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Abstract. In 2022, Defant and Kravitz introduced extended promotion
(denoted ∂), a map that acts on the set of labelings of a poset. Extended
promotion is a generalization of Schützenberger’s promotion operator, a
well-studied map that permutes the set of linear extensions of a poset. It
is known that if L is a labeling of an n-element poset P , then ∂n−1(L)
is a linear extension. This allows us to regard ∂ as a sorting operator on
the set of all labelings of P , where we think of the linear extensions of
P as the labelings which have been sorted. The labelings requiring n − 1
applications of ∂ to be sorted are called tangled ; the labelings requiring
n − 2 applications are called quasi-tangled. We count the quasi-tangled
labelings of a relatively large class of posets called inflated rooted trees with
deflated leaves. Given an n-element poset with a unique minimal element
with the property that the minimal element has exactly one parent, it
follows from the aforementioned enumeration that this poset has 2(n −
1)! − (n − 2)! quasi-tangled labelings. Using similar methods, we outline
an algorithmic approach to enumerating the labelings requiring n− k − 1
applications to be sorted for any fixed k ∈ {1, . . . , n − 2}. We also make
partial progress towards proving a conjecture of Defant and Kravitz on
the maximum possible number of tangled labelings of an n-element poset.

1. Introduction

1.1. Background

Let P be an n-element poset, whose order relation we denote by <P . A labeling
of P is a bijection L : P → [n] (where [n] = {1, . . . , n}). A labeling L is called
a linear extension if it preserves the order on P , i.e. if for all pairs x, y ∈ P
with x <P y we have L(x) < L(y). Let Λ(P ) be the set of all labelings of P ;
let L(P ) ⊂ Λ(P ) be the subset consisting of all linear extensions.
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In [21–23], Schützenberger introduced an intriguing bijection on L(P )
called promotion. Promotion has connections with various topics in algebraic
combinatorics and representation theory, as seen in [12,15,19,20,24].

In [9], Defant and Kravitz extended the promotion map to an opera-
tor ∂ : Λ(P ) → Λ(P ), not necessarily invertible, that is defined on all of
Λ(P ). When the poset is a chain, extended promotion is dynamically equiva-
lent to the bubble-sort map studied in [16]. Promotion can also be described
in terms of Bender-Knuth involutions (first introduced by Haiman [13] as well
as Malvenuto and Reutenauer [18]); in [9], Defant and Kravitz extended these
Bender-Knuth involutions to arrive at an equivalent “toggle” definition of ex-
tended promotion. The following results of [9] are crucial properties of extended
promotion:

1. When restricted to L(P ), ∂ agrees with Schützenberger’s promotion op-
erator.

2. If L is a labeling of an n-element poset P , then ∂n−1(L) ∈ L(P ).
Thus, (extended) promotion1 may be regarded as a sorting operator, where
linear extensions are considered “sorted.” Property (2) shows that promotion
sorts every labeling after at most n − 1 applications.

We define the sorting time of a labeling L to be the smallest k ∈ N

(here we take N to include 0) such that ∂k(L) ∈ L(P ). Defant and Kravitz
mainly studied tangled labelings—those labelings with sorting time n − 1. In
particular, they enumerated these tangled labelings for a large class of posets
called inflated rooted forests.

Given any noninvertible combinatorial dynamical system, it is natural to
try to study (especially, enumerate) those objects requiring a fixed number of
iterations to reach a periodic point. In particular, given a sorting operator, it
is natural to enumerate the objects requiring a certain number of applications
to be sorted. For other sorting operators, substantial effort has been dedicated
to performing such enumerations. For example, in [2], Chung-Claesson-Dukes-
Graham gave explicit formulas for the permutations on n letters with d de-
scents requiring a minimum of k applications of bubble sort to reach the iden-
tity permutation. In [5,7,8], Defant performed similar enumerations for the 2-
and 3-stack-sortable permutations, and in [3], Claesson-Dukes-Steingŕımsson
counted the (n− 4)-stack-sortable permutations. Similarly-flavored results are
given in [4,6,14] for pop-stack sorting and in [11,17] for pop-tsack torsing.

In the context of promotion, even counting labelings that require no ap-
plications of promotion to be sorted is quite difficult, as this is just counting
the linear extensions of a poset. Brightwell and Winkler showed in [1], that this
problem is #P-complete. However, restricting to certain classes of posets, such
as Young-diagram-shaped or rooted tree posets, can sometimes lead to the dis-
covery of very nice formulas. For example, in [16], Knuth gave a hook-length
formula counting the number of linear extensions of a rooted forest poset. In
[9], Defant and Kravitz enumerated the tangled labelings of a large class of
posets built from and generalizing rooted tree posets, called inflated rooted

1Henceforth, “promotion” always refers to ∂ rather than its restriction to L(P ).
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tree posets. The main result of this paper builds on the work of Defant and
Kravitz. In particular, we give an explicit enumeration of the quasi-tangled la-
belings for a large subset of inflated rooted trees which, importantly, contains
rooted tree posets.

1.2. Outline and Summary of Main Results

In Sect. 2, we present the main definitions and background results needed for
the rest of the paper. The main result of the paper, an explicit enumeration of
the labelings with sorting time n − 2 for a large class of posets called inflated
rooted trees with deflated leaves (Theorem 9), is given in Sect. 3. A corollary
of this result is that an n-element poset with a unique minimal element with
the property that the minimal element has exactly one parent has 2(n − 1)! −
(n − 2)! quasi-tangled labelings. Another consequence of the main theorem is
given in Sect. 3.4, where we present an algorithmic approach to enumerating
the labelings of a rooted tree poset with sorting time n − k − 1 for fixed
k ∈ {1, . . . , n − 2}. In Sect. 4, we make partial progress (Theorem 28) on the
following conjecture:

Conjecture 1. ([9], Conjecture 5.1) If P is an n-element poset, then P has at
most (n − 1)! tangled labelings.

We also prove that, for an inflated rooted tree poset with deflated leaves,
there are more quasi-tangled labelings than tangled labelings, and we con-
jecture that this statement holds for an arbitrary poset. Finally, we conclude
Sect. 4 with several open problems and further directions of inquiry.

2. Preliminaries and Some Special Classes of Posets

2.1. Extended Promotion

Let P be an n-element poset, and let L be a labeling of P . For x ∈ P not
maximal, the L-successor of x is the element greater than x with minimal
label. Now, let v1 = L−1(1). Let v2 be the L-successor of v1; let v3 the L-
successor of v2, and so on until we get an element vm that is maximal. The
resulting chain v1 <P v2 <P · · · <P vm is called the promotion chain of L.
Now, define ∂(L) to be the labeling

∂(L)(x) =

⎧
⎪⎨

⎪⎩

L(x) − 1 if x �∈ {v1, . . . , vm};
L(vi+1) − 1 if x = vi for i ∈ {1, . . . , m − 1};
n if x = vm.

In other words, promotion may be thought of as decreasing each label by
1 (working modulo n so that 0 = n) and then cycling the promotion chain
downwards one step. The following proposition captures a fundamental sorting
property of promotion (Fig. 1).

Proposition 2. ([9], Proposition 2.7) If P is an n-element poset, then ∂n−1(Λ(P ))
= L(P ).
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2.2. Preliminary Definitions

A lower order ideal of a poset P is a subset Q ⊂ P such that for every x ∈ Q
and y ∈ P with y <P x we have y ∈ Q. Similarly, an upper order ideal of a
poset P is a subset Q ⊂ P such that for all x ∈ Q and y ∈ P with y >P x we
have y ∈ Q. It is often useful to note that Q is a lower order ideal of P if and
only if P\Q is an upper order ideal of P . For x, y ∈ P , we say that y covers x
and write x � y if x <P y and {z ∈ P | x <P z <P y} = ∅. In this case, we
say that y is a parent of x and that x is a child of y.

