEED to determine a schedule
that minimizes the number of timeouts across these instances. [18]
also introduced TSunny which is a modified version of Sunny that
limits the number of solvers to run, thus increasing the chance of
success by allocating larger time slices to each algorithm.

2.2.2 Time slice allocation on multiple processors

Other portfolio techniques have focused on scheduling solvers to run
in parallel and allocating time slots on different processors. P3S [23]
is a parallel version of 3S and uses the kNN algorithm for selecting
solvers and scheduling them using integer programming with a spe-
cific runtime allocation strategy, where it runs a static set of solvers
for the first 10% of the available runtime and solvers selected for the
instance for the remaining 90%. ASPEED [8] can also define a fixed
schedule for running solvers on multiple processors, which is chosen
based on the average solver performance across a set of instances.
Flexfolio [18] incorporates a reimplementation of the P3S approach
utilizing the same 10-90 strategy. However, rather than employing
integer programming to address the scheduling problem, Flexfolio
makes use of ASPEED and solves it through answer set program-
ming. Sunny-cp [3] can simultaneously execute multiple CSP and
COP solvers. First, a portion of the total available time is allocated
to a pre-solving phase that follows a fixed schedule. The remaining
time is then distributed amongst the other selected solvers dynami-
cally, based on the predictions of kNN performance models. As there
are often more solvers than processors, all processors except one are
assigned to the corresponding number of top-ranked solvers, while
the time on the final processors is split among the remaining solvers.

2.2.3 Running algorithms in parallel

One of the first parallel SAT solvers is ppfolio [29]. It selects solver
portfolios to solve sets of problem instances optimally, but does this
only for entire sets of instances, not on a per-instance basis as we do
here. The success of ppfolio has inspired many other researchers to
create sub-portfolios of solvers to run in parallel. For example, [19]
extended existing algorithm selectors like 3S, SATzilla, and ME-ASP
to greedily choose the top n solvers to run in parallel by producing a
ranking of candidate algorithms; however, the number of solvers has
to be specified by the user and the actual runtime of parallel runs is
not considered – the same runtime as for sequential execution is as-
sumed. Running algorithms in parallel on the same machine is slower
than running sequentially in practice due to the overhead incurred be-
cause of shared caches and shared memory. This has been shown in
experiments [13], simulations [38, 30], and analyses [1] for the par-
allel executions of solvers – in practice, ignoring the overhead that
parallel execution introduces reduces overall performance.

In this paper, we consider the problem of selecting the optimal sub-
set of algorithms to run in parallel on a single machine. This is com-
putationally much easier to solve on a per-instance basis than more
complex scheduling approaches, e.g. the ones used by ASPEED and
3S, which means that our method is easier to deploy and introduces
less overhead. As long as the best solver is part of the selected port-
folio, we will achieve optimal performance or close to it, whereas
approaches that allocate time slices may choose the best solver, but
fail to achieve optimal performance if too little time is allocated to
it. We leverage more information from algorithm selection models
than most approaches in the literature, in particular the uncertainty
of performance prediction. This allows us to trade off the number of
algorithms to choose with the chance of success in a principled way.
Our approach is designed to optimize the usage of parallel computa-
tional resources when solving combinatorial problems while taking
into account the overhead that arises from parallel runs. To the best
of our knowledge, there are no other approaches that solve parallel
algorithm selection this way.
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3 Parallel Portfolio Selection

We aim to choose a sub-portfolio of solvers Pi ⊆ S for a given
instance i ∈ I that includes the algorithms with the best performance
on i (A ∈ S and A ∈ Pi) to run in parallel, based on the predicted
performance of each solver. Given the predicted performance metric
m̂, we can define a total order of the algorithms in the portfolio S

for a given instance i. This total order is induced by the ranking of
the algorithms based on their predicted performance for instance i.
Formally, the total order can be defined as:

A < B if m̂(A, i) < m̂(B, i);A,B ∈ S (2)

Given the total order, the rank of each algorithm A on each in-
stance i can be defined as the number of algorithms that are predicted
to be strictly better than A for the instance and denoted rA,i. Ties are
broken arbitrarily. A portfolio of a specified size n is then defined as
the top n algorithms according to rank for that particular instance.
The portfolio of size n for instance i can be expressed mathemati-
cally as:

Pi = {A ∈ S | rA,i ≤ n} (3)

In a slight abuse of notation, we will denote the rank of an algo-
rithm as a subscript, i.e. rA,i is the rank of algorithm A on instance
i and A1,i is the algorithm of rank 1 (the best performing algorithm)
on instance i.

