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We say a closed point x on a curve C is sporadic if C has only 
finitely many closed points of degree at most deg(x) and that x
is isolated if it is not in a family of effective degree d divisors 
parametrized by P1 or a positive rank abelian variety (see 
Section 4 for more precise definitions and a proof that sporadic 
points are isolated). Motivated by well-known classification 
problems concerning rational torsion of elliptic curves, we 
study sporadic and isolated points on the modular curves 
X1(N). In particular, we show that any non-cuspidal non-CM 
sporadic, respectively isolated, point x ∈ X1(N) maps down 
to a sporadic, respectively isolated, point on a modular curve 
X1(d), where d is bounded by a constant depending only on 
j(x). Conditionally, we show that d is bounded by a constant 
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Merel’s uniform boundedness 
theorem

depending only on the degree of Q(j(x)), so in particular there 
are only finitely many j-invariants of bounded degree that give 
rise to sporadic or isolated points.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Let E be an elliptic curve over a number field k. It is well-known that the torsion 
subgroup E(k)tors is a finite subgroup of (Q/Z)2. In 1996, Merel [35], building on work 
of Mazur [34] and Kamienny [24], proved the landmark uniform boundedness theorem: 
that for any positive integer d, there exists a constant B = B(d) such that for all number 
fields k of degree at most d and all elliptic curves E/k,

#E(k)tors ≤ B(d).

Merel’s theorem can equivalently be phrased as a statement about closed points on 
modular curves: that for any positive integer d, there exists a constant B′ = B′(d) such 
that for n > B′, the modular curve X1(n)/Q has no non-cuspidal degree d points.

Around the same time as Merel’s work, Frey [19] observed that Faltings’s theorem 
implies that an arbitrary curve C over a number field k can have infinitely many points 
of degree at most d if and only if these infinitely many points are parametrized by P 1

k or a 
positive rank subabelian variety of Jac(C).1 From this, Frey deduced that if a curve C/k

has infinitely many degree d-points, then the k-gonality of the curve2 must be at most 2d. 
Frey’s criterion combined with Abramovich’s lower bound on the gonality of modular 
curves [1] immediately shows that there exists a (computable!) constant B′′ = B′′(d)
such that for n > B′′, the modular curve X1(n)/Q has only finitely many degree d

points, or in other words, that for n > B′′ all degree d points on X1(n) are sporadic.3
Thus, the strength of the uniform boundedness theorem is in controlling the existence 
of sporadic points of bounded degree on X1(n) as n tends to infinity.

In this paper, we study sporadic points and, more generally, isolated4 points of ar-
bitrary degree, focusing particularly on such points corresponding to non-CM elliptic 
curves. We prove that non-CM non-cuspidal sporadic, respectively isolated, points on 
X1(n) map to sporadic, respectively isolated, points on X1(d), for d some bounded di-
visor of n.

1 While Frey assumes that C has a k-point, an inspection of the proof reveals that this is needed only 
to obtain a k-morphism Symd(C) → Jac(C). Since the existence of a degree d point also guarantees the 
existence of a suitable such morphism, the hypothesis on the existence of a rational point can be removed.

2 The k-gonality of a curve C is the minimal degree of a k-rational map φ : C → P1
k .

3 A closed point x on a curve C is sporadic if C has only finitely many points of degree at most deg(x).
4 A closed point x on a curve C is isolated if it is not contained in a family of effective degree d divisors 

parametrized by P1 or a positive rank abelian variety. See Definition 4.1 for more details.
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Theorem 1.1. Fix a non-CM elliptic curve E over k, and let m be an integer divisible by 
2, 3 and all primes � where the �-adic Galois representation of E is not surjective. Let 
M = M(E, m) be the level of the m-adic Galois representation of E and let f denote 
the natural map X1(n) → X1(gcd(n, M)). If x ∈ X1(n) is sporadic, respectively isolated, 
with j(x) = j(E), then f(x) ∈ X1(gcd(n, M)) is sporadic, respectively isolated.

For many elliptic curves, we may take both m and M to be quite small. For instance, 
let E be the set of elliptic curves over Q where the �-adic Galois representation is sur-
jective for all � > 3 and where the 6-adic Galois representation has level dividing 24. 
Note that E contains all Serre curves [40, Proof of Prop. 22] (that is, elliptic curves 
over Q whose adelic image is of index 2 in GL2(Ẑ), which is as large as possible) and 
hence contains almost all elliptic curves over Q when counted according to height [23, 
Theorem 4]. For E ∈ E , we may apply Theorem 1.1 with m = 6 and M |24.

The curve X1(24) has infinitely many quartic points, but no rational or quadratic 
points, nor cubic points corresponding to elliptic curves over Q [34,25,36]. Therefore 
X1(24) has no sporadic points with Q-rational j-invariant. For M a proper divisor of 24, 
the curves X1(M) have genus 0, and so also have no sporadic points. Hence Theorem 1.1
yields the following corollary.

Corollary 1.2. For all n, there are no sporadic points on X1(n) corresponding to elliptic 
curves in E. In particular, there are no sporadic points corresponding to Serre curves.

In addition to giving strong control on sporadic points over a fixed j-invariant, we are 
also able to use Theorem 1.1 to derive a uniform version that is conditional on a folklore 
conjecture motivated by a question of Serre.

Conjecture 1.3 (Uniformity conjecture). Fix a number field k. There exists a constant 
C = C(k) such that for all non-CM elliptic curves E/k, the mod-� Galois representation 
of E is surjective for all � > C.

Conjecture 1.4 (Strong uniformity conjecture). Fix a positive integer d. There exists a 
constant C = C(d) such that for all degree d number fields k and all non-CM elliptic 
curves E/k, the mod-� Galois representation of E is surjective for all � > C.

Remark 1.5. Conjecture 1.3 when k = Q, or equivalently Conjecture 1.4 when d = 1, 
is the case originally considered by Serre [40, §4.3]. In this case, Serre asked whether C
could be taken to be 37 [41, p. 399]. The choice C = 37 has been formally conjectured 
by Zywina [50, Conj. 1.12] and Sutherland [44, Conj. 1.1].

Theorem 1.6. Assume Conjecture 1.3. Then for any number field k, there exists a positive 
integer M = M(k) such that if x ∈ X1(n) is a non-cuspidal, non-CM sporadic, respec-
tively isolated, point with j(x) ∈ k, then π(x) ∈ X1(gcd(n, M)) is a sporadic, respectively 
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isolated, point. Moreover, if the stronger Conjecture 1.4 holds, then M depends only on 
[k : Q].

We call a point j ∈ X1(1) ∼= P 1 an isolated j-invariant if it is the image of an isolated 
point on X1(n), for some positive integer n. Since any curve only has finitely many 
isolated points (see Theorem 4.2(2)) and there are only finitely many CM j-invariants 
of bounded degree, we immediately obtain the following corollary.

Corollary 1.7. Fix a number field k.

a) Assume Conjecture 1.3. There are finitely many k-rational isolated j-invariants.
b) Assume Conjecture 1.4. There are finitely many isolated j-invariants of bounded 

degree.

The integer M in Theorem 1.6 depends on the constant C(k) or C(d) from Conjec-
ture 1.3 or Conjecture 1.4, respectively, and also depends on a uniform bound for the 
level of the �-adic Galois representation for all � ≤ C(k), respectively C(d). The existence 
of this latter bound depends on Faltings’s Theorem and as such is ineffective. However, 
in the case when k = Q, it is possible to make a reasonable guess for M . This is discussed 
more in Section 8.

1.1. Prior work

CM elliptic curves provide a natural class of examples of sporadic points due to 
fundamental constraints on the image of the associated Galois representation. Indeed, 
Clark, Cook, Rice, and Stankewicz show that there exist sporadic points corresponding 
to CM elliptic curves on X1(�) for all sufficiently large primes � [8]. Sutherland has 
extended this argument to include composite integers [46].

In the non-CM case, all known results on sporadic points have arisen from explicit 
versions of Merel’s theorem for low degree. For instance, in studying cubic points on 
∪n∈NX1(n), Najman identified two degree 3 sporadic points on X1(21) all corresponding 
to the same non-CM elliptic curve with rational j-invariant [37]. Derickx, Etropolski, van 
Hoeij, Morrow, and Zureick-Brown are currently classifying all degree 3 non-cuspidal 
non-CM sporadic points on X1(n), and preliminary results suggest that these examples 
of Najman are the only examples [14]. Work of van Hoeij [49], Derickx–van Hoeij [15], 
and Derickx–Sutherland [16] show that there are additional sporadic points, e.g., degree 
5 points on X1(28) and X1(30) and a degree 6 point on X1(37).

