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Merel’s uniform boundedness depending only on the degree of Q(j(z)), so in particular there

theorem are only finitely many j-invariants of bounded degree that give
rise to sporadic or isolated points.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Let E be an elliptic curve over a number field k. It is well-known that the torsion
subgroup E(k)ors is a finite subgroup of (Q/Z)2. In 1996, Merel [35], building on work
of Mazur [34] and Kamienny [24], proved the landmark uniform boundedness theorem:
that for any positive integer d, there exists a constant B = B(d) such that for all number
fields k of degree at most d and all elliptic curves E/k,

#E(k)tors g B(d>

Merel’s theorem can equivalently be phrased as a statement about closed points on
modular curves: that for any positive integer d, there exists a constant B’ = B’(d) such
that for n > B’, the modular curve X;(n)/Q has no non-cuspidal degree d points.

Around the same time as Merel’s work, Frey [19] observed that Faltings’s theorem
implies that an arbitrary curve C' over a number field £ can have infinitely many points
of degree at most d if and only if these infinitely many points are parametrized by P} or a
positive rank subabelian variety of Jac(C).! From this, Frey deduced that if a curve C/k
has infinitely many degree d-points, then the k-gonality of the curve® must be at most 2d.
Frey’s criterion combined with Abramovich’s lower bound on the gonality of modular
curves [1] immediately shows that there exists a (computable!) constant B” = B’ (d)
such that for n > B”, the modular curve X;(n)/Q has only finitely many degree d
points, or in other words, that for n > B” all degree d points on X;(n) are sporadic.’
Thus, the strength of the uniform boundedness theorem is in controlling the existence
of sporadic points of bounded degree on Xi(n) as n tends to infinity.

In this paper, we study sporadic points and, more generally, isolated* points of ar-
bitrary degree, focusing particularly on such points corresponding to non-CM elliptic
curves. We prove that non-CM non-cuspidal sporadic, respectively isolated, points on
X1(n) map to sporadic, respectively isolated, points on X;(d), for d some bounded di-

visor of n.

L While Frey assumes that C has a k-point, an inspection of the proof reveals that this is needed only
to obtain a k-morphism Symd(C) — Jac(C). Since the existence of a degree d point also guarantees the
existence of a suitable such morphism, the hypothesis on the existence of a rational point can be removed.

2 The k-gonality of a curve C is the minimal degree of a k-rational map ¢: C — IP’,%.

3 A closed point = on a curve C is sporadic if C' has only finitely many points of degree at most deg(z).

4 A closed point & on a curve C is isolated if it is not contained in a family of effective degree d divisors
parametrized by P! or a positive rank abelian variety. See Definition 4.1 for more details.
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Theorem 1.1. Fiz a non-CM elliptic curve E over k, and let m be an integer divisible by
2,3 and all primes £ where the ¢-adic Galois representation of E is not surjective. Let
M = M(E,m) be the level of the m-adic Galois representation of E and let f denote
the natural map X1(n) — X1(ged(n, M)). If x € X1(n) is sporadic, respectively isolated,
with j(z) = j(E), then f(x) € Xi(ged(n, M)) is sporadic, respectively isolated.

For many elliptic curves, we may take both m and M to be quite small. For instance,
let £ be the set of elliptic curves over Q where the f-adic Galois representation is sur-
jective for all £ > 3 and where the 6-adic Galois representation has level dividing 24.
Note that £ contains all Serre curves [40, Proof of Prop. 22] (that is, elliptic curves
over Q whose adelic image is of index 2 in GLy(Z), which is as large as possible) and
hence contains almost all elliptic curves over Q when counted according to height [23,
Theorem 4]. For E € £, we may apply Theorem 1.1 with m = 6 and M |24.

The curve X;(24) has infinitely many quartic points, but no rational or quadratic
points, nor cubic points corresponding to elliptic curves over Q [34,25,36]. Therefore
X1(24) has no sporadic points with Q-rational j-invariant. For M a proper divisor of 24,
the curves X7 (M) have genus 0, and so also have no sporadic points. Hence Theorem 1.1
yields the following corollary.

Corollary 1.2. For all n, there are no sporadic points on X1(n) corresponding to elliptic
curves in E. In particular, there are no sporadic points corresponding to Serre curves.

In addition to giving strong control on sporadic points over a fixed j-invariant, we are
also able to use Theorem 1.1 to derive a uniform version that is conditional on a folklore
conjecture motivated by a question of Serre.

Conjecture 1.3 (Uniformity conjecture). Fiz a number field k. There exists a constant
C = C(k) such that for all non-CM elliptic curves E/k, the mod-£ Galois representation
of E is surjective for all £ > C.

Conjecture 1.4 (Strong uniformity conjecture). Fiz a positive integer d. There exists a
constant C = C(d) such that for all degree d number fields k and all non-CM elliptic
curves E/k, the mod-£ Galois representation of E is surjective for all £ > C.

Remark 1.5. Conjecture 1.3 when k& = Q, or equivalently Conjecture 1.4 when d = 1,
is the case originally considered by Serre [40, §4.3]. In this case, Serre asked whether C'
could be taken to be 37 [41, p. 399]. The choice C' = 37 has been formally conjectured
by Zywina [50, Conj. 1.12] and Sutherland [44, Conj. 1.1].

Theorem 1.6. Assume Conjecture 1.3. Then for any number field k, there exists a positive
integer M = M (k) such that if © € X1(n) is a non-cuspidal, non-CM sporadic, respec-
tively isolated, point with j(x) € k, then w(x) € X1 (ged(n, M)) is a sporadic, respectively
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isolated, point. Moreover, if the stronger Conjecture 1.4 holds, then M depends only on
[k: Q.

We call a point j € X;(1) = P! an isolated j-invariant if it is the image of an isolated
point on X;(n), for some positive integer n. Since any curve only has finitely many
isolated points (see Theorem 4.2(2)) and there are only finitely many CM j-invariants
of bounded degree, we immediately obtain the following corollary.

Corollary 1.7. Fix a number field k.

a) Assume Conjecture 1.3. There are finitely many k-rational isolated j-invariants.
b) Assume Conjecture 1.4. There are finitely many isolated j-invariants of bounded
degree.

The integer M in Theorem 1.6 depends on the constant C'(k) or C(d) from Conjec-
ture 1.3 or Conjecture 1.4, respectively, and also depends on a uniform bound for the
level of the ¢-adic Galois representation for all £ < C'(k), respectively C(d). The existence
of this latter bound depends on Faltings’s Theorem and as such is ineffective. However,
in the case when k = Q, it is possible to make a reasonable guess for M. This is discussed
more in Section 8.

1.1. Prior work

CM elliptic curves provide a natural class of examples of sporadic points due to
fundamental constraints on the image of the associated Galois representation. Indeed,
Clark, Cook, Rice, and Stankewicz show that there exist sporadic points corresponding
to CM elliptic curves on X;(¢) for all sufficiently large primes ¢ [8]. Sutherland has
extended this argument to include composite integers [46].

In the non-CM case, all known results on sporadic points have arisen from explicit
versions of Merel’s theorem for low degree. For instance, in studying cubic points on
UnenX1(n), Najman identified two degree 3 sporadic points on X;(21) all corresponding
to the same non-CM elliptic curve with rational j-invariant [37]. Derickx, Etropolski, van
Hoeij, Morrow, and Zureick-Brown are currently classifying all degree 3 non-cuspidal
non-CM sporadic points on X;(n), and preliminary results suggest that these examples
of Najman are the only examples [14]. Work of van Hoeij [49], Derickx—van Hoeij [15],
and Derickx—Sutherland [16] show that there are additional sporadic points, e.g., degree
5 points on X1(28) and X;(30) and a degree 6 point on X (37).

There are also examples of isolated points that are not sporadic. Derickx and van Hoeij
[15] have shown X(25) has a (nonempty) finite collection of points of degree d = 6 and
d = 7. These points are isolated by Theorem 4.2, but not sporadic since the Q-gonality of
X1(25) is 5. In general, having infinitely points on a curve of degree d does not preclude
the existence of isolated points of degree d: see [43,6,21,5] for some examples.
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1.2. Outline

We set notation and review relevant background in Section 2. In Section 3 we record
results about subgroups of GLQ(Z) that will be useful in later proofs; in particular,
Proposition 3.7 is useful for determining the level of an m-adic Galois representation from
information about the ¢-adic representations. In Section 4, we prove a general criterion for
the images of sporadic or isolated points to remain sporadic or isolated (Theorem 4.3);
this result is likely of independent interest. In Section 5, we study isolated points on
modular curves over a fixed non-CM j-invariant and prove Theorem 1.1. This is then
used in Section 6 to prove Theorem 1.6.