This allows to choose a subset of algorithms with the best pre-
dicted performance for a given instance, which can then be executed
in parallel. However, determining the portfolio size n for a given
problem instance is the key challenge for parallel portfolios. As dis-
cussed above, choosing only a single algorithm or all algorithms is
unlikely to give optimal performance in practice. The larger the num-
ber of algorithms we include, the larger the chance that the best algo-
rithm is in the chosen portfolio, but also the larger the overhead from
running many algorithms in parallel.

Here, we want to include the algorithms that, according to their
predicted performance on a new problem instance, have the high-
est chances of achieving optimal performance, while also taking into
account the computational overhead of running multiple solvers in
parallel. We leverage the uncertainty of the predictions of the perfor-
mance models to gauge the likelihood that a given algorithm would
be competitive. To the best of our knowledge, there are no algorithm
selection approaches that do this.

Instead of considering only a point prediction, we consider the pre-
dicted distribution of performance metric values, characterized by its
mean and standard deviation. Formally, we denote the standard devi-
ation of the prediction m̂(A, i) as σA,i for each solver A and instance
i. We assume that the predictions of our performance models follow
a normal distribution, i.e. the predicted value is the mean of that dis-
tribution and allows to characterize it completely together with the
standard deviation. We assess the likelihood of two algorithms per-
forming equally well by computing the overlap between their distri-
butions. If two algorithms are predicted to perform very similarly,
then the overlap between the distributions will be very large.

We are in particular interested in the predicted performance distri-
bution of the best-predicted algorithm A1,i (no algorithms are pre-
dicted to perform better than it), and how the predictions for the
other algorithms compare to it. Formally, for the best predicted solver
A1,i on instance i the distribution of predictions is m̂(A1,i, i) ∼
M̂(µA1,i,i, σ

2
A1,i,i

) with probability density function fA1,i,i and cu-
mulative distribution function FA1,i,i. The performance distributions
for other algorithms are defined similarly.

For the distributions of the predicted performance of two algo-
rithms Ax and Ay on instance i, the point of intersection c can be
computed as fAx,i(c) = fAy ,i(c). That is, the predicted probability
of achieving this particular performance is equal for both distribu-
tions (illustrated in Figure 1). For µAx,i < µAy,i, c is defined as (we
omit the index i for the sake of brevity here):

c =
µAy

σ2

Ax
−σAy

(

µAx
σAy

+σAx

√

(µAx
−µAy )2+2

(

σ2

Ax
−σ2

Ay

)

log

(

σAx
σAy

)

)

σ2

Ax
−σ2

Ay

(4)
Given c, the overlap between the distributions is defined as the

joint probability of Ax performing worse than c and Ay performing
better than c:

p(m̂(Ax,i, i) ≥ c)·p(m̂(Ay,i, i) ≤ c) = 1−FAx,i,i(c)+FAy,i,i(c)
(5)

We define p∩ ∈ [0, 1] as a threshold for the computed joint prob-
ability to include a given algorithm:

Pi = {A | (p(m̂(A1,i, i) ≥ c) · p(m̂(Ax,i, i) ≤ c)) ≥ p∩ } (6)

p∩ is 1 for the best predicted algorithm, and 0 for algorithms
whose distribution does not have any overlap with that of the best
predicted algorithm, i.e. the probability of performing at least as good
as the best predicted algorithm is 0.

We can control the size of the parallel portfolio by adjusting the
value of p∩. If p∩ is set to 1, only the best predicted algorithm and
ones that are predicted to perform exactly like it are included. On
the other hand, if p∩ is set to 0, all algorithms will be included. This
allows us to tune our approach to a given algorithm selection sce-
nario and choose the algorithms to run in parallel very flexibly, also
accommodating potentially inaccurate performance predictions.

