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Abstract

Evil-avoiding permutations, introduced by Kim and Williams in 2022, arise in
the study of the inhomogeneous totally asymmetric simple exclusion process. Rect-
angular permutations, introduced by Chiriv̀ı, Fang, and Fourier in 2021, arise in the
study of Schubert varieties and Demazure modules. Taking a suggestion of Kim and
Williams, we supply a bijection between evil-avoiding and rectangular permutations
in Sn that preserves the number of recoils. We encode these classes of permutations
as regular languages and construct a length-preserving bijection between words in
these regular languages. We extend the bijection to another Wilf-equivalent class of
permutations, namely the 1-almost-increasing permutations, and exhibit a bijection
between rectangular permutations and walks of length 2n − 2 in a path of seven
vertices starting and ending at the middle vertex.

Mathematics Subject Classifications: 05A05, 05A15, 68Q45

1 Introduction

A permutation π contains a permutation σ as a pattern if some subsequence of the
values of π has the same relative order as all of the values of σ. Otherwise, π avoids
σ. Two classes of pattern-avoiding permutations, called evil-avoiding and rectangular
permutations, have been of recent interest due to their algebraic significance. Kim and
Williams gave the following definition of evil-avoiding permutations.

Definition 1. [8] A permutation that avoids the patterns 2413, 4132, 4213 and 3214 is
called evil-avoiding. 1

aDepartment of Mathematics, Harvard University, U.S.A. (katherinetung@college.harvard.edu).
1Kim and Williams called these permutations evil-avoiding because if we replace I by 1, E by 2, L by
3, and V by 4, then EVIL and its anagrams VILE, VEIL and LEIV become the four patterns 2413,
4132, 4213 and 3214 [8]. (Leiv is a name of Norwegian origin meaning “loaf”. Even though LIVE is
an anagram of EVIL, an evil-avoiding permutation does not necessarily avoid the pattern 3142. )
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For example, the permutation 1674523 is evil-avoiding, but the permutation 562314
is not evil-avoiding since, for instance, the subsequence 5214 reduces to the forbidden
pattern 4213. Chiriv̀ı, Fang, and Fourier gave the following definition of rectangular
permutations.

Definition 2. [6] A permutation that avoids the patterns 2413, 2431, 4213, and 4231 is
called rectangular.

Both evil-avoiding permutations and rectangular permutations are enumerated by
the same sequence, which begins 1, 2, 6, 20, 68, 232, . . . and appears in the OEIS as se-
quence A006012 [11]. The enumeration of evil-avoiding permutations is done by Kim and
Williams in [8], and the enumeration of rectangular permutations is done by Biers-Ariel
and Chiriv̀ı, Fang, and Fourier in [4] and [6].

Theorem 3. [8, Proposition 1.14] The number of evil-avoiding permutations in Sn satis-
fies the recurrence e(1) = 1, e(2) = 2, e(n) = 4e(n− 1) + 2e(n− 2).

Theorem 4. [4, Theorem 8], [6, Corollary 8] The number of rectangular permutations in
Sn satisfies the same recurrence r(1) = 1, r(2) = 2, r(n) = 4r(n− 1) + 2r(n− 2).

Definition 5. Two families U and V of pattern-avoiding permutations are called Wilf-
equivalent if for all n, |Sn ∩ U | = |Sn ∩ V |. This is a trivial Wilf-equivalence if U avoids
patterns in PU and V avoids patterns in PV , where for some symmetry (i.e., rotation or
reflection) ρ of the square, PU = ρ(PV ).

Theorems 3 and 4 imply that evil-avoiding and rectangular permutations are Wilf-
equivalent. Since no symmetry takes the set of patterns {2413, 4132, 4213, 3214} to the
set of patterns {2413, 2431, 4213, 4231}, this Wilf-equivalence is nontrivial. Thus, the
following question is natural.

Suggestion 1. [14] Construct a bijection between evil-avoiding and rectangular permuta-
tions in Sn.

In this paper, we exhibit such a bijection. In fact, our bijection preserves not only the
size of a permutation but also the number of recoils, as motivated in [8] and explained
below.

Definition 6. A recoil of a permutation π ∈ Sn is a value i ∈ {1, 2, . . . , n− 1} so that i
occurs after i + 1 in π, which means π−1i > π−1i+1. Equivalently, i is a recoil of π if i is a
descent of π−1.

Kim and Williams [8] enumerated evil-avoiding permutations of size n with k recoils.
A computational check shows that for small n, there are the same number of evil-avoiding
permutations of size n with k recoils as rectangular permutations of size n with k recoils,
thus motivating the following notion.

Definition 7. Two classes of pattern-avoiding permutations are strongly Wilf-equivalent
if for every n and k the classes have the same counts of permutations in Sn with k recoils.
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In [8], Kim and Williams observed that there are several permutation classes enumer-
ated by OEIS sequence A006012, including

1. permutations π ∈ Sn for which the pairs (i, πi) with i < πi, considered as closed
intervals [i+ 1, πi], do not overlap; equivalently, for each i ∈ [n] there is at most one
j 6 i with πj > i,

2. permutations on {1, 2, . . . , n} with no subsequence abcd such that bc are adjacent
in position and max(a, c) < min(b, d),

3. rectangular permutations,

hence the following suggestion, which may be seen as a refinement of Suggestion 1.

Suggestion 2. [8] Find a recoil-preserving bijection between evil-avoiding permutations
and any of the above sets of permutations in Sn.

We construct such a refined bijection in Section 3. The bijection is more easily de-
scribed as a map from rectangular to evil-avoiding permutations than the other way
around, so we write the bijection in the easier format from here onward.

Theorem 8. The map β (defined in Section 3.3) from the set of rectangular permutations
to the set of evil-avoiding permutations is a bijection preserving length and number of
recoils.

For example, the bijection sends the rectangular permutation in Figure 1 to the evil-
avoiding permutation in Figure 2. The rectangular permutation π was drawn uniformly
from Rect(100), the set of rectangular permuations of size 100, and the evil-avoiding
permutation was taken to be β(π). A description of how the rectangular permutation was
drawn from Rect(100) is in Section 3.

Figure 1: A plot of the rectangular permutation
π = [1, 12, 11, 13, 2, 14, 15, 10, 9, 3, 8, 16, 17, 4, 5, 7, 6, 26, 27, 28, 18, 29, 19, 25, 30, 20, 21, 24, 22, 23, 31, 32, 36, 37, 33, 38, 35, 34, 41, 42, 39, 43, 40,

55, 56, 54, 53, 44, 57, 52, 51, 58, 50, 59, 45, 46, 49, 60, 47, 48, 61, 62, 65, 63, 64, 66, 68, 67, 69, 71, 70, 76, 75, 72, 73, 77, 78, 74, 93, 79, 92, 91, 94, 80,

90, 95, 89, 81, 96, 97, 82, 83, 84, 88, 98, 87, 85, 99, 100, 86].
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Figure 2: A plot of the evil-avoiding permutation
β(π) = [3, 4, 1, 2, 6, 5, 7, 8, 9, 12, 13, 10, 11, 15, 14, 16, 18, 17, 20, 26, 27, 23, 24, 25, 36, 41, 43, 42, 44, 45, 47, 46, 49, 48, 53, 51, 52, 57, 55, 61, 58, 62,

59, 69, 64, 70, 65, 71, 73, 74, 76, 75, 77, 81, 78, 82, 83, 79, 85, 86, 88, 89, 87, 90, 95, 96, 93, 97, 94, 100, 98, 99, 92, 91, 84, 80, 72, 66, 67, 68, 63, 60, 56,

54, 50, 37, 38, 39, 40, 33, 34, 35, 30, 31, 32, 28, 29, 21, 22, 19].

The significance of evil-avoiding permutations is rooted in Schubert calculus. There
is a type of Markov chain called the asymmetric simple exclusion process (ASEP) in
which particles hop on a one-dimensional lattice subject to the condition that at most
one particle may occupy a given site. The inhomogeneous totally asymmetric simple
exclusion process (inhomogeneous TASEP) is a type of ASEP where the sites 1, 2, . . . , n
are arranged in a ring and the hopping rate depends on the weight of the particles. For
more details on the inhomogeneous TASEP, see [8], [10], [3], [2], and [5]. An interesting
feature about ASEPs is that the expressions for the steady-state probabilities at each site
often contain Schubert polynomials, for reasons that are not entirely understood. In the
case of the inhomogeneous TASEP, Kim and Williams demonstrate that a specialization
of the steady-state probabilities at states corresponding to evil-avoiding permutations can
be written as a “trivial factor” times a product of (double) Schubert polynomials [8]. The
number of Schubert polynomials in the steady-state formula is equal to the number of
recoils in the corresponding evil-avoiding permutation [8].

Rectangular permutations arise in the context of representation theory. The name
“rectangular” was coined by Chiriv̀ı, Fang, and Fourier in 2021 and we briefly summarize
its origin here; we direct the reader to their paper [6] for more details.

Let Φ denote the root system of the Lie algebra sln+1, let α1, . . . , αn denote the simple
roots of sln+1, and let

Φ+ = {αi,j = αi + αi+1 + · · ·+ αj | 1 6 i 6 j 6 n}

denote the set of positive roots. The support supp(αi,j) of the root αi,j is defined to be the
subset {i, i+ 1, . . . , j} of {1, 2, . . . , n}. The set Φ+ admits a poset structure with partial
order relation given by αk,` 6 αi,j when k > i and j > `. The meet αi,j ∧αk,` is defined by
αmax(i,k),min(j,`) when it exists and dually, the join αi,j ∨ αk,` is defined by αmin(i,k),max(j,`).

Definition 9. [6] A subset A ⊂ Φ+ is rectangular if:
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1. it is triangular, i.e., for any α, β ∈ A such that supp(α) ∪ supp(β) is a connected
subset of {1, 2, . . . , n}, we have α ∨ β ∈ A; moreover, α ∧ β ∈ A if it exists,

2. if α, β ∈ Φ+ and α ∧ β, α ∨ β ∈ A, then α, β ∈ A

so that in the Hasse diagram for the subposet (A,6), we get the following “rectangle”:

α ∨ β

α β

α ∧ β

The aforementioned rectangular condition translates nicely into a condition on per-
mutations.