The Hasse diagram of a poset P is a graphical illustration of its covering
relations. Each element of P is represented by a vertex, and if x <P y, then
the vertex corresponding to x is drawn below that corresponding to y; there
exists an edge between these vertices if and only if x �P y. We say a poset
is connected if its Hasse diagram is connected when regarded as a graph;
the connected components of P are the subposets induced by the connected
components of the Hasse diagram of P .

Suppose P is an n-element poset, and let f : P → Z be an injective
function. Then the standardization of f , denoted st(f), is the labeling L :
P → [n] such that for all x, y ∈ P , L(x) < L(y) if and only if f(x) < f(y).
Note that this labeling is unique. Equivalently, if g : f(P ) → [n] is an order-
preserving bijection, then st(f) = g ◦ f .

Proposition 2 motivates the following definitions:

Definition 1. Let L be a labeling of a poset P . The sorting time of L is the
minimum number k ∈ N such that ∂k(L) ∈ L(P ). Note that the sorting time
of a linear extension is 0.

Definition 2. For an n-element poset P , a labeling is called tangled if it has
sorting time n−1. A labeling is called quasi-tangled if it has sorting time n−2.

If P is a poset, L a labeling of P , and γ ∈ N, we will frequently use the
shorthand Lγ to denote ∂γ(L). Note that L0 = L.

Example 1. The following illustrates how extended promotion works:

Figure 1. In the above, the promotion chain is colored in
blue
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2.3. Some Useful Results About Promotion

The following results will be helpful later:

Lemma 3. Let P be an n-element poset. For γ ∈ N and any x ∈ {2, . . . , n},
we have that L−1

γ (x) ≥P L−1
γ+1(x − 1); equality holds if and only if L−1

γ (x) is
not in the promotion chain of Lγ .

Proof. Suppose first that L−1
γ (x) is not in the γth promotion chain. Then

L−1
γ+1(x − 1) = L−1

γ (x), and we are done. Otherwise, since x > 1, there exists
an element a <P L−1

γ (x) such that a is in the promotion chain and L−1
γ (x) is

the Lγ-successor of a. Hence, a = L−1
γ+1(x − 1) <P L−1

γ (x), as desired. �

Lemma 4. Let x and y be two elements of P with y <P x. Fix some γ ∈
{1, . . . , n − 2}, and suppose that Lγ(y) > Lγ(x). Then Lγ(y) = Lγ−1(y) − 1.
Moreover, we have that Lγ−1(y) > Lγ−1(x).

Proof. Begin by letting a = Lγ(y) and b = Lγ(x), and note that a > b. Observe
that the first part of the lemma holds if and only if y is not in the (γ − 1)st
promotion chain. Assume for a contradiction that y is in the promotion chain
of Lγ−1. By Lemma 3, L−1

γ−1(b + 1) ≥P L−1
γ (b) = x >P y, so L−1

γ−1(a + 1)
cannot be the Lγ−1-successor of y, since a > b. This is a contradiction. The
second part of the lemma is simple: Lγ−1(x) ≤ b + 1 < a + 1 = Lγ−1(y). �

Theorem 5. ([9], Theorem 2.10) For 0 ≤ k ≤ n − 2, an n-element poset P has
a labeling with sorting time n − k − 1 if and only if it has a lower order ideal
of size k + 2 that is not an antichain.

2.4. Rooted Tree and Forest Posets

Definition 3. A rooted forest poset is a poset in which each element is covered
by at most one other element. A rooted tree poset is a connected rooted forest
poset. Given a rooted tree poset, we say a subset Q of P is a subchain (respec-
tively, subtree) if the poset induced by Q is a chain (respectively, tree). The
leaves of a rooted tree poset are its minimal elements (Fig. 2).

Note here that a rooted tree poset is a poset whose Hasse diagram is a
rooted tree where the root is the unique maximal element. A rooted forest
poset is a poset whose connected components are rooted tree posets.

2.5. Inflated Rooted Trees

Definition 4. Let Q be a finite poset. An inflation of Q is a poset P along with
a surjective map ϕ : P → Q satisfying:

1. For all v ∈ Q, the set ϕ−1(v) has a unique minimal element.
2. If x, y ∈ P are such that ϕ(x) �= ϕ(y), then x <P y if and only if

ϕ(x) <Q ϕ(y).
An inflated rooted tree poset is an inflation of a rooted tree poset. An inflated
rooted tree poset with deflated leaves is an inflation of a rooted tree poset Q
such that for all leaves � ∈ Q we have |ϕ−1(�)| = 1.
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Figure 2. (P,ϕ) is an inflated rooted tree with deflated
leaves, where P inflates Q. The colors illustrate the preim-
ages of the elements of Q

Remark 1. We say that a rooted tree poset is reduced if no vertex has exactly
one child. Since the composition of inflations is also an inflation, we see that
every inflated rooted tree poset is the inflation of a reduced rooted tree poset.
When we refer to an inflation ϕ : P → Q of a rooted tree poset with deflated
leaves we will assume that the subposet of Q obtained by removing its leaves
is reduced.

3. Quasi-Tangled Labelings of Inflated Rooted Trees with
Deflated Leaves

3.1. Setup and Statement of the Main Theorem

In the following, we give a formula enumerating the quasi-tangled labelings of
inflated rooted tree posets with deflated leaves. The following is shown in the
proof of Theorem 5, but we state it as its own lemma here:

Lemma 6. ([9], Proof of Theorem 2.10) Let P be an n-element poset and L a
labeling of P such that Ln−k �∈ L(P ). Then {L−1

n−k(1), . . . , L−1
n−k(k)} forms a

lower order ideal of size k that is not an antichain, and the restriction of Ln−k

to this set is not a linear extension.

Lemma 7. If L is a quasi-tangled labeling of an n-element inflated rooted tree
poset P with deflated leaves, then one of the following holds:
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1. L−1(n − 1) is minimal;
2. L−1(n) is minimal;
3. L−1(n) covers a minimal element.

In each case, the element in question is involved in an inversion after n − 3
promotions.

Proof. By Lemma 6, the set Y = {L−1
n−3(1), L−1

n−3(2), L−1
n−3(3)} forms a lower

order ideal that is not an antichain. Moreover, Ln−3 restricted to this set is
not a linear extension.

Now, note that every non-antichain lower order ideal I with three ele-
ments occurring in an inflated rooted tree poset with deflated leaves is one of
the following:

1. I is a chain with 3 elements;
2. I is the rooted tree poset on 3 elements with 2 leaves;
3. I is the disjoint union of a singleton and a chain of size 2.

Suppose Y is of type (1). If L−1
n−3(3) is maximal in Y , then L−1

n−3(2) �

L−1
n−3(1)�L−1

n−3(3), and repeatedly applying Lemma 4 tells us that L−1(n−1)
is minimal. If L−1

n−3(3) is not maximal, then it covers a minimal element or is
minimal itself. We may again repeatedly apply Lemma 4 to see that L−1(n)
either covers a minimal element or is minimal.

Suppose Y is of type (2). It follows that L−1
n−3(3) cannot be maximal,

because then Ln−3 would be a linear extension. So, L−1
n−3(3) is minimal. The

element covering L−1
n−3(3) has a smaller label in Ln−3, so L−1(n) is minimal

by Lemma 4.
Lastly, suppose Y is of type (3). If L−1

n−3(3) occupies its own component,
then L−1

n−3(2) � L−1
n−3(1) and L−1(n − 1) is minimal. Otherwise, L−1

n−3(3) is
covered by either L−1

n−3(1) or L−1
n−3(2), so L−1(n) must be minimal. �

Theorem 9 enumerates the quasi-tangled labelings of inflated rooted trees
with deflated leaves. In particular, note that this relatively large class of posets
includes rooted tree posets. While this particular class of posets seems artificial,
it will be important that the posets we are working with have the property that
if one removes a minimal element or an element covering a minimal element
from the poset, then the resulting poset remains an inflated rooted tree.