There are also examples of isolated points that are not sporadic. Derickx and van Hoeij 
[15] have shown X1(25) has a (nonempty) finite collection of points of degree d = 6 and 
d = 7. These points are isolated by Theorem 4.2, but not sporadic since the Q-gonality of 
X1(25) is 5. In general, having infinitely points on a curve of degree d does not preclude 
the existence of isolated points of degree d: see [43,6,21,5] for some examples.
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1.2. Outline

We set notation and review relevant background in Section 2. In Section 3 we record 
results about subgroups of GL2(Ẑ) that will be useful in later proofs; in particular, 
Proposition 3.7 is useful for determining the level of an m-adic Galois representation from 
information about the �-adic representations. In Section 4, we prove a general criterion for 
the images of sporadic or isolated points to remain sporadic or isolated (Theorem 4.3); 
this result is likely of independent interest. In Section 5, we study isolated points on 
modular curves over a fixed non-CM j-invariant and prove Theorem 1.1. This is then 
used in Section 6 to prove Theorem 1.6.

Theorem 1.6 implies that, assuming Conjecture 1.4, there are finitely many isolated 
j-invariants of bounded degree. This raises two interesting questions:

(1) Are there finitely many isolated points lying over j-invariants of bounded degree, or 
can there be infinitely many isolated points over a single j-invariant? 

(2) In the case of degree 1, when there is strong evidence for Conjecture 1.4, can we 
come up with a candidate list for the rational isolated j-invariants?

Question 1 is the focus of Section 7, where we show that any CM j-invariant has infinitely 
many isolated (and in fact, sporadic!) points lying over it. Section 8 focuses on Question 2; 
there we provide a candidate list of levels from which the rational isolated j-invariants 
can be found.

Acknowledgments

This project was started at the Women in Numbers 4 conference, which was held 
at the Banff International Research Station. We thank BIRS for the excellent working 
conditions and the organizers, Jennifer Balakrishnan, Chantal David, Michelle Manes, 
and the last author, for their support. We also thank the other funders of the conference: 
the Association for Women in Mathematics (NSF ADVANCE grant HRD-1500481), 
the Clay Mathematics Institute, Microsoft Research, the National Science Foundation 
(NSF grant DMS-1712938), the Number Theory Foundation, and the Pacific Institute 
for Mathematics Sciences.

We thank Jeremy Rouse, Drew Sutherland, and David Zureick-Brown for helpful 
conversations. We also thank Nigel Boston, Pete L. Clark, Loïc Merel, Filip Najman, 
Paul Pollack, and the anonymous referees for comments on an earlier draft. The third 
author was partially supported by NSF grants DMS-1652116 and DMS-1301690 and the 
last author was partially supported by NSF CAREER grant DMS-1553459.

2. Background and notation

2.1. Conventions

Throughout, k denotes a number field, Q denotes a fixed algebraic closure of Q, and 
Galk denotes the absolute Galois group Gal(Q/k).
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We use � to denote a prime number and Z� to denote the �-adic integers. For any 
positive integer m, we write Supp(m) for the set of prime divisors of m and write Zm :=∏

�∈Supp(m) Z�. We use S to denote a set of primes, typically finite; when S is finite, we 
write mS :=

∏
�∈S �.

For any subgroup G of GL2(Ẑ) and any positive integer n, we write Gn and Gn∞ , 
respectively for the images of G under the projections

GL2(Ẑ) → GL2(Z/nZ) and GL2(Ẑ) → GL2(Zn).

In addition, for any positive integer m relatively prime to n we write Gn·m∞ for the 
image of G under the projection

GL2(Ẑ) → GL2(Z/nZ) × GL2(Zm).

Throughout, we will abuse notation and use π to denote any natural projection map 
among the groups G, Gn∞ , and Gn.

By curve we mean a projective nonsingular geometrically integral 1-dimensional 
scheme over a field. For a curve C, we write k(C) for the function field of C and PicC

for the Picard scheme of C. For any non-negative integer d, we write Picd
C for the con-

nected component of PicC consisting of divisor classes of degree d and Symd C for the 
dth symmetric product of C, i.e., Cd/Sd. If C is defined over the field K, we use gonK(C)
to denote the K-gonality of C, which is the minimum degree of a dominant morphism 
C → P 1

K . If x is a closed point of C, we denote the residue field of x by k(x) and define 
the degree of x to be the degree of the residue field k(x) over K. A point x on a curve 
C/K is sporadic if there are only finitely many points y ∈ C with deg(y) ≤ deg(x). We 
also consider other related properties of a closed point on a curve: isolated, P 1-isolated, 
and AV-isolated; these terms are defined in Section 4.

We use E to denote an elliptic curve, i.e., a curve of genus 1 with a specified point O. 
Unless stated otherwise, we will consider only elliptic curves defined over number fields. 
We say that an elliptic curve E over a field K has complex multiplication, or CM, if 
the geometric endomorphism ring is strictly larger than Z. Given an elliptic curve E

over a number field k, an affine model of E is given by a short Weierstrasss equation 
y2 = x3 + Ax + B for some A, B ∈ k. Then the j-invariant of E is j(E) := 1728 4A3

4A3+27B2

and uniquely determines the geometric isomorphism class of E. For a positive integer n, 
we write E[n] for the subgroup of E consisting of points of order at most n.

2.2. Modular curves

For a positive integer n, let

Γ1(n) :=
{(

a b
)

∈ SL2(Z) : c ≡ 0 (mod n), a ≡ d ≡ 1 (mod n)
}

.

c d
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The group Γ1(n) acts on the upper half plane H via linear fractional transformations, 
and the points of the Riemann surface

Y1(n) := H/Γ1(n)

correspond to C-isomorphism classes of elliptic curves with a distinguished point of order 
n. That is, a point in Y1(n) corresponds to an equivalence class of pairs [(E, P )], where E
is an elliptic curve over C and P ∈ E is a point of order n, and where (E, P ) ∼ (E′, P ′)
if there exists an isomorphism ϕ : E → E′ such that ϕ(P ) = P ′. By adjoining a finite 
number of cusps to Y1(n), we obtain the smooth projective curve X1(n). Concretely, we 
may define the extended upper half plane H∗ := H∪Q ∪ {∞}. Then X1(n) corresponds 
to the extended quotient H∗/Γ1(n). In fact, we may view X1(n) as an algebraic curve 
defined over Q (see [17, Section 7.7] or [13] for more details).

2.2.1. Degrees of non-cuspidal algebraic points
If x = [(E, P )] ∈ X1(n)(Q) is a non-cuspidal point, then the moduli definition implies 

that deg(x) = [Q(j(E), h(P )) : Q], where h : E → E/ Aut(E) ∼= P 1 is a Weber function 
for E. From this we deduce the following lemma:

Lemma 2.1. Let E be a non-CM elliptic curve defined over the number field k = Q(j(E)), 
let P ∈ E be a point of order n, and let x = [(E, P )] ∈ X1(n). Then

deg(x) = cx[k(P ) : Q],

where cx = 1/2 if 2P 	= O and there exists σ ∈ Galk such that σ(P ) = −P and cx = 1
otherwise.

Proof. Let E be a non-CM elliptic curve defined over k = Q(j(E)) and let h be a Weber 
function for E. If σ ∈ Galk(h(P )), then σ(P ) = ξ(P ) for some ξ ∈ Aut(E). Thus in the 
case where Aut(E) = {±1},

[k(P ) : k(h(P ))] = 1 or 2.

If there exists σ ∈ Galk such that σ(P ) = −P , then [k(P ) : k(h(P ))] = 2 and cx = 1/2. 
Otherwise k(P ) = k(h(P )) and cx = 1. �
2.2.2. Maps between modular curves

Proposition 2.2. For positive integers a and b, there is a natural Q-rational map 
f : X1(ab) → X1(a) with
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deg(f) = cf · b2
∏

p|b, p�a

(
1 − 1

p2

)
,

where cf = 1/2 if a ≤ 2 and ab > 2 and cf = 1 otherwise.