Definition 10. [6] A permutation σ is rectangular if for any 1 6 i < k < j < ` 6 n, the
following conditions are equivalent:

1. σi > σj and σk > σ`,

2. σi > σ` and σk > σj.

As justified in [6], an equivalent definition is that a permutation is rectangular if it
avoids the patterns in {2413, 2431, 4213, 4231}.

The rest of the paper is organized as follows. Section 2 gives preliminary definitions
and constructions, and Section 3 introduces operators for constructing rectangular and
evil-avoiding permutations and explicitly states the bijection between the languages LRect

and LEvil. Sections 4 and 5 establish the bijection between LRect and rectangular per-
mutations and between LEvil and evil-avoiding permutations. Section 6 illustrates the
bijection for a number of small permutations. Section 7 discusses 1-almost-increasing
permutations and bijects them with rectangular permutations. Section 8 describes in-
sertion encodings for rectangular, evil-avoiding, and 1-almost-increasing permutations, as
well as all of their inverses. Section 9 provides a bijection between a family of paths
and rectangular permutations. Finally, Section 10 discusses possible future directions,
algebraic and enumerative.

2 Preliminaries

Let Sn be the symmetric group on the set {1, . . . , n}. We say that a permutation π ∈ Sn
has size n and write π in tabular form as [π1 π2 · · · πn]. For n > 0, we denote by en the
identity in Sn.

We may grade the rectangular permutations by the size of the permutation, or double
grade these permutations by the size and the number of recoils. Let Rect denote the set
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of all rectangular permutations, let Rect(n) denote the set of rectangular permutations
in Sn, and let Rect(n, k) denote the set of rectangular permutations in Sn with k recoils.
The evil-avoiding permutations can be singly or doubly graded in the same way, and we
define Evil, Evil(n), and Evil(n, k) analogously.

Since our bijection involves regular expressions (regexes), we will define them here
informally. For a formal definition, see [12].

Definition 11. A regular expression (regex) is a formula that describes a language (set
of words) over an alphabet Σ. Languages describable by such a formula are called regular.
A regex is either ∅ or it is built recursively from individual elements of Σ ∪ {ε} using the
operations of

1. concatenation (·)(·),

2. OR (·|·) (an alternative between two simpler patterns), or

3. the unary Kleene star (·)∗ (R∗ allows 0 or more repetitions of the pattern R).

The symbol ε represents the empty string. For example, ((a|ε)b)∗(a|ε) generates words
in {a, b}∗ with no adjacent a’s. For clarity, we can also use the unary Kleene plus (·)+
(R+ allows 1 or more repetitions of the pattern R). For example, (a|b)+ describes any
positive-length string of a’s and b’s.

It is equivalent to be able to describe a language (a subset of Σ∗) as the set of words
generated by a regular expression and to say that there is a deterministic finite automaton
(DFA) accepting the words [12].

Definition 12. A deterministic finite automaton (DFA) M is a 5-tuple (Q,Σ, δ, q0, F )
where

1. Q is a finite set of states,

2. Σ is an alphabet consisting of a finite set of input symbols,

3. δ is a transition function from Q× Σ to Q,

4. q0 ∈ Q is an initial state,

5. F ⊂ Q is a set of accepting states.

If we let w = a1a2 · · · an be a string with characters in Σ, then M accepts w if there
is a sequence of states r0, r1, . . . , rn ∈ Q such that

1. r0 = q0,

2. ri+1 = δ(ri, ai+1) for i = 0, 1, . . . , n− 1,

3. rn ∈ F.
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We will be interested in length-preserving bijections between regular languages encod-
ing families of permutations. Some of these come from substitutions.

Definition 13. A homomorphism f from language L1 to language L2 over alphabets Σ1

and Σ2 is a restriction to L1 of a map f : Σ∗1 → Σ∗2 so that

1. f(w1w2) = f(w1)f(w2),

2. f(L1) ⊆ L2.

A homomorphism is determined by its values on Σ1. An isomorphism between languages
is a homomorphism with an inverse homomorphism.

We will consider many lengthening operators (denoted ρi,j or γa,b) on permutations.
These operators have domains that are subsets of

⋃∞
n=0 Sn. Applying a lengthening oper-

ator to a permutation in Sn in the operator’s domain produces a permutation in Sn+1.

Definition 14. The insertion operator ρi,j takes in a permutation π, inserts the value i
at index j, and increments by 1 all values in π greater than or equal to i. Equivalently, the
permutation matrix for the result has the original permutation matrix as the (i, j) minor
formed by deleting the ith row and jth column, which are both all 0s except for a 1 in
the (i, j) position. If π ∈ Sn then ρi,j(π) is defined when 1 6 i 6 n+ 1 and 1 6 j 6 n+ 1.
In tabular form, all entries at least i are increased by 1, then an i is inserted between
positions j − 1 and j. If σ = ρi,j(π), then for 1 6 k 6 n+ 1,

σk =



i k = j

πk k < j and πk < i

πk + 1 k < j and πk > i

πk−1 k > j and πk−1 < i

πk−1 + 1 k > j and πk−1 > i.

Example 15. ρ3,4[5674321] = [67835421] because we increase all values in [5674321]
greater than or equal to 3 to get [6785421] and then we insert 3 into position 4 to get
[67835421].

We also define an operator γa,b which does not increase the length of a permutation.
It will be used to define one of the operators on evil-avoiding permutations.

Definition 16. The shifting operator γa,b takes in a permutation π ∈ Sn, removes the
value at index a, and inserts it at index b for a > b. More formally, if τ = γa,b(π), then
for 1 6 k 6 n,

τk =


πk k < b

πa k = b

πk−1 b < k 6 a

πk k > a.
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Example 17. γ5,2[5674321] = [5367421].

Additionally, we will make use of indicator variables to describe the actions of our
operators on individual values in permutations.

Definition 18. For a statement S, the indicator variable 1S is defined as follows:

1S =

{
1 if S is true

0 otherwise.

Following Albert, Linton, and Ruškuc [1], we can encode any permutation in Sn as
a word of length n in

⋃
i∈N{`i, ri,mi, fi} by observing where each element k from 1 to n

is placed relative to slots, which are blocks of numbers greater than or equal to k. We
represent such a slot using the symbol �.

Definition 19. The kth insertion pattern of permutation π is the string produced from
the table form for π where each maximal contiguous subsequence with values at least k
is replaced by a �.

Example 20. The permutation 4215736 has the following sequence of insertion patterns

�
� 1 �
� 2 1 �
� 2 1 � 3 �
4 2 1 � 3 �
4 2 1 5 � 3 �
4 2 1 5 � 3 6

4 2 1 5 7 3 6

To represent the relevant aspects of an insertion pattern, we can use a string of symbols
in {+, ∗, �} where + represents one or more numbers in a row and ∗ represents 0 or more
numbers in a row. For example, the pattern � 2 1 � 3 � is of type �+ �+ �.

Each insertion fills a slot, is on the left of a slot, is on the right of a slot, or breaks a
slot into two. The first type of insertion is called fi, the second `i, the third ri, and the
fourth mi. The subscript indicates which slot contains the number inserted.

Definition 21. The insertion encoding of a permutation π is the sequence x1x2 · · · xn of
elements of ⋃

i∈N

{`i, ri,mi, fi}

so that xk indicates the position of k relative to the kth insertion pattern of π.
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Example 22. The insertion encoding of 4217536 is m1r1m2f1`1f2f1.
Inserting 1 into � split the only slot into two, so this insertion is denoted m1. Inserting

2 into �1� put 2 on the right side of the first slot, so it is r1. Inserting 3 split the second
slot, so it is m2. Inserting 4 filled and eliminated the first slot, so it is f1. Inserting 5
added to the left side of the first slot, `1. Then 6 filled the second slot, f2, and 7 filled
the first slot, f1.

3 The bijection

In this section, we construct two regular languages of operators on permutations based on
rectangular and evil-avoiding permutations, LRect and LEvil. We find regular expressions
for these languages and construct a length-preserving bijection between them. In Sections
4 and 5, we will establish that these languages are encodings of rectangular and evil-
avoiding permutations respectively.

3.1 Rectangular permutations

We define four operators on rectangular permutations: ψ1, ψ2, ψu, and ψd. Each increases
the size of the permutation by one, and we restrict the domains of some of the opera-
tors. Similar operators were introduced by Biers-Ariel to count permutations avoiding the
patterns 1324, 1423, 2314, and 2413 [4], which are trivially Wilf-equivalent to rectangular
permutations.

The map ψ1 is the insertion operator ρ1,1. It increments by 1 all values of the permuta-
tion, then inserts a 1 at the beginning. The domain of ψ1 is all rectangular permutations
of size at least 0. Applying ψ1 does not change the number of recoils in a permutation.

The map ψ2 is the insertion operator ρ1,2 with a restricted domain. We restrict ψ2

to rectangular permutations with a first element greater than 1, that is, rectangular
permutations of size at least 2 that could not be in the image of ψ1. (We are restricting
the domain of ψ2 to ensure that ψ2 and ψd, defined later, have disjoint images, which
avoids redundant encodings.) This restriction means that ψ2(π) has the same number of
recoils as π.

The map ψu applies ρπ1,1 to permutation π. To ensure that ψu and ψ1 have disjoint
images, we restrict ψu to rectangular permutations of size at least 2 whose first element
is not 1. Applying ψu does not change the number of recoils of a permutation.

The map ψd applies ρπ1+1,1 to permutation π. This operator is defined on all rectan-
gular permutations of size at least 1. Applying ψd always increases the number of recoils
by one.

Here are some examples of the four operators. For more such examples, see Table 1
in Section 6.