Theorem 1.6 implies that, assuming Conjecture 1.4, there are finitely many isolated
j-invariants of bounded degree. This raises two interesting questions:

(1) Are there finitely many isolated points lying over j-invariants of bounded degree, or
can there be infinitely many isolated points over a single j-invariant?

(2) In the case of degree 1, when there is strong evidence for Conjecture 1.4, can we
come up with a candidate list for the rational isolated j-invariants?

Question 1 is the focus of Section 7, where we show that any CM j-invariant has infinitely
many isolated (and in fact, sporadic!) points lying over it. Section 8 focuses on Question 2;
there we provide a candidate list of levels from which the rational isolated j-invariants
can be found.
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2. Background and notation

2.1. Conventions

Throughout, k denotes a number field, Q denotes a fixed algebraic closure of Q, and
Galy denotes the absolute Galois group Gal(Q/k).
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We use ¢ to denote a prime number and Z, to denote the ¢-adic integers. For any
positive integer m, we write Supp(m) for the set of prime divisors of m and write Z,, :=
HZGSupp(m) Zy. We use S to denote a set of primes, typically finite; when S is finite, we
write mg = [[,cq -

For any subgroup G of GLg(Z) and any positive integer n, we write G,, and Gy,
respectively for the images of G under the projections

GL2(Z) = GLy(Z/nZ) and GLo(Z) — GLy(Zy).

In addition, for any positive integer m relatively prime to n we write G, for the
image of G under the projection

GLy(Z) — GLo(Z /nZ) x GLy(Z).

Throughout, we will abuse notation and use w to denote any natural projection map
among the groups G, G, and G,.

By curve we mean a projective nonsingular geometrically integral 1-dimensional
scheme over a field. For a curve C, we write k(C) for the function field of C' and Pice
for the Picard scheme of C. For any non-negative integer d, we write Pic‘é for the con-
nected component of Picc consisting of divisor classes of degree d and Symd C for the
dth symmetric product of C, i.e., C¢/Sy. If C is defined over the field K, we use gon x (C)
to denote the K-gonality of C, which is the minimum degree of a dominant morphism
C — Pj. If x is a closed point of C, we denote the residue field of x by k(z) and define
the degree of = to be the degree of the residue field k(x) over K. A point = on a curve
C/K is sporadic if there are only finitely many points y € C with deg(y) < deg(x). We
also consider other related properties of a closed point on a curve: isolated, P!-isolated,
and AV-isolated; these terms are defined in Section 4.

We use E to denote an elliptic curve, i.e., a curve of genus 1 with a specified point O.
Unless stated otherwise, we will consider only elliptic curves defined over number fields.
We say that an elliptic curve E over a field K has complex multiplication, or CM, if
the geometric endomorphism ring is strictly larger than Z. Given an elliptic curve F
over a number field k, an affine model of E is given by a short Weierstrasss equation
y? = 23+ Az + B for some A, B € k. Then the j-invariant of F is j(E) := 1728@%
and uniquely determines the geometric isomorphism class of E. For a positive integer n,
we write E[n] for the subgroup of E consisting of points of order at most n.

2.2. Modular curves
For a positive integer n, let

I'i(n) = {(‘zg) €SLy(Z):¢c=0 (modn),a=d=1 (modn)}.
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The group I'1(n) acts on the upper half plane H via linear fractional transformations,
and the points of the Riemann surface

Yi(n) = H/T1(n)

correspond to C-isomorphism classes of elliptic curves with a distinguished point of order
n. That is, a point in Y7 (n) corresponds to an equivalence class of pairs [(E, P)], where E
is an elliptic curve over C and P € E is a point of order n, and where (E, P) ~ (E', P’)
if there exists an isomorphism ¢: E — E’ such that ¢(P) = P’. By adjoining a finite
number of cusps to Y7 (n), we obtain the smooth projective curve X;(n). Concretely, we
may define the extended upper half plane H* := HUQU {co}. Then X;(n) corresponds
to the extended quotient H*/T';(n). In fact, we may view X;(n) as an algebraic curve
defined over Q (see [17, Section 7.7] or [13] for more details).

2.2.1. Degrees of non-cuspidal algebraic points

If z = [(E, P)] € X1(n)(Q) is a non-cuspidal point, then the moduli definition implies
that deg(z) = [Q(j(E),h(P)) : Q], where b : E — E/ Aut(E) = P! is a Weber function
for E. From this we deduce the following lemma:

Lemma 2.1. Let E be a non-CM elliptic curve defined over the number field k = Q(j(E)),
let P € E be a point of order n, and let x = [(E, P)] € X1(n). Then

deg(x) = co[k(P) : Q],

where ¢, = 1/2 if 2P # O and there exists o € Galy, such that o(P) = —P and ¢, =1
otherwise.

Proof. Let E be a non-CM elliptic curve defined over k = Q(j(E)) and let h be a Weber

function for E. If o € Galyy(py), then o(P) = £(P) for some { € Aut(£). Thus in the
case where Aut(F) = {£1},

[k(P) : k(h(P))] = 1 or 2.

If there exists o € Galg, such that o(P) = —P, then [k(P) : k(h(P))] =2 and ¢, = 1/2.
Otherwise k(P) = k(h(P)) and ¢, = 1. O

2.2.2. Maps between modular curves

Proposition 2.2. For positive integers a and b, there is a natural Q-rational map
f: X1(ab) = X1(a) with
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deg(f) =cr -8 [ (1 - ;2) 7

plb, pta

where ¢y = 1/2 if a <2 and ab > 2 and cy = 1 otherwise.

Proof. Since I';(ab) C 'y (a), we have a natural map X;(ab) — X;(a) that complex an-
alytically is induced by I'1 (ab)T — I'1(a)7 for 7 € H*. On non-cuspidal points, this map
has the moduli interpretation [(E, P)] — [(F,bP)], which shows that it is Q-rational.
Since —I € T'y(n) if and only if n|2, the degree computation then follows from the
formula [17, p. 66], which states

[1(a):Ty(ab)]/2 if —T€Ti(a)and — I ¢ T'(ad)
[['1(a) : T'1(ab)] otherwise.

deg(f) = {

2.8. Galois representations of elliptic curves

Let E be an elliptic curve over a number field k. Let n be a positive integer. After

fixing two generators for E(k)[n], we obtain a Galois representation
PEn: Galk — GLQ(Z/HZ)

Note that the conjugacy class of the image of pg ,, is independent of the choice of genera-
tors. After choosing compatible generators for each n, we obtain a Galois representation

pe: Galp — GL2(Z) ~ HGL2(Z[),
¢

which agrees with pg, after reduction modulo n. For any positive integer n we also
define

pEn=: Galy — GLa2(Z,,)

to be the composition of pg with the projection onto the ¢-adic factors for £|n. Note that
PE ne depends only on the support of n. We refer to pg p, pgn~, and pg as the mod n
Galois representation of F, the n-adic Galois representation of E, and the adelic Galois
representation of E, respectively.

If E/k does not have complex multiplication, then Serre’s Open Image Theorem [40]
states that pgp(Galg) is open—and hence of finite index—in GLy(Z). Since the kernels
of the natural projection maps GLo(Z) — GLy(Z/nZ) form a fundamental system of
open neighborhoods of the identity in GLy(Z) [38, Lemma 2.1.1], it follows that for any
open subgroup G of GLy(Z) there exists m € Z* such that G = 7~ (G mod m). Thus
Serre’s Open Image Theorem can be rephrased in the following way: for any non-CM
elliptic curve E/k, there exists a positive integer M such that
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impg = W_l(impE’M).

We call the smallest such M the level and denote it Mpg. Similarly, for any finite
set of primes S, we let Mg(S) be the least positive integer such that imppme =
7w im pg sy (s)) and we say that Mp(S) is the level of the mg-adic Galois representa-
tion.

We also define

Sp = Sg/k=1{2,3 U{l: pp e~ (Galp) P SL2(Z¢)} UL5, if pp s (Gal) # GLa(Zs)} 5
(2.1)
by Serre’s Open Image Theorem, this is a finite set.

For any elliptic curve F/Q with discriminant Ag,” Serre observed that the field
Q(v/Ag) is contained in the 2-division field Q(F[2]) as well as a cyclotomic field Q ()
for some n, which in turn is contained in the n-division field Q(E[n]). Thus if ¢ > 2
is a prime that divides the squarefree part of Ag, then 2¢ must divide the level Mg
(see [40, Proof of Prop. 22] for more details). In particular, the level of an elliptic curve
can be arbitrarily large. In contrast, for a fixed prime ¢, the level of the ¢-adic Galois

representation is bounded depending only on the degree of the field of definition.