Proof. Since Γ1(ab) ⊂ Γ1(a), we have a natural map X1(ab) → X1(a) that complex an-
alytically is induced by Γ1(ab)τ �→ Γ1(a)τ for τ ∈ H∗. On non-cuspidal points, this map 
has the moduli interpretation [(E, P )] �→ [(E, bP )], which shows that it is Q-rational. 
Since −I ∈ Γ1(n) if and only if n|2, the degree computation then follows from the 
formula [17, p. 66], which states

deg(f) =
{

[Γ1(a) : Γ1(ab)]/2 if − I ∈ Γ1(a) and − I /∈ Γ1(ab)
[Γ1(a) : Γ1(ab)] otherwise.

�

2.3. Galois representations of elliptic curves

Let E be an elliptic curve over a number field k. Let n be a positive integer. After 
fixing two generators for E(k)[n], we obtain a Galois representation

ρE,n : Galk → GL2(Z/nZ).

Note that the conjugacy class of the image of ρE,n is independent of the choice of genera-
tors. After choosing compatible generators for each n, we obtain a Galois representation

ρE : Galk → GL2(Ẑ) ∼=
∏

�

GL2(Z�),

which agrees with ρE,n after reduction modulo n. For any positive integer n we also 
define

ρE,n∞ : Galk → GL2(Zn)

to be the composition of ρE with the projection onto the �-adic factors for �|n. Note that 
ρE,n∞ depends only on the support of n. We refer to ρE,n, ρE,n∞ , and ρE as the mod n
Galois representation of E, the n-adic Galois representation of E, and the adelic Galois 
representation of E, respectively.

If E/k does not have complex multiplication, then Serre’s Open Image Theorem [40]
states that ρE(Galk) is open—and hence of finite index—in GL2(Ẑ). Since the kernels 
of the natural projection maps GL2(Ẑ) → GL2(Z/nZ) form a fundamental system of 
open neighborhoods of the identity in GL2(Ẑ) [38, Lemma 2.1.1], it follows that for any 
open subgroup G of GL2(Ẑ) there exists m ∈ Z+ such that G = π−1(G mod m). Thus 
Serre’s Open Image Theorem can be rephrased in the following way: for any non-CM 
elliptic curve E/k, there exists a positive integer M such that
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im ρE = π−1(im ρE,M ).

We call the smallest such M the level and denote it ME . Similarly, for any finite 
set of primes S, we let ME(S) be the least positive integer such that im ρE,m∞

S
=

π−1(im ρE,ME(S)) and we say that ME(S) is the level of the mS-adic Galois representa-
tion.

We also define

SE = SE/k := {2, 3} ∪ {� : ρE,�∞(Galk) 	⊃ SL2(Z�)} ∪ {5, if ρE,5∞(Galk) 	= GL2(Z5)} ;
(2.1)

by Serre’s Open Image Theorem, this is a finite set.
For any elliptic curve E/Q with discriminant ΔE ,5 Serre observed that the field 

Q(
√

ΔE) is contained in the 2-division field Q(E[2]) as well as a cyclotomic field Q(μn)
for some n, which in turn is contained in the n-division field Q(E[n]). Thus if � > 2
is a prime that divides the squarefree part of ΔE, then 2� must divide the level ME

(see [40, Proof of Prop. 22] for more details). In particular, the level of an elliptic curve 
can be arbitrarily large. In contrast, for a fixed prime �, the level of the �-adic Galois 
representation is bounded depending only on the degree of the field of definition.

Theorem 2.3 ([7, Theorem 1.1], see also [9, Theorem 2.3]). Let d be a positive integer 
and let � be a prime number. There exists a constant C = C(d, �) such that for all number 
fields k of degree d and all non-CM elliptic curves E/k,

[GL2(Z�) : im ρE,�∞ ] < C.

3. Subgroups of GL2(Ẑ)

The proofs in this paper involve a detailed study of the mod-n, �-adic and adelic 
Galois representations associated to elliptic curves. As such, we use a number of prop-
erties of closed subgroups of GL2(Ẑ) and subgroups of GL(Z/nZ) that we record here. 
Throughout G denotes a subgroup of GL2(Ẑ).

In Section 3.1, we state Goursat’s lemma. In Section 3.2 we show that if � = 5 and 
G5 = GL2(Z/5Z) or if � > 5 is a prime such that G� ⊃ SL2(Z/�Z), then for any integer 
n relatively prime to �, the kernel of the projection G�sn → Gn is large, in particular, it 
contains SL2(Z/�sZ). This proof relies on a classification of subquotients of GL2(Z/nZ): 
that GL2(Z/nZ) can contain a subquotient isomorphic to PGL2(Z/5Z) or PSL2(Z/�Z)
for � > 5 only if 5|n or �|n respectively. This result is known in the case � > 5 (see 
[10, Appendix, Corollary 11]), but we are not aware of a reference in the case � = 5. In 
Section 3.3 we review results of Lang and Trotter that show that the level of a finite 

5 While the discriminant depends on a Weierstrass model, the class of ΔE ∈ Q×/Q×2 is independent of 
the choice of model. Since we are concerned only with ΔE mod squares, we allow ourselves this abuse of 
notation.



10 A. Bourdon et al. / Advances in Mathematics 357 (2019) 106824
index subgroup of GL2(Z�) can be bounded by its index. Finally in Section 3.4 we show 
how to obtain the m-adic level of a group from information of its �-adic components.

3.1. Goursat’s lemma

Lemma 3.1 (Goursat’s lemma, see e.g., [27, p. 75] or [20]). Let G, G′ be groups and let 
H be a subgroup of G × G′ such that the two projection maps

ρ : H → G and ρ′ : H → G′

are surjective. Let N := ker(ρ) and N ′ := ker(ρ′); one can identify N as a normal 
subgroup of G′ and N ′ as a normal subgroup of G. Then the image of H in G/N ′ ×G′/N

is the graph of an isomorphism

G/N ′ � G′/N.

3.2. Kernels of reduction maps

Proposition 3.2. Let � ≥ 5 be a prime. Assume that G� ⊃ SL2(Z/�Z) when � > 5 and 
G� = GL2(Z/�Z) when � = 5. Then SL2(Z/�sZ) ⊂ ker(G�sn → Gn) for any positive 
integer n with � � n.

For � > 5, a key ingredient in the proof is a classification result that implies that 
PSL2(Z/�Z) cannot appear as a subquotient of Gn [10, Appendix, Corollary 11]. This 
is false when � = 5 (for instance, there is a subquotient of GL2(Z/11Z) that is isomor-
phic to PSL2(Z/5Z)). However, we prove that PGL2(Z/5Z) cannot be isomorphic to a 
subquotient of Gn unless 5|n.

Lemma 3.3. Let n be a positive integer. If GL2(Z/nZ) has a subquotient that is isomor-
phic to PGL2(Z/5Z), then 5 | n.

Remark 3.4. Throughout the proof, we freely use the isomorphism PGL2(Z/5Z) ∼= S5
and PSL2(Z/5Z) ∼= A5 to deduce information about subgroups and subquotients con-
tained in these groups.

Proof. The lemma is a straightforward consequence of the following 3 claims (Claim (2)
is applied to the set T = Supp(n)).

(1) The projection

GL2(Z/nZ) →
∏

p∈Supp(n)

PGL2(Z/pZ)

is an injection when restricted to any subquotient isomorphic to PGL2(Z/5Z).
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(2) Let ∅ 	= S � T be finite sets of primes. If 
∏

p∈T PGL2(Z/pZ) has a subquotient 
isomorphic to PGL2(Z/5Z) then so does at least one of

∏
p∈S

PGL2(Z/pZ) or
∏

p∈T −S

PGL2(Z/pZ).

Hence, by induction, if 
∏

p∈T PGL2(Z/pZ) has a subquotient isomorphic to 
PGL2(Z/5Z) then PGL2(Z/pZ) has a subquotient isomorphic to PGL2(Z/5Z) for 
some p ∈ T .

(3) If p is a prime and PGL2(Z/pZ) has a subquotient isomorphic to PGL2(Z/5Z), then 
p = 5.

Proof of Claim 1: Let N � G < GL2(Z/nZ) be subgroups and let π denote the 
surjective map

π : GL2(Z/nZ) →
∏

p∈Supp(n)

PGL2(Z/pZ).

