
Backpropagation Computation for Training

Graph Attention Networks

Joe Gould1* and Dr. Keshab K. Parhi1*

1*Department of Electrical and Computer Engineering, University of
Minnesota, Minneapolis, 55455, MN, USA.

*Corresponding author(s). E-mail(s): gould146@umn.edu;
parhi@umn.edu;

Abstract

Graph Neural Networks (GNNs) are a form of deep learning that have found use
for a variety of problems, including the modeling of drug interactions, time-series
analysis, and traffic prediction. They represent the problem using non-Euclidian
graphs, allowing for a high degree of versatility, and are able to learn complex
relationships by iteratively aggregating more contextual information from neigh-
bors that are farther away. Inspired by its power in transformers, Graph Attention
Networks (GATs) incorporate an attention mechanism on top of graph aggrega-
tion. GATs are considered the state of the art due to their superior performance.
To learn the best parameters for a given graph problem, GATs use traditional
backpropagation to compute weight updates. To the best of our knowledge, these
updates are calculated in software, and closed-form equations describing their
calculation for GATs aren’t well known. This paper derives closed-form equations
for backpropagation in GATs using matrix notation. These equations can form
the basis for design of hardware accelerators for training GATs.

Keywords: Neural Network Training, Backpropagation, Gradient Computation,
Graph Attention Networks.

1 Introduction

Many complex problems can be represented by graphs, and graph neural networks
(GNNs) have been used to address these issues. GNNs have been successfully applied
to applications such as drug interactions [1, 2], time-series analysis [3], traffic prediction
[4], neurological damage detection [5], and others. One of the best performing GNN

1

architectures are Graph Attention Networks (GATs) [6]. These networks build upon
previous models by combining the statically weighted graph convolution with an input-
dependent attention mechanism to achieve higher expressive power.

Although GAT networks are powerful, they are computationally expensive, requir-
ing processing for an attention coefficient for every edge in the graph. While the
forward pass, or inference, of GAT network processing is well understood, to the best
of our knowledge, closed-form expressions for backpropagation for training GAT net-
works have not been presented before. The main contribution of this paper is the
derivation of these equations using matrix notation for both the original GAT and a
similar derivative work, GATv2 [7]. These equations can enable design of accelerators
for training GATs by exploiting techniques such as gradient interleaving [8].

This paper is organized as follows. Section 2 presents a brief review of GNNs and
GATs. Section 3 presents the forward pass equations associated with the inference
from GATs in matrix form. In Section 4, we derive the backpropagation equations for
training the GATs in matrix form. Section 5 concludes the paper. Large figures that
may be helpful alongside the text are found in Section .

2 Background

2.1 Graph Neural Networks

GNNs are a broad class of architectures that developed from early work with Recurrent
Neural Networks [9, 10] that use deep neural networks to perform different graph-
based tasks [11, 12]. The most relevant type of GNN for understanding GATs is
Graph Convolutional Network (GCN) [13], which many GNN derivatives are based
on. GCN and GAT operate by performing spatial graph convolution and traditional
machine learning transformations on a graph to extract meaningful information over
a wider region. GCNs and GAT networks consist of layers, with each performing the
convolution steps and applying a nonlinear activation before outputting into the next
layer.

Spatial graph convolution can be described as a form of message passing [14] on
graphs. Nodes have features which are used to produce a message, the messages are
transformed by and passed along edges, and the messages are gathered at edge desti-
nations and are used to update the destination node states. This description is general,
and GCN simplifies computation by limiting the convolution operation. In this modi-
fied convolution operation, edges have scalar weights which are multiplied with source
node features. These weighted features are summed at the destination node, and the
resultant sum is linearly transformed with learnable parameters. This convolution can
be written using vector notation,

zi =
∑

j∈N (i)

Ai,j · hj ×W (1)

where N (i) is the neighborhood of node i, Ai,j is the scalar edge weight from node j
to node i, W is the learnable weight matrix, and hi and zi are row vectors and the
pre- and post-convolution features of node i. A similar operation is used in GAT.

2

(a) Expanding receptive field for node G

(b) 1-hop neighbors for each of the neighbors of G, i.e. B, F , J , and G itself

Fig. 1: Example GNN with 2 layers on a graph of 8 nodes

As can be seen from the description above, the convolution is able to propagate
information across the structure of a graph. This has the effect of allowing subsequent
node representations to incorporate a wider neighborhood into their extracted features,
and is the main contributor to the expressive power of GCNs and GATs. It is analogous
to the widening receptive field of pixels in traditional Convolutional Neural Networks
[11]. This is illustrated in Fig. 1 for a 2-layer network on a graph of 8 nodes.

A number of hardware accelerators exist for GNN processing. The forward pass
is well understood, and architectures which can support GAT inference exist [15–17].
However, architectures which support training are usually geared towards training
GCN [18–20] or accelerating software solutions [21, 22] for training GAT [23]. While
these methods work, it is possible a more powerful accelerator could be created by
specifically targeting the computations for GAT training operations.

2.2 Neural Network Attention

Attention is a concept in machine learning that has been extensively used in applica-
tions such as machine translation [24, 25] and machine vision [26], and is the primary
mechanism that transformers use for their generalized effectiveness [27]. It is based on
the intuition that prioritizing the important features of an input will allow a network
to better extract information from it. A network layer typically implements attention
by performing a nonlinear transformation on the inputs with some learned attention
parameters, and then using a softmax operation for each of the outputs. This has the
effect of allowing the network to learn input features that are indicative of importance
and then raising their corresponding weights to focus on them.

3

3 GAT Forward Pass

GAT networks operate similar to GCNs, but implement an attention mechanism to
adjust edge coefficients based on node features. Like other neural network types, GATs
use stacked layers to extract information from inputs and generate useful output rep-
resentations. Each layer has its own set of learnable parameters, which are updated
during training. Taking from existing literature on attention [27], GAT splits pro-
cessing steps within each layer across multiple attention heads, which have their own
attention weights during the aggregation step. Baseline GAT consists of the following
processing within a layer, for each attention head:

1. Node features are linearly transformed by learnable weights to form combined
features.

2. Each node’s combined features are transformed into source and destination
coefficients.

3. For every edge, a scalar value is computed using its source and destination coeffi-
cients. The scalar values of the edges sharing a common destination node are input
to a softmax function to generate the attention coefficients of the edges.

