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ABSTRACT

Pettalidae is a family of mite harvestmen that inhabits the former circum-Antarctic Gondwanan
terranes, including southern South America, South Africa, Madagascar, Sri Lanka, Australia and
New Zealand. Australia is home to two pettalid genera, Austropurcellia, in northern New South
Wales and Queensland, and Karripurcellia, in Western Australia, until now showing a large
distributional gap between these two parts of the Australian continent. Here we report speci-
mens of a new pettalid from South Australia, Archaeopurcellia eureka, gen. et sp. nov., closing this
distributional gap of Australian pettalids. Phylogenetic analyses using traditional Sanger markers as
well as ultra-conserved elements (UCEs) reveal that the new genus is related to the Chilean
Chileogovea, instead of any of the other East Gondwanan genera. This relationship of an Australian
species to a South American clade can be explained by the Antarctic land bridge between these
two terranes, a connection that was maintained with Australia until 45 Ma. The UCE dataset also
shows the promise of using museum specimens to resolve relationships within Pettalidae and
Cyphophthalmi.
ZooBank: urn:lsid:zoobank.org:pub:9B57A054-30D8-4412-99A2-6 191 CBD3BD7E
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Introduction

The family Pettalidae, because of its low dispersal ability and high ecological constraints,
has emerged as one of the best examples of Gondwanan vicariance, as it inhabits the
terranes once surrounding Antarctica that today constitute mostly the temperate region of
the former Gondwana. Extant pettalids are found in southern South America (southern
Chile), South Africa, Madagascar, Sri Lanka, Australia and New Zealand (Juberthie and
Massoud 1976; Boyer and Giribet 2007; Giribet et al. 2016; Oberski et al. 2018; Baker et al.
2020a). The family is currently composed of 10 genera and 81 species (one of these with
two subspecies) (Giribet 2020; Kury et al. 2021; Boyer et al. 2022). Each of the 10 pettalid
genera is restricted to small areas within a single landmass, with the 2 species of
Chileogovea Roewer, 1961 found exclusively in Chile; the monotypic Managotria Shear
& Gruber, 1996 in Madagascar; the 4 species of Pettalus Thorell, 1876 in Sri Lanka; 11
species of Parapurcellia Rosas Costa, 1950 and 5 of Purcellia Hansen & Sgrensen, 1904 are
found in South Africa; and a final 3 genera found in New Zealand, Rakaia Hirst, 1926, with
18 species, Aoraki Boyer & Giribet, 2007 with 13 species or subspecies, both in the North
and South islands, and the monotypic Neopurcellia Forster, 1948, from the South Island.

Australia is also home to the family Pettalidae, with Austropurcellia Juberthie, 1988,
including 25 species in the Wet Tropics of Queensland and northern New South Wales
(Juberthie 1988, 1989, 2000; Baker 2012; Boyer and Reuter 2012; Popkin-Hall and Boyer
2014; Jay et al. 2016; Oberski et al. 2018), and Karripurcellia Giribet, 2003 with 2
species in south-western Western Australia (Giribet 2003; Karaman 2012; Schwentner
and Giribet 2018) (Fig. 1). Given the large gap in the distribution ranges of these two
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genera, the lack of pettalids in other suitable locations of
Australia (notably the temperate, mesic areas in the south-
east occurring in Tasmania, Victoria and South Australia)
has puzzled zoologists for a long time.

Recent field work by the second author has resulted in a
considerable number of specimens from a few sites in Cleland
Conservation Park, Adelaide, South Australia. Anatomical
study and phylogenetic work using traditional Sanger-based
markers as well as ultra-conserved elements (UCEs) show that
the specimens from Cleland constitute a new pettalid species
unrelated to the other Australian genera. Here we describe the
new genus and species and provide the biogeographic context
for the new taxon.

Materials and methods

Abbreviations

MCZ 1Z, Invertebrate Zoology collection, Museum of
Comparative Zoology, Harvard University, Cambridge,
MA, USA; SAMA, South Australian Museum Arachnid col-
lection, Adelaide SA, Australia. All specimens were collected
by desiccating extraction funnels (Berlese funnels) and
transferred to 96% EtOH or RNAlater. This material was
collected under permit Y27000-1 to M. Shaw.