Example 23. The permutation σ = [3214] does not start with 1 and is in the domain
of all four of these operators, and the images are ψ1(σ) = [14325], ψ2(σ) = [41325],
ψu(σ) = [34215], and ψd(σ) = [43215].
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Example 24. The permutation τ = [126354] starts with a 1, so it is not in the domain
of ψ2 or ψu as these operations would duplicate the values of ψd(τ) = [2137465] and
ψ1(τ) = [1237465], respectively.

Operators on Rectangular Permutations
Name Domain Insertion Image of π ∈ Sn
ψ1 Rect ρ1,1 [1, π1 + 1, π2 + 1, . . . , πn + 1]
ψ2 Rect \ψ1(Rect) ρ1,2 [π1 + 1, 1, π2 + 1, . . . , πn + 1]
ψu Rect \ψ1(Rect) ρπ1,1 [π1, π1 + 1, π2 + 1π2>π1 , . . . , πn + 1πn>π1 ]
ψd Rect \{e0} ρπ1+1,1 [π1 + 1, π1, π2 + 1π2>π1 , . . . , πn + 1πn>π1 ]

A sequence of compositions of these operators can be abbreviated as a word in the alphabet
Ar = {1, 2, u, d}, e.g., ψu ◦ ψd ◦ ψ1 corresponds to the word ud1.

We prove in Section 4 that each rectangular permutation can be expressed uniquely
as a composition of maps in A∗r := {ψ1, ψ2, ψu, ψd} applied to e0. The procedures of
ψ2 and ψd could be applied more widely, but since the domains are restricted to ensure
uniqueness, they cannot be applied to any permutation in the image of ψ1. Since only ψ1

can be applied to the identity in S0, the word encoding a permutation of positive length
must end in 1. Words in A∗r satisfying these restrictions form a regular language.

Lemma 25. Let LRect be the language in A∗r of sequences of compositions of positive
length of {ψ1, ψ2, ψu, ψd} applied to the permutation in S0.

1. The words of LRect are precisely the words in A∗r that end in 1 with no 21 or u1.

2. A regular expression for LRect is (1∗(2|u)∗d)∗1+.

Proof. Only ψ1 can be applied to the element of S0, so the first (rightmost) operator must
be ψ1, and the word must end in 1. The domains of ψ2 and ψu are restricted to exclude
precisely the images of ψ1, so the substrings 21 and u1 are forbidden. Because the image
of each operator consists of rectangular permutations, proven in Lemma 34, there are no
other restrictions on the words in LRect.

One way to produce the regular expression is to consider splitting a word encoding a
rectangular permutation by the d’s (if any) into strings in {1, 2, u}∗. Since there are no
21 or u1 substrings, the 1s must be to the left of the 2 and u symbols (if any), so the
strings between the d’s must be of the form 1∗(2|u)∗. Further, there must be a terminal
1, so the last substring must be of positive length and all 1’s. Hence, a regular expression
generating LRect is (1∗(2|u)∗d)∗1+.

Understanding the structure of LRect lets us describe in more detail the permutation
selection algorithm in Section 1. Let LRect(n) denote the set of length n words in LRect. In
the algorithm, we chose a word uniformly at random from LRect(100). Using the results
of Section 4, we converted this word to a rectangular permutation illustrated in Figure 1.
Lastly, we applied β to get the evil-avoiding permutation illustrated in Figure 2.

The algorithm works by generating some w ∈ LRect(100) character by character. Let
us index w from right to left, so that w = w(100)w(99) · · ·w(2)w(1).
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1. Set w(1) = 1.

2. Let a`(n) be the number of length n strings containing no 21 or u1 and ending
in `. For i ∈ {2, 3, . . . , 100}, choose w(i) according to the following probability
distribution. If w(i − 1) = 1, then w(i) = 1 or w(i) = d. Choose 1 or d with odds
a1(101− i) : ad(101− i) in favor of choosing 1. If w(i− 1) 6= 1, then w(i) could be
any character. Choose 1, 2, d, or u with odds

a1(101− i) : a2(101− i) : ad(101− i) : au(101− i).

Theorem 26. This algorithm selects each word in LRect with equal probability.

Proof. Let w ∈ LRect. Let Ai denote the event that a word of length 100 has ith letter
equal to w(i). Then, according to the algorithm,

P (w is selected) = P (A1 ∩ A2 ∩ · · · ∩ A100)

= P (A2 ∩ · · · ∩ A100 | A1)P (A1)

= P (A100|A1, A2, . . . , A99)P (A99|A1, . . . , A98) · · ·P (A2 | A1)P (A1).

=
aw(100)(1)

aw(99)(2)
·
aw(99)(2)

aw(98)(3)
· · · · ·

aw(3)(98)

aw(2)(99)

aw(2)(99)

aw(1)(100)
· 1

We can use the odds ratios above to write each P (Ai|A1, . . . , Ai) as a fraction. Doing
so, we get a telescoping product that simplifies to

P (w is selected) =
1

aw(1)(100)
=

1

|LRect(100)|
.

Thus, the letter-by-letter generation is equivalent to drawing uniformly at random
from LRect(100), as desired.

3.2 Evil-avoiding permutations

We can similarly encode evil-avoiding permutations as compositions of size-increasing
operators applied to the permutation e0 in S0. These operators are ψp, ψq, ψr, and ψs, each
of which has domain equal to a proper subset of evil-avoiding permutations. Compositions
of these operators can be abbreviated as words in Ae = {p, q, r, s}.

The operator ψp works the same way as ψ1 and ρ1,1, but is restricted to evil-avoiding
permutations with at least one recoil (i.e., to nonidentity permutations).

The operator ψq is defined on evil-avoiding permutations with at least one recoil. Let
π be a permutation of size n in the domain of ψq. Let the least value involved in a recoil
be t; precisely, π−1t > π−1t+1 but for all i < t, we have π−1i < π−1i+1. Then calculate ρt+1,1(π).

For most π in the domain, we will set ψq(π) := ρt+1,1(π), but if π takes a specific
form, we will need to make a slight modification. We say that π is (a, b)-sandwiched
(or sandwiched for short) if it begins with a possibly empty increasing run of consecutive
values 1, 2, . . . , a and ends with an increasing run a+1, a+2, . . . , a+b for some nonnegative
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integer a and positive integer b. If π is (a, b)-sandwiched, then we remove the value in
ρt+1,1(π) at index n − b + 2 and insert it at index a + 2 to create a new permutation
γn−b+2,a+2 ◦ ρt+1,1(π). If π has the above form, we set ψq(π) := γn−b+2,a+2 ◦ ρt+1,1(π). A
straightforward term-by-term evaluation shows this is equivalent to setting

ψq(π) := (a+ b+ 1, 1, 2, . . . , a+ 1, πa+1 + 1, πa+2 + 1, . . . , πn−b + 1, a+ 2, a+ 3 . . . , a+ b).

Otherwise, we set ψq(π) = ρt+1,1(π).
The operator ψr is defined on all evil-avoiding permutations of size at least 1. On an

evil-avoiding permutation in Sn, this is ρ1,n+1.
The operator ψs is defined on evil-avoiding permutations that have et as a suffix for

some positive integer t. We allow there to be no values before the 1, so that any identity
permutation of size at least 0 is included in the domain of ψs. This operator is a restriction
of ρt+1,n+1 = ρπn+1,n+1.

Here are some examples of the four operators. For more such examples, see Section 6,
Table 1.

Example 27. The permutation τ = [45123] is in the domain of all four operators
ψp, ψq, ψr, and ψs. The images are ψp(τ) = [156234], ψq(τ) = [415623], ψr(τ) = [562341],
and ψs(τ) = [561234].

Example 28. The permutation ν = [21453] does not end in et for t > 1 so it is not
in the domain of ψs. The images under the other operators are ψp(ν) = [132564],
ψq(ν) = [231564], and ψr(ν) = [325641].

Operators on Evil-Avoiding Permutations
Name Domain Insertion Image of π ∈ Sn
ψp Evil \{en|n > 0} ρ1,1 [1, π1 + 1, π2 + 1, . . . , πn + 1]

ψq Evil \{en|n > 0}

ρt+1,1

if π is
not sandwiched
γn−b+2,a+2 ◦ ρt+1,1

otherwise

[t + 1, π1 + 1π1>t, . . . , πn + 1πn>t] or
[t + 1, π1 + 1π1>t, . . . , πa+1 + 1πa+1>t

,

πn−b+2 + 1πn−b+2>t
,

πa+2 + 1πa+2>t
, . . . , πn−b+1 + 1πn−b+1>t

,

πn−b+3 + 1πn−b+3>t
, . . . , πn + 1πn>t]

ψr Evil \{e0} ρ1,n+1 [π1 + 1, π2 + 1, . . . , πn + 1, 1]

ψs
{en|n > 0}∪⋃

k ψ
k
s ◦ ψr(Evil \{e0})

ρπn+1,n+1 [π1 + 1, π2 + 1, . . . , 1, 2, . . . , πn, πn + 1]

In Section 5, we show that every evil-avoiding permutation can be written uniquely
as a composition of these operators applied to the permutation of S0. Because of domain
restrictions, not all words in A∗e = {ψp, ψq, ψr, ψs} are valid.

Lemma 29. Let LEvil be the language in A∗e of compositions of {ψp, ψq, ψr, ψs} of positive
length applied to the permutation in S0.

1. The words of LEvil are precisely the words in A∗e ending in s with no sp or sq and
neither p nor q before the terminal string of s’s.
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2. A regular expression for LEvil is ((p|q)∗s∗r)∗s+.

Proof. The operator ψs can be applied to the identity e0 of S0, while ψp, ψq, and ψr cannot,
so a word in LEvil must end in s. The domain of ψs is restricted so that it can only be
applied after ψr or ψs, so the substrings sp and sq are forbidden. The operators ψp and ψq
cannot be applied to the identity en ↔ sn, so before the terminal string of s’s there can
only be an r (or nothing). Because the image of each operator consists of evil-avoiding
permutations, proven in Section 5, there are no other restrictions on the words in LEvil.