4. GCN-like aggregation is performed using the original combined features and atten-
tion coefficients. A nonlinear activation is applied, and the result is concatenated
with the results from the other attention heads.

There are currently two forms of GATs in use, the original GAT and GATv2. Here-
after, the original GAT will be referred to as GATv1, and GAT will be used to refer
to the general architecture of these networks. GATv2 was proposed because of issues
in GATv1’s attention mechanism, which made it unable to effectively differentiate
between certain types of inputs. However, because GATv1 has been in use for longer
than GATv2, we present derivations for both versions. We begin by constructing
equations for GAT inference in matrix form. We first define the relevant parameters
in Table 1, and then follow each step of layer processing as described above. We use
the superscripts l to mean pertaining to layer l, and k, l to mean pertaining to atten-
tion head k of layer l. Non-scalar variables are denoted in bold. Vectors are assumed
to be columns, unless they are taken from rows of matrices, and use lower case. When
taking sub-elements of a multidimensional variable, we use subscripts to denote the
row or column being taken from, and keep the same bolding and case as the variable
the sub-elements are taken from. We consider graphs with directed edges, and do not
require the adjacency matrix to be symmetric.

3.1 Linear Transformation of Node Features

The layer begins by linearly transforming the output of the previous layer to a new
feature, not necessarily of the same size, for the current layer. GATv1 uses a single
learnable weight matrix common to every node, while GATv2 has two matrices, with
the result of the combination used differently depending on if a node is a source or
destination of an edge.

4

T
a
b
le

1
:
N
ot
at
io
n
s
fo
r
G
A
T

In
fe
re
n
ce

N
o
ta
ti
o
n

D
es
cr
ip
ti
o
n

N
N
u
m
b
er

o
f
n
o
d
es

in
th

e
g
ra
p
h

L
L
a
y
er
s
w
it
h
in

n
et
w
o
rk

l
In
d
ex

o
f
a
la
y
er

w
it
h
in

n
et
w
o
rk
,
∈

[1
,L

]

K
l

N
u
m
b
er

o
f
a
tt
en

ti
o
n
h
ea

d
s
in

la
y
er

l

k
In
d
ex

o
f
a
n
a
tt
en

ti
o
n
h
ea

d
w
it
h
in

la
y
er
,
∈
[1
,K

l]
d
l

O
u
tp

u
t
fe
a
tu

re
d
im

en
si
o
n
fo
r
a
n
a
tt
en

ti
o
n
h
ea

d
in

la
y
er

l

k
0

D
efi

n
ed

a
s
1

d
0

D
efi

n
ed

a
s
th

e
fe
a
tu

re
d
im

en
si
o
n
o
f
in
p
u
t
d
a
ta

σ
L
,σ

S
,σ

E
L
R
eL

U
,
so
ft
m
a
x
,
a
n
d
E
L
U

n
o
n
li
n
ea

r
fu
n
ct
io
n
s,

re
sp

ec
ti
v
el
y

∥·
··

C
o
n
ca

te
n
a
ti
o
n
o
f
el
em

en
ts

h
o
ri
zo

n
ta
ll
y

⊕
D
efi

n
ed

in
E
q
.
(6
)
a
n
d
E
q
.
(7
),

sh
o
w
n
v
is
u
a
ll
y
in

F
ig
.
4
su

b
fi
g
u
re

c

N
o
ta
ti
o
n

S
iz
e

D
es
cr
ip
ti
o
n

A
R
N

×
N

A
d
ja
ce
n
cy

m
a
tr
ix

o
f
g
ra
p
h
.
T
h
e
it
h
ro
w

co
rr
es
p
o
n
d
s
to

th
e
in
co

m
in
g
ed

g
es

to
n
o
d
e
i,
a
n
d
th

e
jt
h

co
lu
m
n
co

rr
es
p
o
n
d
s
to

th
e
o
u
tg
o
in
g
fr
o
m

n
o
d
e
j.

A
ll
en

tr
ie
s
a
re

ei
th

er
0
o
r
1
.

h
l i

R
(K

l
·d

l
)

O
u
tp

u
t
fe
a
tu

re
s
o
f
n
o
d
e
i
fr
o
m

la
y
er

l

H
l

R
N

×
(K

l
·d

l
)

O
u
tp

u
t
fe
a
tu

re
s
fr
o
m

la
y
er

l.
T
h
e
it
h
ro
w

co
rr
es
p
o
n
d
s
to

th
e
fe
a
tu

re
v
ec
to
r
o
f
n
o
d
e
i.

W
k
,l
,W

k
,l

sr
c
,W

k
,l

d
st

R
(K

l−
1
·d

l−
1
) ×

d
l

L
ea

rn
a
b
le

w
ei
g
h
t
m
a
tr
ic
es

fo
r
a
tt
en

ti
o
n
h
ea

d
k
in

la
y
er

l.
S
ep

a
ra
te

a
m
o
n
g
so
u
rc
e/

d
es
ti
n
a
ti
o
n
in

G
A
T
v
2
,
co

m
m
o
n
in

G
A
T
v
1
.

X
k
,l
,X

k
,l

sr
c
,X

k
,l

d
st

R
N

×
d
l

C
o
m
b
in
ed

fe
a
tu

re
m
a
tr
ic
es

fo
r
a
tt
en

ti
o
n
h
ea

d
k
in

la
y
er

l,
fr
o
m

th
ei
r
re
sp

ec
ti
v
e
w
ei
g
h
t
m
a
tr
ic
es
.

a
k
,l
,a

k
,l

sr
c
,a

k
,l

d
st

R
d
l

L
ea

rn
a
b
le

so
u
rc
e/

d
es
ti
n
a
ti
o
n

a
tt
en

ti
o
n

w
ei
g
h
ts

fo
r
a
tt
en

ti
o
n

h
ea

d
k

in
la
y
er

l.
S
ep

a
ra
te

a
m
o
n
g

so
u
rc
e/

d
es
ti
n
a
ti
o
n
in

G
A
T
v
1
,
co

m
m
o
n
in

G
A
T
v
2
.

ck
,l

i,
V
1
,s
rc
,c

k
,l

i,
V
1
,d

st
R

G
A
T
v
1
:
S
o
u
rc
e/

d
es
ti
n
a
ti
o
n
sc
a
la
r
co

effi
ci
en

ts
fo
r
n
o
d
e
i
in

a
tt
en

ti
o
n
h
ea

d
k
o
f
la
y
er

l,

c
k
,l

V
1
,s
rc
,c

k
,l

V
1
,d

st
R
N

a
n
d
co

ll
ec
te
d
in
to

a
v
ec
to
r.