We remark here that the quasi-tangled labelings of a poset are those
labelings L such that Ln−3 is not a linear extension but Ln−2 is a linear
extension, i.e., L is not tangled. To count these labelings, we condition on the
positions of L−1(n − 1) and L−1(n) and keep track of where L−1

γ (n − 1 − γ)
and L−1

γ (n − 2 − γ) end up (after n − 3 promotions these are the elements
that are labeled 2 and 1, respectively). In particular, we consider a uniformly
random labeling L of P with L−1(n) or L−1(n − 1) fixed and calculate the
probability that, at each “branch vertex,” the elements in question “get pulled
down” in the desired direction, i.e., in the direction such that Ln−3 is not a
linear extension. The proof of the theorem involves a lot of casework, which
we prove beforehand in several technical lemmas.
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Figure 3. An illustration of what the elements of R, S, and
T “look like”

Let (P,ϕ) be an inflation of a rooted tree poset Q. For each leaf � of Q,
there exists a unique path in the Hasse diagram of Q from � to the root. Let
the elements of this path be called u�,0, u�,1, . . . , u�,ω(�), where u�,0 = � and for
all 1 ≤ j ≤ ω(�), u�,j covers u�,j−1. Then define

b�,j =
∑

v≤Qu�,j−1

|ϕ−1(v)| and c�,j =
∑

v<Qu�,j

|ϕ−1(v)|.

Note that b�,j

c�,j
is the fraction of elements below the minimal element of ϕ−1(u�,j)

that “lie in the direction” of ϕ−1(�). The following enumerates the number of
tangled labelings of P :

Theorem 8. ([9], Theorem 3.5) Let P be an n-element inflation of a rooted tree
poset Q, and assume n ≥ 2. Then the number of tangled labelings of P is

(n − 1)!
s∑

i=1

ω(�i)∏

j=1

b�i,j − 1
c�i,j − 1

,

where �1, . . . , �s are the leaves of Q.

Now, define M to be the set of minimal elements of P . We define subsets
R,S, T of M : Let � ∈ M , and let x cover �.

1. Put � in R if � is the only child of x and the parent of x exists and has
multiple children.

2. Put � in S if x has precisely two children;
3. Put � in T if � is the only child of x, the parent of x exists, and x is the

only child of its parent.
Note here that R, S, and T are disjoint but do not partition P . However, it is
not difficult to see that R, S, and T partition the set of minimal elements of
P that, along with their parents, lie in non-antichain lower order ideals of size
3. See Fig. 3.

Note that a 2-element poset has no quasi-tangled labelings (this follows
from Theorem 5). In the following, we will assume that our posets have at
least 3 elements.
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Theorem 9. Let (P,ϕ) be an inflation of the rooted tree poset Q with deflated
leaves. Suppose P has n elements, and let n ≥ 3. Let M , R, S, T , and the
u�,j’s, b�,j’s, and c�,j’s be as defined above. Then the number of quasi-tangled
labelings of P is

(n − 1)!

⎛

⎝2
∑

�∈T

ω(�)∏

j=2

b�,j − 1
c�,j − 1

− 1
n − 1

∑

�∈T

ω(�)∏

j=2

b�,j − 2
c�,j − 2

+ 2
∑

�∈R

ω(�)∏

j=2

b�,j − 1
c�,j − 1

+
∑

�∈S

ω(�)∏

j=2

(b�,j − 1)(b�,j − 2)
(c�,j − 1)(c�,j − 2)

⎞

⎠ .

Corollary 10. Let P be a poset with n elements, and assume n ≥ 3. Suppose
that P has a unique minimal element and that this minimal element has exactly
one parent. Then P has 2(n − 1)! − (n − 2)! quasi-tangled labelings.

3.2. Computing Probabilities

In this section, we compute several probabilities that will help us in the proof of
Theorem 9. Importantly, in Lemma 13, we generalize Lemma 3.11 of [9], which
tells us that the probability of a certain label ending up in some subtree of our
inflated rooted tree poset after a certain number of promotions is proportional
to the size of the subtree.

Lemma 11. ([9], Lemma 3.9) Let P be an N -element poset, and let X = {y ∈
P | y <P x} for some x ∈ P . Suppose every element of P that is comparable
with some element of X is also comparable with x. If L and L̃ are labelings of
P that agree on P\X, then for every γ ≥ 1, the labelings Lγ and L̃γ also agree
on P\X.

Lemma 12. ([9], Lemma 3.10) Let P , x, and X be defined as in Lemma 11. If
L is a labeling of P and γ ≥ 0, then the set Lγ(X) depends only on the set
L(X) and the restriction L|P\X ; it does not depend on the way in which the
labels in L(X) are distributed among the elements of X.

For the rest of this subsection, let P , x, and X be defined as in Lemma 11.
Suppose there is a partition of X into disjoint subsets A and B such that no
element of A is comparable to an element of B. Note that both A and B are
lower order ideals of P .

Definition 5. Let L be a labeling of P . Suppose that k ∈ [N − 1] and m ∈ [N ]
are such that m + k ≤ N , L−1

k (m) ∈ X, and L−1(m + k) �∈ X. We say that γ
pulls down m + k if γ < k is the largest index such that L−1

γ (m + k − γ) �∈ X.
We see immediately from the definition that γ is the unique such index pulling
down m + k and that γ pulls down exactly one label.

With notation as above, note that in order to determine whether L−1
k (m) ∈

A, it suffices to determine whether L−1
γ (1) ∈ A: because L−1

γ (m + k − γ) �∈ X

and L−1
γ+1(m + k − γ − 1) ∈ X, we have that L−1

γ (m + k − γ) is in the γth
promotion chain. Hence, L−1

γ+1(m + k − γ − 1) ∈ A if and only if L−1
γ (1) ∈ A

(recall A and B are disjoint lower order ideals).
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To each such m + k, one can associate a decreasing sequence of indices
γ0, γ1, . . . , γr whose values depend only on L|P\X as follows. Let γ0 pull down
m+k. By Lemma 12, the value γ0 depends only on L|P\X . If L−1(γ0+1) ∈ X,
we are done. Otherwise, let γ1 pull down γ0 + 1, where we let γ0 take the role
of k and 1 the role of m (note that γ1 < γ0). If L−1(γ1 + 1) ∈ X, we are
done; otherwise, let γ2 pull down γ1 +1. This process can be continued, where
γi+1 pulls down γi +1. Since 0 ≤ γi+1 < γi, this process eventually terminates,
yielding a decreasing sequence γ0, . . . , γr. By Lemma 12, we see that the values
γ0, . . . , γr depend only on the set L(X) and L|P\X , not on the way in which
the labels in L(X) are distributed.

Let a, b ∈ [N ] and k ∈ [N−1] be such that a+k, b+k ≤ N , L−1
k (a), L−1

k (b)
∈ X, and L−1(a + k), L−1(b + k) �∈ X. Suppose a �= b. Let α0, . . . , αr and
β0, . . . , βs be the sequences associated to a + k and b + k, respectively. We
claim that {α0, . . . , αr}∩{β0, . . . , βs} = ∅. Assume the contrary. If αi = βj for
some 0 ≤ i ≤ r and 0 ≤ j ≤ s, then it follows from Definition 5 that αr = βs.

Without loss of generality, suppose r ≤ s. If r < s, then by definition,
αr = βs pulls down αr−1 + 1 = βs−1 + 1, αr−1 = βs−1 pulls down αr−2 + 1 =
βs−2 + 1, etc., until α0 = βs−r pulls down a + k = βs−r−1 + 1. It follows that
a + k − 1 = βs−r−1. Note that a + k − 1 ≥ k, but βs−r−1 ≤ β0 < k. This is a
contradiction. The case where s > r is identical. If r = s, then α0 = β0, and it
follows that a + k = b + k, contradicting our assumption that a �= b.