To obtain the regular expression for such words, split on the r’s, if any, to produce a
sequence of words in {p, q, s}∗. The last word must be a string of s’s of positive length,
so it can be described by s+. In each earlier word, the s’s must come after all of the
p’s and q’s, so it can be described by (p|q)∗s∗. Thus, a regular expression for LEvil is
((p|q)∗s∗r)∗s+.

3.3 Definition of the bijection

The bijection β : Rect→ Evil may be decomposed into three intermediate bijections

Rect
br−→ LRect

b−→ LEvil
b−1
e−−→ Evil

each of which we explain in this section.

Theorem 30. There is a bijection br : Rect→ LRect given by the below operations:

1. writing a rectangular permutation as a composition of maps in {ψ1, ψ2, ψu, ψd},

2. abbreviating this composition of maps by substituting ψ1 7→ 1, ψ2 7→ 2, ψu 7→ u,
ψd 7→ d, and suppressing ◦ signs.

This bijection has inverse b−1r : LRect → Rect given by:

1. substituting 1 7→ ψ1, 2 7→ ψ2, u 7→ ψu, d 7→ ψd and inserting ◦ signs between each
map,

2. evaluating the composition of maps.

Theorem 31. There is a length-preserving bijection b : LRect → LEvil given by the below
operations:

1. substituting 2 7→ p, u 7→ q, d 7→ r, and 1 7→ s,

2. reversing the prefix before the last r, if it exists.

This bijection has inverse b−1 : LEvil → LRect given by:

1. reversing the prefix before the last r, if it exists,

2. substituting p 7→ 2, q 7→ u, r 7→ d and s 7→ 1.
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The fact that b is a bijection and b−1 is its inverse follows immediately from the regular
expressions (1∗(u|2)∗d)∗1+ and ((p|q)∗s∗r)∗s+ for LRect and LEvil.

Theorem 32. There is a bijection be : Evil→ LEvil given by the below operations:

1. writing an evil-avoiding permutation as a composition of maps in {ψp, ψq, ψr, ψw},

2. abbreviating this composition of maps by substituting ψp 7→ p, ψq 7→ q, ψr 7→ r,
ψs 7→ s, and suppressing ◦ signs.

This bijection has inverse b−1e : LEvil → Evil given by:

1. substituting p 7→ ψp, q 7→ ψq, r 7→ ψr, s 7→ ψs and inserting ◦ signs between each
map,

2. evaluating the composition of maps.

Example 33. The rectangular permutation

[4, 1, 2, 5, 6, 3, 9, 8, 10, 7, 11, 13, 12, 15, 14, 17, 18, 19, 20, 16]

may, after applying br, be encoded as the word

22uud1dud11d1d1uuud1

in LRect. To apply the map b to this word, we substitute 2 7→ p, u 7→ q, d 7→ r, and 1 7→ s
to get

ppqqrsrsrqrssrsrsqqqrs

and then reverse the prefix before the last r to get

qqqsrsrssrqrsrqqpprs

in LEvil. After decoding this word using b−1e , we get the evil-avoiding permutation

[3, 4, 5, 1, 12, 11, 18, 19, 15, 16, 17, 20, 13, 14, 8, 9, 10, 6, 7, 2].

4 A regular expression for rectangular permutations

We next establish the encoding of rectangular permutations of positive length as words
in LRect, which is generated by the regular expression (1∗(2|u)∗d)∗1+. Throughout the
proofs in this section, we say that two values πi, πj in a permutation π are adjacent if
|πi − πj| = 1. In particular, we do not require |i− j| = 1.

Lemma 34. If π is rectangular, then any of the permutations ψ1(π), ψ2(π), ψu(π), and
ψd(π) that are defined are also rectangular.

the electronic journal of combinatorics 30(4) (2023), #P4.8 14



Proof. These operators can be viewed as inserting an element into the first position for
ψ1, ψu, ψd or second position for ψ2. We only need to demonstrate that there are no
patterns 2413, 2431, 4213, and 4231 using the added element since any patterns without
the added element would have been present in π.

The added element of ψ1(π) is a leading 1. Any pattern involving this entry has a
leading 1, but none of the forbidden patterns start with a 1, so if π is rectangular, so is
ψ1(π).

The added elements of ψu and ψd are in the first position and are adjacent to the value
in the second position. In all of the forbidden patterns, the first two values in the pattern
are not adjacent. Thus, any forbidden pattern in ψu(π) or ψd(π) using the first value
cannot also use the second value. Then, we can replace the first value with the second
value to produce the same forbidden pattern, which means π also would have to have that
forbidden pattern. Thus, if π is rectangular, so are ψu(π) and ψd(π) (if defined).

The added element of ψ2(π) is a 1 in the second position. If the 1 is used in a pattern,
the pattern must have a 1 in the first or second position, but none of 2413, 2431, 4213,
or 4231 have a 1 in the first or second position. Thus, if π is rectangular, so is ψ2(π) (if
defined).

Lemma 35. For n > 1, every rectangular permutation in Rect(n) is uniquely expressible
as a map in the set {ψ1, ψ2, ψu, ψd} applied to an element of Rect(n− 1).

Proof. We claim that every rectangular permutation π must have adjacent first two ele-
ments or a 1 in one of the first two positions. To see why, assume otherwise. Then the
first two elements π1, π2 are not adjacent. Let v be a value at least min(π1, π2) and at
most max(π1, π2). Then the positions {1, 2, π−11 , π−1v } form a 2413, 2431, 4213, or 4231,
which is a contradiction. Thus, the claim is shown.

If π1 = 1, then π is in the image of ψ1. If π2 = 1, then π is in the image of ψ2 if π1 > 2
or in the image of ψd if π1 = 2. Otherwise, |π1 − π2| = 1. If π2 = π1 + 1 with π1 > 1 then
π is in the image of ψu. If π2 = π1 − 1 then π is in the image of ψd. The restrictions of
the domains for the four operators mean there is no ambiguity in deciding which operator
produced π.

The following corollary follows immediately by induction.

Corollary 36. Every rectangular permutation can be expressed uniquely as a composition
of ψ1, ψ2, ψu, and ψd.

Further, we can determine the number of recoils in a permutation from the corre-
sponding composition.

Lemma 37. The operators ψ1, ψ2, and ψu do not change the number of recoils of a
permutation. The operator ψd increases the number of recoils by 1.

This lemma can be checked in a straightforward manner by examining each recoil πi
in π and the recoil’s image under ψ1, ψ2, ψu, or ψd. Under any of the first three maps, this
process accounts for all of the recoils in the image permutation, but under the fourth map,
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there is one recoil unaccounted for in the image permutation, namely the one formed by
π1.

The following corollary is then immediate.

Corollary 38. The permutations in Rect(n, k) are encoded uniquely by the words in LRect

of length n with k d’s.

5 A regular expression for evil-avoiding permutations

We now establish the encoding of evil-avoiding permutations of positive length as words
in LEvil, which is generated by the regular expression ((p|q)∗s∗r)∗s+.

The proof of this bijection involves some machinery in [8] used to analyze and count
evil-avoiding permutations. We use slightly different notation than in [8] in some places,
which we indicate explicitly.

Definition 39. [8] Let St(n, k) be the set of permutations π = (π1, . . . , πn) so that

1. π1 = 1,

2. π is evil-avoiding,

3. π has k recoils.

An element of St(n, k) is called a k-Grassmannian permutation.

Definition 40. A partition λ = (λ1, . . . , λk) of a nonnegative integer L is a k-tuple of
nonnegative integers so that

∑k
i=1 λi = L and λ1 > λ2 > . . . > λk.

Definition 41. [8] A partition λ is valid for n if λ is nonempty, it is contained in a
length(λ)× (n− length(λ)) rectangle, and it is not the whole rectangle.

This definition does not require λ to be a partition of n.

Definition 42. [8] For 1 6 k 6 n − 2, let ParSeq(n, k) denote the set of all sequences
of partitions (λ1, . . . , λk) such that each λi is valid for n, and for all 1 6 i 6 k − 1, if `
is the smallest part of λi, then the first (n − `) parts of λi+1 are equal. If k = 0, then
ParSeq(n, k) consists of one element, the empty sequence.

The sets St(n, k) and ParSeq(n, k) are natural to examine, as we explain. Observe that
the sets Evil(n − 1, k) and St(n, k) can be bijected by f : Evil(n − 1, k) → St(n, k) with
f(π) = (1, π1 +1, . . . , πn−1 +1). The inverse of f is given by f−1(π) = (π2−1, . . . , πn−1).

In preparation for the next proposition, we recall that the Lehmer code of a permuta-
tion π is the tuple c = (c1, . . . , cn) where ci = |{j | j > i, πj < πi}|.
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Proposition 43. [8] The sets St(n, k) and ParSeq(n, k) are in bijection. To obtain
the forward bijection P ,2 we associate to each π ∈ St(n, k) a sequence of partitions
P (π) = (λ1, . . . , λk) as follows. Write the Lehmer code of π−1 as c(π−1) = c = (c1, . . . , cn);
since π−1 has k descents, c has k descents (i.e, values ci where ci > ci+1) in positions
we denote by a1, . . . , ak (where the position of a descent ci is the index i). Set a0 = 0.
For 1 6 i 6 k, define λi = (n− ai, . . . , n− ai︸ ︷︷ ︸

ai

) − (0, . . . , 0︸ ︷︷ ︸
ai−1

, cai−1+1, cai−1+2, . . . , cai) where

subtraction of tuples is coordinatewise.

Example 44. If π ∈ St(5, 2) is [13254], then the Lehmer code of π−1 is (0, 1, 0, 1, 0).
This Lehmer code has two descents, one at index 2 and one at index 4, so we set
a0 = 0, a1 = 2, a2 = 4. Then

λ1 = (5− 2, 5− 2)− (c1, c2) = (3, 3)− (0, 1),

which we subtract coordinatewise to get (3, 2). We may also calculate

λ2 = (5− 4, . . . , 5− 4︸ ︷︷ ︸
4

)− (0, 0, c3, c4) = (1, 1, 1, 1)− (0, 0, 0, 1) = (1, 1, 1, 0).