Theorem 2.3 ([7, Theorem 1.1], see also [9, Theorem 2.3]). Let d be a positive integer
and let £ be a prime number. There exists a constant C = C(d, £) such that for all number
fields k of degree d and all non-CM elliptic curves E/k,

(GL2(Zy) « im pp,e] < C.
3. Subgroups of GL3(Z)

The proofs in this paper involve a detailed study of the mod-n, ¢-adic and adelic
Galois representations associated to elliptic curves. As such, we use a number of prop-
erties of closed subgroups of GLy(Z) and subgroups of GL(Z/nZ) that we record here.
Throughout G denotes a subgroup of GLy(Z).

In Section 3.1, we state Goursat’s lemma. In Section 3.2 we show that if £ = 5 and
G5 = GL2(Z/5Z) or if £ > 5 is a prime such that Gy D SLo(Z/¢Z), then for any integer
n relatively prime to ¢, the kernel of the projection Gys,, — G, is large, in particular, it
contains SLo(Z /¢5Z). This proof relies on a classification of subquotients of GLy(Z/nZ):
that GL2(Z/nZ) can contain a subquotient isomorphic to PGLy(Z/5Z) or PSLo(Z /(Z,)
for £ > 5 only if 5|n or £|n respectively. This result is known in the case £ > 5 (see
[10, Appendix, Corollary 11]), but we are not aware of a reference in the case £ = 5. In
Section 3.3 we review results of Lang and Trotter that show that the level of a finite

5 While the discriminant depends on a Weierstrass model, the class of Ag € Q></(@><2 is independent of
the choice of model. Since we are concerned only with Ag mod squares, we allow ourselves this abuse of
notation.
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index subgroup of GLy(Z¢) can be bounded by its index. Finally in Section 3.4 we show
how to obtain the m-adic level of a group from information of its ¢-adic components.

3.1. Goursat’s lemma

Lemma 3.1 (Goursat’s lemma, see e.q., [27, p. T75] or [20]). Let G,G" be groups and let
H be a subgroup of G x G’ such that the two projection maps

p:H—+G and p:H—G

are surjective. Let N := ker(p) and N' = ker(p’); one can identify N as a normal
subgroup of G’ and N’ as a normal subgroup of G. Then the image of H in G/N' x G'/N
is the graph of an isomorphism

G/N' ~G’'/N.
3.2. Kernels of reduction maps

Proposition 3.2. Let ¢ > 5 be a prime. Assume that Gy D SLo(Z/Z) when £ > 5 and
Go = GL2(Z/0Z) when € = 5. Then SLo(Z/0°Z) C ker(Gysr, = G) for any positive
integer n with £ 4 n.

For ¢ > 5, a key ingredient in the proof is a classification result that implies that
PSL(Z/¢Z) cannot appear as a subquotient of G,, [10, Appendix, Corollary 11]. This
is false when ¢ = 5 (for instance, there is a subquotient of GL(Z/11Z) that is isomor-
phic to PSLa(Z/5Z)). However, we prove that PGL2(Z/5Z) cannot be isomorphic to a
subquotient of G,, unless 5|n.

Lemma 3.3. Let n be a positive integer. If GLo(Z /nZ) has a subquotient that is isomor-
phic to PGLo(Z/5Z), then 5 | n.

Remark 3.4. Throughout the proof, we freely use the isomorphism PGLy(Z/5Z) = S5
and PSLo(Z/5Z) = As to deduce information about subgroups and subquotients con-
tained in these groups.

Proof. The lemma is a straightforward consequence of the following 3 claims (Claim (2)
is applied to the set T'= Supp(n)).

(1) The projection

GLy(Z/nz) — [] PGL2Z/pZ)

pESupp(n)

is an injection when restricted to any subquotient isomorphic to PGLy(Z/5Z).
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(2) Let @ # S C T be finite sets of primes. If [[ ., PGL2(Z/pZ) has a subquotient
isomorphic to PGL2(Z/5Z) then so does at least one of

[IPGL2(Z/pZ) or ] PGL2(Z/pZ).

pES peT—-S

Hence, by induction, if [[ ., PGL2(Z/pZ) has a subquotient isomorphic to
PGLy(Z/5Z) then PGLy(Z /pZ) has a subquotient isomorphic to PGLy(Z/5Z) for
some p € T.

(3) If pis a prime and PGLy(Z/pZ) has a subquotient isomorphic to PGLy(Z/5Z), then
p=29.

Proof of Claim 1: Let N <« G < GL2(Z/nZ) be subgroups and let = denote the
surjective map

m: GLo(Z/nZ) —» || PGL2(Z/pZ).
pESupp(n)

Using the isomorphism theorems, we obtain the following

m(G) o G/(GNkerm) G ~ G/N 31
7(N) N/(Nnkerm) N-(Gnkerw) (GNnkerw)/(NNkerm) (3-1)

For each prime p, the kernel of GLy(Z/p™Z) — GL2(Z/pZ) is a p-group and the kernel
of GLy(Z/pZ) — PGLy(Z/pZ) is a cyclic group, so ker 7 is a direct product of solvable
groups. Hence ker7 is solvable and so is (G Nkerm)/(N Nkerm) for any N 1 G <
GL2(Z/nZ). Since the only solvable normal subgroup of PGL2(Z/5Z) is the trivial
group, if G/N 2 PGLy(Z/5Z), then 7(G)/n(N) =2 G/N.

Proof of Claim 2: Let N < G <[],y PGL2(Z/pZ) be subgroups such that G/N
PGLy(Z/5Z). Let H be the normal subgroup of G containing N such that H/N
PSLy(Z/5Z). Consider the following two maps

[a]
[a]

ms: || PGL2(Z/pZ) — [] PGL2(Z/pZ) and

peT peES
mse: |[ PGL2(Z/pZ) — ] PGL2(Z/pZ).
peT peT—S

Since the only quotient of PGLy(Z/5Z) that contains a subgroup isomorphic to
PSL2(Z/5Z) is PGLy(Z/5Z) itself, by (3.1) it suffices to show that either wg(H)/ms(N)
or wge(H)/mge(N) is isomorphic to PSLy(Z/5Z). Furthermore, since PSLy(Z/5Z) is
simple, it suffices to rule out the case where ng(H) = wg(N) and wge(H) = mge(N),
which by the isomorphism theorems are equivalent, respectively, to the conditions that

HNkermg
N Nkermg

H Nkermge

>~ PSLy(Z/5Z —_
SLy(2/52Z)  and N Nkermge

~ PSL,(Z/57).
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Let

Hg :=(H Nkermg) - (H Nkermge) = (H Nkermg) x (H Nkermge),
Ng :=(NnNkermg) - (N Nkermge) = (N Nkermg) x (N Nkermge).

Assume by way of contradiction that Hg/Ng & H0xer T2 X %glﬁg:g; > (PSLy(Z/52)),

and consider the normal subgroup (Hs N N)/Ng. The isomorphism theorems yield an

inclusion

Hgs/Ns

o NV s = Hs/(Hs N N) = HsN/N < H/N = PSLy(Z/5Z),

so (Hs N N)/Ng must be a nontrivial normal subgroup of Hg/Ng. However, the only
proper nontrivial normal subgroups of (PSLy(Z/5Z))* are PSLy(Z/5Z) x {1} or {1} x
PSL2(Z/5Z), so Ng must contain either H Nkermg or H N ker mge, which results in a
contradiction.

Proof of Claim 3: Let G < PGLy(Z/pZ) be a subgroup that has a quotient isomorphic
to PGL2(Z/5Z). If p t #G, then by [40, Section 2.5], G must be isomorphic to a cyclic
group, a dihedral group, A4, Sy or A5 = PSLo(Z/5Z), so has no quotient isomorphic to
PGL2(Z/5Z). Thus, p must divide #G. Then G NPSLy(Z/pZ) is also of order divisible
by p and so by [48, Theorem 6.25, Chapter 3], G N PSLy(Z/pZ) is solvable or equal
to PSLo(Z/pZ). Since G has a quotient isomorphic to PGLy(Z/5Z), G N PSL2(Z /pZ)
cannot be solvable and hence G = PGLo(Z/pZ) and p =5. O

Proof of Proposition 3.2. Since we have Gysp, < GLo(Z/0°nZ) ~ GL2(Z /0°Z) x GL2(Z/
nZ), there are natural surjective projection maps

s i Gpsyy — Gps  and  wg : Gyspp — G,

Observe that ker ms and ker w, can be identified as normal subgroups of G,, and G-
respectively, and by Goursat’s Lemma (see Lemma 3.1), we have

Gos / kerws = G,/ ker . (3.2)

We first prove the proposition for the case when s = 1. By [2, Theorem 4.9], ker coy
either contains SLy(Z/¢Z) or is a subgroup of the center Z(GL2(Z/(Z)) of GL2(Z /4Z).
If kerwy C Z(GL2(Z/¢Z)) and £ = 5, then the left-hand side of (3.2) has a quotient
PGL2(Z/5Z), which contradicts Lemma 3.3 since the right-hand side cannot have such a
quotient. Similarly, if ker cw; C Z(GL3(Z/¢Z)) and ¢ > 5, then the left-hand side of (3.2)
has a subquotient PSLy(Z/¢Z), which is impossible by [10, Appendix, Corollary 11].
Therefore, ker tw; must contain SLy(Z/(Z).
For s > 1, since w; is surjective and factors through

Gren C GLo(Z/0°0Z) — GLo(Z/InZ) — GLo(Z/nZ.),
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kerwy C GLo(Z/€°Z) maps surjectively onto ker cw; C GL3(Z/¢Z). Then the proposition
follows from [10, Appendix, Lemma 12]. O

3.3. Bounding the level from the index

Proposition 3.5 (/28, Part I, §6, Lemmas 2 € 3]). Let ¢ be a prime and let G be a closed
subgroup of GLa(Zy). Set sg =1 if £ is odd and sy = 2 otherwise. If

ker(G mod ¢*T — G mod ¢°) = I + My (¢°Z /0511 7)
for some s > sq, then
ker(G — G mod %) = I + £° My(Z,).