Figure 1. Overlapping area of two normal distributions. The point c is the
performance both distributions are equally likely to achieve. The shaded area
denotes the probability of overlap between the two distributions; in our case,
the probability that the candidate solver will perform as least as well as the

best predicted solver.

4 Experimental Setup

4.1 Data Collection

We used three scenarios from the ASlib benchmark repository [4]:
MAXSAT19-UCMS, SAT11-INDU, and SAT18-EXP. Additionally,
we created two new scenarios: SAT16-MAIN, which utilizes solvers
and instances from the SAT Competition 2016, and IPC2018, which
incorporates solvers and instances from the International Planning

H. Kashgarani and L. Kotthoff / Automatic Parallel Portfolio Selection 1217



Competition 2018. As ASlib only offers algorithm performance data
for single runs, we conducted our own measurements for parallel
runs on individual machines. We also measured the performance for
single runs again and repeated the instance feature extraction steps
to ensure that all experiments were performed on the same hard-
ware. For MAXSAT19-UCMS, SAT11-INDU1, SAT16-MAIN, and
SAT18-EXP, we used SATZilla’s feature computation code [33], and
extracted 54 different features. For IPC2018 we used the feature ex-
traction code by [6] which extracts 305 features for planning prob-
lems in PDDL format. We excluded 26 instances of SAT Compe-
tition 2016 from the SAT16-MAIN scenario because we were un-
able to extract features within two hours of computational time. We
also omitted two solvers, glocusePLE and Scavel_SAT, from SAT16-
MAIN because of frequent out-of-memory errors on multiple in-
stances. From IPC2018, we omitted three solvers, MSP, maplan-
1, and maplan-2, because they require an unavailable version of
CPLEX. Table 4.1 gives an overview of the scenarios, algorithms,
instances, and features we use in our evaluation.

Table 1. Number of algorithms, instances, and instance features for all
scenarios.

Scenario Algorithms Instances Instance Features

IPC2018 15 240 305
MAXSAT19-UCMS 7 572 54
SAT11-INDU 14 300 54
SAT16-MAIN 25 274 54
SAT18-EXP 37 353 54

We ran all solvers on all instances on compute nodes with 32 pro-
cessors and 40 MB cache size (Intel(R) Xeon(R) CPU E5-2683 v4
@ 2.10GHz), 128 GB memory, and Red Hat Linux version 8.6. We
use the same time limits as in the ASlib scenarios; 5000 CPU sec-
onds for SAT18-EXP and SAT11-INDU, and 3600 CPU seconds for
MAXSAT19-UCMS. For the new scenarios, we use the same time
limits as the respective competitions; 5000 CPU seconds for SAT16-
MAIN and 1800 CPU seconds for IPC2018. We ran each algorithm
individually with 2-10 parallel runs. For all experiments, we ensured
that only the given number of parallel runs were executed on a single
machine. As our previous work showed that performance becomes
worse than algorithm selection of a single solver for more than 10
parallel runs [13], we did not evaluate more than 10 parallel runs.

4.2 Training and Tuning

We built random forest regression models to predict the performance
of an algorithm on an instance using LLAMA [16]. Random forests
usually result in the best algorithm selection performance and perfor-
mance predictions [4, 11]. Our setup mirrors that of [4]: we removed
constant-valued instance features and imputed missing feature values
with the mean of all non-missing values for that feature. The hyper-
parameters of the random forest models were tuned using random
search with 250 iterations, with ntree ranging from 10 to 200 and
mtry from 1 to 30 in a nested cross-validation with three inner folds
and 10 outer folds [4].

Our regression random forest models predict the runtime for each
solver as the mean of the underlying distribution, and estimate the

1 For SAT11-INDU, the ASlib benchmark repository contains 115 extracted
features, including those from SATZilla. However, we were unable to find
the feature extraction for this scenario and used the same 54 instance fea-
tures extracted by SATZilla.

standard deviation using the Jackknife method [31, 5], which calcu-
lates the standard deviation of the mean predictions over all obser-
vations used to train the random forest. The random forest is trained
on n− 1 observations and makes a prediction for the remaining ob-
servation. This process is repeated for all observations. The mean
prediction for each tree is determined by averaging its predictions
for the left-out observations. The Jackknife method assumes that the
distribution of the predictions is normal, and their standard deviation
is the uncertainty of the overall prediction.