Anatomical methods

Specimens prepared for Automontage and for SEM were
sonicated for 3min in a Branson 200 Ultrasonic cleaner
and dissected under an Olympus SZX16 stereomicroscope.

live specimen courtesy of James Dorey.

We imaged the male holotype (SAMA OP2) using a Leica
DFC500 digital camera mounted on a Leica M205C stereo-
microscope with a 1.0 X plan-apochromatic objective. The
Leica Application Suite (ver. 3.8, see https://www.leica-
microsystems.com/products/microscope-software/p/leica-
application-suite/downloads/) was used to assemble a
series of 25-30 images for each view. A female paratype
(MCZ 1Z-162243) was imaged in dorsal, ventral and lateral
views using a JVC-KY-F75U digital camera mounted on a
Leica MZ 12.5 stereomicroscope (Leica Biosystems, Nuf3loch,
Germany) with a Plan 1 objective. The software package
Auto-Montage Pro (ver. 5.02.0096, Synoptics Group,
Cambridge, UK) was used to produce and assemble a series
of 5-7 images taken at different focal planes. A male and the
same female specimen (MCZ 1Z-162243) were then used for
SEM. The appendages of the left side of this male specimen
were dissected and mounted in retrolateral view (a few
appendages were mounted in prolateral view unintention-
ally) on a SEM stub using a carbon adhesive tab (Electron
Microscopy Sciences, Hatfield, PA, USA). The male specimen
and the female were mounted on their dorsal side, exposing
the venter. A third specimen (male, MCZ 1Z-162249) was
mounted on its ventral side for dorsal imaging. The speci-
mens were coated with 10 nm of Pt-Pd (80:20) in a HAR 050
EMS 300T D dual head sputter coater at the Center for
Nanoscale Systems, Harvard University. Specimens were
then imaged using a Zeiss FESEM Ultra Plus using an SE2
detector with an EHT target of 5kV. Images were processed
and edited in Adobe Photoshop 2022 (ver. 32.3.2).

The spermatopositor of a male paratype (MCZ 1Z-162243)
was dissected out and imaged on an LSM 880 confocal
microscope (Carl Zeiss Microscopy, Jena, Germany) using a
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20x /0.8 NA Plan-Apochromat objective. Autofluorescence
was excited with a 561-nm laser and signal was collected
from 570 to 730 nm. An axial volume of 40 pm was obtain in
75 slices. Post-acquisition, a maximum intensity projection
was performed to enable visualisation of structures.

Molecular methods

In order to investigate the phylogenetic position of the new
species, we assembled two genetic data sets. For the first
approach we amplified for two specimens of the new species a
series of Sanger markers routinely used in Opiliones system-
atics for the past two decades (e.g. Giribet et al. 1999, 2002;
Boyer and Giribet 2007; Boyer et al. 2007; Sharma and
Giribet 2011). These include 18S rRNA, 28S rRNA and 16S
rRNA. We also obtained a sequence of cytochrome c oxidase
subunit I (COI) from a UCE library. We then combined these
Sanger-sequenced markers and the UCE-derived COI sequence
with a curated version of the data set of Giribet et al. (2016).
The new Sanger sequences were submitted to GenBank under
accession numbers ON790664-ON790668.

The three Sanger markers were each aligned with a server
version of MAFFT (ver. 7, see https://mafft.cbrc.jp/
alignment/server/; Kuraku et al. 2013; Katoh et al. 2019)
using the Auto strategy, with a gap opening penalty of 1.53,
and the remaining default parameters (% mafft —inputorder
—auto input). Each individual data set was then trimmed with
BMGE (ver. 1.12, see https://bioweb.pasteur.fr/packages/
pack@BMGE@1.12; Criscuolo and Gribaldo 2010) on a web
server (Lemoine et al. 2019) to remove regions of ambiguous
alignment which were reduced as follows: 16S rRNA from
564 to 466 positions; 18S rRNA from 1763 to 1762; and 28S
rRNA from 2157 to 2075 positions. No trimming was neces-
sary for the cytochrome ¢ oxidase subunit I dataset. We con-
catenated the untrimmed and the BMGE alignments using
SequenceMatrix (ver. 1.8, see http://www.ggvaidya.com/
taxondna/; Vaidya et al. 2011).