Remark 3.6. This proof follows the one given by Lang and Trotter. We repeat it here
for the reader’s convenience and to show that the proof does give the lemma as stated,
even though the statement of [28, Part I, §6, Lemmas 2 & 3] is slightly weaker.

Proof. For any positive integer n, let U, := ker(G — G mod ¢") and let V,, := I +
" My (Zy). Note that for all n, U, C V,, and U,, = U1 N V},.
Observe that for s > s, raising to the ¢th power gives the following maps

VS/VS-&-l = Vsﬂ—l/Vs-i-?v and US/US-H — Us+1/Us+2-

By assumption, the natural inclusion Us/Usy1 C Vi/Vs41 is an isomorphism for some s >
sp. Combining these facts, we get the following commutative diagram for any positive k:

Uy JUspr —=— Vo/Vira

[ s

Us+k/Us+k+1 — Vs+k/Vs+k+la

where the vertical maps are raising to the (¢/¥)th power and the horizontal maps are the
natural inclusions. Hence, Ustk/Ustk+1 = Votk/Vstrt1 forallk > 0andso Uy, =V,. O

3.4. Determining m-adic level from level of (-adic components
Proposition 3.7. Let {1, ...,£4, be distinct primes and let m := ngl l;. Fori=1,...,q,
let t; > 1 be positive integers and let m; :=[[, ., ;. If G is a closed subgroup of GLy(Z)

such that Gu,.0; = 7 (G,e,t:) for each i, then Guee = 71 (Gar) for M = [[L, 4"

Proof. For any 1 < ¢ < g and r; > 0, consider the following commutative diagram of
natural reduction maps.
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GMg,im Gy

b

Gmieiri+ti Gmﬂiti

The kernel of the top horizontal map is a subgroup of I+Ma(MZ/MU*Z), so its order is
a power of ;. Similarly, the order of the kernel of the lower horizontal map is a power of ¢;,
while the order of the kernels of the vertical maps are coprime to £;. Since # ker(G; ,ri —
Gu)-#ker(Gy — Gmie,’ﬁ) is equal to #ker(G yy ri = Gy i) - # ker(Gy, gri — Gm:z,’i’i ),
the kernels of horizontal maps must be isomorphic, and hence G pze, is the full preimage
of Gs, by assumption.

To complete the proof, it remains to show that for any collection of positive integers
{ri}l_y, Gy Mo, ¢vi is the full preimage of Gas. We do so with an inductive argument.
Let 1 < ¢’ < g and let {r; 3,:1 be a collection of positive integers. Consider the following
commutative diagram of natural reduction maps.

Cuney e~ Cuneyt o
Ge, " Gu

Again the kernels of the horizontal maps and the kernels of the vertical maps have
coprime orders and so, by the induction hypothesis, the kernels of all maps are as large
as possible. O

4. Images of isolated points

Let C be a curve over a number field F' and consider the morphism
$a: Sym? C — Picl

that sends an unordered tuple of points to the sum of their divisor classes. Let W be the
image of Sym? C' in Pic&. Note that if there is a degree d point on C' then Pic: = Picl
and in particular is an abelian variety.

Definition 4.1.

(1) A degree d point z € C is P'-isolated if there is no other point 2’ € (Sym? C)(F)
such that ¢4(z) = ¢a(z’).

(2) A degree d point x € C' is AV-isolated if there is no positive rank subabelian variety
A C Pic, such that ¢g(z) + A C W4
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(3) A degree d point z € C is isolated if it is P!-isolated and AV-isolated.
(4) A degree d point x € C is sporadic if there are only finitely many closed points y € C
with deg(y) < deg(x).

Faltings’s theorem [18] on rational points on subvarieties of abelian varieties implies
the following two results on isolated and sporadic points.

Theorem 4.2. Let C' be a curve over a number field.

(1) There are infinitely many degree d points on C if and only if there is a degree d point
on C that is not isolated. In particular, sporadic points are isolated.
(2) There are only finitely many isolated points on C.

We provide the details of the proof in Section 4.1.
In this section, we consider an arbitrary morphism of curves, and give a criterion for
when images of isolated points remain isolated. Our main result is the following.

Theorem 4.3. Let f: C' — D be a finite map of curves, let x € C be a closed point, and
let y= f(x) € D. Assume that deg(x) = deg(y) - deg(f).

(1) If x is Pl-isolated, then y is P'-isolated.
(2) If x is AV-isolated, then y is AV-isolated.
(3) If x is sporadic, then y is sporadic.

Proof. Let d = deg(y) and let e = deg(f). Then by assumption de = deg(x).

(1) Assume that y is not Pl-isolated, so there exists a point 3 € (Sym?C)(F),
different from y, such that ¢4(y) = ¢a(y’), or, in other words such that there exists a
function g € k(D)* such that div(g) = y — %/'. Since y is a degree d point (and not just
an effective degree d divisor), the assumption that y # 3 implies that y and y’ have
distinct support. Therefore the map ¢g: D — P! has degree d, and hence g o f gives a
degree de map. Then for any z € PY(F) different from g(f(x)), the fiber (go f)~1(2)
gives a point of (Sym® C)(F), distinct from z, such that ¢z (z) = ¢ae((go f)~1(2)). In
particular, x is not P'-isolated.

(2) Assume that y is not AV-isolated, so there exists a subabelian variety A C Pic}
such that ¢g4(y) + A C W9. The morphism f induces a commutative diagram

¢a
Sym? D s Pic}

Lk

Pde
Sym® ¢ —“= Picd,
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where the left vertical arrow sends y to . Therefore, ¢qc(z) + f*A C W9, Since f*A is
a positive rank subabelian variety of Pic® C, the point z is not AV-isolated.

(3) Assume that y is not sporadic, i.e., that there are infinitely many closed points
y' € D with deg(y’) < deg(y) = d. For each of these points ', there is a closed point
x’ € f~1(y’) such that

deg(z’) < deg(y')e < deg(y)e = de = deg(x).
Hence, the point z is not sporadic. O
4.1. Proof of Theorem 4.2

(1) The forward direction is a straightforward consequence of Faltings’s theorem [18];
we include the details for the readers’ convenience. Assume that there are infinitely
many degree d points. Then either there are two degree d points z,2’ € C such that
bq(z) = ¢q(2") and so in particular z and ' are not P1-isolated, or ¢4 is injective on the
set of degree d points. In the latter case, W9 C Picdc contains infinitely many rational
points. Faltings’s theorem states that the rational points on W% are a finite union of
translates of subabelian varieties, so in particular, there must be a positive rank abelian
variety A C Picoc and a degree d point z € C such that z + A C W4, i.e., the degree d
point x is not AV-isolated.

Now we prove the backwards direction, which requires a more detailed study of Falt-
ings’s theorem. Let & € C be a degree d point that is not isolated. If x is not P'-isolated,
then there exists an 2’ € (Sym? C)(F),z # ', such that ¢4(x) = pa(z’), or equivalently,
there exists a rational function g € k(C)* such that div(g) = « — 2’. Since z is a closed
point and 2/ € (Sym? C)(F), = # 2/ implies that 2 and 2’ have disjoint support. Thus
the function g gives a degree d morphism g: C — P!. By Hilbert’s irreducibility theo-
rem [42, Chap. 9], there are infinitely many degree 1 points z € P! such that g~1(2) has
degree d, which gives the desired result.

Now assume that z is P!-isolated but not AV-isolated, i.e., that x is not equivalent
to any other effective divisors and that there is a positive rank subabelian variety A C

Pic’ C such that = +T C W*. Since the cokernel of PicC' — (Pic 5) GallE/E)
there is a finite index subgroup H C A(F) such that every divisor class in H (and

is torsion,

therefore every divisor class in z + H) is represented by an F-rational divisor, and every
divisor class in A(F) \ H is not represented by an F-rational divisor. In other words,
da ((Sym? ©)(F)) 1 (2 + A(F)) = &+ H.