We drop the trailing 0 for brevity. We then say that P (π) = (λ1, λ2) = ((3, 2), (1, 1, 1)).

The inverse map P−1 : ParSeq(n, k) → St(n, k) can be described as follows. Let
(λ1, . . . , λk) ∈ ParSeq(n, k), and let (f1, . . . , fk) be the sequence of first parts of λ1, . . . , λk,
i.e., fi = λi1. Then

(((f1, . . . , f1︸ ︷︷ ︸
n−f1

)− λ1) + ((f2, . . . , f2︸ ︷︷ ︸
n−f2

)− λ2) + · · ·+ ((fk, . . . , fk︸ ︷︷ ︸
n−fk

)− λk))

is the code of a permutation π−1 of π ∈ St(n, k). We define P−1(λ1, . . . , λk) = π.
In [8], Kim and Williams also define the injective maps Ψ1, Ψ2, and Φi,k,n, whose

images partition the set ParSeq(n, k) into disjoint parts and make it simpler to count
recursively.

Definition 45. [8] For k > 1, the map Ψ1 : ParSeq(n − 1, k) → ParSeq(n, k) takes
(λ1, . . . , λk) to (µ1, . . . , µk) where, for all i > 1, µi is obtained from λi by duplicating its
first part.

Example 46. Ψ1((2), (1, 1)) = ((2, 2), (1, 1, 1)).

Definition 47. [8] For k > 1, the map Ψ2 : ParSeq(n − 1, k) → ParSeq(n, k) takes
(λ1, . . . , λk) to (µ1, . . . , µk) where, for all i > 2, µi is obtained from λi by duplicating its
first part. For i = 1, we split into cases based on whether all parts of λ1 = (λ11, . . . , λ

1
r) are

equal. If so, then let µi = (λi1+1, λi1, . . . , λ
i
r).Otherwise, we define µ1 = (λ11+1, λ12, . . . , λ

1
r).

2This operator is denoted Ψ in [8], but we call it P instead to emphasize that it is a bijection and not
an operator on permutations or partition sequences.

the electronic journal of combinatorics 30(4) (2023), #P4.8 17



Example 48. Ψ2((2), (1, 1)) = ((3, 2), (1, 1, 1)) and Ψ2((3, 2), (1, 1, 1) = (4, 2), (1, 1, 1, 1).

Definition 49. [8] For k < i < n, we define Φi,k,n : ParSeq(i, k−1)→ ParSeq(n, k) to be
the map which takes (λ1, . . . , λk−1) to ((i − 1), µ1, . . . , µk−1), where µj is obtained from
λj by duplicating the first part of λj n− i times.

Example 50. Φ4,2,5((2, 1)) = ((3), (2, 2, 1)).

Proposition 51. [8] The set ParSeq(n, k) equals the disjoint union

Ψ1(ParSeq(n− 1, k)) ∪Ψ2(ParSeq(n− 1, k)) ∪
n−1∐
i=k−1

Φi,k,n(ParSeq(i, k − 1)).

Kim and Williams used this to prove a recurrence for the size of ParSeq(n, k) in [8]
Proposition 3.14. It also implies the following corollary:

Corollary 52. Every partition sequence in ParSeq(n0, k0) is a composition of maps in
{Ψ1,Ψ2,Φi,k,n} applied to an empty sequence in some ParSeq(n1, 0).

Theorem 53. Every evil-avoiding permutation can be written uniquely as a composition
of maps in the set {ψp, ψq, ψr, ψs} applied to the identity in S0.

Let ψi,k,n be a map sending (π1, . . . , πi−1) 7→ (π1+n−i, . . . , πi−1+n−i, 1, 2, . . . , n−i).
To prove this theorem, we provide alternative descriptions of maps ψp, ψq, ψi,k,n which
allow us to use a result from [8].

Theorem 54. The maps ψp, ψq, ψi,k,n may be written as

ψp(π) = f−1 ◦ P−1 ◦Ψ1 ◦ P ◦ f(π)

ψq(π) = f−1 ◦ P−1 ◦Ψ2 ◦ P ◦ f(π)

ψi,k,n(π) = f−1 ◦ P−1 ◦ Φi,k,n ◦ P ◦ f(π).

Proof. To show that ψp(π) = (1, π1 + 1, . . . , πn−2 + 1) = f−1 ◦ P−1 ◦ Ψ1 ◦ P ◦ f(π), we
compute P ◦f(π) and compare with P ◦f(1, π1+1, . . . , πn−2+1). Let c = (c1, . . . , cn−1) be
the Lehmer code of the inverse of f(π), and let a1 . . . , ak be the positions of the descents
in c. Then the ith partition in the partition sequence P ◦ f(π) may be written as

λi = (n− 1− ai, . . . , n− 1− ai︸ ︷︷ ︸
ai

)− (0, . . . , 0︸ ︷︷ ︸
ai−1

, cai−1+1, . . . , cai).

To get the Lehmer code of the inverse of f(1, π1 +1, . . . , πn−2 +1) from c, we insert a 0
at the start of c because the first entry of the Lehmer code of the inverse of a permutation
counts the number of values in the permutation before the 1. Thus, the ith partition in
the partition sequence P ◦ f(1, π1 + 1, . . . , πn−2 + 1) is

µi = (n− (ai + 1), . . . , n− (ai + 1)︸ ︷︷ ︸
ai+1

)− (0, . . . , 0︸ ︷︷ ︸
ai−1+1

, cai−1+1, . . . , cai).
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Comparing λi with µi, we see that the latter is the same as the former, except with an
extra copy of n− 1− ai, which is the largest part of λi. (Observe that in the expression
for λi, the subtrahend clearly has leading zeroes when i > 2, and when i = 1, we have
c1 = 0.) Note also that Ψ1 acts on a partition sequence by mapping each partition to one
with the first part duplicated, so Ψ1 ◦P ◦ f(π) = P ◦ f(1, π1 + 1, . . . , πn−2 + 1), as desired.

Let πikn = (π1 + n− i, π2 + n− i, . . . , πi−1 + n− i, 1, 2, . . . , n− i). Now, we show that

ψi,k,n(π) = πikn = f−1 ◦ P−1 ◦ Φi,k,n ◦ P ◦ f(π).

(We consider ψi,k,n before ψq to make the exposition clearer.) Using a similar technique
as for ψp, we compute P ◦ f(π) and compare with P ◦ f(πikn). As computed earlier in this
proof, the jth partition in the partition sequence π may be written as

λj = (i− aj, . . . , i− aj︸ ︷︷ ︸
aj

)− (0, . . . , 0︸ ︷︷ ︸
aj−1

, caj−1+1, . . . , caj)

with c defined as above.
To get the Lehmer code of the inverse of f(πikn), observe that

πikn = (π1 + n− i, π2 + n− i, . . . , πi−1 + n− i, 1, 2, . . . , n− i),
f(πikn) = (1, π1 + n− i+ 1, π2 + n− i+ 1, . . . , πi−1 + n− i+ 1, 2, . . . , n− i+ 1),

and

(f(πikn))−1 = (1, i+ 1, i+ 2, . . . , n, π−11 + 1, . . . , π−1i−1 + 1),

so we have as our Lehmer code (0, i− 1, . . . , i− 1︸ ︷︷ ︸
n−i

, c2, c3, . . . , ci).

Thus, the first partition in the partition sequence P ◦ f(πikn) is

µ1 = (n− (n− i+ 1), . . . , n− (n− i+ 1)︸ ︷︷ ︸
n−i+1

)− (0, i− 1, . . . , i− 1︸ ︷︷ ︸
n−i

)

= (i− 1, 0, . . . , 0︸ ︷︷ ︸
n−i

)

= (i− 1).

The jth partition, for j > 1, in the partition sequence P ◦ f(πikn) is

µj = (n− (aj−1 + n− i), . . . , n− (aj−1 + n− i)︸ ︷︷ ︸
aj−1+n−i

)− (0, . . . , 0︸ ︷︷ ︸
aj−2+n−i

, caj−2+1, . . . , caj−1
)

= (i− aj−1, . . . , i− aj−1︸ ︷︷ ︸
aj−1+n−i

)− (0, . . . , 0︸ ︷︷ ︸
aj−2+n−i

, caj−2+1, . . . , caj−1
).

Comparing λj with µj+1, we observe that the latter is the same as the former, ex-
cept with n − i leading copies of i − aj. Note that Φi,k,n takes a partition sequence
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(λ1, λ2, . . . , λk−1) to ((i− 1), µ1, µ2, . . . , µk−1)), where µj is obtained from λj by duplicat-
ing the first part of λj n − i times, so the partition sequences match up as desired, and
in fact Φi,k,n ◦ P ◦ f(π) = P ◦ f(πikn).

Finally, we consider ψq, and divide into cases based on whether π is (a, b)-sandwiched.
Case 1: π is (a, b)-sandwiched.

Then

g(π) = (a+ b+ 1, 1, 2, . . . , a+ 1, πa+1 + 1, πa+2 + 1, . . . , πn−b−2 + 1, a+ 2, a+ 3 . . . , a+ b).

We write the Lehmer code of f(π)−1 as c = (c1, c2, . . . , cn−1). where values c1, . . . , ca+1

are equal to 0 and values ca+2, . . . , ca+b+1 are equal to n − 2 − a − b. Now observe that
a1 = a+ b+ 1 (i.e., the first descent in c is at index a+ b+ 1) because the value a+ b+ 1
appears at the end of f(π) and the value a + b + 2 appears earlier (i.e., after the first
ascending run and before the second one). Thus, the number of values that appear before
and exceed a+ b+ 1 is greater than the number of values that appear before and exceed
a+ b+ 2. Equivalently, ca+b+1 > ca+b+2.