Using the isomorphism theorems, we obtain the following

π(G)
π(N)

∼= G/(G ∩ ker π)
N/(N ∩ ker π)

∼= G

N · (G ∩ ker π)
∼= G/N

(G ∩ ker π)/(N ∩ ker π) . (3.1)

For each prime p, the kernel of GL2(Z/pmZ) → GL2(Z/pZ) is a p-group and the kernel 
of GL2(Z/pZ) → PGL2(Z/pZ) is a cyclic group, so ker π is a direct product of solvable 
groups. Hence ker π is solvable and so is (G ∩ ker π)/(N ∩ ker π) for any N � G <

GL2(Z/nZ). Since the only solvable normal subgroup of PGL2(Z/5Z) is the trivial 
group, if G/N ∼= PGL2(Z/5Z), then π(G)/π(N) ∼= G/N .

Proof of Claim 2: Let N � G <
∏

p∈T PGL2(Z/pZ) be subgroups such that G/N ∼=
PGL2(Z/5Z). Let H be the normal subgroup of G containing N such that H/N ∼=
PSL2(Z/5Z). Consider the following two maps

πS :
∏
p∈T

PGL2(Z/pZ) →
∏
p∈S

PGL2(Z/pZ) and

πSc :
∏
p∈T

PGL2(Z/pZ) →
∏

p∈T −S

PGL2(Z/pZ).

Since the only quotient of PGL2(Z/5Z) that contains a subgroup isomorphic to 
PSL2(Z/5Z) is PGL2(Z/5Z) itself, by (3.1) it suffices to show that either πS(H)/πS(N)
or πSc(H)/πSc(N) is isomorphic to PSL2(Z/5Z). Furthermore, since PSL2(Z/5Z) is 
simple, it suffices to rule out the case where πS(H) = πS(N) and πSc(H) = πSc(N), 
which by the isomorphism theorems are equivalent, respectively, to the conditions that

H ∩ ker πS ∼= PSL2(Z/5Z) and H ∩ ker πSc ∼= PSL2(Z/5Z).

N ∩ ker πS N ∩ ker πSc
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Let

HS :=(H ∩ ker πS) · (H ∩ ker πSc) ∼= (H ∩ ker πS) × (H ∩ ker πSc),

NS :=(N ∩ ker πS) · (N ∩ ker πSc) ∼= (N ∩ ker πS) × (N ∩ ker πSc).

Assume by way of contradiction that HS/NS
∼= H∩ker πS

N∩ker πS
× H∩ker πSc

N∩ker πSc
∼= (PSL2(Z/5Z))2, 

and consider the normal subgroup (HS ∩ N)/NS . The isomorphism theorems yield an 
inclusion

HS/NS

(HS ∩ N)/NS

∼= HS/(HS ∩ N) ∼= HSN/N ↪→ H/N ∼= PSL2(Z/5Z),

so (HS ∩ N)/NS must be a nontrivial normal subgroup of HS/NS . However, the only 
proper nontrivial normal subgroups of (PSL2(Z/5Z))2 are PSL2(Z/5Z) × {1} or {1} ×
PSL2(Z/5Z), so NS must contain either H ∩ ker πS or H ∩ ker πSc , which results in a 
contradiction.

Proof of Claim 3: Let G < PGL2(Z/pZ) be a subgroup that has a quotient isomorphic 
to PGL2(Z/5Z). If p � #G, then by [40, Section 2.5], G must be isomorphic to a cyclic 
group, a dihedral group, A4, S4 or A5 ∼= PSL2(Z/5Z), so has no quotient isomorphic to 
PGL2(Z/5Z). Thus, p must divide #G. Then G ∩ PSL2(Z/pZ) is also of order divisible 
by p and so by [48, Theorem 6.25, Chapter 3], G ∩ PSL2(Z/pZ) is solvable or equal 
to PSL2(Z/pZ). Since G has a quotient isomorphic to PGL2(Z/5Z), G ∩ PSL2(Z/pZ)
cannot be solvable and hence G = PGL2(Z/pZ) and p = 5. �
Proof of Proposition 3.2. Since we have G�sn < GL2(Z/�snZ) � GL2(Z/�sZ) ×GL2(Z/

nZ), there are natural surjective projection maps

πs : G�sn → G�s and 
s : G�sn → Gn.

Observe that ker πs and ker 
s can be identified as normal subgroups of Gn and G�s

respectively, and by Goursat’s Lemma (see Lemma 3.1), we have

G�s/ ker 
s
∼= Gn/ ker πs. (3.2)

We first prove the proposition for the case when s = 1. By [2, Theorem 4.9], ker 
1
either contains SL2(Z/�Z) or is a subgroup of the center Z(GL2(Z/�Z)) of GL2(Z/�Z). 
If ker 
1 ⊆ Z(GL2(Z/�Z)) and � = 5, then the left-hand side of (3.2) has a quotient 
PGL2(Z/5Z), which contradicts Lemma 3.3 since the right-hand side cannot have such a 
quotient. Similarly, if ker 
1 ⊆ Z(GL2(Z/�Z)) and � > 5, then the left-hand side of (3.2)
has a subquotient PSL2(Z/�Z), which is impossible by [10, Appendix, Corollary 11]. 
Therefore, ker 
1 must contain SL2(Z/�Z).

For s > 1, since 
s is surjective and factors through

G�sn ⊂ GL2(Z/�snZ) → GL2(Z/�nZ) → GL2(Z/nZ),



A. Bourdon et al. / Advances in Mathematics 357 (2019) 106824 13
ker 
s ⊂ GL2(Z/�sZ) maps surjectively onto ker 
1 ⊂ GL2(Z/�Z). Then the proposition 
follows from [10, Appendix, Lemma 12]. �
3.3. Bounding the level from the index

Proposition 3.5 ([28, Part I, §6, Lemmas 2 & 3]). Let � be a prime and let G be a closed 
subgroup of GL2(Z�). Set s0 = 1 if � is odd and s0 = 2 otherwise. If

ker(G mod �s+1 → G mod �s) = I + M2(�sZ/�s+1Z)

for some s ≥ s0, then

ker(G → G mod �s) = I + �s M2(Z�).

Remark 3.6. This proof follows the one given by Lang and Trotter. We repeat it here 
for the reader’s convenience and to show that the proof does give the lemma as stated, 
even though the statement of [28, Part I, §6, Lemmas 2 & 3] is slightly weaker.

Proof. For any positive integer n, let Un := ker(G → G mod �n) and let Vn := I +
�n M2(Z�). Note that for all n, Un ⊂ Vn and Un = U1 ∩ Vn.

Observe that for s ≥ s0, raising to the �th power gives the following maps

Vs/Vs+1
∼→ Vs+1/Vs+2, and Us/Us+1 ↪→ Us+1/Us+2.

By assumption, the natural inclusion Us/Us+1 ⊂ Vs/Vs+1 is an isomorphism for some s ≥
s0. Combining these facts, we get the following commutative diagram for any positive k:

Us/Us+1 Vs/Vs+1

Us+k/Us+k+1 Vs+k/Vs+k+1,

∼

∼

where the vertical maps are raising to the (�k)th power and the horizontal maps are the 
natural inclusions. Hence, Us+k/Us+k+1 = Vs+k/Vs+k+1 for all k ≥ 0 and so Us = Vs. �
3.4. Determining m-adic level from level of �-adic components

Proposition 3.7. Let �1, . . . , �q be distinct primes and let m :=
∏q

i=1 �i. For i = 1, . . . , q, 
let ti ≥ 1 be positive integers and let mi :=

∏
j �=i �j. If G is a closed subgroup of GL2(Ẑ)

such that Gmi·�i
∞ = π−1(Gmi�i

ti ) for each i, then Gm∞ = π−1(GM ) for M =
∏q

i=1 �i
ti .

Proof. For any 1 ≤ i ≤ q and ri ≥ 0, consider the following commutative diagram of 
natural reduction maps.
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GM�i
ri GM

Gmi�i
ri+ti Gmi�i

ti

The kernel of the top horizontal map is a subgroup of I +M2(MZ/M�ri
i Z), so its order is 

a power of �i. Similarly, the order of the kernel of the lower horizontal map is a power of �i, 
while the order of the kernels of the vertical maps are coprime to �i. Since # ker(GMi�

ri
i

→
GM ) ·# ker(GM → G

mi�
ti
i

) is equal to # ker(GMi�
ri
i

→ Gmi�
ri
i

) ·# ker(Gmi�
ri
i

→ G
mi�

ti
i

), 
the kernels of horizontal maps must be isomorphic, and hence GM�i

ri is the full preimage 
of GM , by assumption.