The following is a generalization of Lemma 3.11 in [9]. For d = 1, the
lemmas are exactly the same. This lemma will be applied repeatedly in the
proof of Theorem 9. Informally, it states that given a list of d labels whose
corresponding elements are in X after k promotions, the probability that all
of these labels are in A is proportional to (|A|)!/(|A| − d − 1)!.

Lemma 13. (Probability Lemma) Let P , x, and X be defined in Lemma 11,
and let A and B be defined as above. Let k ∈ [N − 1], and let n1, . . . , nd ∈
[N ] be such that ni + k ≤ N for all 1 ≤ i ≤ d. Fix an injective map M :
P\X → [N ] such that every labeling L extending M has the property that
L−1

k (n1), . . . , L−1
k (nd) ∈ X. If such an L is chosen uniformly at random among

all such extensions of M , then the probability that L−1
k (n1), . . . , L−1

k (nd) ∈ A
is

|A|(|A| − 1) · · · (|A| − d)
|X|(|X| − 1) · · · (|X| − d)

.

Proof. Suppose that n1 < n2 < · · · < nd, and let ni1 < · · · < nit
be the

subset of labels such that L−1(ni + k) �∈ X. For all s �∈ {i1, . . . , it}, because
L−1(ns+k) ∈ X, Lemma 3 gives that L−1

k (ns) ∈ A if and only if L−1(ns+k) ∈
A.

Now, by our discussion above, to each nij
we may associate a decreasing

sequence of γj ’s given by γj
0 > · · · > γj

r(j). Note that by Lemma 12, the set of
γj ’s depends only on M , not on how the labels in L(X) are distributed. Recall
that the sets {γj

0, . . . , γ
j
r(j)} are pairwise disjoint. Importantly, we have that

the γj
r(j)’s are all distinct.
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Fix some nj for j ∈ {i1, . . . , it}. In this and the next paragraph, de-
note the associated sequence by γ0, . . . , γr. We claim that the probability that
L−1

k (nj) ∈ A is equal to the probability that L−1
γr

(1) ∈ A. To see why this
is true, recall that γ0 pulls down nj + k. In the discussion above, we showed
that L−1

k (nj) ∈ A if and only if L−1
γ0

(1) ∈ A. Now, γ1 pulls down γ0 + 1, so
L−1

γ0
(1) ∈ A if and only if L−1

γ1
(1) ∈ A. Clearly, we may continue in this manner

until we see that L−1
k (nj) ∈ A if and only if L−1

γr
(1) ∈ A.

By assumption, L−1(γr + 1) ∈ X. Because A and B are disjoint lower
order ideals, Lemma 3 implies that L−1

γr
(1) ∈ A if and only if L−1(γr +1) ∈ A.

Hence, the probability that L−1
k (nj) ∈ A is equal to the probability that

L−1(γr + 1) ∈ A.
Thus, for all i, we have reduced calculating the probability that L−1

k (ni) ∈
A to calculating the probability that L−1(ai) ∈ A for some particular label
ai ∈ [N ]. Note that our assumptions on M give L−1(ai) ∈ X for all i. For
each nij

, we have that aij
= γj

r(j) + 1. Recall that the γj
r(j)’s are all distinct;

moreover note that for all s �∈ {i1, . . . , it}, we have that γj
r(j) + 1 �= ns + k,

since γj
r(j) + 1 ≤ γj

0 + 1 ≤ k < ns + k. For each s �∈ {i1, . . . , it}, as = ns + k.
Thus, the ai’s are distinct. Since L is chosen uniformly at random from the
labelings extending M , it follows that the probability L−1

k (ni) ∈ A for all i is

|A|(|A| − 1) · · · (|A| − d)
|X|(|X| − 1) · · · (|X| − d)

,

as desired. �

3.3. Proof of the Main Theorem

Lemma 14. Let P be an n-element poset, and let L be a labeling of P . Let
x0 ∈ P . Define P̃ = P \ {x0} and L̃ = st(L|P̃ ). Suppose that x0 is not part of
the promotion chain for any of the first γ promotions. Then st(Lγ |P̃ ) = L̃γ .

Proof. Recall that promotion depends only on the promotion chain, which in
turn depends only on the relative order of the labels. Since x0 is never in the
promotion chain for the first γ promotions, the promotion chains of L0, . . . , Lγ

and L̃0, . . . , L̃γ are the same, as desired. �

Before proving Theorem 9, we define some notation. Let P be as in The-
orem 9, and let x0 ∈ P either cover a unique minimal element or be minimal
itself. If x0 is minimal, let � = x0; if it covers a minimal element, denote this
minimal element by �. Define P̃ and L̃ as in Lemma 14, and let ϕ̃ = ϕ|P̃ . Note
that ω(�) ≥ 1 unless Q is a one-element poset; if Q has only one element, then
so does P . A one-element poset has no quasi-tangled labelings, so henceforth
we assume Q has more than one element.

For j ∈ {2, . . . , ω(�)}, let xj be the minimal element of ϕ̃−1(u�,j). Also
define

Xj = {y ∈ P̃ | y <P̃ xj} and Aj =
⋃

v≤Qu�,j−1

ϕ̃−1(v).
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Let A′
j be defined analogously but with ϕ instead of ϕ̃. Recall that for j ∈

{2, . . . , ω(�)},

b�,j =
∑

v≤Qu�,j−1

|ϕ−1(v)| and c�,j =
∑

v<Qu�,j

|ϕ−1(v)|,

where u�,0, u�,1, . . . , u�,ω(�) is the unique path in Q from ϕ(�) to the root.
In order to count the quasi-tangled labelings of P , we condition on the

label of x0 and count the labelings L such that Ln−3 �∈ L(P ) and there exists
y ∈ P such that y >P x0 and Ln−3(y) < Ln−3(x0). For example, when x0 is
minimal, we count the labelings L such that L(x0) = n − 1 and L−1

n−3(1) >P

x0 = L−1
n−3(2). Note here that L−1

n−3(1) >P L−1
n−3(2) if and only if L−1

n−3(1) ∈ A′
2.

Our strategy is to fix the label of x0 and choose a labeling uniformly at random
among the (n − 1)! such labelings of P ; observe that this induces the uniform
distribution on the labelings of P̃ . Given such a random labeling, we want to
calculate the probability that certain labels end up in A′

2.
We will show later that, in each case, calculating this probability can be

reduced to calculating the probability that the labels in question end up in
A2. Thus, we make the following definitions: Let K be some nonempty subset
of {1, 2}. For x0 and � as defined above and j ∈ {2, . . . , ω(�)}, let E�,j be the
event that K ⊂ L̃n−3(Aj). In other words, E�,j is the event that every label in
K ends up on the “correct side” of xj after n − 3 promotions. We would like
to compute P(E�,2) for L̃. To do so, we note that

P(E�,2) = P(E�,ω(�))P(E�,ω(�)−1 |E�,ω(�)) · · · P(E�,2 |E�,3) (1)

and compute the multiplicands on the right-hand side of the equation above.

Lemma 15. Fix r ∈ {1, 2}. Let P , x0, �, and the Aj’s, A′
j’s, and Xj’s be

defined as above. If x0 is minimal, fix a ∈ {n − 1, n}. Otherwise fix a = n. Set
L(x0) = a. Then L−1

n−3(r) ∈ A′
2 if and only if L̃−1

n−3(r) ∈ A2.

Proof. Suppose x0 is minimal. Then Ln−3(x0) = L(x0) − n + 3 ∈ {2, 3}, and
x0 is never in the promotion chain for the first n − 3 promotions. The lemma
follows immediately from applying Lemma 14 to P , L, and x0.