c
k
,l

i,
V
2
,s
rc
,c

k
,l

i,
V
2
,d

st
R
d
l

G
A
T
v
2
:
S
o
u
rc
e/

d
es
ti
n
a
ti
o
n
v
ec
to
r
co

effi
ci
en

ts
fo
r
n
o
d
e
i
in

a
tt
en

ti
o
n
h
ea

d
k
o
f
la
y
er

l,

C
k
,l

V
2
,s
rc
,C

k
,l

V
2
,d

st
R
N

×
d
l

a
n
d
co

ll
ec
te
d
in
to

a
m
a
tr
ix
.

ek
,l

i,
j
,α

k
,l

i,
j

R
P
re
-
a
n
d
p
o
st
-s
o
ft
m
a
x
n
o
rm

a
li
za

ti
o
n
a
tt
en

ti
o
n
co

effi
ci
en

ts
fo
r
th

e
ed

g
e
o
u
tg
o
in
g
fr
o
m

n
o
d
e
j
to

n
o
d
e
i

L
k
,l
,S

k
,l

R
N

×
N

P
re
-
a
n
d
p
o
st
-s
o
ft
m
a
x
a
tt
en

ti
o
n
m
a
tr
ic
es
.
E
n
tr
y
(i
,j
)
is

th
e
co

rr
es
p
o
n
d
in
g
w
ei
g
h
t
fr
o
m

n
o
d
e
j
to

n
o
d
e
i

Z
k
,l

R
N

×
(K

l
×
d
l
)

P
re
-a
ct
iv
a
ti
o
n
o
u
tp

u
t
fe
a
tu

re
s
fo
r
la
y
er

l

5

For GATv1, this step can be written as

Xk,l = Hl−1 ×Wk,l. (2)

GATv2 has two combined matrices, which are

Xk,l
src = Hl−1 ×Wk,l

src,

Xk,l
dst = Hl−1 ×Wk,l

dst.
(3)

3.2 Edge Coefficient Computation

Using the combined features, GAT generates a set of source and destination coeffi-
cients that are used for computing attention coefficients. In GATv1, these coefficients
are scalars obtained from performing a dot product between the learnable attention
weights and the combined feature vector. In GATv2, the coefficients are vectors, and
are just the combined features generated in step 1. GATv2 introduces the attention
weights in the next step.
For GATv1, the scalar coefficients for node i are

ck,li,V1,src = ak,lsrc

T ×Xk,l
i = ak,lsrc

T ×Wk,lT × hk,l
i ,

ck,li,V1,dst = ak,ldst

T
×Xk,l

i = ak,ldst

T
×Wk,lT × hk,l

i ,

ck,lV1,src

T
= ∥

i∈N
ck,li,V1,src,

ck,lV1,dst

T
= ∥

i∈N
ck,li,V1,dst.

(4)

The vector coefficients for GATv2 are

ck,li,V2,src = Xk,l
i,src = Wk,l

src

T × hk,l
i ,

ck,li,V2,dst = Xk,l
i,dst = Wk,l

dst

T
× hk,l

i ,

Ck,l
V2,src

T
= ∥

i∈N
ck,li,V2,src = Xk,l

src

T
,

Ck,l
V2,dst

T
= ∥

i∈N
ck,li,V2,dst = Xk,l

dst

T
.

(5)

3.3 Attention Coefficient Computation

Next, every edge in the graph has a scalar value computed. This is done by first adding
the source and destination coefficients from the source and destination nodes of each
edge, respectively. After this sum is computed, it is put through a nonlinear leaky
ReLU (LReLU) operation. In GATv1, the result of this is the pre-softmax normaliza-
tion attention coefficient, while in GATv2 it is a vector that is used in an inner product
with the learnable attention coefficients. The result of the GATv2 inner product is its

6

pre-softmax normalization attention coefficient. For GATv1, this can be written as

ek,li,j =

σL

(
ck,li,V1,dst + ck,lj,V1,src

)
Ai,j ̸= 0

−∞ Ai,j = 0
, (6)

and in GATv2 as

ek,li,j =

ak,l × σL

(
ck,li,V2,dst + ck,lj,V2,src

)
Ai,j ̸= 0

−∞ Ai,j = 0
. (7)

We denote the addition operation with ⊕. In the case of GATv1, ck,lV1,src and ck,lV1,dst are
vectors, and the operation generates a matrix by performing an outer sum. In GATv2,
Ck,l

V2,dst and Ck,l
V2,src are matrices, and the operation generates a 3-dimensional tensor

by performing the outer sum on the columns of the matrices. Using this notation, we
can write the resulting attention matrices as

Lk,l = σL

(
ck,lV1,dst ⊕ ck,lV1,src

)
⊙A (8)

for GATv1, and for GATv2 as

Lk,l =
(
ak,l × σL

(
Ck,l

V2,dst ⊕Ck,l
V2,src

))
⊙A. (9)

Finally, in both GATv1 and GATv2, these coefficients are put through a softmax,
grouped by common destinations, to normalize them to the same dynamic range. These
matrices have an identical nonzero pattern to the adjacency matrix A. This results
in the L and S matrices that have their (i, j)th entries be the pre- and post-softmax
attention coefficient for the edge outgoing from node j to node i as

Sk,l
i = σS

(
Lk,l
i

)
. (10)

3.4 GCN-like Aggregation and Activation

The final step in the forward pass is to propagate the combined node features using
the final attention coefficient on each edge. This propagation is identical to GCN, with
the adjacency matrix replaced with the post-softmax attention matrix. By performing
matrix multiplication in this way, the combined features of all of the in-neighbors of
each node are summed together, weighed by their attention. In GATv1, this is given
by

Zk,l = Sk,l ×Xk,l. (11)

7

This is identical to GATv2, with the features combined with the source weights matrix
in the aggregation, written as

Zk,l = Sk,l ×Xk,l
src. (12)

Finally, the combined and aggregated features are put through a nonlinear activation.
We use σE to represent the exponential linear unit (ELU) activation function. The
resulting features for each attention head are concatenated together to form the output
of the layer:

Hl+1 =

Kl

∥
k=1

σE

(
Zk,l

)
. (13)

In the case of the output layer, multiple attention heads have their results averaged
instead of being concatenated, and a nonlinear operation like softmax is applied on
the resulting node features. This can be written as

HL
i = σS

 1

KL
·
KL∑
k=1

Zk,L
i

 . (14)

We summarize the forward pass in a data flow graph (DFG) in Fig. 2. An illustra-
tive example of each step for GATv1 and GATv2 in the forward pass is shown for a
single layer’s attention head in Fig. 4. The example assumes an input feature size of
5 and an output feature size of the layer’s attention heads of 4.