To complete the proof, it remains to show that for any collection of positive integers 
{ri}q

i=1, GM
∏q

i=1 �
ri
i

is the full preimage of GM . We do so with an inductive argument. 
Let 1 ≤ q′ ≤ q and let {ri}q′

i=1 be a collection of positive integers. Consider the following 
commutative diagram of natural reduction maps.

G
M

∏q′
i=1 �i

ri
G

M
∏q′−1

i=1 �i
ri

GM�q′
r

q′ GM

Again the kernels of the horizontal maps and the kernels of the vertical maps have 
coprime orders and so, by the induction hypothesis, the kernels of all maps are as large 
as possible. �
4. Images of isolated points

Let C be a curve over a number field F and consider the morphism

φd : Symd C → Picd
C

that sends an unordered tuple of points to the sum of their divisor classes. Let W d be the 
image of Symd C in Picd

C . Note that if there is a degree d point on C then Picd
C

∼= Pic0
C

and in particular is an abelian variety.

Definition 4.1. 

(1) A degree d point x ∈ C is P 1-isolated if there is no other point x′ ∈ (Symd C)(F )
such that φd(x) = φd(x′).

(2) A degree d point x ∈ C is AV-isolated if there is no positive rank subabelian variety 
A ⊂ Pic0

C such that φd(x) + A ⊂ W d.
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(3) A degree d point x ∈ C is isolated if it is P 1-isolated and AV-isolated.
(4) A degree d point x ∈ C is sporadic if there are only finitely many closed points y ∈ C

with deg(y) ≤ deg(x).

Faltings’s theorem [18] on rational points on subvarieties of abelian varieties implies 
the following two results on isolated and sporadic points.

Theorem 4.2. Let C be a curve over a number field.

(1) There are infinitely many degree d points on C if and only if there is a degree d point 
on C that is not isolated. In particular, sporadic points are isolated.

(2) There are only finitely many isolated points on C.

We provide the details of the proof in Section 4.1.
In this section, we consider an arbitrary morphism of curves, and give a criterion for 

when images of isolated points remain isolated. Our main result is the following.

Theorem 4.3. Let f : C → D be a finite map of curves, let x ∈ C be a closed point, and 
let y = f(x) ∈ D. Assume that deg(x) = deg(y) · deg(f).

(1) If x is P 1-isolated, then y is P 1-isolated.
(2) If x is AV-isolated, then y is AV-isolated.
(3) If x is sporadic, then y is sporadic.

Proof. Let d = deg(y) and let e = deg(f). Then by assumption de = deg(x).
(1) Assume that y is not P 1-isolated, so there exists a point y′ ∈ (Symd C)(F ), 

different from y, such that φd(y) = φd(y′), or, in other words such that there exists a 
function g ∈ k(D)× such that div(g) = y − y′. Since y is a degree d point (and not just 
an effective degree d divisor), the assumption that y 	= y′ implies that y and y′ have 
distinct support. Therefore the map g : D → P 1 has degree d, and hence g ◦ f gives a 
degree de map. Then for any z ∈ P 1(F ) different from g(f(x)), the fiber (g ◦ f)−1(z)
gives a point of (Symde C)(F ), distinct from x, such that φde(x) = φde((g ◦ f)−1(z)). In 
particular, x is not P 1-isolated.

(2) Assume that y is not AV-isolated, so there exists a subabelian variety A ⊂ Pic0
D

such that φd(y) + A ⊂ W d. The morphism f induces a commutative diagram

Symd D
φd Picd

D

f∗

Symde C
φde Picde

C ,
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where the left vertical arrow sends y to x. Therefore, φde(x) + f∗A ⊂ W de. Since f∗A is 
a positive rank subabelian variety of Pic0 C, the point x is not AV-isolated.

(3) Assume that y is not sporadic, i.e., that there are infinitely many closed points 
y′ ∈ D with deg(y′) ≤ deg(y) = d. For each of these points y′, there is a closed point 
x′ ∈ f−1(y′) such that

deg(x′) ≤ deg(y′)e ≤ deg(y)e = de = deg(x).

Hence, the point x is not sporadic. �
4.1. Proof of Theorem 4.2

(1) The forward direction is a straightforward consequence of Faltings’s theorem [18]; 
we include the details for the readers’ convenience. Assume that there are infinitely 
many degree d points. Then either there are two degree d points x, x′ ∈ C such that 
φd(x) = φd(x′) and so in particular x and x′ are not P 1-isolated, or φd is injective on the 
set of degree d points. In the latter case, W d ⊂ Picd

C contains infinitely many rational 
points. Faltings’s theorem states that the rational points on W d are a finite union of 
translates of subabelian varieties, so in particular, there must be a positive rank abelian 
variety A ⊂ Pic0

C and a degree d point x ∈ C such that x + A ⊂ W d, i.e., the degree d
point x is not AV-isolated.

Now we prove the backwards direction, which requires a more detailed study of Falt-
ings’s theorem. Let x ∈ C be a degree d point that is not isolated. If x is not P 1-isolated, 
then there exists an x′ ∈ (Symd C)(F ), x 	= x′, such that φd(x) = φd(x′), or equivalently, 
there exists a rational function g ∈ k(C)× such that div(g) = x − x′. Since x is a closed 
point and x′ ∈ (Symd C)(F ), x 	= x′ implies that x and x′ have disjoint support. Thus 
the function g gives a degree d morphism g : C → P 1. By Hilbert’s irreducibility theo-
rem [42, Chap. 9], there are infinitely many degree 1 points z ∈ P 1 such that g−1(z) has 
degree d, which gives the desired result.

Now assume that x is P 1-isolated but not AV-isolated, i.e., that x is not equivalent 
to any other effective divisors and that there is a positive rank subabelian variety A ⊂
Pic0 C such that x + T ⊂ W d. Since the cokernel of Pic C →

(
Pic C

)Gal(F /F ) is torsion, 
there is a finite index subgroup H ⊂ A(F ) such that every divisor class in H (and 
therefore every divisor class in x + H) is represented by an F -rational divisor, and every 
divisor class in A(F ) \ H is not represented by an F -rational divisor. In other words, 
φd

(
(Symd C)(F )

)
∩ (x + A(F )) = x + H.

Since H has positive rank, taking the preimage of x + H under φd yields infinitely 
many rational points on Symd C, or, equivalently, infinitely many effective degree d 0-
cycles on C. It remains to prove that infinitely many of these 0-cycles are irreducible, 
i.e., are not in the image of ∪i

(
(Symd−i C)(F ) × (Symi C)(F )

)
.
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Consider the following commutative diagram

(Symd−i C)(F ) × (Symi C)(F )
φd−i×φi

W d−i × W i

(Symd C)(F )
φd

W d,

where the vertical maps are induced by concatenation and summation, respectively. If 
there are only finitely many degree d points on C, then all but finitely many of the 
points in x + H are contained in the union ∪i(W d−i(F ) + W i(F )). Faltings’s theorem 
on rational points on subvarieties of abelian varieties implies that

	d/2
⋃
i=1

(W d−i(F ) + W i(F )) =
n⋃

j=1
yj + Aj(F ), (4.1)

where n is some nonnegative integer, the Aj ’s are some subabelian varieties of Pic0
C and 

the yj ’s are degree d divisors on C, which can be taken to be reducible and effective.
We are concerned with the intersection

(x + H) ∩

⎛
⎝ n⋃

j=1
yj + Aj(F )

⎞
⎠ = x +

⎛
⎝H ∩

⎛
⎝ n⋃

j=1
yj − x + Aj(F )

⎞
⎠

⎞
⎠

= x +
n⋃

j=1
(H ∩ (yj − x + Aj(F )))

If the intersection H ∩ (yj − x + Aj(F )) is nonempty, then it is a coset of H ∩ Aj(F ). In 
addition, since x is a P 1-isolated degree d point on C, x cannot be written as the sum 
of two nonzero effective divisors, so by definition of (4.1), H ∩ (yj − x + Aj(F )) does not 
include the identity. Thus,

(x + H) ∩

⎛
⎝ n⋃

j=1
yj + Aj(F )

⎞
⎠ = x +

⋃
j∈J

(zj + H ∩ Aj(F )) ,

where J ⊂ {1, . . . , n} and zj ∈ H \ H ∩ Aj(F ).
For each j ∈ J , let Gj be a subgroup of H of finite index that contains H ∩ Aj(F )

and that does not contain zj . Then we have

(x + H) ∩

⎛
⎝ n⋃

j=1
yj + Aj(F )

⎞
⎠ = x +

⋃
(zj + H ∩ Aj(F ))
j∈J
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⊂ x +
⋃
j∈J

(zj + Gj)

⊂ (x + H) \ (x + ∩j∈JGj) � x + H.