We can compute

λ1 = (n− 1− a1, . . . , n− 1− a1︸ ︷︷ ︸
a1

)− (c1, c2, . . . , ca1)

= (n− 1− (a+ b+ 1), . . . , n− 1− (a+ b+ 1)︸ ︷︷ ︸
a+b+1

)

− (0, . . . , 0︸ ︷︷ ︸
a+1

, n− 2− a− b, . . . , n− 2− a− b︸ ︷︷ ︸
b

)

= (n− 2− a− b, . . . , n− 2− a− b︸ ︷︷ ︸
a+1

),

i.e., all nonzero parts of λ1 are equal.
For i > 1, we can write

λi = (n− 1− ai, . . . , n− 1− ai︸ ︷︷ ︸
ai

)− (0, . . . , 0︸ ︷︷ ︸
ai−1

, cai−1+1, . . . , cai).

Now observe that the Lehmer code for f(g(π))−1 can be written as

(0, 1, . . . , 1︸ ︷︷ ︸
a+1

, n− 1− a− b, . . . , n− 1− a− b︸ ︷︷ ︸
b−1

, 0, ca+b+1, ca+b+2, . . . , cn).

From this, we can calculate that the first partition in the partition sequence P ◦ f(g(π))
is

µ1 = (n− a1, . . . , n− a1︸ ︷︷ ︸
a1

)− (0, 1, . . . , 1︸ ︷︷ ︸
a+1

, n− 1− a− b, . . . , n− 1− a− b︸ ︷︷ ︸
b−1

)

= (n− (a+ b+ 1), . . . , n− (a+ b+ 1)︸ ︷︷ ︸
a+b+1

)
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− (0, 1, . . . , 1︸ ︷︷ ︸
a+1

, n− 1− a− b, . . . , n− 1− a− b︸ ︷︷ ︸
b−1

)

= (n− 1− a− b)(n− 2− a− b, . . . , n− 2− a− b︸ ︷︷ ︸
a+1

),

and the ith partition for i > 1 is

µi = (n− (ai + 1), . . . , n− (ai + 1)︸ ︷︷ ︸
ai+1

)− (0, . . . , 0︸ ︷︷ ︸
ai−1+1

, cai−1+1, . . . , cai)

= (n− 1− ai, . . . , n− 1− ai︸ ︷︷ ︸
ai+1

)− (0, . . . , 0︸ ︷︷ ︸
ai−1+1

, cai−1+1, . . . , cai).

Note that in the first subcase, when π is (a, b)-sandwiched, Ψ2 takes (λ1, . . . , λk) to
(µ1, . . . , µk), where µ1 is λ1 with the first part duplicated and then increased by 1, and
for i > 1, µi is λi with the first part duplicated. This is precisely what we found, so
Ψ2◦P ◦f(π) = P ◦f(g(π)). It is a tedious though straightforward term-by-term arithmetic
calculation to verify

g(π) = [t+ 1, π1 + 1π1>t, . . . , πa+1 + 1πa+1>t, πn−b+2 + 1πn−b+2>t,

πa+2 + 1πa+2>t, . . . , πn−b+1 + 1πn−b+1>t, πn−b+3 + 1πn−b+3>t, . . . , πn + 1πn>t].

Case 2: π is not (a, b)-sandwiched.
The proof is similar to the one for the previous case. As computed earlier, the ith

partition in the partition sequence P ◦ f(π) may be written as

λi = (n− 1− ai, . . . , n− 1− ai︸ ︷︷ ︸
ai

)− (0, . . . , 0︸ ︷︷ ︸
ai−1

, cai−1+1, . . . , cai)

and, in particular,

λ1 = (n− 1− a1, . . . , n− 1− a1︸ ︷︷ ︸
a1

)− (c1, c2, . . . , ct+1).

Then the Lehmer code of

f(t+ 1, π1 + 1π1>t, . . . , πn−2 + 1πn−2>t)
−1

is
(0, c2 + 1, c3 + 1, . . . , ct+1 + 1, 0, ct+2, ct+3, . . . , cn)

with a1 = t+ 1. We may then write

µ1 = (n− a1, . . . , n− a1︸ ︷︷ ︸
a1

)− (c1, c2 + 1, c3 + 1, . . . , ct+1)
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and then comparing µ1 with λ1 part by part, we see that µ1 is identical to λ1 except with
the first part incremented by 1. Since there is a 0 at index t + 2 in the Lehmer code for
π, offsetting the Lehmer code for f(t+ 1, π1 + 1π1>t, . . . , πn−2 + 1πn−2>t)

−1 back by 1, we
get for i > 1,

µi = (n− (ai + 1), . . . , n− (ai + 1)︸ ︷︷ ︸
ai+1

)− (0, . . . , 0︸ ︷︷ ︸
ai−1+1

, cai−1+1, . . . , cai)

= (n− 1− ai, . . . , n− 1− ai︸ ︷︷ ︸
ai+1

)− (0, . . . , 0︸ ︷︷ ︸
ai−1+1

, cai−1+1, . . . , cai).

So in the second subcase, when π is not (a, b)-sandwiched, Ψ2 takes (λ1, . . . , λk) to
(µ1, . . . , µk) where µ1 is λ1 with the first part increased by 1, and for i > 1, µi is λi with the
first part duplicated. We find that Ψ2◦P ◦f(π) = P ◦f(t+1, π1+1π1>t, . . . , πn−2+1πn−2>t).
So the forms for ψp, ψq, ψi,k,n stated at the start of this proposition are equivalent to the
forms provided in Section 3.

Proposition 55. If k = 0, then Evil(n, k) contains only the identity permutation of length
n. For k > 0,

Evil(n, k) = ψp(Evil(n− 1, k)) ∪ ψq(Evil(n− 1, k)) ∪
n−1∐
i=k−1

ψi,k,n(Evil(i, k − 1))

and the terms on the right-hand side are pairwise disjoint.

Proof. The first sentence of the proposition is true because every nonidentity permutation
has at least 1 recoil. To see the second part, observe that from the proof of Proposition
3.14 in [8] we have a very similar result, namely

ParSeq(n, k) = Ψ1(ParSeq(n−1, k))∪Ψ2(ParSeq(n−1, k))∪
n−1∐
i=k−1

Φi,k,n(ParSeq(i, k−1)),

where the terms on the right-hand side are disjoint.
After conjugating both sides by P ◦ f , we get the desired result.

Proposition 56. The operators ψp, ψq, and ψs preserve the number of recoils. The oper-
ator ψr increases the number of recoils by one.

Proof. Observe that each value in ψv(π) for any v ∈ {p, q, s} depends on at most one
value in π, and no two values in ψv(π) depend on the same value in π. Throughout the
proof, we say that a recoil x at index i in π is mapped to a recoil y at index j in σ = ψv(π)
if the expression for σj depends on πi and the evaluation y of σj at x = πi is a recoil.

To see that ψp preserves the number of recoils, observe that a recoil πi in π is mapped
to recoil πi + 1, and this map produces all recoils in ψp(π). (The value 1 is first in ψp(π)
so cannot be a recoil.)
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To see that ψq preserves the number of recoils, we casework on whether π is (a, b)-
sandwiched. If not, observe that a recoil πi in π is mapped to recoil πi + 1πi>t in
ψq(π) regardless of whether πi > t or πi < t or πi = t, and this map produces all
recoils in ψq(π). If π is (a, b)-sandwiched, then π always contains the recoil a + b, and
ψq(π) = (a+b+1, 1, 2, . . . , a+1, πa+1+1, πa+2+1, . . . , πn−b+1, a+2, a+3 . . . , a+b) neces-
sarily contains a+b as a recoil. Any other recoil in π takes the form πi for a+1 6 π 6 n−b
and is mapped to πi + 1. Now, the values 1, 2, . . . , a+ b− 1 fail to be recoils in π and the
values 1, 2, . . . , a+ b− 1, a+ b+ 1 fail to be recoils in ψq(π), so we have accounted for all
possible recoils in π and its image ψq(π), and shown these recoils to be in bijection.

To see that ψs preserves the number of recoils, observe that the smallest recoil in π is
t, and that a recoil πi in π is mapped to πi + 1 in ψs(π). This map produces all recoils in
ψs(π). (The recoils in ψs(π) all appear before the 1.)

To see that ψr increases the number of recoils by one, observe that a recoil πi in π is
mapped to recoil πi + 1 in ψr(π), and this map produces all recoils in ψr(π) except for
the recoil 1.

Now, making the observation that ψi,k,n = ψn−i−1s ◦ ψr, we can describe the set of
words in Ae = {p, q, r, s} that the set of evil-avoiding permtuations is in bijection with.
This set was stated in Lemma 29.

Corollary 57. The words of LEvil encode evil-avoiding permutations uniquely.

5.1 Other consequences

In a word of LRect encoding a rectangular permutation, the number of recoils in the
permutation equals the number of d’s. The bijection converts d’s to r’s, which count
the recoils in the associated evil-avoiding permutation. Since the bijection preserves the
number of recoils, the following consequence is immediate.

Corollary 58. The map β is a bijection between rectangular permutations and evil-
avoiding permutations that preserves size and number of recoils.

Kim and Williams [8] proved a number of enumerative results about evil-avoiding
permutations. The bijection between evil-avoiding permutations and LEvil allows us to
provide some simpler proofs.

Kim and Williams enumerated Evil(n, k) using a recurrence and induction, but the
structure of LEvil lets us enumerate this directly, which we can also do for Rect(n, k).

Theorem 59. [8] Corollary 3.15 For k > 0,

|Evil(n, k)| =
n−k−1∑
i=0

2i
(
i+ k − 1

k − 1

)(
n− i− 1

k

)
.

Proof. Permutations in Evil(n, k) correspond to words in LEvil of size n with k r’s. The
r’s split the word into k+1 pieces, where the last piece is all s’s. Let i be the total number
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of p’s and q’s in the word. These i p’s and q’s can be distributed into the first k pieces
between the r’s in

(
i+k−1
k−1

)
ways. The remaining n − k − i positions must be s’s, and at

least one s must be in the last piece, so there are n − k − i − 1 spares. We can allocate
these among k + 1 pieces in

(
n−i−1
k

)
ways. For each such allocation of the letters to the

k + 1 pieces, the s’s must come at the end of the pieces, so the remaining choice is which
of the i p|q positions are p’s and which are q’s. There are 2i ways to make this choice.
Thus, for each i, there are 2i

(
i+k−1
k−1

)(
n−i−1
k

)
words in Evil(n, k). Therefore, for k > 0,

|Evil(n, k)| =
∑
i

2i
(
i+ k − 1

k − 1

)(
n− i− 1

k

)
.