With these ‘Sanger data’ we conducted a series of maxi-
mum likelihood analyses in IQ-TREE (ver. 1.6.12, see http://
www.iqtree.org/release/v1.6.12; Nguyen et al. 2015) using
the built-in ModelFinder (Kalyaanamoorthy et al. 2017) + a
FreeRate heterogeneity, both, for the individual genes as
well as for the concatenated data. For the concatenated
datasets (untrimmed and trimmed) we specified an edge-
unlinked partition model for each individual partition.

Because the standard Sanger markers have provided little
resolution of the internal pettalid phylogeny, we aimed to
explore pettalid relationships using a genomic approach. A
recent phylotranscriptomic analysis has shown improved
resolution of pettalid relationships (Baker et al. 2020a),
but, because of a lack of samples suitable for RNA work,
we decided to undertake another approach to subsample the
genome, using target capture of UCEs (Faircloth et al. 2012;
McCormack et al. 2012). UCEs have been routinely applied
to study Opiliones (e.g. Derkarabetian et al. 2018, 2021a) by
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leveraging a probe set developed for all arachnids (Starrett
et al. 2017). This method allows the inclusion of old museum
samples with degraded DNA (Derkarabetian et al. 2019).

For the UCE dataset, we selected 34 Cyphophthalmi sam-
ples plus 3 outgroups (Supplementary Table S2). This dataset
included 20 pettalid, 3 neogoveid, 1 ogoveid, 1 troglosironid,
5 sironid and 4 stylocellid samples. UCE sequence capture
followed standard protocols used in recent UCE studies of
Opiliones (e.g. Derkarabetian et al. 2019, 2021a). DNA from
fresh specimens was extracted using the Qiagen DNeasy
Blood and Tissue kit (Valencia, CA, USA), whereas historical
specimens with degraded DNA were extracted using the
extraction protocol specified in Derkarabetian et al. (2019),
derived from Tin et al. (2014). Library preparation used
either the Kapa HyperPrep kit (Roche Sequencing) preceded
by sonication on the Covaris S220 Ultrasonicator, or the
Kapa HyperPlus kit with a fragmentation time of 3 min,
both of which were at half reaction of the manufacturer’s
protocol. Pools were hybridised at 60°C for 24 h using the
Arachnida 1K1 UCE probe set (Faircloth 2017; Starrett et al.
2017), and sequencing was done on the Illumina NovaSeq
with 150-bp paired end reads at The Bauer Core Facility at
Harvard University.

Demultiplexed UCE data were processed through the
standard PHYLUCE pipeline (Faircloth 2016) using parame-
ters and options typically employed in previous studies (e.g.
Derkarabetian et al. 2019, 2021a). After individual matrices
for each locus were created, we used CIAlign (https://
github.com/KatyBrown/CIAlign; Tumescheit et al. 2022)
to filter out obviously divergent non-homologous sequences
from each matrix, with the -remove_divergent minperc
option set to 0.7. All loci were then manually inspected in
Geneious Prime (ver. 2022.1.1, see https://www.geneious.
com), retaining only the loci with at least 50% taxon occu-
pancy for phylogenetic analyses, for a total of 840 loci.
Phylogenies were estimated on a concatenated partitioned
data set with IQ-TREE (ver. 1.6, see http://www.iqtree.org/
release/v1.6.12; Nguyen et al. 2015) using the optimal par-
titioning strategy found using ModelFinder (MFP + MERGE;
Kalyaanamoorthy et al. 2017), the fast relaxed clustering
algorithm (rclusterf), and 1000 ultrafast bootstrap replicates
(Hoang et al. 2018).

Results and discussion

A new genus of Pettalidae from South Australia

The anatomy of the new species differs markedly from that of
the other genera of Australian Pettalidae (see taxonomic sec-
tion below). Phylogenetically, the Sanger-based phylogeny
(Fig. 2) places the new genus as sister group to the South
African genus Purcellia (with a bootstrap support, BS, of
60-64%) whereas the UCE-based tree (Fig. 3) places the new
genus as the sister group to the Chilean genus Chileogovea
with high support (100% BS). This result is interesting not
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only because the new genus appears unrelated to the two other =~ New Zealand and Sri Lanka). This East Gondwanan clade has
Australian genera, but also because it is the sole East been identified here as well as in prior studies (Giribet et al.
Gondwanan pettalid that does not cluster within the East 2012; Oberski et al. 2018; Baker et al. 2020a). Instead, the
Gondwanan clade (i.e. the remaining samples from Australia, = new genus appears within a grade of West Gondwanan genera:
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Parapurcellia, Purcellia and Chileogovea. Both our UCE anal-
ysis and the phylotranscriptomic analysis of Baker et al
(2020a) resolve Parapurcellia as the sister group to all other
pettalids (as do our Sanger-based phylogenies here), followed
by Purcellia and then Chileogovea (or Chileogovea plus
the new genus in our study) as the sister group to East
Gondwanan taxa. Instead, our Sanger-based phylogenies
place Chileogovea, Archaeopurcellia, gen. nov., and
Purcellia in a clade (with BS = 66-68%) that is the sister
group to the East Gondwanan clade (BS = 94-95%).