Since H has positive rank, taking the preimage of x + H under ¢4 yields infinitely
many rational points on Sym? C, or, equivalently, infinitely many effective degree d 0-
cycles on C. It remains to prove that infinitely many of these 0-cycles are irreducible,
i.e., are not in the image of U; ((Symdii C)(F) x (Sym" C)(F))
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Consider the following commutative diagram

Pa—iXPi

(Sym®™" C)(F) x (Sym‘ C)(F) W=t x W

| |

(Sym? C)(F) o we,

where the vertical maps are induced by concatenation and summation, respectively. If
there are only finitely many degree d points on C, then all but finitely many of the
points in z + H are contained in the union U;(W9=¢(F) + W*(F)). Faltings’s theorem
on rational points on subvarieties of abelian varieties implies that

Ld/2] n
J i) + W) = J s+ A4(F), (1)

i=1

where n is some nonnegative integer, the A;’s are some subabelian varieties of PicOC and
the y;’s are degree d divisors on C, which can be taken to be reducible and effective.
We are concerned with the intersection

Uy +4FE) | =a+ (Hn |y — 2+ A;(F)
~ hed

U HN(y; —z+ Aj(F)))

If the intersection H N (y; — x + A;(F')) is nonempty, then it is a coset of H N A;(F). In
addition, since z is a P!-isolated degree d point on C, = cannot be written as the sum
of two nonzero effective divisors, so by definition of (4.1), H N (y; —x + A;(F)) does not
include the identity. Thus,

(z+H)N ij+A )| =2+ | (2 + HnA;(F)),
jeJ

where J C {1,...,n} and z; € H\ HNA;(F).
For each j € J, let G; be a subgroup of H of finite index that contains H N A;(F)
and that does not contain z;. Then we have

(z+ H)N ij—kA )| =2+ | (2 + HnA;(F))
jeJ
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CI-‘FU(ZJ‘-FG]‘)

jeJ

Cz+H)\ (x+nN;esG) o+ H.

Since each G is finite index in H, so is the intersection N;c;G;. Hence, the image of
U;(We=1(F) + W(F)) misses infinitely many rational points of x + H, and so there are
infinitely many degree d points on C.

(2) Let P be a point of degree d. If d > g + 1, then, by the Riemann-Roch theorem,
¢{(P)>d—g+1>2andso P is not Pl-isolated. Therefore, any isolated point on C
must have bounded degree, and so it suffices to prove that there are only finitely many
isolated points of a fixed degree d.

Recall that degree d points on C give rise to rational points on Sym? C' that in turn
map, via ¢4, injectively to rational points on W¢. By Faltings’s theorem, W% (F) is the
finite union of translates of subabelian varieties of Pic’ C. By definition, any degree
d point on C that lands in a translate of a positive rank subabelian variety is not
AV-isolated. Therefore, the set of degree d isolated points of C' must inject (under ¢g4)
into a finite union of translates of rank 0 subabelian varieties, so in particular must be
finite. O

5. Isolated points above a fixed non-CM j-invariant
For any non-CM elliptic curve F over a number field k, recall from §2.3 that
Se = Sp/k =12,3} U{l: pp=(Galg) 2 SLa(Zy)} U {5,if pp s~ (Galy) # GL2(Zs5)} .
In this section we show that the degree of a non-cuspidal non-CM point = € X;(n)
is as large as possible given the degree of its image in X;(a) for a = ged(n, Mg, (SE,)),

where E, is an elliptic curve over Q(j(z)) with j-invariant j(z).

Theorem 5.1. Fiz a non-CM elliptic curve E over a number field k. Let S be a finite
set of places containing Sp and let mg = [[,cq?. Let M be a positive integer with
Supp(M) C S satisfying

imppme = 7 (im pg ). (5.1)

If v € X1(n) is a closed point with j(x) = j(E), then deg(x) = deg(f) deg(f(z)), where
f denotes the natural map X1(n) — Xi(ged(n, M)).

Remark 5.2. Note that if £ and E’ are quadratic twists of each other, both defined over
a number field k, then Sg = Sg/ (see, e.g., [44, Lemma 5.27]). Furthermore, for any S,

+(im ppmy) = (M pp/mz ) (5.2)
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(see, e.g., [44, Lemma 5.17]). Since any open subgroup of GLa(Zn,) has only finitely
many subgroups of index 2, there is an integer M that will satisfy (5.1) for all quadratic
twists of a fixed elliptic curve.

This theorem combined with Theorem 4.3 yields the following corollary, of which
Theorem 1.1 is a special case.

Corollary 5.3. Fiz a non-CM elliptic curve E over a number field k. Let S be a finite set
of places containing Sg and let M be a positive integer with Supp(M) C S satisfying

imppmy = 7~ (im PEM)-

Let x € X1(n) be a point with j(x) = j(E), and let f denote the natural map X1(n) —
X1(ged(n, M)).

(1) If z is P-isolated, then f(x) is P-isolated.
(2) If x is AV-isolated, then f(x) is AV-isolated.
(3) If x is sporadic, then f(z) is sporadic.

From this, we deduce the following.

Corollary 5.4. Let E be a non-CM elliptic curve defined over k := Q(j(E)). If £ ¢ Sg,
then there are no sporadic or isolated points on X1(£°%) lying over j(E) for any s € N.

In Section 5.1, specifically Lemma 5.6, we show that the desired maximal degree
growth condition (i.e., the conclusion of Theorem 5.1) is implied by a condition on the
degree of field extensions k(P)/k(bP) where P is a point of order ab on a non-CM elliptic
curve E. We then show that the assumed growth of the Galois representation (5.1) implies
the hypothesis of Lemma 5.6 in two different cases. First, for maps X1(n) — X;(né=1)
for prime divisors £ of n outside of Sg (see Section 5.2), and second, for maps X;(ab) —
X1(a) for integers a,b with bounded support (see Section 5.3). The results of these two
sections are brought together in Section 5.4 to prove Theorem 5.1.

Remark 5.5. As discussed in Section 2.3, the full strength of Serre’s Open Image Theorem
implies that for any non-CM elliptic curve E/k, there exists a positive integer Mg such
that

impp =7 (im pp,ay )

The arguments in Section 5.3 alone then imply that deg(z) = deg(f) deg(f(x)), where
f denotes the natural map X;(n) — X;(ged(n, Mg)), which yields a weaker version of
Theorem 5.1.
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While there is not a dramatic difference in the strength of these results for a fixed
elliptic curve, the difference is substantial when applied to a family of elliptic curves. It
is well-known that Mg can be arbitrarily large for a non-CM elliptic curve E over a fixed
number field % (see Section 2.3). However, for a fixed finite set of places S, we prove that
Mg (S) can be bounded depending only on [k : Q]. This allows us to obtain the uniform
version of Corollary 5.3, namely Theorem 1.6 (see §6).

5.1. Field-theoretic condition for mazimal degree growth

Lemma 5.6. Let a and b be positive integers, E a non-CM elliptic curve over a number
field k, and P € E a point of order ab. Let x := [(E, P)] € X;(ab) and let f denote the
map X1(ab) — Xi(a). If [k(P) : k(bP)] is as large as possible, i.c., if [k(P) : k(bP)] =
#{Q € E : bQ = bP,Q order ab}, then

deg(z) = deg(f) deg(f(z)).

Proof. From the definition of X;(n), we have that

2deg(X;(ab) = X1(a)) ifa <2 and ab> 2,

#Q € B: b =bPQ order ab} = { deg(X1(ab) = X;(a)) otherwise.
(5.3)

Let us first consider the case that a < 2 and ab > 2. Then deg(f(x)) = [k(bP) : Q].
Since [k(P) : k(bP)] is as large as possible and a < 2, there must be a o € Galy, such
that o(P) = —P. Hence deg(z) = 3[k(P) : Q] by Lemma 2.1, so (5.3) yields the desired
result.

Now assume that ab < 2. Then deg(f(z)) = [k(bP) : Q] and deg(z) = [k(P) : Q],
so (5.3) again yields the desired result.

Finally we consider the case when a > 2. Note that for any point y € X7 (ab), deg(y) <

deg(f(y)) - deg(X1(ab) — X1(a)). Combining this with (5.3), it remains to prove that

deg(z)
deg(f(z))

By Lemma 2.1, deg(x) = ¢, - [k(P) : Q] and deg(f(z)) = cf) - [k(bP) : Q] where
CzyCf(z) € {1,1/2}. Since any o € Gal that sends P to —P also sends bP to —bP,
Cz 2 Cj(z) and so these arguments together show that

> #{Q € FE : bQ = bP,Q order ab}.

deg(z)  k(P): Q] . |
deg(f(x))  cpamFOP): Q)¢5 [k(P) : k(bP)] > [k(P) : k(bP)].