4 GAT Backward Pass

We now derive the equations for the backpropagation for GAT’s learnable param-
eters, i.e., equations for gradients of the loss with respect to weight matrices(
Wk,l,Wk,l

src,W
k,l
dst

)
, attention weights

(
ak,lsrc,a

k,l
dst,a

k,l
)
, and feature inputs

(
Hl
)
for

each layer. This will follow the same structure as the forward pass, starting with the
input to the layers during backpropagation and computing the gradients associated
with that layer. A summary of the notations for different variables relevant to the
backward pass is provided in Table 2.

4.1 Gradients with Respect to Activation

We first compute the gradients of the loss with respect to the pre-activation outputs
using the gradients input to the layer. The gradient can be computed as

δ′
k,l

= σ′
E

(
Zk,l

)
⊙ δk,l. (15)

For the last layer in the network, a softmax activation function is used. Its derivative
is well known, and the derivative of any vector through a softmax can be described

8

T
a
b
le

2
:
N
ot
at
io
n
s
fo
r
G
A
T

T
ra
in
in
g

N
o
ta
ti
o
n

D
es
cr
ip
ti
o
n

σ
′ L
, σ

′ S
,σ

′ E
D
er
iv
a
ti
v
es

o
f
L
R
eL

U
,
so
ft
m
a
x
,
a
n
d
E
L
U
,
re
sp

ec
ti
v
el
y

⊙
H
a
d
a
m
a
rd

(e
le
m
en

t-
w
is
e)

v
ec
to
r
o
r
m
a
tr
ix

p
ro
d
u
ct

N
o
ta
ti
o
n

S
iz
e

D
es
cr
ip
ti
o
n

L
R
N

×
d
L

L
o
ss

fr
o
m

o
u
tp

u
t
o
f
G
A
T

n
et
w
o
rk

δ
l ,
δ
′l

R
N

×
(K

l
·d

l
)

G
ra
d
ie
n
t
in
to

la
y
er

l
b
ef
o
re

a
n
d

a
ft
er

b
ei
n
g

tr
a
n
sf
o
rm

ed
b
y

th
e

a
ct
iv
a
ti
o
n

d
er
iv
a
ti
v
e.

E
q
u
iv
a
le
n
t
to

∂
L

∂
H

l
a
n
d

∂
L

∂
Z

l
,
re
sp

ec
ti
v
el
y.

∂
L

∂
L
k
,l
,

∂
L

∂
S
k
,l

R
N

×
N

L
o
ss

w
it
h
re
sp

ec
t
to

p
re
-
a
n
d
p
o
st
-s
o
ft
m
a
x
a
tt
en

ti
o
n
co

effi
ci
en

ts

C
′k

,l
V
1

R
N

×
N

G
A
T
v
1
:
M
a
tr
ix

h
o
ld
in
g
L
R
eL

U
d
er
iv
a
ti
v
e
o
f
th

e
so
u
rc
e/

d
es
ti
n
a
ti
o
n
co

effi
ci
en

t
su

m
s
fr
o
m

th
e
fo
rw

a
rd

p
a
ss

C
′k

,l
V
2

R
N

×
N

×
d
l

G
A
T
v
2
:
M
a
tr
ix

o
f
v
ec
to
rs

h
o
ld
in
g
L
R
eL

U
d
er
iv
a
ti
v
e
o
f
th

e
so
u
rc
e/

d
es
ti
n
a
ti
o
n
co

effi
ci
en

t
su

m
s
fr
o
m

th
e
fo
rw

a
rd

p
a
ss

∆
k
,l

V
1

R
N

×
N

G
A
T
v
1
:
S
ca

la
r
lo
ss

w
it
h
re
sp

ec
t
to

ed
g
es

∆
k
,l

V
2

R
N

×
N

×
d
l

G
A
T
v
2
:
V
ec
to
r
lo
ss

w
it
h
re
sp

ec
t
to

ed
g
es

Σ
k
,l

V
1
,d

st
,Σ

k
,l

V
1
,s
rc

R
N

G
A
T
v
1
:
S
ca

la
r
lo
ss
es

w
it
h
re
sp

ec
t
to

n
o
d
es

b
ei
n
g
d
es
ti
n
a
ti
o
n
s
a
n
d
so
u
rc
es

o
f
ed

g
es
.

Σ
k
,l

V
2
,d

st
,Σ

k
,l

V
2
,s
rc

R
N

×
d
l

G
A
T
v
2
:
V
ec
to
r
lo
ss
es

w
it
h
re
sp

ec
t
to

n
o
d
es

b
ei
n
g
d
es
ti
n
a
ti
o
n
s
a
n
d
so
u
rc
es

o
f
ed

g
es

∂
L

∂
a
k
,l

d
s
t

,
∂
L

∂
a
k
,l

s
r
c
,

∂
L

∂
a
k
,l

R
d
l

L
o
ss

w
it
h
re
sp

ec
t
to

th
e
a
tt
en

ti
o
n
w
ei
g
h
ts

o
f
h
ea

d
k
o
f
la
y
er

l

∂
L

∂
W

k
,l
,

∂
L

∂
W

k
,l

d
s
t

,
∂
L

∂
W

k
,l

s
r
c

R
d
l−

1
×
d
l

L
o
ss

w
it
h
re
sp

ec
t
to

w
ei
g
h
ts

o
f
h
ea

d
k
o
f
la
y
er

l

9

(a) GATv1

(b) GATv2

Fig. 2: DFG for the forward pass of a single attention head within a hidden layer. Each
box is colored according to the shape of the matrix at that point in the computation

by a symmetric gradient matrix,

u = σS (v) ,

∂ui

∂vj
=

ui − u2
i i = j

− (ui · uj) i ̸= j
,

∂u

∂v
= diag (u)− u× uT,

where the (i, j)th entry in the ∂u
∂v matrix is the gradient contributed by the jth element

of the input to the ith element of the output. In this case, v and u are the rows of
the ZL and HL matrices. The gradient matrix described above can be computed for
each node, and the gradient of the loss with respect to the pre-softmax features for
that node can be computed by multiplying this matrix with the gradient of the loss
with respect to the post-softmax features. This is shown as