To determine the optimal value of p∩ in Equation 5 for each sce-
nario, we perform a grid search in the [0, 1) interval with a resolution
of 0.01 for a total of 100 values. Additionally, we determine the over-
all optimal value of p∩ across all five scenarios.

We evaluate the proposed approach using penalized average run-
time with a factor of 10 (PAR10), misclassification penalty (MCP),
and runtime. The PAR10 score is equal to the actual runtime when
the algorithm succeeds in solving the instance within the timeout,
otherwise, it is the timeout times 10. The misclassification penalty
is the difference between the performance of the selected algorithm
and the performance of the optimal algorithm.

4.3 Baselines

We compare the performance of our approach to several baseline
methods, in particular the sequential virtual best solver (VBS), which
is the optimal algorithm from the portfolio per problem instance
(with a cumulative misclassification penalty of zero) and the sequen-
tial single best solver (SBS), which is the algorithm from the portfo-
lio with the best average performance across all problem instances.
The VBS for parallel runs is the best solver for each instance, but
including the overhead for n parallel runs. The parallel SBS is com-
puted similarly, with the best solvers on average instead of the best
on each instance. We run multiple solvers in parallel to measure the
actual runtime of the best solver in this case, rather than assuming
the sequential runtime.

We further compare to per-instance algorithm selection that sim-
ply runs the top n predicted algorithms in parallel without consider-
ing the overlap of the distributions of the performance predictions,
with the same performance models we use for our approach. In the
notation we introduced above, we set p∩ = 0 and cap the number of
runs at the number of available processors. We use a simple schedul-
ing method as a further baseline, where algorithms are scheduled
according to their predicted rank and allocated a time slice equal to
the predicted performance plus the standard deviation. This allows
to run more than one algorithm per processor. This approach prior-
itizes the best-predicted algorithms but also potentially allows other
algorithms to run.

ASPEED [8] provides a general schedule for all instances in a
given scenario, rather than a schedule for each instance individually.
Therefore, we do not include ASPEED in our experimental evalua-
tion – static schedules across large sets of problem instances do not
achieve competitive performance, as shown in [18]. The Flexfolio
paper [18] shows experiments for Instance-Specific ASPEED and
TSunny, but the available source code does not contain these algo-
rithm selection methods and we are unable to compare to them.

Finally, we compare our approach to 3S as implemented in Flex-
folio [18], as the original 3S implementation is unavailable. In this
implementation, the number of neighbors for the kNN models was
set to 32, and ASPEED [8] is used to schedule the chosen solvers
instead of the original integer programming scheduler.

We normalize all performances across scenarios by the perfor-
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Figure 2. Sensitivity of portfolio performance to p∩. The plot illustrates
the mean, Q1 (25th percentile), Q2 (50th percentile), and Q3 (75th

percentile) runtime performance of each scenario for various values of p∩ as
defined in Equation 6. Note the log scale for the normalized gap closed.

mances of the VBS and SBS and report the fraction of the gap be-
tween them that was closed by a particular approach. On this nor-
malized scale, 0 corresponds to the performance of the SBS and 1
to the performance of the VBS. All code and data are available at
https://github.com/uwyo-mallet/auto-parallel-portfolio-selection.

5 Results

5.1 Tuning of p∩

The tuning of p∩ shows that the optimal value depends on the sce-
nario. For the IPC2018 scenario, the ideal p∩ value is 0.59, for
the MAXSAT19-UCMS scenario 0.55, for SAT11-INDU 0.63, for
SAT16-MAIN 0.33, and for SAT18-EXP 0.81. Figure 2 shows the
normalized gap closed for the mean, 25th percentile, 50th percentile,
and 75th percentiles for each scenario depending on p∩. While the
optimal values are very different across different scenario, the differ-
ences in terms of gap closed are relatively small as long as p∩ is not
too large. The best average value for p∩ across all scenarios is 0.82,
which yields performance improvements over the baselines in most
cases (see Table 2). For the overall best performance, we recommend
to tune p∩ for the particular scenario, but using 0.82 is a reasonable
starting point that gives good performance across the range of sce-
narios we consider here.