The position of the new genus is of interest for multiple
reasons. Geographically, Archaeopurcellia, gen. nov., closes
a large distributional gap between Karripurcellia and
Austropurcellia, something that has puzzled pettalid workers
for a long time, and once more shows that the absence of
pettalids in places with suitable habitat may be an artefact of
undersampling obscure saproxylic taxa. Tasmania and Victoria
could easily harbour pettalids, as they are home to other
groups that often co-occur with pettalids across temperate
Gondwana, including Opiliones in the families Neopilionidae
(Giribet et al. 2021), Triaenonychidae (Baker et al. 2020b;
Derkarabetian et al. 2021b) and Acropsopilionidae (Groh and
Giribet 2015), the spider family Malkaridae (Hormiga and
Scharff 2020), and the velvet worm family Peripatopsidae
(Giribet et al. 2018; Baker et al. 2021).

In South Australia, Archaeopurcellia, gen. nov., has not
necessarily been overlooked because of an overall lack of
sampling effort. As a well-known mesic refuge, Cleland
Conservation Park has been repeatedly targeted by several
prominent collectors of mites and other arachnids for over
80 years and it is a significant type locality (e.g. Lee 1973).
Archaeopurcellia, gen. nov., is patchily distributed and is
clearly absent from various apparently suitable sites within
Cleland Conservation Park but also from many other suitable
catchments in the region. Its conservation status requires
assessment because of its restricted range and impending
environmental changes such as available habitat being mod-
ified by invasive European blackberry. Biologists visiting
these vulnerable sites should employ good phytosanitary
hygiene, including disinfecting footwear to slow the spread
of Phytophthora.

From a biogeographic point of view, the close relationship
of an Australian species to a South American clade can easily
be explained by the Antarctic land bridge between these two
terranes, a connection that was maintained with Australia
until 45Ma (White et al. 2013; van den Ende et al. 2017).
Since the diversification of Chileogovea has been estimated to
be Cretaceous to Paleogene (Baker et al. 2020a), it is clear
that the sister group relationship of Archaeopurcellia, gen.
nov., and Chileogovea occurred during a time when South
America and Australia were connected through Antarctica.
This old connection is also found in the clade of cold and
temperate triaenonychids, with the genera Calliuncus
Roewer, 1931, Callihamina Roewer, 1942 and Callihamus
Roewer, 1931 from South Australia and other parts of

temperate southern Australia nesting within the Chilean
‘Nuncia’ (Baker et al. 2020b; Derkarabetian et al. 2021a,
2021b; Porto et al. 2022).

Cyphophthalmi phylogeny

Our UCE dataset allows us to evaluate Cyphophthalmi phy-
logeny for the first time using genome-scale data (Fig. 3)
including multiple representatives of all currently recog-
nised families. Nearly all suborder-level phylogenies of
Cyphophthalmi to date have been based on morphological
data (Giribet and Boyer 2002), a few PCR-amplified markers
(Boyer et al. 2007; Oberski et al. 2018) or a combination of
both (Giribet et al. 2012), but genomic-level sampling has
remained limited to a handful of species in four families
(Fernandez et al. 2017; Baker et al. 2020a). As in recent
analyses, Pettalidae (infraorder Scopulophthalmi) appears as
the sister group to all other Cyphophthalmi, which divide into
Sternophthalmi (Neogoveidae, Ogoveidae, Troglosironidae;
100% BS) and Boreophthalmi (Sironidae, Stylocellidae; 99%
BS) (Fig. 3).