By assumption, [k(P) : k(bP)] = #{Q € E : bQ = bP,Q order ab}, yielding the desired
inequality. O
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5.2. Eliminating primes with large Galois representation

Proposition 5.7. Let E be a non-CM elliptic curve over a number field k, let £ be a prime
not contained in Sg, and let a and s be positive integers. Let x € X1(al®) be a closed
point with j(x) = j(E) and let f: X1(al®) — X1(a) be the natural map. Then

deg(x) = deg(f) deg(f(x)).

Proof. Write a = bf* where £ t b, let g denote the map Xi(a) — Xi;(b) and let
h: X1(al?) — X1(b) be the composition go f. Since deg(h) = deg(f) deg(g), the general
case follows from the case when ¢ { a. We work with this assumption for the remainder
of the proof.

Let P € E be a point of order af® such that © = [(E, P)] and for any c|af?, let
Bl C Aut(E[c]) be the stabilizer of %SP. Let H denote the kernel of the projection map
impg qe — impp q.

We wish to prove [k(P) : k((°P)] = #{Q € E : £*Q = £*P, @ order af’}, so that we
can apply Lemma 5.6. Note that we always have the following upper bound

# (Aut(E[(*])/By.) = #{Q € E : £°Q = ¢°P, Q order al*} > [k(P) : k(¢°P)).

We may also apply Galois theory to the towers of fields k(E[a??]) D k(P) D k(£°P) and
k(E[al®]) D k(E[a]) D k(¢°P) to obtain the following lower bound.

[k(Elat*)) : k(E[a])] - [k(Ela]) : k(¢*P)] _ #H - # (im pp.a N B,)
[k(Elat?]) : k(P)] # (im pgaes N Bly.)
#H - # (impgo N BL) _ #H _ #H

Z HHNBY,.) #(mppanBl)  #HNBY) #HNBL)

[k(P) : k(¢*P)] =

Since ¢ ¢ Sg, we may use Proposition 3.2 to conclude that H must contain
SLo(Z/¢°Z). Therefore we have set inclusions

SLo(Z/t°Z)/ (SLa(Z/¢°Z) N By.) — H/ (H N Bj.) — Aut(E[(*])/Bj.. (5.4)

Since the sets on the right and the left of (5.4) have the same cardinality, all inclusions
in (5.4) must be bijections. Hence, the upper and lower bounds obtained above agree,

and, in particular, [k(P) : k({°P)] = #{Q € E : *°Q = £°P, Q order al®} as desired. O
5.83. Maps between {X1(n)} where n has specified support
Proposition 5.8. Let E be a non-CM elliptic curve over a number field k, let S be a

finite set of primes, and let mg := [[,cq?. Let M = Mg(S) be a positive integer with
Supp(M) C S such that



22 A. Bourdon et al. / Advances in Mathematics 357 (2019) 10682/

im ppme =7 (im pp ar)

and let a and b be positive integers with ged(ab, M)|a and Supp(ab) C S. Let x € X1(ab)
be a closed point with j(x) = j(E) and let f denote the natural map X;(ab) — Xi(a).
Then

deg(z) = deg(f) deg(f()).

Proof. Let M’ := lem(a, M) and let n = ab. By definition, im pg, is the mod n re-
duction of im pp mgy and im pg , is the mod a reduction of im pp pv. Since im pp my =
7 (im pg ar), this implies that

imppmy = Wﬁl(im pe,m) and that  impg, = ﬂfl(im PE.a);

where by abuse of notation, we use 7 to denote both natural projections. In other words,
the mod n Galois representation is as large as possible given the mod a Galois repre-
sentation. Hence, for any P € FE of order n, the extension [k(P) : k(bP)] is as large as
possible, i.e., [k(P) : k(bP)] = #{Q € E : bQ = bP, Q order n}. In particular this applies
to a point P € F such that « = [(E, P)] € X1(n). Therefore, Lemma 5.6 completes the
proof. O

5.4. Proof of Theorem 5.1

Let x € Xi(n) be a closed point with j(x) = j(F) and write n = ngn; where
Supp(ng) C S and Supp(ny) is disjoint from S. Note that ged(n, M)|ng. We factor
the map f as

X1(n) B X1 (no) B X1 (ged(n, M)).

By inductively applying Proposition 5.7 to powers of primes ¢ ¢ Sg, we see that
deg(xz) = deg(f1)deg(fi(x)). Then we apply Proposition 5.8 with a = ged(n, M),
b = ng/ ged(n, M) to show that

deg(f1(x)) = deg(f2) deg(f2(f1(2)))-

6. Proof of Theorem 1.6

In this section we prove Theorem 1.6. For a fixed number field k, Conjecture 1.3
implies that there is a finite set of primes S = S(k) such that for all non-CM elliptic
curves E/k, S D Sy, (see (2.1)). Furthermore, Conjecture 1.4 implies that S(k) can
be taken to depend only on [k : Q]. Thus, to deduce Theorem 1.6 from Corollary 5.3, it
suffices to show that for any positive integer d and any finite set of primes S, there is an
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integer M = M4(S) such that for all number fields k of degree d and all non-CM elliptic
curves E/k, we have

imppme =7 (im pgar).
Hence Proposition 6.1 completes the proof of Theorem 1.6.

Proposition 6.1. Let d be a positive integer, S a finite set of primes, and € a set of
non-CM elliptic curves over number fields of degree at most d.

(1) There exists a positive integer M with Supp(M) C S such that for all E/k € &

imppme = ﬂ_l(im PEM)-

(2) Let My(S,E) be the smallest such M as in (1) and for all £ € S, define

TS Tsg s A, (ve (#impEms_(,y)) < ve(# GLa(Z/mg_n2)).

Then ve(My(S, €)) < max(ve(Mg({€},E)),ve(20)) + 7.

Remark 6.2. In the proof of Proposition 6.1(2), if im pg ms_,, is a Sylow ¢-subgroup of
GL2(Z/mg_14yZ), then a chief series (a maximal normal series) of im pg m_,, does have
length 7. So the bound in (2) is sharp if the group structure of im pg ¢ allows. However,
given set values for d, S, and &, information about the group structure of possible Galois
representations (rather than just bounds on the cardinality) could give sharper bounds.

Remark 6.3. A weaker version of Proposition 6.1 follows from [22, Proof of Lemma 8§].
Indeed, Jones’s proof goes through over a number field and for any finite set of primes
S (rather than only S = {2,3,5}U{p : impg, , # GL2(Z/pZ)} USupp(Ag), which is the
case under consideration in [22, Lemma 8]) and shows that

0e(Ma(S, €)) < max(ve(Ma({0}, €)), 06(20)) + ve(# GLo(Z/ms_ (5 Z)).

The proof here and the one in [22] roughly follow the same structure; however, by isolating
the purely group-theoretic components (e.g., Proposition 3.7), we are able to obtain a
sharper bound in (2).

Proof. When #S5 = 1, part (1) follows from Theorem 2.3 and Proposition 3.5 and part (2)
is immediate.

We prove part (1) when #5S is arbitrary by induction using Proposition 3.7. Let S =
{01, b}, Tet My = Mg({£:}, €), let s; = max(ve, (M;), ve, (26;)), and let Ny = ], €5
It suffices to show that for all 1 < ¢ < g there exists a ¢; > s; such that for all E/k € £
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. 1. .
I PE,N;-£3°> = T (lmpE’Niff,i)v

then Proposition 3.7 implies that we may take M = [, Ef
Fixi € {1,...,q}. For any E/k € £ and any s > s;, define

Kp, ==ker(impg n,.0s = imppn,), and Lp, :=ker(imppg n,.¢s — impp ).

By definition, K};J,s, maps surjectively onto K};ls for any s’ > s, so Kfi‘ls is the mod
N3 reduction of K}, := ker(im pg n,.¢= — im ppg n,). Let us now consider LZ'E75. Since
it Ny, Ly, can be viewed as a subgroup of im pg, n, and we have Ly, , C L, for all
s’ > s. Let r > s; be an integer such that UE,T = Lj‘ﬂ,ﬂ-l' Then we have the following
diagram

impE,é;'Jrl/K%,r-i-l - impE,Zf/K%,r (61)

l: l:

impEaNi/LlE,rJrl impEaNi/LzE,r

where the vertical isomorphisms are given by Goursat’s Lemma (Lemma 3.1).° Since
T > 8;, impp 41 is the full preimage of im pg ¢r under the natural reduction map. So
(6.1) implies that Kg’r 41 is the full preimage of Kg’r under the natural reduction map.
Then by Proposition 3.5, K% is the full preimage of K}ir under the map GLa(Z,) —
GL2(Z/€"Z) and therefore im pg n,.¢2c = 7~ (im pE,N;¢er)- Hence we may take tg ; to be
the minimal » > s; such that L.iE',r = LiE,r-i—l' Since LiE,s is a subgroup of impg N, C
GL32(Z/N;Z), tg,; may be bounded independent of E/k, depending only on N;. This
completes the proof of (1).