The optimal value of p∩ allows us to draw conclusions with re-
spect to the predictive accuracy of the performance models we are
using. A small value would suggest that the predictions of the per-
formance models are not very accurate, as we have to include even
solvers whose predicted runtime distribution has a small overlap with

the runtime distribution of the best predicted solver to include solvers
that are actually good. If the optimal value of p∩ was 0, we would
have to include all solvers, even the ones whose predicted distribu-
tion has no overlap with the best predicted solver – in other words,
the predicted runtime distribution of the actual best solver has no
overlap with the predicted runtime distribution of the best predicted
solver. Here, the optimal values for p∩ are relatively large in most
cases, and even the smallest values are far greater than 0. This indi-
cates that the predictions of the performance models are quite good
– while the best predicted solver is not always the actual best solver
for a given problem instance, the predicted runtime distribution of
the actual best solver has a large overlap with the predicted runtime
distribution of the predicted best solver.

5.2 Algorithm Selection Results

To evaluate the effectiveness of our approach, we carried out a series
of experiments using the optimum and the average best value for p∩
for each scenario where we varied the number of processors used
for parallel execution from one to ten for the SAT18-EXP, SAT16-
MAIN, SAT11-INDU, and IPC2018 scenarios. For the MAXSAT19-
UCMS scenario, we used a maximum of seven processors as there
are only seven algorithms. Figure 3 shows the PAR10 score results
in terms of the normalized performance gap between the sequential
single best solver and sequential virtual best solver for all scenarios
and numbers of processors.

The figure demonstrates the promise of the approach we propose
here. In three out of five scenarios, we achieve the overall top per-
formance with the maximum number of processors (even better than
the parallel virtual best solver!) and for the remaining two scenarios
only the parallel virtual best solver is better. We are able to achieve
better performance than the parallel virtual best solver when running
in parallel because our approach does not necessarily use all avail-
able processors, unlike the baseline approaches that we compare to.
While the performance of the virtual best solver suffers for a large
number of parallel runs, our approach keeps the overhead of running
many things in parallel low and is thus better overall. We emphasize
that the results we show here are actual measured values for running
in parallel, rather than assuming overhead-free parallelization based
on sequential runtimes, as is commonly done in the literature. Our re-
sults demonstrate that this common assumption is unrealistic except
for a small number of parallel runs.

Even for a small number of processors, our approach yields better
performance than others. Initially, the performance is similar to AS0

(running the top n solvers), but our approach quickly becomes better
as the number of available processors increases. This is expected, as
for a single processor the two methods run exactly the same solver,
but for a larger number of processors our method may not run as
many as AS0, thus decreasing overhead and overall solving perfor-
mance.

For the IPC2018 scenario, we achieve the best overall results, im-
proving performance substantially over all other approaches for 10
processors. The 3S approach is never close to the performance of
our method and consistently yields worse results. The greedy time-
splitting method also underperformed, often allocating time slices
smaller than required to solve the instance and thus wasting re-
sources. For more than seven parallel runs, the parallel virtual best
solver, i.e. choosing the actual best solvers for each instance to run
in parallel, starts to perform worse than our method, which does not
use as many processors and incurs lower overhead.

The results for the other scenarios are qualitatively similar. While
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Figure 3. Summary of results. The plot shows the degree to which the gap
between the SBS and VBS PAR10 scores is closed by each method. For the

VBS and SBS, we choose the top n solvers, where n is the number of
processors, for a given problem instance and across all instances,

respectively. AS0 chooses the top n solvers predicted by algorithm
selection, without regard for any overlap in their predicted runtime

distributions. ASp∩ represents the proposed formulation, with the number
of processors restricted to at most the specific value indicated on the x axis –

depending on the overlap of the predicted runtime distributions, fewer
solvers than the maximum may be chosen. The p∩ values for IPC2018,