Proposition 55 gives the following recurrence for |Evil(n, k)| with k > 0 :

|Evil(n, k)| = 2|Evil(n− 1, k)|+
∑
i=1

|Evil(n− i, k − 1)|.

There is a simpler recurrence, also mentioned in [8] in the proof of their Corollary
3.15.

Theorem 60. For k > 0 and n > 1,

|Evil(n, k)| = 3|Evil(n− 1, k)|+ |Evil(n− 1, k − 1)| − 2|Evil(n− 2, k)|.

Proof. This follows algebraically from the previous recurrence, but it also admits a rela-
tively short combinatorial proof.

By Propositions 55 and 56, Evil(n, k) is the disjoint union of the images of ψp, ψq, and
ψs on the intersections of their domains with Evil(n− 1, k) together with the image of ψr
on Evil(n− 1, k − 1).

The operators ψp and ψq are defined on all of Evil(n − 1, k), together contributing
2|Evil(n− 1, k)| permutations.

The operator ψr is defined on all of Evil(n− 1, k− 1) contributing |Evil(n− 1, k − 1)|
permutations.

The operator ψs is only defined on permutations that end with a copy of et for some
t > 1. The intersection with Evil(n − 1, k) are those permutations that are not in
ψp(Evil(n−2, k)) or ψq(Evil(n−2, k)). This contributes |Evil(n−1, k)|−2|Evil(n−2, k)|
permutations.

This decomposition of Evil(n, k) combinatorially proves

|Evil(n, k)| = 2|Evil(n− 1, k)|+ |Evil(n− 1, k − 1)|+ (|Evil(n− 1, k)| − 2|Evil(n− 2, k)|)
= 3|Evil(n− 1, k)|+ |Evil(n− 1, k − 1)| − 2|Evil(n− 2, k)|.

6 Table of examples

We give examples of the bijection between rectangular and evil-avoiding permutations
below.
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Table 1: The bijection for all rectangular permutations in
S1, S2, S3, S4 and three randomly selected permutations in
S5.

Rect. perm. Word in LRect Word in LEvil Evil-av. perm.

1 1 s 1
12 11 ss 12
21 d1 rs 21
123 111 sss 123
132 1d1 srs 312
213 d11 rss 231
231 ud1 qrs 213
312 2d1 prs 132
321 dd1 rrs 321
1234 1111 ssss 1234
1243 11d1 ssrs 4123
1324 1d11 srss 3412
1342 1ud1 qsrs 3142
1423 12d1 psrs 1423
1432 1dd1 rsrs 4231
2134 d111 rsss 2341
2143 d1d1 srrs 4312
2314 ud11 qrss 2134
2341 uud1 qqrs 2314
3124 2d11 prss 1342
3142 2ud1 qprs 3124
3214 dd11 rrss 3421
3241 dud1 qrrs 2143
3412 u2d1 pqrs 1324
3421 udd1 rqrs 3241
4123 22d1 pprs 1243
4132 2dd1 rprs 2431
4312 d2d1 prrs 1342
4321 ddd1 rrrs 4321
15423 1d2d1 prsrs 15342
43125 d2d11 prrss 14532
51432 2ddd1 rrprs 35421

7 The 1-almost-increasing permutations

We consider a class of permutations studied by Knuth [9] and Elizalde [7]. Kim and
Williams [8] mentioned these permutations as Wilf-equivalent to evil-avoiding permuta-
tions and stated it would be particularly interesting to find a length-preserving bijection.

Definition 61. [7] Let A(1)
n be the permutations π ∈ Sn so for every i ∈ {1, 2, . . . , n}
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there is at most one j 6 i with πj > i. Equivalently, π avoids 4321, 4312, 3421, and 3412.
These permutations π are called 1-almost-increasing. 3

This class of permutations is motivated by sorting algorithms, but it also arises as a
property of products of pattern-avoiding permutations.

Proposition 62. If τ1 and τ2 avoid 132 and 123, then τ1 ◦ τ2 is 1-almost-increasing.

Proof. By inspection, this is true in S4: The permutations in S4 avoiding 132 and 123 are
{3214, 3241, 3412, 3421, 4213, 4231, 4312, 4321}. The products of two such permutations
cover all permutations in S4 except 4321, 4312, 3421, and 3412.

Any pattern of τ1 ◦ τ2 in positions {a, b, c, d} would produce that pattern in the size 4
permutation τ ′1 ◦ τ ′2, where τ ′2 is the restriction of τ2 to {a, b, c, d} and τ ′1 is the restriction
of τ1 to τ2({a, b, c, d}).

Since the reduction of τ ′1 ◦ τ ′2 cannot be in {4321, 4312, 3421, 3412}, τ1 ◦ τ2 avoids these
patterns.

These types of product constructions are studied more by the author in [13].

Theorem 63. The 1-almost-increasing permutations are Wilf-equivalent to evil-avoiding
permutations. That is, for all n, |A(1)

n | = |Evil(n)|.

Wilf-equivalence follows from the enumerations of Kim and Williams [8] and Knuth [9].
These collections of patterns are not trivially Wilf-equivalent. We prove Wilf-equivalence
with an isomorphism between the regular language LRect and a regular language for 1-
almost-increasing permutations.

Theorem 64. For n > 1,

A(1)
n+1 = ρ1,1(A(1)

n ) ∪ ρ1,2(A(1)
n ) ∪ ρ2,1(A(1)

n ) ∪ ρ2,2(A(1)
n ).

Proof. We prove containment both ways.
First, every element π of A(1)

n+1 must have π1 ∈ {1, 2} or π2 ∈ {1, 2}, since otherwise
the values π1 and π2 are greater than 1 and 2, so one of the forbidden patterns appears
in positions {1, 2, π−11 , π−12 }. Thus,

A(1)
n+1 ⊂ ρ1,1(A(1)

n ) ∪ ρ1,2(A(1)
n ) ∪ ρ2,1(A(1)

n ) ∪ ρ2,2(A(1)
n ).

Second, none of the forbidden patterns has a 1 or 2 in the first two positions. Thus,
inserting a 1 or 2 in positions 1 or 2 in π ∈ A(1)

n cannot create a forbidden 4321, 4312, 3421,
or 3412. Thus,

ρ1,1(A(1)
n ) ∪ ρ12(A(1)

n ) ∪ ρ2,1(A(1)
n ) ∪ ρ2,2(A(1)

n ) ⊂ A(1)
n+1.

3We suggest the name bael-avoiding because if we replace 4 with B, 3 with A, 2 with E, and 1 with L,
then the avoided patterns correspond to BAEL, BALE, ABEL, and ABLE. Bael is a name for a demon
and for a type of tree native to the Indian subcontinent.
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Let the permutation in S1 be encoded as ρ1,1.

Theorem 65. Each 1-almost-increasing permutation of size n > 1 can be written uniquely
as a string of size n in ρ1,1, ρ1,2, ρ2,1, ρ2,2 ending in ρ1,1 with no substrings ρ2,1ρ1,1 or ρ2,2ρ1,1.

Proof. By the previous theorem, every 1-almost-increasing permutation can be written as
a string of lengthening operators in {ρ1,1, ρ1,2, ρ2,1, ρ2,2}. There are redundant encodings.
If π1 = 1, then ρ1,1(π) = ρ2,2(π) and ρ1,2(π) = ρ2,1(π), which imply {π1, π2} = {1, 2}.
Otherwise, π ∈ A(1)

n+1 is in the image of precisely one of ρ1,1, ρ1,2, ρ2,1, and ρ2,2.
Suppose encodings without ρ2,2ρ1,1 or ρ2,1ρ1,1 are not unique, and that π is a shortest

example with two encodings. If π were in the image of just one of {ρ1,1, ρ1,2, ρ2,1, ρ2,2},
then π = ρi,jτ for some shorter τ that also doesn’t have a unique encoding, contradicting
that π is a shortest example.

If π1 = 2 and π2 = 1, then there is a permutation τ so that π = ρ2,1ρ1,1τ = ρ1,2ρ1,1τ.
Since ρ1,1τ is shorter than π, it must have a unique encoding ρ1,1w, and since ρ2,1ρ1,1 is
forbidden, π has a unique encoding in this language, namely ρ1,2ρ1,1w.

If π1 = 1 and π2 = 2, then π starts with an increasing consecutive sequence. Then
since ρ2,2ρ1,1 is forbidden, all encodings for π must start with ρ1,1. If π = ρ1,1τ , there must
be multiple encodings for τ which is shorter than π, a contradiction.

Therefore, encodings without ρ2,2ρ1,1 or ρ2,1ρ1,1 are unique.

Let LAI be this language over the alphabet {ρ1,1, ρ1,2, ρ2,1, ρ2,2}. The languages LAI and
LRect are isomorphic by the length-preserving substitution ρ1,1 7→ 1, ρ2,1 7→ 2, ρ2,2 7→ u,
ρ1,2 7→ d. Thus, 1-almost-increasing permutations and evil-avoiding permutations are
Wilf-equivalent, and Theorem 63 is proven.

8 Insertion encoding

In Lemma 25, we encode rectangular permutations with a regular language so that a
permutation of length n is encoded as a word of length n. The insertion encoding of
Albert, Linton, and Ruškuc [1] is another way to encode permutations by words of the
same length. When restricted to the inverses of rectangular permutations, this is also a
regular language. We thank the referee for suggesting this idea.