Suppose x0 covers a unique minimal element � and L(x0) = n. Also
assume that L−1

n−3(r) ∈ A′
2. We claim that this implies x0 is not in the pro-

motion chain for the first n − 3 promotions. Suppose to the contrary that x0

is in the γth promotion chain for some 0 ≤ γ ≤ n − 4. This forces Lγ(�) = 1
and implies that x0 is the Lγ-successor of �. Note that L−1

n−3(r) ∈ A′
2 im-

plies that L−1
α (r + n − 3 − α) is comparable to x0 for all 0 ≤ α ≤ n − 3.

In particular, L−1
γ (r + n − 3 − γ) must be above x0, since x0 is above only

� and Lγ(�) = 1. It follows that x0 cannot be the Lγ-successor of �, since
r+n−3−γ < n−γ = Lγ(x0). This is a contradiction, so x0 is not in the pro-
motion chains of L, . . . , Ln−4. Hence, we may apply Lemma 14, and it follows
that L̃−1

n−3(r) ∈ A2.
For the converse, assume that L−1

n−3(r) �∈ A′
2. We have two cases: (1) x0

is not in the promotion chains of L, . . . , Ln−4; (2) x0 is in the promotion chain
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Figure 4. An illustration of the notation defined above,
where P is the inflated rooted tree from Fig. 2. The black
and green boxes denote X3 and X2, respectively, while the
red and blue boxes denote A3 and A2, respectively

of Lγ for some γ ∈ {0, . . . , n − 4}. For case (1), we simply apply Lemma 14
and are done.

For case (2), we note that for all 0 ≤ α ≤ γ, Lemma 14 implies that
st(Lα|P̃ ) = L̃α. In particular, we have st(Lγ |P̃ ) = L̃γ . Since we are assuming
that x0 is in the promotion chain of Lγ , it follows that Lγ(�) = 1 and that x0

is the Lγ-successor of �. Hence, with respect to Lγ , there are no elements of P
above x0 with label smaller than n−γ. In particular, L−1

γ (r +n−3−γ) is not
comparable to x0 or �. Since st(Lγ |P̃ ) = L̃γ , it follows that L̃−1

γ (r + n − 3 − γ)
is not comparable to � in P̃ . Therefore, L̃−1

n−3(r) �∈ A2, as desired. �

The next step is using this machinery to compute the conditional prob-
abilities P(E�,j |E�,j+1) as well as P(E�,ω(�)).

Lemma 16. Let P , x0, �, K, and the E�,j’s, Aj’s, Xj’s, b�,j’s, and c�,j’s be
defined as above. Let j ∈ {2, . . . , ω(�) − 1}, and fix any injective map

Mj : P̃ \ Xj → [n − 1]
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such that every labeling L̃ : P̃ → [n − 1] extending Mj has the property that
E�,j+1 occurs. Consider the uniform distribution on such labelings L̃. Then

P(E�,j |E�,j+1) =
|K|∏

t=1

|Aj | − t + 1
|Xj | − t + 1

=
|K|∏

t=1

b�,j − t

c�,j − t
.

Proof. Recall that we may always assume Q has more than one element and
thus that ω(�) ≥ 1. Also, by Remark 1, we have that |A2| ≥ 2.

By hypothesis, every labeling L̃ : P̃ → [n−1] extending Mj has the prop-
erty that E�,j+1 occurs. Recall that this implies K ⊂ L̃n−3(Aj+1) and hence
that K ⊂ L̃n−3(Xj), since {L̃−1

n−3(1), L̃−1
n−3(2)} forms a lower order ideal of P̃ .

By Lemma 12, L̃γ depends only on L̃|P̃\Xj
. Hence, P(E�,j |E�,j+1) depends

only on L̃|P̃\Xj
. Apply the Probability Lemma (Lemma 13) with N = n − 1,

x = xj , X = Xj , A = Aj , M = Mj , k = n − 3, and {n1, . . . , nd} = K. This
tells us that

P(E�,j |E�,j+1) =
|K|∏

t=1

|Aj | − t + 1
|Xj | − t + 1

.

The lemma follows. �

Lemma 17. With notation as in the previous lemma, fix any injective map

Mω(�) : P̃ \ Xω(�) → [n − 1],

and consider the uniform distribution on the labelings L̃ : P̃ → [n−1] extending
Mω(�). Then

P(E�,ω(�)) =
|K|∏

t=1

|Aω(�)| − t + 1
|Xω(�)| − t + 1

=
|K|∏

t=1

b�,ω(�) − t

c�,ω(�) − t
.

Proof. We split into cases based on whether or not P has a unique mini-
mal element. Suppose P has a unique minimal element. Then Aj = Xj ,
and, consequentially, b�,j = c�,j . Hence, it suffices to show that the proba-
bility in question is 1. Since {L̃−1

n−3(1), L̃−1
n−3(2)} forms a lower order ideal of

size 2, it is not difficult to see that when P has a unique minimal element,
{L̃−1

n−3(1), L̃−1
n−3(2)} ⊂ A2. Hence, K ⊂ L̃n−3(A2). Because A2 ⊂ Aj , the prob-

ability in question is 1, as desired.
Suppose P does not have a unique minimal element. The argument is

identical to that in Lemma 16 as long as we show that for any such labeling L̃,
K ⊂ L̃n−3(Xω(�)). This simply follows from recalling that {L̃−1

n−3(1), L̃−1
n−3(2)}

forms a lower order ideal of size 2, because |P̃ | = n − 1. Since P does not
have a unique minimal element, xω(�) is greater than at least two elements,
implying {L̃−1

n−3(1), L̃−1
n−3(2)} ⊂ Xω(�) = {y ∈ P̃ | y <P̃ xω(�)}. �

The previous two lemmas only give us information about P̃ . In the fol-
lowing, we use Lemma 15 to translate these results into information about
P .
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Lemma 18. Let ϕ : P → Q be an inflation of a rooted tree poset with deflated
leaves, and let n be the number of elements in P . Let x0 cover a unique minimal
element or be minimal itself. If x0 is a minimal element, let � = x0; otherwise
let � be the minimal element covered by x0. If x0 is minimal, fix a ∈ {n−1, n}.
Otherwise fix a = n. Let the Aj’s, Xj’s, A′

j’s, E�,j’s, b�,j’s, and c�,j’s be defined
as above. Let K be some nonempty subset of {1, 2}. Suppose L : P → [n]
is a labeling chosen uniformly at random among the (n − 1)! labelings with
L(x0) = a. Then the probability that every label in K is in Ln−3(A′

2) is

ω(�)∏

j=2

|K|∏

t=1

b�,j − t

c�,j − t
.

Proof. Note that L induces the uniform distribution on labelings L̃ : P̃ →
[n − 1]. By Lemma 15, K ⊂ Ln−3(A′

2) if and only if K ⊂ L̃n−3(A2). Thus, we
would like to calculate

P(E�,2) = P(E�,ω(�))P(E�,ω(�)−1 |E�,ω(�)) · · · P(E�,2 |E�,3).

The result follows from applying Lemma 17 and Lemma 16. �

The following three lemmas are applications of Lemma 18 to the config-
urations of interest for the proof of Theorem 9:

Lemma 19. With notation as in Theorem 9, the number of labelings L of P
with L−1(n − 1) �∈ S, L−1(n − 1) minimal, and L−1

n−3(2) <P L−1
n−3(1) is

(n − 1)!

⎛

⎝
∑

�∈T

ω(�)∏

j=2

b�,j − 1
c�,j − 1

+
∑

�∈R

ω(�)∏

j=2

b�,j − 1
c�,j − 1

⎞

⎠ .

Proof. Begin by noting that L−1
n−3(2) = L−1(n − 1). Because L−1(n − 1) is

minimal, Lemma 6 gives us that L−1(n − 1) ∈ T , L−1(n − 1) ∈ R, or L−1(n −
1) ∈ S.