Since each Gj is finite index in H, so is the intersection ∩j∈JGj . Hence, the image of 
∪i(W d−i(F ) + W i(F )) misses infinitely many rational points of x + H, and so there are 
infinitely many degree d points on C.

(2) Let P be a point of degree d. If d ≥ g + 1, then, by the Riemann-Roch theorem, 
�(P ) ≥ d − g + 1 ≥ 2 and so P is not P 1-isolated. Therefore, any isolated point on C
must have bounded degree, and so it suffices to prove that there are only finitely many 
isolated points of a fixed degree d.

Recall that degree d points on C give rise to rational points on Symd C that in turn 
map, via φd, injectively to rational points on W d. By Faltings’s theorem, W d(F ) is the 
finite union of translates of subabelian varieties of Pic0 C. By definition, any degree 
d point on C that lands in a translate of a positive rank subabelian variety is not 
AV-isolated. Therefore, the set of degree d isolated points of C must inject (under φd) 
into a finite union of translates of rank 0 subabelian varieties, so in particular must be 
finite. �
5. Isolated points above a fixed non-CM j-invariant

For any non-CM elliptic curve E over a number field k, recall from §2.3 that

SE = SE/k := {2, 3} ∪ {� : ρE,�∞(Galk) 	⊃ SL2(Z�)} ∪ {5, if ρE,5∞(Galk) 	= GL2(Z5)} .

In this section we show that the degree of a non-cuspidal non-CM point x ∈ X1(n)
is as large as possible given the degree of its image in X1(a) for a = gcd(n, MEx

(SEx
)), 

where Ex is an elliptic curve over Q(j(x)) with j-invariant j(x).

Theorem 5.1. Fix a non-CM elliptic curve E over a number field k. Let S be a finite 
set of places containing SE and let mS :=

∏
�∈S �. Let M be a positive integer with 

Supp(M) ⊂ S satisfying

im ρE,m∞
S

= π−1(im ρE,M ). (5.1)

If x ∈ X1(n) is a closed point with j(x) = j(E), then deg(x) = deg(f) deg(f(x)), where 
f denotes the natural map X1(n) → X1(gcd(n, M)).

Remark 5.2. Note that if E and E′ are quadratic twists of each other, both defined over 
a number field k, then SE = SE′ (see, e.g., [44, Lemma 5.27]). Furthermore, for any S,

±(im ρE,m∞) = ±(im ρE′,m∞) (5.2)

S S
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(see, e.g., [44, Lemma 5.17]). Since any open subgroup of GL2(ZmS
) has only finitely 

many subgroups of index 2, there is an integer M that will satisfy (5.1) for all quadratic 
twists of a fixed elliptic curve.

This theorem combined with Theorem 4.3 yields the following corollary, of which 
Theorem 1.1 is a special case.

Corollary 5.3. Fix a non-CM elliptic curve E over a number field k. Let S be a finite set 
of places containing SE and let M be a positive integer with Supp(M) ⊂ S satisfying

im ρE,m∞
S

= π−1(im ρE,M ).

Let x ∈ X1(n) be a point with j(x) = j(E), and let f denote the natural map X1(n) →
X1(gcd(n, M)).

(1) If x is P 1-isolated, then f(x) is P 1-isolated.
(2) If x is AV-isolated, then f(x) is AV-isolated.
(3) If x is sporadic, then f(x) is sporadic.

From this, we deduce the following.

Corollary 5.4. Let E be a non-CM elliptic curve defined over k := Q(j(E)). If � /∈ SE, 
then there are no sporadic or isolated points on X1(�s) lying over j(E) for any s ∈ N.

In Section 5.1, specifically Lemma 5.6, we show that the desired maximal degree 
growth condition (i.e., the conclusion of Theorem 5.1) is implied by a condition on the 
degree of field extensions k(P )/k(bP ) where P is a point of order ab on a non-CM elliptic 
curve E. We then show that the assumed growth of the Galois representation (5.1) implies 
the hypothesis of Lemma 5.6 in two different cases. First, for maps X1(n) → X1(n�−1)
for prime divisors � of n outside of SE (see Section 5.2), and second, for maps X1(ab) →
X1(a) for integers a, b with bounded support (see Section 5.3). The results of these two 
sections are brought together in Section 5.4 to prove Theorem 5.1.

Remark 5.5. As discussed in Section 2.3, the full strength of Serre’s Open Image Theorem 
implies that for any non-CM elliptic curve E/k, there exists a positive integer ME such 
that

im ρE = π−1(im ρE,ME
).

The arguments in Section 5.3 alone then imply that deg(x) = deg(f) deg(f(x)), where 
f denotes the natural map X1(n) → X1(gcd(n, ME)), which yields a weaker version of 
Theorem 5.1.
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While there is not a dramatic difference in the strength of these results for a fixed 
elliptic curve, the difference is substantial when applied to a family of elliptic curves. It 
is well-known that ME can be arbitrarily large for a non-CM elliptic curve E over a fixed 
number field k (see Section 2.3). However, for a fixed finite set of places S, we prove that 
ME(S) can be bounded depending only on [k : Q]. This allows us to obtain the uniform 
version of Corollary 5.3, namely Theorem 1.6 (see §6).

5.1. Field-theoretic condition for maximal degree growth

Lemma 5.6. Let a and b be positive integers, E a non-CM elliptic curve over a number 
field k, and P ∈ E a point of order ab. Let x := [(E, P )] ∈ X1(ab) and let f denote the 
map X1(ab) → X1(a). If [k(P ) : k(bP )] is as large as possible, i.e., if [k(P ) : k(bP )] =
#{Q ∈ E : bQ = bP, Q order ab}, then

deg(x) = deg(f) deg(f(x)).

Proof. From the definition of X1(n), we have that

#{Q ∈ E : bQ = bP, Q order ab} =
{

2 deg(X1(ab) → X1(a)) if a ≤ 2 and ab > 2,

deg(X1(ab) → X1(a)) otherwise.

(5.3)
Let us first consider the case that a ≤ 2 and ab > 2. Then deg(f(x)) = [k(bP ) : Q]. 
Since [k(P ) : k(bP )] is as large as possible and a ≤ 2, there must be a σ ∈ Galk such 
that σ(P ) = −P . Hence deg(x) = 1

2 [k(P ) : Q] by Lemma 2.1, so (5.3) yields the desired 
result.

Now assume that ab ≤ 2. Then deg(f(x)) = [k(bP ) : Q] and deg(x) = [k(P ) : Q], 
so (5.3) again yields the desired result.

Finally we consider the case when a > 2. Note that for any point y ∈ X1(ab), deg(y) ≤
deg(f(y)) · deg(X1(ab) → X1(a)). Combining this with (5.3), it remains to prove that

deg(x)
deg(f(x)) ≥ #{Q ∈ E : bQ = bP, Q order ab}.

By Lemma 2.1, deg(x) = cx · [k(P ) : Q] and deg(f(x)) = cf(x) · [k(bP ) : Q] where 
cx, cf(x) ∈ {1, 1/2}. Since any σ ∈ Galk that sends P to −P also sends bP to −bP , 
cx ≥ cf(x) and so these arguments together show that

deg(x)
deg(f(x)) = cx[k(P ) : Q]

cf(x)[k(bP ) : Q] = cx

cf(x)
[k(P ) : k(bP )] ≥ [k(P ) : k(bP )].

By assumption, [k(P ) : k(bP )] = #{Q ∈ E : bQ = bP, Q order ab}, yielding the desired 
inequality. �
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5.2. Eliminating primes with large Galois representation

Proposition 5.7. Let E be a non-CM elliptic curve over a number field k, let � be a prime 
not contained in SE, and let a and s be positive integers. Let x ∈ X1(a�s) be a closed 
point with j(x) = j(E) and let f : X1(a�s) → X1(a) be the natural map. Then

deg(x) = deg(f) deg(f(x)).

Proof. Write a = b�t where � � b, let g denote the map X1(a) → X1(b) and let 
h : X1(a�s) → X1(b) be the composition g ◦ f . Since deg(h) = deg(f) deg(g), the general 
case follows from the case when � � a. We work with this assumption for the remainder 
of the proof.