∂HL
i

∂ZL
i

= diag
(
HL

i

)
−HL

i

T ×HL
i , (16)

10

δ′
L
i =

∂HL
i

∂ZL
i

× δLi . (17)

For the rest of the backward pass, there is no difference between layers if we scale this
pre-softmax gradient by KL to account for the averaging step, written as

δ′
k,L

=
1

KL
· δ′L. (18)

It is important to note that the matrices involved in this step are dense, unlike the
matrix of attention coefficients. Because of the complexity of the softmax derivative
and because it only needs to be computed for the output layer, δ′

L
should be computed

outside of a dedicated accelerator.

4.2 Gradients with Respect to Attention

We now look at the attention mechanism and how the gradient of the loss with respect
to its inputs can be computed. The first step is to compute the gradient of the loss
with respect post-softmax attention coefficients, through the aggregation, and then
the pre-softmax edge coefficients, which has a form identical to the softmax derivative
described before. This can be written as

∂L
∂Sk,l

= δ′
k,l ×Xk,lT, (19)

∂Sk,l
i

∂Lk,l
i

= diag
(
Sk,l
i

)
− Sk,l

i

T
× Sk,l

i , (20)

∂L
∂Lk,l

i

=
∂Sk,l

i

∂Lk,l
i

×

(
∂L
∂Sk,l

i

)T

= σ′
S

(
∂L
∂Sk,l

i

)
. (21)

Because of the sparsity in Sk,l,
∂Sk,l

i

∂Lk,l
i

will only have nonzeros in rows/columns which

correspond to the edges for node i. The complete loss with respect to the pre-softmax
attentions, ∂L

∂Lk,l , also has the same sparsity pattern as the adjacency matrix.
Now, because of the differences in GATv1 and GATv2, we separate the derivation for
the rest of the attention backward pass for each of the two versions.

4.2.1 GATv1 Attention Gradient

The rest of the backward pass depends on the result of the LReLU that was used to
compute the pre-softmax weight matrix. Since the input to the LReLU was a scalar,
we define a C′k,l matrix to hold values from the derivative of the LReLU, and then
define the gradient with respect to its input as ∆k,l, which can be written as

C′
V1

k,l
i,j = σ′

L

(
ck,li,V1,dst + ck,lj,V1,src

)
, (22)

C′k,l
V1 = σ′

L

(
ck,lV1,dst ⊕ ck,lV1,src

)
, (23)

11

∆k,l
V1 = C′k,l

V1 ⊙
∂L

∂Lk,l
. (24)

This ∆ matrix is never used as a matrix, but instead is summed along its rows and
columns. Depending on which dimension it is summed over, it will correspond to
gradient passed along source or destination edges. We can define the following vectors

Σk,l
V1,dst = Sum

(
∆k,l, rows

)
,

Σk,l
V1,src = Sum

(
∆k,l, cols

)
.

(25)

We can then derive the gradient of the loss with respect to the attention weights using
these vectors

∂L
∂ak,ldst

= Xk,lT ×Σk,l
V1,dst,

∂L
∂ak,lsrc

= Xk,lT ×Σk,l
V1,src.

(26)

These source and edge gradient vectors will also be used in computing the gradient of
the loss with respect to input features and weights.

4.2.2 GATv2 Attention Gradient

The derivation for GATv2 is similar to GATv1, though here the C′k,l matrix is instead
a 3-dimensional tensor, because the attention coefficients are vectors instead of scalars.
Effectively, it is a matrix identical in behavior to the GATv1 case, with the scalar
elements replaced by vectors. This is written as

C′
V2

k,l
i,j = ak,l ⊙ σ′

L

(
ck,li,V2,dst + ck,lj,V2,src

)
, (27)

∆k,l
V2i,j =

∂L
∂Lk,l

i,j

·C′
V2

k,l
i,j ,

∆k,l
V2 = C′

V2
k,l ⊙ ∂L

∂Lk,l
,

(28)

Σk,l
V2,dst = Sum

(
∆k,l, rows

)
,

Σk,l
V2,src = Sum

(
∆k,l, cols

)
.

(29)

Instead of the Σk,l tensors being vectors, they are matrices, owing to the vector
elements in the ∆k,l tensor. Finally, the loss with respect to attention weights can be
derived as

∂L
∂ak,l

=
∑
i,j

∂L
∂Lk,l

i,j

· σL

(
ck,li,V2,dst + ck,lj,V2,src

)
. (30)

Unlike GATv1, this does not depend on the Σk,l matrices, instead only depends on
∂L

∂Lk,l . This is because the attention weights in GATv2 are not used until after the
LReLU operation.

12

4.3 Gradients Associated with Combination

The final part of the backpropagation is similar between GATv1 and GATv2, con-
sisting of combining the gradients for the feature and weight matrices with the
contributions from the attention mechanism and the aggregation step. Because there
are differences, we will again look at the two GAT versions separately.

4.3.1 GATv1 Weight and Feature Gradient

Both the feature and weight matrices can be written as a combination of gradient
contributions from three sources: the gradients along the source and destination edges
and the gradient due to weighted aggregation. The loss with respect to input features
can be written as

∂L
∂Hl

=

Kl∑
k=1

((
Σk,l

V1,dst × ak,ldst

T
×Wk,lT

)
+
(
Σk,l

V1,src × ak,lsrc

T ×Wk,lT
)

+
(
Sk,lT × δ′

k,l ×Wk,lT
))

, (31)

=

Kl∑
k=1

[(
Σk,l

V1,dst × ak,ldst

T
)

+
(
Σk,l

V1,src × ak,lsrc

T
)

+
(
Sk,lT × δ′

k,l
)]

×Wk,lT, (32)

= δl−1. (33)

The loss with respect to weights can be written similarly

∂L
∂Wk,l

=
((

Hl−1T ×Σk,l
V1,dst × ak,ldst

T
)

+
(
Hl−1T ×Σk,l

V1,src × ak,lsrc

T
)

+
(
Hl−1T × Sk,lT × δ′

k,l
))

, (34)

= Hl−1T ×
[(

Σk,l
V1,dst × ak,ldst

T
)

+
(
Σk,l

V1,src × ak,lsrc

T
)

+
(
Sk,lT × δ′

k,l
)]

. (35)

As can be seen from the equations, the terms in the square brackets are shared among
both the gradients.