Rectangular permutations avoid the patterns {2413, 2431, 4213, 4231}, so the inverses
of rectangular permutations avoid the inverses of those patterns, {3142, 4132, 3241, 4231}.
This set consists of all the length-4 patterns with the property that the 1 and 2 are in
positions 2 and 4 in either order, and the 3 and 4 are in positions 1 and 3 in either order.
Thus, the insertion pattern � + � + is forbidden. Thus, when inserting elements of an
inverse of a rectangular permutation, there can be at most two slots, and if there are
two, there is nothing to the right of the second slot, the pattern must be + � +�. Since
the number of slots is bounded, by Theorem 8 of [1], the language of possible insertion
encodings of inverses of rectangular permutations is regular.

The states of a minimal DFA accepting the insertion encodings of inverses of rectan-
gular permutations correspond to the sets of acceptable suffixes. Since only the pattern
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�+ � + is forbidden, the suffixes leading to the accepting state (no slots) are determined
by the configurations of slots. There is one accepting state when there are no slots. There
is one state with two slots: ∗ � + �. There are two states with one slot: ∗ � and ∗ � +,
the initial state with one slot on the right: ∗ �, and another state with one slot not on
the right: ∗ �+. The possible insertion symbols are {m1, f1, f2, `1, `2, r1}.

+

∗ � ∗ �+

∗ �+ �

r1

m1

`1

f1 f1

`1, r1

`1, r1, `2

f1
f2

Let L′Rect be the language of insertion encoding operators allowed to act on inverses
of rectangular permutations. We can compute a regular expression for the language from
the DFA by Arden’s method [12].

Theorem 66. A regular expression for L′Rect is

(`1|m1(`1|`2|r1)∗1)∗(f1|r1(`1|r1)∗f1|m1(`1|`2|r1)∗f2(`1|r1)∗f1).

We now compare the languages LRect and L′Rect. From a word in either language, we
can quickly retrieve the number of recoils in the corresponding rectangular permutation.
In LRect, we count the number of d’s. In L′Rect, we count the number of r’s and f ’s.
This count gives the number of descents plus 1 in the corresponding inverse rectangular
permutation, which gives the number of recoils plus 1 after taking the inverse. Though
L′Rect has more letters than LRect, and the regular expression for LRect we found is simpler
than the one for L′Rect, there are many families of permutations that could admit regular
languages in r’s, `’s, and f ’s, which we elaborate on in Section 10.

However, not all families of permutations have regular languages. It is natural to ask
about the insertion encodings of rectangular permutations, evil-avoiding permutations,
inverses of evil-avoiding permutations, and 1-almost-increasing permutations, the last of
which are self-inverse.

Lemma 67. The insertion encodings of rectangular permutations, evil-avoiding permu-
tations, and inverses of evil-avoiding permutations are not regular languages.
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Proof. We construct examples of permutations in these classes with arbitrarily many slots.
We claim the permutation π = [1 n+ 1 2 n+ 2 · · · 2n− 1 n 2n] is rectangular. This

permutation is a union of two increasing subsequences so avoids 321. Hence, π avoids
2431, 4213, and 4231, each of which contains a 321 subpattern. The last pattern to avoid
is 2413. If there were a 2413 pattern in π in positions a < b < c < d, we would have
one of (1) πa, πb 6 n, (2) πa, πb > n, or (3) πa 6 n and πb > n. Cases (1) and (3) are
impossible because they leave no choice for πc: all values less than πa appear to its left.
Case (2) is impossible because it leaves no choice for πd: all values between πa and πb
appear between a and b.

Indeed, π is also evil-avoiding: π avoids 321, so π avoids 4132, 4213, and 3214. The
fourth pattern is 2413, which π avoids as explained in the previous paragraph.

We claim the permutation σ = [1 3 5 · · · 2n − 1 2n 2n − 2 · · · 4 2] is evil-avoiding.
Suppose one of the patterns 2413, 4213, or 3214 occurs in σ in positions a < b < c < d.
Since σc is the least of {σa, σb, σc, σd}, we have that σc < σd. Thus, the structure of σ gives
us that c 6 n. The structure of σ also tells us that σa < σc, contradicting the pattern.
By a similar logic, if 4132 occurs in σ, then σa < σb < σd, contradicting the pattern.

In both π = [1 n+ 1 2 n+ 2 · · · 2n− 1 n 2n] and σ−1 = [1 2n 2 2n− 1 · · · n n+ 1],
the (n+ 1)st insertion pattern 1 � 2 � · · ·n � contains n slots. So, the insertion encodings
of rectangular, evil-avoiding, and inverses of evil-avoiding permutations are not regular
languages.

The 1-almost-increasing permutations forbid a set of patterns {4321, 4312, 3421, 3412}
preserved under inversion so the inverses of 1-almost-increasing permutations are also
1-almost-increasing.

Lemma 68. The insertion encodings of 1-almost-increasing permutations are regular.

Proof. If the pattern � + � + � + occurs when inserting a permutation, values in the
last two + symbols are lower than the values going into the first two slots, so one of the
patterns in {4321, 4312, 3421, 3412} must appear. Although three slots can occur with the
pattern + � + � + � such as in 142536, four slots can’t occur, so the insertion encodings
are regular.

9 Paths

There are several other families of combinatorial objects counted by the same sequence
A006012 [11]. One is walks of length 2n− 2 starting and ending in the middle vertex of
P7, a path graph with 7 vertices. Let the vertices of P7 be {v1, v2, v3, v4, v5, v6, v7}.

Theorem 69. There is a bijection between walks of length 2n − 2 in P7 starting and
ending at v4 and rectangular permutations of length n.

Elizalde [7] also produced a bijection between walks of length 2n−2 starting and ending
at the middle vertex of P7 and 1-almost-increasing permutations in Sn by bijecting both
with words of length n− 1 in a regular language on the alphabet {E,W,R, L} ending in
W or E with no LE or RW . Our proof is different.
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Proof. We produce a bijection between these paths and words of length n − 1 in a lan-
guage that is LRect with the trailing 1 of each word truncated, hence to LRect and to
rectangular permutations. We create a regular language encoding paths using a discrete
finite automaton (DFA).

Instead of using all 7 vertices of P7 as states, we consider taking steps two by two. By
parity, after starting at the middle vertex v4, a walk must reach a vertex in {v2, v4, v6}
after an even number of steps. Elements of this set will correspond to the states of a DFA
with alphabet {LL,LR,RL,RR}.

v2 v4 v6

LR,RL

RR

LL

LR,RL LR,RL

RR

LL

The extra arrow into v4 indicates that it is the initial state and the double circle
indicates that it is the only accepting state. The edges are labeled by the pair or pairs
of steps that move from one state to the next. The character L indicates a leftward step
and the character R indicates a rightward step. We can convert this DFA to a regular
expression generating the language, producing

(LR|RL|LL(LR|RL)∗RR|RR(LR|RL)∗LL)∗.

There is no way of substituting the pairs LL, LR, RL, and RR to {1, 2, d, u} to produce a
language similar to LRect. To see why, we observe that the number of LL symbols must be
equal to the number of RR symbols, and no analogous restriction occurs in LRect. Instead,
we relabel the state transitions as follows:

v2 v4 v6

2,u

d

u

1,d 2,u

2

d

If we convert this to a regular expression, we get

(1|d|u(2|u)∗d|2(2|u)∗d)∗ = (1|(2|u)∗d)∗.

The language of this expression is all strings in {1, 2, d, u} with no 21 or u1 substring
that do not end in 2 or u. This is almost the same as LRect. We can make a bijection by
adding a terminal 1. This proves the theorem.

the electronic journal of combinatorics 30(4) (2023), #P4.8 30



10 Future directions

We discuss possible future directions, both algebraic and enumerative.
In the algebraic direction, the bijection between rectangular and evil-avoiding permu-

tations may help us derive the inhomogeneous TASEP steady-state probabilities for new
families of permutations. Kim and Williams express the steady-state probabilities corre-
sponding to evil-avoiding permutations as a “trivial factor” times a product of (double)
Schubert polynomials (for a more precise statement, see Theorem 1.11 in [8]), so there is
hope that other permutation families may give rise to nice steady-state expressions. Per-
haps the structure of evil-avoiding permutations and nearly-evil-avoiding permutations
can be illuminated better by studying nearly rectangular permutations. Thus, we could
get steady-state probabilities for some nearly evil-avoiding permutations.

In an enumerative direction, one could try to biject other pairs of objects counted
by A006012, as suggested by Williams in personal communication [14]. Two sets of
objects seem likely to shed light on evil-avoiding permutations, either because they are
permutation classes or are clearly recursively constructed. The last was included in [8] as
particularly interesting.

1. paths of length 2n with n = 0 starting at the initial node on the path graph with 7
vertices,

2. permutations on [n] with no subsequence abcd such that (i) bc are adjacent in posi-
tion and (ii) max(a, c) < min(b, d).

From another enumerative perspective, we may want to consider which sets of permu-
tations can be bijected using similar techniques as those used here. Permutations avoiding
{4312, 4231}, {4312, 4213}, {4231, 4213}, {4213, 4132}, and {4213, 3214} are known to be
equinumerous. When they are triply graded by size, recoils, and descents, these five sets of
permutations still appear equinumerous. It would be interesting to construct a bijection
between any pair of these five sets of permutations, and particularly so if the bijection pre-
serves the number of recoils and/or descents. Evil-avoiding and rectangular permutations
also seem to be equinumerous when triply graded by size, recoils, and descents.

Here, we used regular languages to biject two particular families of permutations.
This technique may be more widely applicable to other permutation families, but there
is a limitation that the generating functions of regular languages must be rational (the
sequences satisfy linear recurrence relations). Many families of pattern-avoiding permu-
tations are known not to have rational generating functions, e.g., permutations avoiding
any one pattern of size three are counted by Catalan numbers, and the generating func-
tion for Catalan numbers is algebraic but not rational. However, some pattern-avoiding
permutation families have rational generating functions. For these permutation families,
it would be interesting to check if there are natural bijections with regular languages,
perhaps using insertion encodings. If so, then the techniques of this paper might be used
to establish many other nontrivial Wilf-equivalences.
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