It remains to prove (2). Let s > s; and consider the following diagram, where again
the vertical isomorphisms follow from Goursat’s Lemma.

im PE, 5 /K%,s ——> im PE, e /K%,si (62)

lg lg

: 7 : 7
impp,N, /Ly s —= imppN, /Ly,

The kernel of the top horizontal map is an ¢;-primary subgroup, so the index of LfE!S in
L, ,, is apower of £;. Thus, the maximal chain of proper containments Ly, , 2 Lip 4 2

=

-+ 2 L, is bounded by vy, (#1im pg,n,) = ve, (F#im PEms_ (), Which yields (2). O

6 By tracing through the isomorphism given by Goursat’s lemma, one can prove that this diagram is
commutative. We do not do so here, since the claims that follow can also be deduced from cardinality
arguments.
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7. Lifting sporadic points

In this section we study when a sporadic point on X;(n) lifts to a sporadic point
on a modular curve of higher level. We give a numerical criterion that is sufficient for
lifting sporadic points (see Lemma 7.2), and use this to prove that there exist sporadic
points such that every lift is sporadic. The examples we have identified correspond to
CM elliptic curves.

Theorem 7.1. Let E be an elliptic curve with CM by an order in an imaginary quadratic
field K. Then for all sufficiently large primes £ which split in K, there exists a sporadic
point x = [(E, P)] € X1(£) with only sporadic lifts. Specifically, for any positive integer
d and any point y € X, (dl) with w(y) = x, the point y is sporadic, where ™ denotes the
natural map X1 (dl) — X1(¢).

The key to the proof of Theorem 7.1 is producing a sporadic point of sufficiently low
degree so we may apply the following lemma. It is a consequence of Abramovich’s lower
bound on gonality in [1] and the result of Frey [19] which states that a curve C/x has
infinitely many points of degree at most d only if gon (C) < 2d.

Lemma 7.2. Suppose there is a point x € X1(N) with

deg () < Ft)o[PSLQ(Z) LT3 (V).

Then x is sporadic and for any positive integer d and any point y € X1(dN) with
m(y) = x, the point y is sporadic, where ™ denotes the natural map X1(dN) — X1(N).

Proof. We claim that the assumption on the degree of z implies that deg(y) <

7o55 [PSL2(Z) : T1(dN)]. Then [1, Thm. 0.1], shows that

deg(y) < %gonQ(Xl(dN)) and deg(z) < %gonQ(Xl(N)).

Thus z and y are sporadic by [19, Prop. 2].
Now we prove the claim. Let © € X1(N) be a deg(z) < 1455[PSL2(Z) : T1(N)]. In
particular, this implies N > 2. Thus for any point y € X;(dN) with 7(y) = = we have

deg(y) < deg() - deg(X1(dN) — X1 (N))

7 2 1 o .
< 1600 [PSLo(Z) : T1(N)] - d dl}m (1 — —2> (see Proposition 2.2)
pld,

7 1 1
= To00 3 (V) 11 (1 + 5) @(dN)

pldN
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7

= 7505 [PSL2(2) : T1(@N)]. O

Proof of Theorem 7.1. Let E be an elliptic curve with CM by an order O in an imaginary
quadratic field K. Then L := K(j(E)) is the ring class field of O and [L : K| = h(O),
the class number of O. (See [11, Thms. 7.24 and 11.1] for details.) Let ¢ be a prime that
splits in K and satisfies

6400 h(0)
> (T'#0X> -

By [4, Thm. 6.2], there is a point P € F of order ¢ with

L) 1] =
Then for z = [(E, P)] € X1(¥),
deg(z) = [Q(J(E),h(P)) : Q] < [K(j(E),h(P)) : Q] = [L(h(P)) : Q] = ig)i hO) -2
<(-1). ﬁ(un.z - F&)[PSLQ(Z) T4 (0)].

The result now follows from Lemma 7.2. O

Remark 7.3. Note that none of the known non-cuspidal non-CM sporadic points satisfy
the degree condition given in Lemma 7.2. Thus it is an interesting open question to
determine whether there exist non-CM sporadic points with infinitely many sporadic
lifts. If no such examples exist, then by Theorem 1.6 there would be only finitely many
non-CM sporadic points corresponding to j-invariants of bounded degree, assuming Con-
jecture 1.4.

8. Isolated points with rational j-invariant

In this section, we study non-CM isolated points with rational j-invariant. Our main
result of this section (Theorem 8.1) gives a classification of the non-cuspidal non-CM
isolated points on X7(n) with rational j-invariant. We prove that they either arise from
elliptic curves whose Galois representations are very special (and may not even exist),
or they can be mapped to isolated points on X;(m) for an explicit set of integers m.

Later, we focus on sporadic points with rational j-invariant on X;(n) for particular
values of n. We show that if n is prime (Proposition 8.4), is a power of 2 (Proposi-
tion 8.5), or, conditionally on Sutherland [44, Conj. 1.1] and Zywina [50, Conj. 1.12], has
min(Supp(n)) > 17 (Proposition 8.6), then any non-CM, non-cuspidal sporadic point
with rational j-invariant has j(z) = —7-113.
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8.1. Classification of non-CM isolated points with rational j-invariant

Theorem 8.1. Let € X;(n) be a non-CM non-cuspidal isolated point with j(x) € Q.
Then one of the following holds:

(1) There is an elliptic curve E/Q with j(E) = j(x) and a prime £ € Supp(n) such
that either £ > 17,0 # 37 and pg, is not surjective or £ = 17 or 37 and pg is a
subgroup of the normalizer of a non-split Cartan subgroup.

(2) There is an elliptic curve E/Q with j(E) = j(z) and two distinct primes {1 > £y > 3
in Supp(n) such that both pg e, and pge, are not surjective.

(3) There is an elliptic curve E/Q with j(E) = j(z) and a prime 2 < £ < 37 in Supp(n)
such that the {-adic Galois representation of E has level greater than 169.

(4) There is a divisor of n of the form 223%p¢ such that the image of x in X1(23%p°) is
isolated and such that a < a,, b < by, p© <169 for one of the following values of p,
Gy, by.

p 11 5 7 11 13 17 37
ap |9 14 14 13 14 15 13
b, |5 6 7 6 7 5 8

Remark 8.2. This theorem also holds for = a P'-isolated, AV-isolated, or sporadic point,
respectively, at the expense of (4) giving the statement that the image of  is P-isolated,
AV-isolated, or sporadic, respectively.

Remark 8.3. Each of cases (1), (2), and (3) should be rare situations, if they occur at
all. Indeed, the question of whether elliptic curves as in (1) exist is related to a question
originally raised by Serre in 1972, and their non-existence has since been conjectured by
Sutherland [44, Conj. 1.1] and Zywina [50, Conj. 1.12].

Assuming (1) does not hold, elliptic curves as in (2) correspond to points on finitely
many modular curves of genus greater than 2, so there are at worst finitely many j-
invariants in this case [12, Tables 6-14, Theorem 16A]. Additionally, there are no elliptic
curves in the LMFDB database [26] as in (2), so in particular, any elliptic curve as in (2)
must have conductor larger than 400,000. (The Galois representation computations in
LMFDB were carried out using the algorithm from [44].) If we do not assume (1) does
not hold, then we must consider the case where ¢; > 37. In this case the elliptic curves
of interest no longer correspond to points on finitely many modular curves, but never-
theless, Lemos has shown that such elliptic curves do not exist, assuming that im pg 0,
is contained in the normalizer of a split Cartan subgroup or in a Borel subgroup [29,30].

Sutherland and Zywina’s classification of modular curves of prime-power level with
infinitely many points [47] shows that there are only finitely many rational j-invariants
corresponding to elliptic curves as in (3), and suggests that in fact they do not exist.
Table 8.1 gives, for each prime ¢, the maximal prime-power level for which there exists a
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Table 8.1
Maximal prime-power level for which there exists a mod-
ular curve with infinitely many rational points.
7 [ 3 5 7 11 13 17 37
max level | 27 25 7 11 13 1 1

modular curve of that level with infinitely many rational points. Therefore, for 3 < ¢ <
37, respectively, there are already only finitely many j-invariants of elliptic curves with
an (-adic Galois representation of level at least 81, 125, 49, 121, 169, 17, or 37. Since
such j-invariants are already rare, it seems reasonable to expect any such correspond to
elliptic curves of f-adic level ezactly 81, 125, 49, 121, 169, 17 and 37, respectively.