Let P ∈ E be a point of order a�s such that x = [(E, P )] and for any c|a�s, let 
B1

c ⊂ Aut(E[c]) be the stabilizer of a�s

c P . Let H denote the kernel of the projection map 
im ρE,a�s → im ρE,a.

We wish to prove [k(P ) : k(�sP )] = #{Q ∈ E : �sQ = �sP, Q order a�s}, so that we 
can apply Lemma 5.6. Note that we always have the following upper bound

#
(
Aut(E[�s])/B1

�s

)
= #{Q ∈ E : �sQ = �sP, Q order a�s} ≥ [k(P ) : k(�sP )].

We may also apply Galois theory to the towers of fields k(E[a�s]) ⊃ k(P ) ⊃ k(�sP ) and 
k(E[a�s]) ⊃ k(E[a]) ⊃ k(�sP ) to obtain the following lower bound.

[k(P ) : k(�sP )] = [k(E[a�s]) : k(E[a])] · [k(E[a]) : k(�sP )]
[k(E[a�s]) : k(P )] =

#H · #
(
im ρE,a ∩ B1

a

)
# (im ρE,a�s ∩ B1

a�s)

≥
#H · #

(
im ρE,a ∩ B1

a

)
#(H ∩ B1

a�s) · # (im ρE,a ∩ B1
a) = #H

#(H ∩ B1
a�s) = #H

#(H ∩ B1
�s) .

Since � /∈ SE , we may use Proposition 3.2 to conclude that H must contain 
SL2(Z/�sZ). Therefore we have set inclusions

SL2(Z/�sZ)/
(
SL2(Z/�sZ) ∩ B1

�s

)
↪→ H/

(
H ∩ B1

�s

)
↪→ Aut(E[�s])/B1

�s . (5.4)

Since the sets on the right and the left of (5.4) have the same cardinality, all inclusions 
in (5.4) must be bijections. Hence, the upper and lower bounds obtained above agree, 
and, in particular, [k(P ) : k(�sP )] = #{Q ∈ E : �sQ = �sP, Q order a�s} as desired. �
5.3. Maps between {X1(n)} where n has specified support

Proposition 5.8. Let E be a non-CM elliptic curve over a number field k, let S be a 
finite set of primes, and let mS :=

∏
�∈S �. Let M = ME(S) be a positive integer with 

Supp(M) ⊂ S such that
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im ρE,m∞
S

= π−1(im ρE,M )

and let a and b be positive integers with gcd(ab, M)|a and Supp(ab) ⊂ S. Let x ∈ X1(ab)
be a closed point with j(x) = j(E) and let f denote the natural map X1(ab) → X1(a). 
Then

deg(x) = deg(f) deg(f(x)).

Proof. Let M ′ := lcm(a, M) and let n = ab. By definition, im ρE,n is the mod n re-
duction of im ρE,m∞

S
and im ρE,a is the mod a reduction of im ρE,M ′ . Since im ρE,m∞

S
=

π−1(im ρE,M ), this implies that

im ρE,m∞
S

= π−1(im ρE,M ′) and that im ρE,n = π−1(im ρE,a),

where by abuse of notation, we use π to denote both natural projections. In other words, 
the mod n Galois representation is as large as possible given the mod a Galois repre-
sentation. Hence, for any P ∈ E of order n, the extension [k(P ) : k(bP )] is as large as 
possible, i.e., [k(P ) : k(bP )] = #{Q ∈ E : bQ = bP, Q order n}. In particular this applies 
to a point P ∈ E such that x = [(E, P )] ∈ X1(n). Therefore, Lemma 5.6 completes the 
proof. �
5.4. Proof of Theorem 5.1

Let x ∈ X1(n) be a closed point with j(x) = j(E) and write n = n0n1 where 
Supp(n0) ⊂ S and Supp(n1) is disjoint from S. Note that gcd(n, M)|n0. We factor 
the map f as

X1(n) f1→ X1(n0) f2→ X1(gcd(n, M)).

By inductively applying Proposition 5.7 to powers of primes � /∈ SE , we see that 
deg(x) = deg(f1) deg(f1(x)). Then we apply Proposition 5.8 with a = gcd(n, M), 
b = n0/ gcd(n, M) to show that

deg(f1(x)) = deg(f2) deg(f2(f1(x))).

6. Proof of Theorem 1.6

In this section we prove Theorem 1.6. For a fixed number field k, Conjecture 1.3
implies that there is a finite set of primes S = S(k) such that for all non-CM elliptic 
curves E/k, S ⊃ SE/k (see (2.1)). Furthermore, Conjecture 1.4 implies that S(k) can 
be taken to depend only on [k : Q]. Thus, to deduce Theorem 1.6 from Corollary 5.3, it 
suffices to show that for any positive integer d and any finite set of primes S, there is an 



A. Bourdon et al. / Advances in Mathematics 357 (2019) 106824 23
integer M = Md(S) such that for all number fields k of degree d and all non-CM elliptic 
curves E/k, we have

im ρE,m∞
S

= π−1(im ρE,M ).

Hence Proposition 6.1 completes the proof of Theorem 1.6.

Proposition 6.1. Let d be a positive integer, S a finite set of primes, and E a set of 
non-CM elliptic curves over number fields of degree at most d.

(1) There exists a positive integer M with Supp(M) ⊂ S such that for all E/k ∈ E

im ρE,m∞
S

= π−1(im ρE,M ).

(2) Let Md(S, E) be the smallest such M as in (1) and for all � ∈ S, define

τ = τS,E,� := max
E/k∈E

(
v�

(
# im ρE,mS−{�}

))
≤ v�(# GL2(Z/mS−{�}Z)).

Then v�(Md(S, E)) ≤ max(v�(Md({�}, E)), v�(2�)) + τ .

Remark 6.2. In the proof of Proposition 6.1(2), if im ρE,mS−{�} is a Sylow �-subgroup of 
GL2(Z/mS−{�}Z), then a chief series (a maximal normal series) of im ρE,mS−{�} does have 
length τ . So the bound in (2) is sharp if the group structure of im ρE,�∞ allows. However, 
given set values for d, S, and E , information about the group structure of possible Galois 
representations (rather than just bounds on the cardinality) could give sharper bounds.

Remark 6.3. A weaker version of Proposition 6.1 follows from [22, Proof of Lemma 8]. 
Indeed, Jones’s proof goes through over a number field and for any finite set of primes 
S (rather than only S = {2, 3, 5} ∪ {p : im ρE,p 	= GL2(Z/pZ)} ∪ Supp(ΔE), which is the 
case under consideration in [22, Lemma 8]) and shows that

v�(Md(S, E)) ≤ max(v�(Md({�}, E)), v�(2�)) + v�(# GL2(Z/mS−{�}Z)).

The proof here and the one in [22] roughly follow the same structure; however, by isolating 
the purely group-theoretic components (e.g., Proposition 3.7), we are able to obtain a 
sharper bound in (2).

Proof. When #S = 1, part (1) follows from Theorem 2.3 and Proposition 3.5 and part (2)
is immediate.

We prove part (1) when #S is arbitrary by induction using Proposition 3.7. Let S =
{�1, . . . , �q}, let Mi = Md({�i}, E), let si = max(v�i

(Mi), v�i
(2�i)), and let Ni =

∏
j �=i �

sj

j . 
It suffices to show that for all 1 ≤ i ≤ q there exists a ti ≥ si such that for all E/k ∈ E
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im ρE,Ni·�∞
i

= π−1(im ρ
E,Ni�

ti
i

);

then Proposition 3.7 implies that we may take M =
∏

i �ti
i .

Fix i ∈ {1, . . . , q}. For any E/k ∈ E and any s ≥ si, define

Ki
E,s := ker(im ρE,Ni·�s

i
→ im ρE,Ni

), and Li
E,s := ker(im ρE,Ni·�s

i
→ im ρE,�s

i
).