13

4.3.2 GATv2 Weight and Feature Gradient

The GATv2 equations are similar to GATv1, but because there are source and des-
tination weight matrices, the three terms used to compute the feature gradient are
split among the two weight matrix gradients. In GATv2, the loss with respect to input
features is given by

∂L
∂Hl−1

=

Kl∑
k=1

((
Σk,l

V2,dst ×Wk,l
dst

T
)

+
(
Σk,l

V2,src ×Wk,l
src

T
)

+
(
Sk,lT × δ′

k,l ×Wk,l
src

T
))

, (36)

=

Kl∑
k=1

((
Σk,l

V2,dst ×Wk,l
dst

T
)

+
[
Σk,l

V2,src +
(
Sk,lT × δ′

k,l
)]

×Wk,l
src

T
)
, (37)

= δl−1. (38)

Then, the two weight matrix gradients are

∂L
∂Wk,l

dst

= Hl−1T ×Σk,l
V2,dst,

∂L
∂Wk,l

src

=
((

Hl−1T ×Σk,l
V2,src

)
+
(
Hl−1T × Sk,lT × δ′

k,l
))

,

= Hl−1T ×
[
Σk,l

V2,src +
(
Sk,lT × δ′

k,l
)]

.

(39)

The shared terms are once again shown in square brackets.
To summarize the backward pass pictorially, we modify the forward pass DFGs

from Fig. 2 to show the dependencies during backpropagation, shown in Fig. 3. The
example from the forward pass is used again to show the steps of backpropagation in
Fig. 5.

14

(a) GATv1

(b) GATv2

Fig. 3: DFG for the forward and backward pass of a single attention head within a
hidden layer. Backward pass matrices are shown adjacent to data flow. Colors of the
boxes correspond to the shape of their respective matrices

5 Conclusion

This paper has presented closed-form matrix equations for the training of Graph Atten-
tion Networks. These equations explicitly illustrate the dependencies among various
parts of the computations. These dependencies can be exploited to design accelerators
for training GATs using techniques such as variable reuse, gradient interleaving and
inter-layer pipelining [28].

6 Acknowledgment

The authors thank Nanda Unnikrishnan for numerous useful discussions. This paper
was supported in part by the National Science Foundation under grant number CCF-
1954749.

15

7 Data Availability

Data sharing is not applicable to this article, as no datasets were generated or analyzed
during the current study.

Appendix Supplementary Figures

(a) Input to layer

16

(b) Combination and edge coefficient calculation

(c) Pre-softmax attention coefficient calculation

17

(d) Softmax of edge coefficients (e) GAT aggregation for an attention head

Fig. 4: Forward pass of GAT Layer on an 8-Node graph, with 5-feature width input
and 4-feature width attention head output. Differences between GATv1 and GATv2
are separated with a vertical line, such that GATv1’s operations appear on the left and
GATv2’s on the right. The matrices are colored by shape according to the legends in
Fig. 2. Subfigure a shows the input to the layer, with each node having a feature vector
associated with it. Subfigure b shows the combination and edge coefficient calculation
steps, corresponding to Eqs. (2) and (3) and Eqs. (4) and (5), with each node having a
source and destination coefficient associated with it. Subfigure c shows the pre-softmax
attention coefficient calculation from Eq. (8) and Eq. (9). Subfigure d shows the row-
wise softmax operation on the matrix of these coefficients, from Eq. (10). Finally,
subfigure e shows the aggregation step, weighted with the attention coefficients from
Eqs. (11) and (12) (for brevity, we omit the near identical GATv2 equation using Xk,l

src

instead of Xk,l. The figure only shows a single attention head, and the output from
subfigure e would be concatenated with the output of the other attention heads.

18

(a) δ′
l
calculation (b) Gradients with respect to aggregation

(c) Gradients with respect to softmax inputs

(d) Attention weight update calculation

19

(e) ∆k,l calculation

(f) Σk,l
dst and Σk,l

src calculation

20

(g) V1 weight and feature gradient calculation

(h) V2 weight and feature gradient calculation

Fig. 5: Backward pass for the forward pass example in Fig. 4. Differences between
GATv1 and GATv2 are separated with a vertical line, such that GATv1’s operations
appear on the left and GATv2’s on the right, except for the final step in weight
and feature gradient calculation. The matrices are colored by shape according to the
legends in Fig. 3. Subfigure a shows the calculation of the gradients with respect to the
input of the layer activation function from Eq. (15). Subfigure b shows the gradient
with respect to the aggregation step due to the attention coefficients, corresponding
to Eq. (19). Subfigure c follows the gradient to the input of the softmax, covering
Eq. (21). Subfigure d shows the computation of the gradient with respect to attention

weights from Eqs. (26) and (30). In subfigure e, the C′k,l matrix is shown following
Eqs. (23) and (27) and used to find ∆k,l as in Eqs. (24) and (28). Subfigure f shows the
calculation of the Σk,l matrices following Eqs. (25) and (29), and the multiplication
with the attention weights in GATv1’s case. Finally, the gradient with respect to the
weights and input features is shown for GATv1 in subfigure g from Eqs. (32) and (35)
and GATv2 in subfigure h from Eqs. (32) and (39)

21

References

[1] Cheng, Z., Yan, C., Wu, F.-X., Wang, J.: Drug-Target Interaction Prediction
Using Multi-Head Self-Attention and Graph Attention Network. IEEE/ACM
Transactions on Computational Biology and Bioinformatics 19(4), 2208–
2218 (2022) https://doi.org/10.1109/TCBB.2021.3077905 . Conference Name:
IEEE/ACM Transactions on Computational Biology and Bioinformatics

[2] Yang, Z., Liu, J., Wang, Z., Wang, Y., Feng, J.: Multi-Class Metabolic Pathway
Prediction by Graph Attention-Based Deep Learning Method. In: 2020 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM), pp. 126–
131 (2020). https://doi.org/10.1109/BIBM49941.2020.9313298