MAXSAT19-UCMS, SAT11-INDU, SAT18-EXP, and SAT16-MAIN are
0.59, 0.55, 0.63, 0.81, and 0.33 and respectively. Time Splitting is the

baseline approach that allocates time proportional to the predicted runtime
and standard deviation for each solver, scheduling more than one solver to be

run per processor.
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Figure 4. Violin plot of the distribution of the number of selected solvers
to run in parallel across all problem instances for each scenario for the

respective optimal p∩ and the maximum level of parallelism (seven
processors for MAXSAT19-UCMS and 10 for all other scenarios). The

diamond denotes the mean value.

for a small number of processors, other methods perform similar to
ours, the gap between them widens as the number of parallel runs in-
creases. 3S consistently shows worse performance, whereas running
the top n solvers based on algorithm selection (without considering
the predicted performance distributions) is usually competitive and
in some cases gives the same performance as our method. The base-
line of allocating a time to run proportional to the predicted runtime
and standard deviation for each solver is not competitive, consistently
showing bad performance – this baseline is worse than simply run-
ning the top n single best solvers in parallel on three scenarios for
large numbers of parallel runs. For the IPC2018 and MAXSAT19-
UCMS scenarios, the performance of some methods becomes worse
than the single best solver for large numbers of processors, show-
ing the limitations of these approaches. For the SAT2016-MAIN sce-
nario, our approach is performing so close to the naïve parallel algo-
rithm selection (top n solvers based on algorithm selection) because
the standard error of the predictions was large and this resulted in
large parallel portfolios for the majority of instances.

Table 2 shows more detailed results. We see that our method re-
sults in substantial savings in terms of all three measures across all
scenarios – the proposed approach is always the best overall, regard-
less of the performance measure. Note that we never beat the se-
quential VBS, which represents the upper bound on the performance
of any algorithm selection system – we cannot do better than only
running the actual best solver. In many cases, the actual performance
we achieve is close to the sequential VBS though. The results also
show that using the “generic” best value for p∩ of 0.82 still gives
substantial performance improvements over other approaches – usu-
ally it gives the second best performance. The only exception to this
are the MAXSAT19-UCMS and SAT2016-MAIN scenarios, where
running the top n solvers predicted by algorithm selection does bet-
ter. The gap is relatively small though, and we still beat most of the
other baselines.

5.3 Number of Selected Solvers

As mentioned above, allowing our approach to use up to a certain
number of processors does not mean that this exact number of par-
allel runs will be done. In practice, it is often much lower than that,
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Table 2. Detailed results. Mean and standard deviation of values for
runtime, MCP, and PAR10 across all problem instances in a scenario for the

sequential virtual best solver, sequential single best solver, and single top
predicted algorithm in the initial three rows. The second set of rows for each

scenario shows the results for the maximum number of processors (10 for
SAT18-EXP, SAT16-MAIN, SAT11-INDU, and IPC2018, and 7 for

MAXSAT19-UCMS) for our approach and the baselines we compare to. All
numbers were rounded to integers. The best value for each scenario and
measure is shown in bold (excepting the sequential VBS, which is by

definition always the best), the second best in italics.

Scenario Approach Runtime [s] MCP PAR10

IP
C

20
18

1 Processor

VBS 508±697 0 3478±6903
AS 607±751 99±301 4657±7725
SBS 734±770 226±414 5459±8072

10 Processors

3S 645±770 137±471 5235±8047
Time Splitting 637±797 129±348 5565±8241
AS0 612±779 104±307 5134±8027
ASp∩=0.59 569±745 61±223 4484±7651
ASp∩=0.82 579±742 70±233 4359±7548

M
A

X
S

A
T

19
-U

C
M

S 1 Processor

VBS 858±1476 0 7768±14717
AS 1037±1555 179±641 9363±15684
SBS 1190±1657 332±940 11386±16696

7 Processors

3S 953±1480 95±437 8317±15031
Time Splitting 908±1523 51±308 8668±15353
AS0 894±1506 37±247 8258±15062
ASp∩=0.55 891±1496 33±215 8141±14975
ASp∩=0.82 928±1513 70±364 8461±15175