Although the two Boerophthalmi families appear recipro-
cally monophyletic, this is not the case for the Sternophthalmi
families, as Ogoveidae and Troglosironidae constitute a clade
(albeit with BS = 85%) that nests within Neogoveidae, which
is therefore paraphyletic. Paraphyly of Neogoveidae with
respect to Troglosironidae has been obtained in earlier studies
using Sanger-based approaches (Boyer et al. 2007), but this
was not the case in subsequent studies including Ogoveidae
and denser sampling (Giribet et al. 2012; Oberski et al. 2018).
Inclusion of further genera in the UCE dataset may be
required to further test the monophyly of Neogoveidae.

The first split within Sternophthalmi is among the African
Parogovia Hansen, 1921 and the remaining species, includ-
ing American neogoveids (Metasiro Juberthie, 1960 and
Neogovea Hinton, 1938), plus the African Ogoveidae and
the New Caledonian Troglosironidae. The association of a
New Caledonian endemism to a clade of West Gondwanan
Cyphophthalmi has been difficult to reconcile with current
views on biogeography, but anatomically the presence of a
sternal secretory organ in adult males and a toothed claw on
legs II are characteristics of this entire clade (the toothed
claw is missing in Ogoveidae) that were once considered
convergences. The broad biogeographic range and the mor-
phological disparity observed in the members of this clade
are most probably a consequence of the old age of the group,
estimated to be Carboniferous to Permian (Giribet et al
2012; Oberski et al. 2018).

Within Boreophthalmi, Stylocellidae is well supported, but
support for some of the deepest nodes within Sironidae is low
(81% BS). Stylocellid phylogeny has received little attention
in recent times after the seminal work of R. Clouse (e.g. Clouse
et al. 2009; Clouse and Giribet 2010; Schmidt et al. 2020).
Our phylogeny places the genus Fangensis Rambla, 1994 as
the sister group to all other genera, with Giribetia Clouse,
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2012 appearing as the sister group of the remaining genera,
thus rejecting the monophyly of Fangensinae proposed by
Clouse (2012). Within Sironidae, the Japanese Sugukielus
Juberthie, 1970 is sister group to the European Parasiro
Hansen & Sgrensen, 1904; the amphi-Atlantic Siro Latreille,
1795 constitutes the sister group to an exclusively European
clade that splits between the Iberian genus Paramiopsalis
Juberthie, 1962 and the Balkan genus Cyphophthalmus
Joseph, 1869. This resolution is similar to that of Sanger-
based studies with broader taxon sampling (Giribet et al
2017; Karaman et al. 2022), with the main difference being
that in the former study Parasiro or Suzukielus sometimes fell
outside Sironidae, and in the latter the root is artificially
placed between Cyphophthalmus and the remaining sironids.

Overall, our UCE phylogeny shows promise for
resolving genus-level and family-level relationships within
Cyphophthalmi. It also illustrates the best available strategy
for generating a phylogeny that includes nearly all genera of
Cyphophthalmi at genomic-level resolution, as it allows for
inclusion of museum samples not previously included in any
molecular phylogeny as well as dense sampling within each
family. A larger dataset including nearly all cyphophthalmid

genera is currently underway and should resolve some of the
potential conflicts shown by the subset represented here,
which focused on pettalids.

Taxonomic section

Archaeopurcellia, gen. nov.

(Fig. 1, 4-8)

ZooBank: urn:lsid:zoobank.org:act:A794F31C-8BD8-43E8-8FE8-6CB9A
28CDFCC

Diagnosis

Medium-sized pettalid with type 2 ozophores (sensu Juberthie
1970). Chelicerae without a dorsal crest. Male posterior
region bilobed with a scopula on the internal side of each
lobe; corona analis with a divided tergite IX and free ster-
nites 8 and 9, the latter much smaller; anal plate without
modifications or scopulae. Eyes and eye lenses entirely

Fig. 4. Archaeopurcellia eureka, gen. et sp. nov.: (a—) Holotype, male (SAMA OP2), (d—f) paratype, female (MCZ 1Z-162243).
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100 pm

100 pm

absent. Male tarsus IV divided, the basalmost article with a
wing-like projection bearing the adenostyle. Archaeopurcellia,
gen. nov., differs from the West Australian Karripurcellia in
lacking a dorsal crest on chelicerae and in having a distinct
solea (Giribet 2003) on tarsus 1. Archaeopurcellia, gen. nov.,
differs from most members of the north-east Australian

Type species

Fig. 5. Archaeopurcellia eureka, gen. et
sp. nov.. (a) MCZ 1Z-162249, male
dorsal view; (b) MCZ 1Z-162243, male,
ventral prosomal complex; () MCZ
1Z-162243, female, ventral prosomal
complex; (d) MCZ 1Z-162243, male,
ventral view of anal complex; (e) MCZ
1Z-162243, female, ventral view of anal
complex; (f) MCZ 1Z-162243, female,
left spiracle; (g) MCZ 1Z-162243, male,
dorsal view of anal complex.