[3] Zhao, H., Wang, Y., Duan, J., Huang, C., Cao, D., Tong, Y., Xu, B., Bai, J., Tong,
J., Zhang, Q.: Multivariate Time-Series Anomaly Detection via Graph Attention
Network. In: 2020 IEEE International Conference on Data Mining (ICDM), pp.
841–850 (2020). https://doi.org/10.1109/ICDM50108.2020.00093 . ISSN: 2374-
8486

[4] Zhang, C., Yu, J.J.Q., Liu, Y.: Spatial-Temporal Graph Attention Networks: A
Deep Learning Approach for Traffic Forecasting. IEEE Access 7, 166246–166256
(2019) https://doi.org/10.1109/ACCESS.2019.2953888 . Conference Name: IEEE
Access

[5] Balaji, S.S., Parhi, K.K.: Classifying Subjects with PFC Lesions from Healthy
Controls during Working Memory Encoding via Graph Convolutional Networks.
In: 2023 11th International IEEE/EMBS Conference on Neural Engineer-
ing (NER), pp. 1–4 (2023). https://doi.org/10.1109/NER52421.2023.10123793 .
ISSN: 1948-3554

[6] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
Attention Networks. arXiv. arXiv:1710.10903 [cs, stat] (2018). http://arxiv.org/
abs/1710.10903 Accessed 2023-02-24

[7] Brody, S., Alon, U., Yahav, E.: How Attentive are Graph Attention Networks?
Technical Report arXiv:2105.14491, arXiv (January 2022). arXiv:2105.14491 [cs]
type: article. http://arxiv.org/abs/2105.14491 Accessed 2023-02-24

[8] Unnikrishnan, N.K., Parhi, K.K.: InterGrad: Energy-Efficient Training of Convo-
lutional Neural Networks via Interleaved Gradient Scheduling. IEEE Transactions
on Circuits and Systems I: Regular Papers 70(5), 1949–1962 (2023) https:
//doi.org/10.1109/TCSI.2023.3246468 . Conference Name: IEEE Transactions on
Circuits and Systems I: Regular Papers

[9] Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in graph domains.
In: Proceedings. 2005 IEEE International Joint Conference on Neural Networks,
2005., vol. 2, pp. 729–7342 (2005). https://doi.org/10.1109/IJCNN.2005.1555942

22

https://doi.org/10.1109/TCBB.2021.3077905
https://doi.org/10.1109/BIBM49941.2020.9313298
https://doi.org/10.1109/ICDM50108.2020.00093
https://doi.org/10.1109/ACCESS.2019.2953888
https://doi.org/10.1109/NER52421.2023.10123793
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/2105.14491
https://doi.org/10.1109/TCSI.2023.3246468
https://doi.org/10.1109/TCSI.2023.3246468
https://doi.org/10.1109/IJCNN.2005.1555942

. ISSN: 2161-4407

[10] Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The
Graph Neural Network Model. IEEE Transactions on Neural Networks 20(1), 61–
80 (2009) https://doi.org/10.1109/TNN.2008.2005605 . Conference Name: IEEE
Transactions on Neural Networks

[11] Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A Comprehensive Survey
on Graph Neural Networks. IEEE Trans. Neural Netw. Learning Syst. 32(1), 4–
24 (2021) https://doi.org/10.1109/TNNLS.2020.2978386 . arXiv:1901.00596 [cs,
stat]. Accessed 2023-02-24

[12] Parhi, K.K., Unnikrishnan, N.K.: Brain-Inspired Computing: Models and Archi-
tectures. IEEE Open Journal of Circuits and Systems 1, 185–204 (2020) https:
//doi.org/10.1109/OJCAS.2020.3032092 . Conference Name: IEEE Open Journal
of Circuits and Systems

[13] Kipf, T.N., Welling, M.: Semi-Supervised Classification with Graph Con-
volutional Networks. Technical Report arXiv:1609.02907, arXiv (February
2017). arXiv:1609.02907 [cs, stat] type: article. http://arxiv.org/abs/1609.02907
Accessed 2023-02-24

[14] Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural Mes-
sage Passing for Quantum Chemistry. Technical Report arXiv:1704.01212, arXiv
(June 2017). arXiv:1704.01212 [cs] type: article. http://arxiv.org/abs/1704.01212
Accessed 2023-02-24

[15] Zhang, B., Prasanna, V.: Dynasparse: Accelerating GNN Inference through
Dynamic Sparsity Exploitation (2023). https://arxiv.org/abs/2303.12901v1
Accessed 2023-06-03

[16] Mondal, S., Manasi, S.D., Kunal, K., Ramprasath, S., Sapatnekar, S.S.: GNNIE:
GNN Inference Engine with Load-balancing and Graph-Specific Caching (2021).
https://arxiv.org/abs/2105.10554v2 Accessed 2023-06-03

[17] He, Z., Tian, T., Wu, Q., Jin, X.: FTW-GAT: An FPGA-Based Accelerator for
Graph Attention Networks with Ternary Weights. IEEE Transactions on Cir-
cuits and Systems II: Express Briefs, 1–1 (2023) https://doi.org/10.1109/TCSII.
2023.3280180 . Conference Name: IEEE Transactions on Circuits and Systems II:
Express Briefs

[18] Geng, T., Wu, C., Zhang, Y., Tan, C., Xie, C., You, H., Herbordt, M., Lin,
Y., Li, A.: I-gcn: A graph convolutional network accelerator with runtime local-
ity enhancement through islandization. In: MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture. MICRO ’21, pp. 1051–1063.
Association for Computing Machinery, New York, NY, USA (2021). https://doi.
org/10.1145/3466752.3480113

23

https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/OJCAS.2020.3032092
https://doi.org/10.1109/OJCAS.2020.3032092
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1704.01212
https://arxiv.org/abs/2303.12901v1
https://arxiv.org/abs/2105.10554v2
https://doi.org/10.1109/TCSII.2023.3280180
https://doi.org/10.1109/TCSII.2023.3280180
https://doi.org/10.1145/3466752.3480113
https://doi.org/10.1145/3466752.3480113

[19] Zeng, H., Prasanna, V.: GraphACT: Accelerating GCN Training on CPU-FPGA
Heterogeneous Platforms (2019). https://doi.org/10.1145/3373087.3375312 .
https://arxiv.org/abs/2001.02498v1 Accessed 2023-06-03