S
A

T
11

-I
N

D
U

1 Processor

VBS 1140±1836 0 8040±17905
AS 1535±2058 395±1037 11735±20768
SBS 1818±2168 678±1340 14268±22154

10 Processors

3S 1298±1898 158±546 9098±18780
Time Splitting 1335±2009 225±708 10635±20138
AS0 1272±1927 161±548 8922±18645
ASp∩=0.63 1241±1901 131±451 8591±18349
ASp∩=0.82 1247±1900 123±431 8747±18501

S
A

T
16

-M
A

IN

1 Processor

VBS 1867±2193 0 15005±22530
AS 2315±2273 448±1109 19066±23883
SBS 2560±2294 693±1415 21940±24464

10 Processors

3S 2093±2228 226±547 16874±23228
Time Splitting 2101±2247 234±732 16717±23149
AS0 2065±2221 198±652 16189±22931
ASp∩=0.33 2065±2221 198±652 16189±22931
ASp∩=0.82 2094±2222 228±730 16383±22993

S
A

T
18

-E
X

P

1 Processor

VBS 1146±1945 0 9687±19547
AS 1615±2138 468±1192 13470±21889
SBS 2400±2249 1254±1832 20629±24280

10 Processors

3S 1625±2228 479±1265 15010±22802
Time Splitting 1714±2292 571±1384 15992±23222
AS0 1702±2301 559±1389 16235±23355
ASp∩=0.81 1518±2172 372±1124 13884±22265
ASp∩=0.82 1532±2178 386±1146 14025±22336

as we see when comparing the performance of our approach to AS0,
which runs the top n predicted solvers in parallel. Figure 4 shows
the distribution of the number of selected solvers for each scenario.
The mean number of solvers chosen for IPC2018 is around 6.5, for
MAXSAT19-UCMS around 6 (out of 7), for SAT11-INDU around
9, for SAT16-MAIN around 10, and for SAT18-EXP around 5.5. We
see that the largest difference to the maximum number of parallel
runs occurs for the two scenarios where we observe the largest per-
formance improvements of our approach, IPC2018 and SAT18-EXP.
Similarly, the scenario with the highest number of solvers chosen on
average (SAT16-MAIN) is where we see the smallest performance
improvement. This clearly shows again that the advantage of our
approach is that it does not simply use as many parallel processors
as are available, which increases overhead, but intelligently chooses
how many of the available processors to use for best performance. In
at least some cases, more is less, and we show how to leverage this.

Figure 4 also shows that our approach uses the full range of avail-
able parallel runs in most cases, from running only a single solver
to as many parallel runs as there are processors. Our approach is
not simply a one-size-fits all that usually uses a similar number of
runs, but varies the size of the selected parallel portfolio dynamically,
based on the instance to be solved.

6 Conclusions and Future Work

In this study, we proposed a general method for selecting solvers
from a portfolio of solvers and scheduling them in parallel, taking
into account the predicted runtime distribution to intelligently choose
not only which solvers to run, but also how many. This is in contrast
to most other approaches in the literature, which either choose a con-
stant number or use all available processors. Further, we measured
the actual runtime when running more than one algorithm in paral-
lel, rather than assuming the sequential runtime. We demonstrated
substantial performance improvements across a wide range of sce-
narios, handily beating baseline methods and other approaches from
the literature. The proposed method establishes a new state of the art
in parallel algorithm selection and is simple to apply in practice –
we are only using information that is readily available in common
algorithm selection methods, and while for the best performance the
parameter p∩ of our method should be tuned, a reasonable default
already shows good performance. This parameter allows our method
to be tailored to specific application domains and scenarios.

While we do show substantial performance improvements, there
is room for further advances. We have focused our investigation on
state-of-the-art random forest performance models and the jackknife
method for estimating uncertainties, but other methods exist. It is
possible that other types of models may perform better in this con-
text if the uncertainty estimates of their predictions are better, for ex-
ample for Gaussian Processes. It is also possible to combine different
types of performance models for different algorithms, allowing much
more flexibility and potentially greater performance improvements.
While our baseline method that allocates resources to each algorithm
did not perform well, investigating more sophisticated approaches
for this would also be interesting.
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