Austropurcellia is lacking scopulae on the anal plate (Jay
et al. 2016).

Archaeopurcellia eureka, gen. et sp. nov.
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100 pm
—

Fig. 6. Archaeopurcellia eureka, gen. et sp. nov.: (a) MCZ 1Z-162249, male left ozophore; (b) MCZ 1Z-162243, male, left
chelicere, retrolateral view; () MCZ 1Z-162243, female, detail of cheliceral teeth; (d) MCZ 1Z-162243, male, left palp, prolateral

view; (e) detail of palp tarsus, prolateral view.

Distribution

This monotypic genus is only known from a few adjacent
sites in Cleland Conservation Park, Adelaide, South
Australia.

Remarks

The finding of a pettalid in South Australia is important
biogeographically, as it closes a large geographical gap
between Austropurcellia (in coastal Queensland and north-
ern New South Wales) and Karripurcellia in south-western
Western Australia. This genus is unique in having a wing-
shaped adenostyle.
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Etymology

From Ancient Greek, dpyaiog (arkhaios), meaning ancient,
in reference to this deep lineage of Australian pettalid, in
combination with the genus Purcellia, used to name many
pettalid genera.

Archaeopurcellia eureka, sp. nov.

(Fig. 1, 4-8)

ZooBank: urn:lsid:zoobank.org:act:9E23C44C-7FF9-41F7-BAEF-CAF994
CAA68C
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Fig. 7. Archaeopurcellia eureka, gen. et sp. nov. (MCZ 1Z-162243): (a) male left leg |, prolateral view; (b) male metatarsus and
tarsus of leg |, prolateral view; (c) male left leg Il, prolateral view; (d) male metatarsus and tarsus of leg ll, prolateral view; (e) male
left leg Ill, prolateral view; (f) male metatarsus and tarsus of leg lll, prolateral view; (g) male left leg IV, retrolateral view; (h) male
metatarsus and tarsus of leg IV, retrolateral view; (i) female metatarsus and tarsus of leg IV, retrolateral view.
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Fig. 8. Confocal imaging of spermatopositor, ventral view.

Material examined

Holotype. 1 male (SAMA OP2) from Gully below Wine Shanty Track,
Chambers Gully catchment, Cleland Conservation Park, Adelaide, South
Australia, 34.9665°S, 138.7061°E; 20 December 2020, Matthew Shaw
leg.; next to large fallen trunk in stream gully; MSLITTER 220.

Paratypes. 1 m, 1 f (SAMA OP3, OP4), same collecting data
as holotype; 6 m, 5 f, +1 specimen in RNAlater (MCZ 1Z-162243)
same collecting data as holotype [1 female for UCEs; 1 male imaged
with Automontage and mounted for SEM; 1 female imaged with
Automontage and mounted for SEM]; 1 m (MCZ 1Z-162247) from
Gully below Wine Shanty Track, Chambers Gully catchment, Cleland
Conservation Park, Adelaide, South Australia, 34.9665°S, 138.7061°E;
20 December 2020, Matthew Shaw leg.; suspended litter on top of
large fallen trunk in stream gully; MSLITTER 221. 1 f (SAMA OP5,
with exserted ovipositor), 3 m, 1 f (MCZ 1Z-162249) from Heptinstalls
Spring, Cleland Conservation Park, Adelaide, South Australia,
34.9705°S, 138.7089°E; 16 January 2021, Matthew Shaw leg.; Soil &
litter surrounding buried wet log incl. loose litter & sodden, peaty soil;
shrubs and Pteridium, no tree canopy; MSLITTER 226 [1 male mounted
for SEM] 5 m, 2 f (SAMA OP6-OP12), 2 specimens in RNAlater (MCZ
1Z-162252) from Cleland Conservation Park, Bartrill Spur Track,
Chambers Gully catchment, Adelaide, South Australia, 34.9658°S,
138.7031°E; 12 February 2021, Matthew Shaw leg.; Berlese funnel
extract; MSLITTER 229.
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Additional material. 2 m, 1 f from Cleland Conservation Park,
Bartrill Spur Track, Chambers Gully catchment, Adelaide, South
Australia, 34.9658°S, 138.7031°E; 12 February 2021, Matthew Shaw
leg.; Berlese funnel extract; MSLITTER 229. 2 m, 2 f (SAMA
OP13-OP16) Wine Shanty Tk, Cleland Conservation Park, 34.9689°S,
138.7074°E; 15 May 2021, Matthew Shaw leg.; litter under decayed logs
near gully stream, stringybark canopy; MSLITTER 239. 4 f from
Cleland Conservation Park, Bartrill Spur Track, Chambers Gully catch-
ment, 34.96582°S, 138.70308°E; 7 August 2021, Matthew Shaw
leg.; leaf litter at base of reed and Gahnia clumps, stringybark canopy;
MSLITTER 250.