This has been (conditionally) verified by Drew Sutherland in the cases ¢ = 17 and
¢ = 37. For these primes, there are conjecturally only 4 j-invariants corresponding to
elliptic curves with non-surjective f-adic Galois representation: —17 - 3733 /217, —172 .
1013/2,—7 - 113, and —7 - 1372 - 20833 [50, Conj. 1.12]. For each of these j-invariants,
Sutherland computed that the ¢-adic Galois representation is the full preimage of the
mod ¢ representation, so the representations are indeed of level £ and not level £2 [45].7

Proof. Let © € X;(n) be a non-cuspidal non-CM isolated point with j(z) € Q. Let E
be an elliptic curve over Q with j(E) = j(x). Assume that (1) does not hold, so in
particular E has surjective mod ¢ representation for every ¢ > 17 and ¢ # 37. Thus
Proposition 5.7 and Theorem 4.3 together imply that = maps to an isolated point on
X1(n') where n' is the largest divisor of n that is not divisible by any primes greater
than 17 except possibly 37.

Now assume further that (2) does not hold, so there is at most one prime p > 3 for
which the p-adic Galois representation is not surjective. If the p-adic Galois representa-
tion of FE is surjective for all primes larger than 3, then we will abuse notation and set
p = 1. Under these assumptions, additional applications of Proposition 5.7 and Theo-
rem 4.3 show that 2 maps to an isolated point on X;(n") where n” is a divisor of n’ with
Supp(n”) C S := {2,3,p}® and p € {1,5,7,11,13,17,37}. Furthermore, Corollary 5.3
shows that 2 maps to an isolated point on X;(ged(n”, M)), where M is the level of the
mg Galois representation of .

Now we will further assume that (3) does not hold. Let £ denote the set of all non-CM
elliptic curves over Q. Proposition 6.1 states that there is an integer M; (.S, £) such that
the level of the m Galois representation of E divides M;(S,€&) for all E € £. We will
show that M;({2,3,p}, &) divides 2923 p¢ for p,a,, by, c as in (4).

By the assumption that (3) does not hold and [39, Corollary 1.3], we have the following
values for the constant M;({¢},E) from Proposition 6.1.

7 Sutherland used a generalization of the algorithm in [44] to prove in each case the index of the mod-¢2
image is no smaller than that of the mod-£ image. It then follows from [47, Lemma 3.7] that the ¢-adic
image is the full preimage of the mod-¢ image.

8 When p = 1, we conflate the set {2,3, p} with the set {2, 3}.
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Table 8.2
Cardinality of GLy(Z/(Z).
L 2 3 5 7 11 13 17 37

#GLo(Z/¢Z) | 2-3 2*3  2°3's5  2°3%7  2%3'5%11  2°327'13  293%17  2°3%19'37

[ 2 3 5 7 11 13 17 37
M, ({¢},€) | 2° 3* 5 72 11?2 132 17 37

By Proposition 6.1(2),

ve(My(S,€)) < max(ve(Mi({€},€)),00(20)) + > ve(#GLa(Z/'2)).
resS—{e}

This upper bound combined with Table 8.2 yields the desired divisibility except for the
case where p = 17 or p = 37.

Let us consider the case that p = 17, so pg 17 is not surjective. Since we are not in
case (1), we know im pg 17 is not contained in the normalizer of the non-split Cartan.
Thus [50, Thms. 1.10 and 1.11] show that #impg 17 = 2517, so Proposition 6.1(2)
implies that the level of the m3 Galois representation divides 2153517.

The case when p = 37 proceeds similarly. In this case [50, Thms. 1.10 and 1.11] show
that #1im pp 37 = 213337 and so Proposition 6.1(2) implies that the level of the m%
Galois representation divides 2!33%37. O

8.2. Rational j-invariants of non-CM non-cuspidal sporadic points on X1 (n) for
particular values of n

Proposition 8.4. Fiz a prime (. If x € X1(¢) is a non-CM non-cuspidal sporadic point
with j(z) € Q then £ = 37 and j(x) = —7-113.

Proof. Let z = [(E, P)] be a non-CM sporadic point on X;(¢) with j(E) € Q. We
may assume FE is defined over Q. Note that X;(¢) has infinitely many rational points
for ¢ < 10. Further, X;(¢) has gonality 2 for £ = 11,13, and no non-cuspidal rational
points [34]. Hence if © € X;(¢) is a non-cuspidal non-CM sporadic point, £ > 13.

If the mod ¢ Galois representation of F is surjective, then x cannot be a sporadic
point on X7 (¢) by Corollary 5.4, so assume that pg ¢ is not surjective. Then the im pg ¢
is contained in a maximal subgroup, which can be an exceptional subgroup, a Borel
subgroup or the normalizer of a (split or non-split) Cartan subgroup of GLqy(F,) [40,
Section 2]. We will analyze each case separately.

In the case where im pg ¢ is contained in the normalizer of the non-split Cartan
subgroup, Lozano-Robledo [32, Theorem 7.3] shows that the degree of a field of definition
of a point of order / is greater than or equal to (¢2 —1)/6. Since £ > 13 we have
1

gong (X1(£)) < genus(X1(£)) < o

(02 —1).

Therefore z cannot be sporadic in this case.
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If im pg ¢ is contained in the normalizer of the split Cartan subgroup, then by [3], £ has
to be less than or equal to 13. Similarly, if im pg ¢ is one of the exceptional subgroups,
then by [32, Theorem 8.1], £ < 13.

If im pg ¢ is contained in a Borel subgroup, then E has a rational isogeny of degree /.
By [33], £ is one of the following primes: 2, 3,5,7,11,13,17, 37. Thus we need only consider
¢ =17 and 37. For ¢ = 17, [32, Table 5] shows that deg(z) > 4. Since the gonality of
X1(17) is also 4, x cannot be sporadic.

Finally when ¢ = 37, there are exactly two non-cuspidal points in X¢(37)(Q) [32,
Table 5]. The one corresponding to an elliptic curve with j-invariant —7 - 113 gives a
degree 6 point on X (37), which is sporadic since gong X1(37) = 18. The other gives a
point on X7 (37) of degree 18, which is not sporadic. O

Proposition 8.5. Let s > 1. If x € X1(2%) is a non-cuspidal non-CM sporadic point, then
i(z) ¢ Q.

Proof. By [39, Cor. 1.3], the 2-adic Galois representation of any non-CM elliptic curve
over Q has level at most 32. Thus, by Proposition 5.8 it suffices to show that X;(2°) has
no non-cuspidal non-CM sporadic points with rational j-invariant for s < 5.

If s = 1,2 or 3, then modular curve X;(2%) is isomorphic to ]P’(ll) and so has no sporadic
points. When s = 4, the modular curve X;(16) has genus 2 and hence gonality 2 which
implies that it has infinitely many points of degree 2. Additionally, as first established by
Levi [31], X1(16) has no non-cuspidal points over Q and so has no non-cuspidal sporadic
points.

Now we consider X;(32), which has gonality 8 (see [15, Table 1]). Let z = [(E, P)] be a
non-CM sporadic point on X7(32) with j = j(F) € Q. We may assume that E is defined
over Q. Since x is a sporadic point, there are only finitely many points y € X;(32) with
deg(y) < deg(x). Since the degree of a point y € X;(32) can be calculated from the mod
32 Galois representation of an elliptic curve with j-invariant j(y), this implies that there
are only finitely many j-invariants whose mod 32 Galois representation is contained in
a conjugate of im pg 32. By [39, Table 1], there are only eight non-CM j-invariants with
this property:

gl gipps 4097 2570 857985% 9104257
9 ’ 94 ’ 28 y 628 ) 4964 s
3 - 182499203 7 -17231878060803
- and — =016

Using Magma, we compute the degree of each irreducible factor of 32nd division polyno-
mial for each of these j-invariants and we find that the least degree of a field where a
point of order 32 is defined is 32, hence there are no non-CM sporadic points on X7(32)
with a rational j-invariant. O
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Proposition 8.6. Let n be a positive integer with min(Supp(n)) > 17. Assume [}/,
Conj. 1.1] or [50, Conj. 1.12]. If x € X1(n) is a non-cuspidal non-CM sporadic point
with j(z) € Q, then 37|n and j(x) = —7 - 113.

Proof. Let E be an elliptic curve over Q with j(E) = j(x). We apply Theorem 8.1. By
assumption and Remark 8.3, cases (1) and (3) of Theorem 8.1 do not occur. Further,
case (2) only occurs if 17 - 37|n and im pg 17 and im pg 37 are both contained in Borel
subgroups (see proof of Proposition 8.4), which is impossible (see, e.g., [32, Table 4]).

Hence, we must be in case (4) of Theorem 8.1. Since min(Supp(n)) > 17, the only
possible divisors of n of the form 2¢3°p¢ (with a,b, ¢, p as in Theorem 8.1(4)) are 17 or
37. Thus, for one of £ = 17 or 37 we must have ¢|n and z maps to a sporadic point on
X1(£). Proposition 8.4 then completes the proof. O
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