[20] Chen, X., Wang, Y., Xie, X., Hu, X., Basak, A., Liang, L., Yan, M., Deng, L.,
Ding, Y., Du, Z., Xie, Y.: Rubik: A Hierarchical Architecture for Efficient Graph
Neural Network Training. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 41(4), 936–949 (2022) https://doi.org/10.1109/
TCAD.2021.3079142 . Conference Name: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems

[21] Zheng, D., Ma, C., Wang, M., Zhou, J., Su, Q., Song, X., Gan, Q., Zhang, Z.,
Karypis, G.: DistDGL: Distributed Graph Neural Network Training for Billion-
Scale Graphs (2020). https://arxiv.org/abs/2010.05337v3 Accessed 2023-06-03

[22] Lin, Z., Li, C., Miao, Y., Liu, Y., Xu, Y.: Pagraph: Scaling gnn training on
large graphs via computation-aware caching. In: Proceedings of the 11th ACM
Symposium on Cloud Computing. SoCC ’20, pp. 401–415. Association for Com-
puting Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3419111.
3421281

[23] Lin, Y.-C., Zhang, B., Prasanna, V.: HitGNN: High-throughput GNN Training
Framework on CPU+Multi-FPGA Heterogeneous Platform (2023). https://arxiv.
org/abs/2303.01568v1 Accessed 2023-06-03

[24] Luong, M.-T., Pham, H., Manning, C.D.: Effective Approaches to Attention-
based Neural Machine Translation. arXiv. arXiv:1508.04025 [cs] (2015). http://
arxiv.org/abs/1508.04025 Accessed 2023-01-27

[25] Gehring, J., Auli, M., Grangier, D., Dauphin, Y.N.: A Convolutional Encoder
Model for Neural Machine Translation. Technical Report arXiv:1611.02344, arXiv
(July 2017). arXiv:1611.02344 [cs] type: article. http://arxiv.org/abs/1611.02344
Accessed 2023-01-27

[26] Mnih, V., Heess, N., Graves, A., Kavukcuoglu, K.: Recurrent Models of Visual
Attention. Technical Report arXiv:1406.6247, arXiv (June 2014). arXiv:1406.6247
[cs, stat] type: article. http://arxiv.org/abs/1406.6247 Accessed 2023-01-27

[27] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, L., Polosukhin, I.: Attention Is All You Need. Technical Report
arXiv:1706.03762, arXiv (December 2017). arXiv:1706.03762 [cs] type: article.
http://arxiv.org/abs/1706.03762 Accessed 2023-01-27

[28] Unnikrishnan, N.K., Parhi, K.K.: LayerPipe: Accelerating Deep Neural Network
Training by Intra-Layer and Inter-Layer Gradient Pipelining and Multiproces-
sor Scheduling. In: 2021 IEEE/ACM International Conference On Computer
Aided Design (ICCAD), pp. 1–8 (2021). https://doi.org/10.1109/ICCAD51958.

24

https://doi.org/10.1145/3373087.3375312
https://arxiv.org/abs/2001.02498v1
https://doi.org/10.1109/TCAD.2021.3079142
https://doi.org/10.1109/TCAD.2021.3079142
https://arxiv.org/abs/2010.05337v3
https://doi.org/10.1145/3419111.3421281
https://doi.org/10.1145/3419111.3421281
https://arxiv.org/abs/2303.01568v1
https://arxiv.org/abs/2303.01568v1
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1611.02344
http://arxiv.org/abs/1406.6247
http://arxiv.org/abs/1706.03762
https://doi.org/10.1109/ICCAD51958.2021.9643567
https://doi.org/10.1109/ICCAD51958.2021.9643567

2021.9643567 . ISSN: 1558-2434
Joe Gould (Student member, IEEE) is currently pursuing an
M.S. degree in electrical engineering at the University of Min-
nesota, Minneapolis, USA. He worked at Commscope, USA, from
2020 to 2021 under a co-op internship program as a design verifi-
cation engineer for FPGA products. His interests are in the design
of efficient architectures for accelerator and signal processing
systems.

Keshab K. Parhi (Fellow, IEEE) received the B.Tech. degree
from the Indian Institute of Technology (IIT), Kharagpur, in
1982, the M.S.E.E. degree from the University of Pennsylvania,
Philadelphia, in 1984, and the Ph.D. degree from the University of
California, Berkeley, in 1988. He has been with the University of
Minnesota, Minneapolis, since 1988, where he is currently Erwin
A. Kelen Chair and Distinguished McKnight University Profes-
sor in the Department of Electrical and Computer Engineering.
He has published over 700 papers, is the inventor of 34 patents,
and has authored the textbook VLSI Digital Signal Processing

Systems (Wiley, 1999). His current research addresses VLSI architecture design of
machine learning and signal processing systems, hardware security, and data-driven
neuroengineering and neuroscience. Dr. Parhi is the recipient of numerous awards
including the 2017 Mac Van Valkenburg award and the 2012 Charles A. Desoer Tech-
nical Achievement award from the IEEE Circuits and Systems Society, the 2003 IEEE
Kiyo Tomiyasu Technical Field Award, and a Golden Jubilee medal from the IEEE Cir-
cuits and Systems Society in 2000. He served as the Editor-in-Chief of the IEEE Trans.
Circuits and Systems, Part-I during 2004 and 2005. He is a Fellow of the American
Association for the Advancement of Science (AAAS), the Association for Comput-
ing Machinery (ACM), the American Institute of Medical and Biological Engineering
(AIMBE), and the National Academy of Inventors (NAI).

25

https://doi.org/10.1109/ICCAD51958.2021.9643567
https://doi.org/10.1109/ICCAD51958.2021.9643567
https://doi.org/10.1109/ICCAD51958.2021.9643567

	Introduction
	Background
	Graph Neural Networks
	Neural Network Attention

	GAT Forward Pass
	Linear Transformation of Node Features
	Edge Coefficient Computation
	Attention Coefficient Computation
	GCN-like Aggregation and Activation

	GAT Backward Pass
	Gradients with Respect to Activation
	Gradients with Respect to Attention
	GATv1 Attention Gradient
	GATv2 Attention Gradient

	Gradients Associated with Combination
	GATv1 Weight and Feature Gradient
	GATv2 Weight and Feature Gradient

	Conclusion
	Acknowledgment
	Data Availability
	Supplementary Figures