Diagnosis

As for genus.

Description of male

Total length of male holotype (Fig. 4a—c) 2.09 mm; width at
widest point, at the prosoma, 1.11 mm; length: width ratio
1.88; width across ozophore tips 0.74 mm. Body of a uniform
dark brown colour (preserved in ethanol); legs of a lighter
brown. Body surface with tuberculate-microgranulate micro-
structure (sensu Murphree 1988) across its entire surface.

Ozophores conical, between types 2 and 3 of Juberthie
(1970; see also Giribet 2003) (Fig. 5a, 6a). Eyes and eye
lenses entirely absent. Mid-dorsal longitudinal opisthosomal
sulcus absent (Fig. 5a). Transverse opisthosomal sulci con-
spicuous (Fig. 5a). Posterior end of body bilobed (Fig. 5a, g),
tergites VIII and IX modified.

Ventral thoracic complex (Fig. 5b) typical of pettalids,
with ventral surface of prosoma occupied entirely by large
coxal segments of legs. Leg I coxae directed forward, so that
they embrace palp coxa. Coxae of legs I and II movable,
coxae of legs III and IV fused. Ventral prosomal complex of
male with coxae of legs II, III and IV meeting in the midline,
coxae I not so. Sternum absent. Gonostome semicircular,
width (129 pm) greater than length (96 um) (Fig. 5b).

Spiracles forming an open circle characteristic of most
pettalids (Fig. 5f), with maximum diameter 62 pm. Sternites
8 and 9 and tergite IX free, not forming a corona analis
(Fig. 5d). Sternite 9 narrow; relative position of sternite 9
and tergite IX of pettalid type. Anal plate oval to fusiform in
shape, entirely granulated, without conspicuous modifica-
tions, directed ventrally (Fig. 5d); 241 um wide, 148 um
long. Opisthosomal sternites not depressed; without sternal
pore openings.

Tergite IX bipartite; tergite VIII bilobed, with a scopula of
trichomes and setae emerging from each inner side of the
lobe; tergite VII also bilobed, not as deep (Fig. 5a, g). Anal
gland opening absent.

Chelicerae (Fig. 6b, c) without a dorsal crest; with few
setae. Granulation restricted to the proximal article. Proximal
article 725 mm long, 253 mm deep, without a ventral pro-
cess. Second article 849 mm long, 168 mm deep, widest near
the centre; dentition without an alternation of small and large
nodular teeth in the fixed finger (Fig. 6c¢). Distal article
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293 mm long, 82 mm deep, three distalmost teeth larger and
less uniform than proximal teeth.

Palp (Fig. 6d) with a ventral process on proximal end of
trochanter; without other conspicuous modifications, and
ornamentation present on trochanter and second segment.
Length/width (mm) (length:width ratio in parentheses) of
palpal articles from trochanter to tarsus: 250/113 (2.2);
406/101 (4.0); 306/93 (3.2); 315/85 (3.7); 305/75 (4.0);
total length 1.58 mm. Palpal claw 28 mm long (Fig. 6e).