Case (1): Assume L−1(n − 1) ∈ T . We would like to compute the proba-
bility that L−1

n−3(1) >P L−1(n − 1) = L−1
n−3(2). Note that this event occurs if

and only if L−1
n−3(1) ∈ A′

2. Applying Lemma 18 with x0 = � = L−1(n − 1), we
see that this probability is just

ω(�)∏

j=2

b�,j − 1
c�,j − 1

.

Summing over the minimal elements in T , we get the summation corresponding
to T in the formula.

Case (2): An analogous argument works for L−1(n − 1) ∈ R. The lemma
follows. �

Lemma 20. With notation as in Theorem 9, the number of labelings L of P
with L−1(n) minimal and L−1

n−3(3) <P L−1
n−3(1) or L−1

n−3(3) <P L−1
n−3(2) is
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(n − 1)!

⎛

⎝2
∑

�∈T

ω(�)∏

j=2

b�,j − 1
c�,j − 1

+ 2
∑

�∈R

ω(�)∏

j=2

b�,j − 1
c�,j − 1

+
∑

�∈S

ω(�)∏

j=2

(b�,j − 1)(b�,j − 2)
(c�,j − 1)(c�,j − 2)

−
∑

�∈T

ω(�)∏

j=2

(b�,j − 1)(b�,j − 2)
(c�,j − 1)(c�,j − 2)

⎞

⎠ .

Proof. Recall that Lemma 6 implies that L−1(n) is in either R, S, or T . When
L−1(n) is in R or T , the process of counting the number of such labelings
(where L−1(n) is minimal and L−1

n−3(3) <P L−1
n−3(1) or L−1

n−3(3) <P L−1
n−3(2))

is nearly identical to the one used in the proof of Lemma 19 (just apply
Lemma 18). However, if L−1(n) ∈ T , it is possible that L−1

n−3(3) <P L−1
n−3(1)

and L−1
n−3(3) <P L−1

n−3(2); we are twice-counting such labelings. To count the
labelings where L−1(n) ∈ T , L−1

n−3(3) <P L−1
n−3(1), and L−1

n−3(3) <P L−1
n−3(2),

we apply Lemma 18. Thus, for L−1(n) ∈ R ∪ T , there are

(n − 1)!

⎛

⎝2
∑

�∈T

ω(�)∏

j=2

b�,j − 1
c�,j − 1

+ 2
∑

�∈R

ω(�)∏

j=2

b�,j − 1
c�,j − 1

−
∑

�∈T

ω(�)∏

j=2

(b�,j − 1)(b�,j − 2)
(c�,j − 1)(c�,j − 2)

⎞

⎠

labelings where L−1
n−3(3) <P L−1

n−3(1) or L−1
n−3(3) <P L−1

n−3(2). The term being
subtracted in the above expression is the number of labelings with L−1(n) ∈ T ,
L−1

n−3(3) <P L−1
n−3(1), and L−1

n−3(3) <P L−1
n−3(2).

However, the process changes when L−1(n) ∈ S. Let m be the other
element covered by the parent of L−1(n); let Y be the lower order ideal of
size 3 consisting of L−1(n), m, and their parent. Note that we must have
Y = {L−1

n−3(1), L−1
n−3(2), L−1

n−3(3)}. Setting L−1(n) = x0 = �, with notation
as in Lemma 18, we have that Y = {L−1

n−3(1), L−1
n−3(2), L−1

n−3(3)} if and only
if L−1

n−3(1) and L−1
n−3(2) are in A′

2. By Lemma 18, the probability that both
L−1

n−3(1) and L−1
n−3(2) are in A′

2 is

ω(�)∏

j=2

(b�,j − 1)(b�,j − 2)
(c�,j − 1)(c�,j − 2)

.

The formula follows from summing over all elements in S. �

Lemma 21. With notation as in Theorem 9, the number of labelings L where
L−1(n) covers a minimal element and L−1

n−3(1) <P L−1(n) <P L−1
n−3(2) or

L−1
n−3(2) <P L−1(n) <P L−1

n−3(1) is

(n − 1)!

⎛

⎝
∑

m∈T

ω(m)∏

j=2

(bm,j − 1)(bm,j − 2)
(cm,j − 1)(cm,j − 2)

⎞

⎠ .

Proof. Let x0 = L−1(n), and let notation be as in Theorem 18 so that L−1(n)
covers some minimal element �. Note that � ∈ T since L−1

n−3(1), L−1
n−3(2), and

L−1
n−3(3) = L−1(n) form a lower order ideal. Moreover, note that L−1

n−3(1) and
L−1

n−3(2) are comparable to x0 if and only if they are in A′
2. Hence, we may
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apply Lemma 18 to see that the probability both L−1
n−3(1) and L−1

n−3(2) are
comparable to x0 is

ω(m)∏

j=2

(bm,j − 1)(bm,j − 2)
(cm,j − 1)(cm,j − 2)

.

Summing over all the elements in T will imply the lemma. �

Proof of Theorem 9. We begin by counting the number of tangled labelings of
P . By Lemma 3.8 in [9], if L is a tangled labeling of an n-element poset, then
L−1(n) is minimal. Moreover, a labeling is tangled if and only if L−1

n−2(1) >P

L−1
n−2(2). If L is tangled, then it follows that L−1(n) ∈ R ∪ T , since {L−1

n−2(1),
L−1

n−2(2)} forms a lower order ideal and since L−1
n−2(1) >P L−1

n−2(2). Applying
Lemma 18, we see that there are

(n − 1)!

⎛

⎝
∑

�∈T

ω(�)∏

j=2

b�,j − 1
c�,j − 1

+
∑

�∈R

ω(�)∏

j=2

b�,j − 1
c�,j − 1

⎞

⎠ (2)

tangled labelings.
Now, we enumerate the labelings L such that Ln−3 �∈ L(P ). Lemma 7

tells us that if Ln−3 �∈ L(P ), then either L−1(n − 1) is minimal, L−1(n)
is minimal, or L−1(n) covers a minimal element. Moreover, we know that
Y = {L−1

n−3(1), L−1
n−3(2), L−1

n−3(3)} forms a lower order ideal of size 3, and
Ln−3 restricted to Y is not a linear extension. We condition on the three cases
given by Lemma 7.

Case (1): We count the labelings L such that L−1(n − 1) is minimal,
L−1(n − 1) �∈ S, and L−1

n−3(1) >P L−1
n−3(2). By Lemma 19, there are

(n − 1)!

⎛

⎝
∑

�∈T

ω(�)∏

j=2

b�,j − 1
c�,j − 1

+
∑

�∈R

ω(�)∏

j=2

b�,j − 1
c�,j − 1

⎞

⎠ (3)

such labelings. If L−1(n − 1) ∈ S, because {L−1
n−3(1), L−1

n−3(2), L−1
n−3(3)} is a

lower order ideal, it follows from the definition of S that L−1
n−3(1) must be

the unique parent of both L−1
n−3(2) and L−1

n−3(3). Now, repeatedly applying
Lemma 4 to L−1

n−3(1) and L−1
n−3(3) tells us the position of L−1(n), namely

that L−1(n) = L−1
n−3(3) ∈ S. Thus, this subcase can be excluded and will be

addressed in Case (2) when we assume L−1(n) is minimal.
Case (2): We count of labelings L such that L−1(n) is minimal and

L−1
n−3(3) <P L−1

n−3(1) or L−1
n−3(3) <P L−1

n−3(2). By Lemma 20, there are

(n − 1)!

⎛

⎝2
∑

�∈T

ω(�)∏

j=2

b�,j − 1
c�,j − 1

+ 2
∑

�∈R

ω(�)∏

j=2

b�,j − 1
c�,j − 1

+
∑

�∈S

ω(�)∏

j=2

(b�,j − 1)(b�,j − 2)
(c�,j − 1)(c�,j − 2)

−
∑

�∈T

ω(�)∏

j=2

(b�,j − 1)(b�,j − 2)
(c�,j − 1)(c�,j − 2)

⎞

⎠ (4)

such labelings.
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Case (3): We count the labelings L such that L−1(n) covers a minimal
element �, L−1

n−3(2) >P L−1
n−3(3) or L−1

n−3(1) >P L−1
n−3(3), and L(�) �= n − 1.