Legs robust (Fig. 7a-i); surfaces of all trochanters, femurs,
patellae and tibiae thickly and uniformly granulated; meta-
tarsi I and III only granulated near the base (Fig. 7b, f),
metatarsi II and IV completely granulated (Fig. 7d, h, i).
Tarsi not appreciably ornamented (Fig. 7a—i). Tarsus I with
a distinct solea (Fig. 7b). Dorsum of tarsi I (Fig. 7b) and III
(Fig. 7f) with conspicuous solenidia, trichomes and sensilla
chaetica (Juberthie 1979; Willemart and Giribet 2010); sole-
nidia absent from tarsi of legs Il and IV. Tarsal claws smooth.
For leg measurements for each article (length/maximum
depth) see Table 1. Leg formula: I>1IV > III > II. Male
tarsus IV divided, the basalmost article with a wing-like
projection bearing the adenostyle (Fig. 7g, h). Adenostyle
projection 100 um long.

Spermatopositor short, 270 um long, typical of pettalids
(Fig. 8). Microtrichal formula 4-6-6 (one penis studied).
Ventral side of penis (Fig. 8) with two pairs of microtrichiae
forming a tight cluster. Apical lobe semicircular with three
pairs of microtrichiae, the lateral ones short. Dorsal side of
penis with a group of three long microtrichia on each side,
with bases arranged in a ‘V’ and not fused (only seen by
transparency in Fig. 8). Gonopore complex without movable
fingers.

Description of female

Total length of female paratype MCZ 1Z-162243 (Fig. 4d—f)
2.41 mm; width at widest point 1.19 mm; length: width ratio
2.02; width across ozophores 0.78 mm. Ventral prosomal
complex (Fig. 5¢) with coxae II and III meeting in the mid-
line; coxae I and IV not meeting in the midline; gonostome
pentagonal. Opisthosomal sternites without conspicuous
modifications. Anal region without modifications (Fig. 5e).

Anal plate oval in shape, entirely granulated, without
conspicuous modifications, directed ventrally, with few setae

(Fig. 5e); 251 um wide, 155 um long. Tarsus of leg IV smooth,
without modifications, densely setose (Fig. 7i). Ovipositor
observed protruding outside one specimen (OP 5), with more
than 32 segments, longer than 2.56 mm.

Distribution

Known only from a few sites in Cleland Conservation Park,
Adelaide, South Australia (Australia).

Remarks

See remarks for genus above. The habitat of this species
seems to be restricted to a few immediately adjacent small
creeks fed by permanent springs.

Etymology

Used as a noun in apposition, ‘eureka’ is an interjection used
to celebrate a discovery or invention. It is a transliteration of
an exclamation attributed to Ancient Greek mathematician
and inventor, Archimedes. The name refers to the surprising
finding of a pettalid species filling a large distributional gap
that has puzzled the authors for a long time.

Conclusions

In this article we report a new genus of Cyphophthalmi from
South Australia, a genus that for now is monospecific, but
that may contain additional species in suitable habitat from
South Australia and perhaps Victoria and Tasmania. The
new genus is not related (as ingroup or sister group) to
the other two Australian genera, and in fact, is not closely
related to any of the genera from former East Gondwana.
Instead, it appears in a grade of former West Gondwanan
genera, as the sister group to the South American genus
Chileogovea, suggesting an ancestral relationship to this
clade through Antarctica, as observed in some clades of
triaenonychid Opiliones. This study highlights the need for
additional Opiliones prospection in Australia and shows
that sparse representation of simple and expected bio-
geographic patterns, like a division between West and East
Gondwana in ancient clades like pettalids, are probably due
to undersampling.

Table I. Measurements for each leg article (um) (length/maximum depth).
Tr Fe Pa Ti Mt Ta Total L (mm)
Leg | - 657/175 323/163 417/152 246/144 460/177 >2.10
Leg Il 140/136 405/154 231/162 273/161 218/114 359/109 1.62
Leg llI 155/151 525/160 266/160 336/160 218/124 394/141 1.89
Leg IV 202/155 534/177 295/179 361/185 221/139 413(198 +215)/186 2.02

All leg measurements are in micrometres (except where specified otherwise); parentheses in Ta |V refer to each of the tarsal subsegments. Tr, trochanter; Fe,

femur; Pa, patella; Ti, tibia; Mt, metatarsus; Ta, tarsus; L, length.
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Supplementary material

Supplementary material is available online.
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