(The case where L(�) = n − 1 and L−1
n−3(1) >P L−1

n−3(3) >P L−1
n−3(2) was

counted in Case (1).) We first count the labelings L such that L−1
n−3(2) >P

L−1
n−3(3) or L−1

n−3(1) >P L−1
n−3(3). Since Y is a lower order ideal of size 3, it

follows that � ∈ Y . Thus, we may assume that � ∈ T . Hence, it is sufficient to
count the labelings L such that L−1(n) covers some � ∈ T and L−1

n−3(1) <P

L−1(n) <P L−1
n−3(2) or L−1

n−3(2) <P L−1(n) <P L−1
n−3(1). We have already

done this—the number of such labelings is given in Lemma 21. Note that each
such labeling is indeed quasi-tangled. To account for the condition L(�) �= n−1,
we enumerate the labelings with L−1(n − 1) ∈ T , L−1(n − 1) �P L−1(n), and
L−1

n−3(1) >P L−1
n−3(3). An adaptation of Lemma 18 allows us to enumerate

these labelings, the number of which is given by the term being subtracted in
the following expression:

(n − 1)!

⎛

⎝
∑

m∈T

ω(m)∏

j=2

(bm,j − 1)(bm,j − 2)
(cm,j − 1)(cm,j − 2)

− 1
n − 1

∑

m∈T

ω(m)∏

j=2

(bm,j − 2)
(cm,j − 2)

⎞

⎠ . (5)

Note that the above enumerates the labelings L such that L−1(n) covers a
minimal element �, L−1

n−3(2) >P L−1
n−3(3) or L−1

n−3(1) >P L−1
n−3(3), and L(�) �=

n − 1.
Summing (3), (4), and (5) and subtracting (2) gives that the number of

quasi-tangled labelings of P is given by

(n − 1)!

⎛

⎝2
∑

�∈T

ω(�)∏

j=2

b�,j − 1
c�,j − 1

− 1
n − 1

∑

�∈T

ω(�)∏

j=2

b�,j − 2
c�,j − 2

+ 2
∑

�∈R

ω(�)∏

j=2

b�,j − 1
c�,j − 1

+
∑

�∈S

ω(�)∏

j=2

(b�,j − 1)(b�,j − 2)
(c�,j − 1)(c�,j − 2)

⎞

⎠

as desired. �

3.4. Enumerating Labelings with Sorting Time n − 1 − k

In light of Lemma 7 and the Probability Lemma (Lemma 13), it is natural to
ask if the methods used in Sect. 3 can be extended to enumerate the labelings
of an n-element poset P with sorting time n−1−k, where we assume n ≥ k+2
(Lemma 5). In the following, we give an algorithmic approach for doing so when
P is an inflated rooted tree poset such that the leaves are deflated, the parents
of leaves are deflated, and so on, up k levels. Importantly, we note that this
class of posets contains rooted trees. While, theoretically, this approach could
yield a general formula for the labelings with sorting time n − 1 − k, any such
formula would be much too complicated to be practical. Instead, for a fixed
k, we offer an algorithmic approach to enumerating the labelings with sorting
time n − 1 − k. Using this method, it would be possible to write a computer
program that computes the number of such labelings for a fixed poset.
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In order to do so, we first note that Lemma 7 generalizes. In particular,
for a fixed k, one can prove that if L has sorting time n − 1 − k, then one of
the following holds:

• L−1(n − k) is minimal;
• L−1(n − k + 1) is minimal or covers a minimal element;
• L−1(n − k + 2) is minimal, covers a minimal element, or is greater than

exactly 2 other elements;
...

• L−1(n) is greater than at most k other elements.

Algorithm 1. Let P be an n-element rooted tree poset. Then we may enumer-
ate the labelings L of P with sorting time n − 1 − k in the following way:

1. List the possible lower order ideals of size k other than antichains ap-
pearing in P .

2. For each such lower order ideal occurring in P , use (1) and the Probability
Lemma to count the labelings with sorting time n − 1 − k. This will
involve lots of casework based on the positions of L−1(n−k), . . . , L−1(n)
and lower order ideals of size k occurring in P . The proof of Theorem 9
illustrates this casework for the case k = 1 in full generality.

4. Bounding Labelings with a Given Sorting Time

In this section, we focus on bounding the number of labelings with a given
sorting time for an arbitrary poset. While proving our conjectural bounds
seems to be quite difficult for general posets, we are able to make partial
progress by restricting our attention to inflated rooted trees.

In [9], Defant and Kravitz conjectured the following (this was already
stated as Conjecture 1, but we restate it here for convenience):

Conjecture 22. ([9], Conjecture 5.1) If P is an n-element poset, then P has at
most (n − 1)! tangled labelings.

The above is not obvious even for classes of posets for which we can explic-
itly enumerate the tangled labelings (e.g., Theorem 8). In light of Theorem 9,
we also conjecture the following:

Conjecture 23. Let P be an n-element poset. Then the number of labelings
L : P → [n] such that Ln−3 �∈ L(P ) is at most 3(n − 1)!.

Conjecture 24. Let P be an n-element poset. Then the number of tangled la-
belings of P is strictly less than the number of quasi-tangled labelings of P .

We can prove Conjecture 22 for inflated rooted forests. The following
results from [9] will be useful:

Corollary 25. ([9], Corollary 3.7) Let P be an n-element poset with r con-
nected components, each having a unique minimal element. Then the number
of tangled labelings of P is

(n − r)(n − 2)!.
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Theorem 26. ([9], Theorem 3.4) Let P be an n-element poset with connected
components P1, . . . , Pr. Let ni = |Pi|, and let ti denote the number of tangled
labelings of Pi. The number of tangled labelings of P is

(n − 2)!
r∑

i=1

ti
(ni − 2)!

.

Lemma 27. Let P , Pi, ni, and ti be defined as in the above for i = 1, . . . , r. If
there are at most (ni − 1)! tangled labelings of each Pi, then there are at most
(n − r)(n − 2)! tangled labelings of P .

Proof. Substituting (ni − 1)! ≥ ti into

(n − 2)!
r∑

i=1

ti
(ni − 2)!

≤ (n − 2)!
r∑

i=1

(ni − 1) = (n − 2)!(n − r)

gives the bound. �

Theorem 28. Let P be an n-element inflated rooted forest poset. Then P has
at most (n − 1)! tangled labelings. Equality holds if and only if P has a unique
minimal element.

Proof. By Lemma 27, it suffices to prove this for P an inflated rooted tree,
where Q is the rooted tree and ϕ : P → Q the inflation map. Assume without
loss of generality that Q is reduced. We know that the number of tangled
labelings of P is

(n − 1)!
s∑

i=1

ω(i)∏

j=1

bi,j − 1
ci,j − 1

. (6)

Let �1, . . . , �s denote the leaves of Q, and let m1, . . . ,ms be the unique minimal
elements of ϕ−1(�1), . . . , ϕ−1(�s), respectively. Suppose without loss of gener-
ality that �s−1 and �s have the same parent in Q (such leaves exist because Q
is assumed to be reduced). For all j �= 1, bs−1,j = bs,j ; for all j, cs−1,j = cs,j .
Hence, we may rewrite (6) as

(n − 1)!

⎛

⎝
s−2∑

i=1

ω(i)∏

j=1

bi,j − 1
ci,j − 1

+
ω(s−1)∏

j=2

bs−1,j − 1
cs−1,j − 1

(
bs−1,1 + bs,1 − 2

cs−1,1 − 1

)
⎞

⎠ .

Now, let P ′ be the poset obtained from P by adding the additional relation
ms−1�P ′ ms. Note that the resulting poset is still an inflated rooted tree poset
and that P ′ is an inflation of Q′, where Q′ is the (reduced) rooted tree poset
formed by setting �s = �s−1 and reducing if necessary. Let ψ : P ′ → Q′ be
the corresponding inflation map. Moreover, note that Q′ has s − 1 leaves. For
each leaf �′

1, . . . , �
′
s−1 in Q′, let u′

i,0, . . . , u
′
i,ω(i) denote the unique path from �′

i

to the root of Q′. Let
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b′
i,j =

∑

v≤Q′u′
i,j−1

|ψ−1(v)| and c′
i,j =

∑

v<Q′u′
i,j

|ψ−1(v)|.

Note that for i ∈ {1, . . . , s−2} and j ∈ {1, . . . , ω(i)}, bi,j = b′
i,j and ci,j = c′

i,j .
Moreover, we also know that when i = s − 1, bi,j = b′

i,j and ci,j = c′
i,j for

j = 2, . . . , ω(i). When j = 1, we have b′
s−1,1 = bs−1,1 + bs,1 and c′

i,j = ci,j . It
follows that the number of tangled labelings of P ′ is

(n − 1)!

⎛

⎝
s−2∑

i=1

ω(i)∏

j=1

bi,j − 1
ci,j − 1

+
ω(s−1)∏

j=2

bs−1,j − 1
cs−1,j − 1

(
bs−1,1 + bs,1 − 1

cs−1,1 − 1

)
⎞

⎠ .

Note that P ′ has more tangled labelings than P and that P ′ has s−1 minimal
elements.

The result follows from induction and Corollary 25. �

We are also able to show Conjecture 24 for inflated rooted trees with
deflated leaves. Note that Conjecture 24 is a special case of the following
conjecture:

Conjecture 29. ([10], Conjecture 5.2) Let P be an n-element poset, and let
ak(P ) denote the labelings of P with sorting time k. Then the sequence a0(P ),
. . . , an−1(P ) is unimodal.2

Theorem 30. Let P be an n-element inflated rooted tree poset with deflated
leaves, and assume n ≥ 3. Then the number of tangled labelings of P is strictly
less than the number of quasi-tangled labelings of P .

Proof. We may refine Theorem 8 in the following way: the number of tangled
labelings of P is given by

(n − 1)!
∑

�∈R∪T

ω(�)∏

j=2

b�,j − 1
c�,j − 1

. (7)

The above follows from the simple observation that if � ∈ M\(R ∪ T ), then it
cannot be an element of a lower order ideal of P of size 2 (recall Lemma 6 and
the proof of Theorem 8). In other words, it suffices to sum over the minimal
elements in lower order ideals of size 2.

By Theorem 9, P has

(n − 1)!

⎛

⎝2
∑

�∈T

ω(�)∏

j=2

b�,j − 1
c�,j − 1

− 1
n − 1

∑

�∈T

ω(�)∏

j=2

b�,j − 2
c�,j − 2

+ 2
∑

�∈R

ω(�)∏

j=2

b�,j − 1
c�,j − 1

+
∑

�∈S

ω(�)∏

j=2

(b�,j − 1)(b�,j − 2)
(c�,j − 1)(c�,j − 2)

⎞

⎠ (8)

2While this conjecture appears in [10] (a preprint), it does not appear in [9], which is the
published version of the article.
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quasi-tangled labelings. Because the summands in (7) and (8) are indexed by
minimal elements in P , the result will follow if we can show that each of the
terms in (7) is less than or equal to the corresponding term in (8).

Suppose � ∈ R. The term in (7) corresponding to � is

(n − 1)!
ω(�)∏

j=2

b�,j − 1
c�,j − 1

,

which is less than

2(n − 1)!
ω(�)∏

j=2

b�,j − 1
c�,j − 1

,

the term in (8) corresponding to �.
Suppose � ∈ T . Then the term in (7) corresponding to � is

(n − 1)!
ω(�)∏

j=2

b�,j − 1
c�,j − 1

.

The term in (8) corresponding to � is

2(n − 1)!
ω(�)∏

j=2

b�,j − 1
c�,j − 1

− (n − 2)!
ω(�)∏

j=2

b�,j − 2
c�,j − 2

≥ (n − 1)!
ω(�)∏

j=2

b�,j − 1
c�,j − 1

.

The inequality in the above follows immediately from the fact that b�,j ≤ c�,j ,
which implies

(b�,j − 1)(c�,j − 2) = b�,jc�,j − 2b�,j − c�,j + 2 ≥ b�,jc�,j − b�,j − 2c�,j

+2 = (b�,j − 2)(c�,j − 1) (9)

for all j.
Now, suppose the number of tangled labelings of P is equal to the number

of quasi-tangled labelings. Then we know from the above that P cannot have
any minimal elements in R or S. It follows that P has

2(n − 1)!
∑

�∈T

ω(�)∏

j=2

b�,j − 1
c�,j − 1

− (n − 2)!
∑

�∈T

ω(�)∏

j=2

b�,j − 2
c�,j − 2

quasi-tangled labelings. The fact that each of the terms in (8) is greater than
or equal to the corresponding term in (7) implies that equality holds if and
only if for each � ∈ T ,

(n − 1)!
ω(�)∏

j=2

b�,j − 1
c�,j − 1

= (n − 2)!
ω(�)∏

j=2

b�,j − 2
c�,j − 2

.

If b�,j < c�,j for any j, then (9) implies that
ω(�)∏

j=2

b�,j − 1
c�,j − 1

>

ω(�)∏

j=2

b�,j − 2
c�,j − 2

,

so we may assume that b�,j = c�,j for all 2 ≤ j ≤ ω(�).
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This forces ω(�) = 2 for all �, which can be the case only if P has a
unique minimal element and is an inflation of a 2-element chain. It follows
from Theorem 8 and Corollary 10 that P has (n − 1)! tangled labelings and
2(n − 1)! − (n − 2)! quasi-tangled labelings. These two quantities are equal
if and only if n = 2. However, this contradicts our assumption that n ≥ 3.
Therefore, equality can never hold and there are always more quasi-tangled
labelings than tangled ones. �

Theorem 9, in conjunction with the enumeration of the tangled labelings
of inflated rooted forests given in [9], seems to imply that the inflation opera-
tion on posets is very compatible with promotion. Thus, it would be a natural
next step to study promotion on inflations of non-rooted trees. For example, it
would be interesting to enumerate the tangled labelings of inflations of simple
posets such as N -posets or M -posets. Doing so might generate new methods
for attacking Conjecture 22, which may also be refined in the following way:

Conjecture 31. Let P be an n-element poset with s minimal elements. Then
P has at most (n − s)(n − 2)! tangled labelings.

Note that Lemma 27 implies that it suffices to show the above for P
connected. It is also possible to reframe Conjecture 22 in the following way:
Let P be a connected, n-element poset, and let m1, . . . ,ms be the minimal
elements of P . Let c : P → P([s]) be a coloring of P given by i ∈ c(x) if
x ≥P mi (here P([s]) denotes the power set of [s] = {1, . . . , s}). The following
implies Conjecture 22.

Conjecture 32. With notation as above,

P
(
c(L−1

n−2(1)) = {s} |L(ms−1) = n
) ≥ P

(
c(L−1

n−2(1)) = {s} |L(ms) = n
)
.

If the above holds, we may apply the same argument as in Theorem 28 to
show that the number of tangled labelings increases when we make ms−1�ms.
Applying this fact repeatedly would prove Conjecture 22, since posets with a
unique minimal element have exactly (n − 1)! tangled labelings.

It would be interesting to see if the methods used in the proof of Theo-
rem 28 can be adapted to show that Conjecture 23 holds for a smaller class
of posets, such as inflated rooted trees with deflated leaves or rooted tree
posets. Finally, we conclude with the following question, which is inspired by
Conjecture 22:

Question 33. What is the maximum number of quasi-tangled labelings a poset
can have?
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