By definition, Ki
E,s′ maps surjectively onto Ki

E,s for any s′ ≥ s, so Ki
E,s is the mod 

Ni�
s
i reduction of Ki

E := ker(im ρE,Ni·�∞
i

→ im ρE,Ni
). Let us now consider Li

E,s. Since 
�i � Ni, Li

E,s can be viewed as a subgroup of im ρE,Ni
and we have Li

E,s′ ⊂ Li
E,s for all 

s′ ≥ s. Let r ≥ si be an integer such that Li
E,r = Li

E,r+1. Then we have the following 
diagram

im ρE,�r+1
i

/Ki
E,r+1

∼=

im ρE,�r
i
/Ki

E,r

∼=

im ρE,Ni
/Li

E,r+1 im ρE,Ni
/Li

E,r

(6.1)

where the vertical isomorphisms are given by Goursat’s Lemma (Lemma 3.1).6 Since 
r ≥ si, im ρE,�r+1

i
is the full preimage of im ρE,�r

i
under the natural reduction map. So 

(6.1) implies that Ki
E,r+1 is the full preimage of Ki

E,r under the natural reduction map. 
Then by Proposition 3.5, Ki

E is the full preimage of Ki
E,r under the map GL2(Z�) →

GL2(Z/�rZ) and therefore im ρE,Ni·�∞
i

= π−1(im ρE,Ni�r
i
). Hence we may take tE,i to be 

the minimal r ≥ si such that Li
E,r = Li

E,r+1. Since Li
E,s is a subgroup of im ρE,Ni

⊂
GL2(Z/NiZ), tE,i may be bounded independent of E/k, depending only on Ni. This 
completes the proof of (1).

It remains to prove (2). Let s ≥ si and consider the following diagram, where again 
the vertical isomorphisms follow from Goursat’s Lemma.

im ρE,�s
i
/Ki

E,s

∼=

im ρE,�si /Ki
E,si

∼=

im ρE,Ni
/Li

E,s im ρE,Ni
/Li

E,si

(6.2)

The kernel of the top horizontal map is an �i-primary subgroup, so the index of Li
E,s in 

Li
E,si

is a power of �i. Thus, the maximal chain of proper containments Li
E,si

� Li
E,si+1 �

· · · � Li
E,ti

is bounded by v�i
(# im ρE,Ni

) = v�i
(# im ρE,mS−{�i}), which yields (2). �

6 By tracing through the isomorphism given by Goursat’s lemma, one can prove that this diagram is 
commutative. We do not do so here, since the claims that follow can also be deduced from cardinality 
arguments.
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7. Lifting sporadic points

In this section we study when a sporadic point on X1(n) lifts to a sporadic point 
on a modular curve of higher level. We give a numerical criterion that is sufficient for 
lifting sporadic points (see Lemma 7.2), and use this to prove that there exist sporadic 
points such that every lift is sporadic. The examples we have identified correspond to 
CM elliptic curves.

Theorem 7.1. Let E be an elliptic curve with CM by an order in an imaginary quadratic 
field K. Then for all sufficiently large primes � which split in K, there exists a sporadic 
point x = [(E, P )] ∈ X1(�) with only sporadic lifts. Specifically, for any positive integer 
d and any point y ∈ X1(d�) with π(y) = x, the point y is sporadic, where π denotes the 
natural map X1(d�) → X1(�).

The key to the proof of Theorem 7.1 is producing a sporadic point of sufficiently low 
degree so we may apply the following lemma. It is a consequence of Abramovich’s lower 
bound on gonality in [1] and the result of Frey [19] which states that a curve C/K has 
infinitely many points of degree at most d only if gonK(C) ≤ 2d.

Lemma 7.2. Suppose there is a point x ∈ X1(N) with

deg(x) <
7

1600 [PSL2(Z) : Γ1(N)].

Then x is sporadic and for any positive integer d and any point y ∈ X1(dN) with 
π(y) = x, the point y is sporadic, where π denotes the natural map X1(dN) → X1(N).

Proof. We claim that the assumption on the degree of x implies that deg(y) <
7

1600 [PSL2(Z) : Γ1(dN)]. Then [1, Thm. 0.1], shows that

deg(y) <
1
2 gonQ(X1(dN)) and deg(x) <

1
2 gonQ(X1(N)).

Thus x and y are sporadic by [19, Prop. 2].
Now we prove the claim. Let x ∈ X1(N) be a deg(x) ≤ 7

1600 [PSL2(Z) : Γ1(N)]. In 
particular, this implies N > 2. Thus for any point y ∈ X1(dN) with π(y) = x we have

deg(y) ≤ deg(x) · deg(X1(dN) → X1(N))

<
7

1600 [PSL2(Z) : Γ1(N)] · d2
∏

p|d, p�N

(
1 − 1

p2

)
(see Proposition 2.2)

= 7
1600 · 1

2(dN)
∏ (

1 + 1
p

)
ϕ(dN)
p|dN
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= 7
1600 [PSL2(Z) : Γ1(dN)]. �

Proof of Theorem 7.1. Let E be an elliptic curve with CM by an order O in an imaginary 
quadratic field K. Then L := K(j(E)) is the ring class field of O and [L : K] = h(O), 
the class number of O. (See [11, Thms. 7.24 and 11.1] for details.) Let � be a prime that 
splits in K and satisfies

� >

(
6400

7 · h(O)
#O×

)
− 1.

By [4, Thm. 6.2], there is a point P ∈ E of order � with

[L(h(P )) : L] = � − 1
#O× .

Then for x = [(E, P )] ∈ X1(�),

deg(x) = [Q(j(E), h(P )) : Q] ≤ [K(j(E), h(P )) : Q] = [L(h(P )) : Q] = � − 1
#O× · h(O) · 2

< (� − 1) · 7
6400(� + 1) · 2 = 7

1600 [PSL2(Z) : Γ1(�)].

The result now follows from Lemma 7.2. �
Remark 7.3. Note that none of the known non-cuspidal non-CM sporadic points satisfy 
the degree condition given in Lemma 7.2. Thus it is an interesting open question to 
determine whether there exist non-CM sporadic points with infinitely many sporadic 
lifts. If no such examples exist, then by Theorem 1.6 there would be only finitely many 
non-CM sporadic points corresponding to j-invariants of bounded degree, assuming Con-
jecture 1.4.

8. Isolated points with rational j-invariant

In this section, we study non-CM isolated points with rational j-invariant. Our main 
result of this section (Theorem 8.1) gives a classification of the non-cuspidal non-CM 
isolated points on X1(n) with rational j-invariant. We prove that they either arise from 
elliptic curves whose Galois representations are very special (and may not even exist), 
or they can be mapped to isolated points on X1(m) for an explicit set of integers m.

Later, we focus on sporadic points with rational j-invariant on X1(n) for particular 
values of n. We show that if n is prime (Proposition 8.4), is a power of 2 (Proposi-
tion 8.5), or, conditionally on Sutherland [44, Conj. 1.1] and Zywina [50, Conj. 1.12], has 
min(Supp(n)) ≥ 17 (Proposition 8.6), then any non-CM, non-cuspidal sporadic point 
with rational j-invariant has j(x) = −7 · 113.
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8.1. Classification of non-CM isolated points with rational j-invariant

Theorem 8.1. Let x ∈ X1(n) be a non-CM non-cuspidal isolated point with j(x) ∈ Q. 
Then one of the following holds:

(1) There is an elliptic curve E/Q with j(E) = j(x) and a prime � ∈ Supp(n) such 
that either � > 17, � 	= 37 and ρE,� is not surjective or � = 17 or 37 and ρE,� is a 
subgroup of the normalizer of a non-split Cartan subgroup. 

(2) There is an elliptic curve E/Q with j(E) = j(x) and two distinct primes �1 > �2 > 3
in Supp(n) such that both ρE,�1 and ρE,�2 are not surjective.

(3) There is an elliptic curve E/Q with j(E) = j(x) and a prime 2 < � ≤ 37 in Supp(n)
such that the �-adic Galois representation of E has level greater than 169.

(4) There is a divisor of n of the form 2a3bpc such that the image of x in X1(2a3bpc) is 
isolated and such that a ≤ ap, b ≤ bp, pc ≤ 169 for one of the following values of p, 
ap, bp. 

p 1 5 7 11 13 17 37
ap 9 14 14 13 14 15 13
bp 5 6 7 6 7 5 8

Remark 8.2. This theorem also holds for x a P 1-isolated, AV-isolated, or sporadic point, 
respectively, at the expense of (4) giving the statement that the image of x is P 1-isolated, 
AV-isolated, or sporadic, respectively.

Remark 8.3. Each of cases (1), (2), and (3) should be rare situations, if they occur at 
all. Indeed, the question of whether elliptic curves as in (1) exist is related to a question 
originally raised by Serre in 1972, and their non-existence has since been conjectured by 
Sutherland [44, Conj. 1.1] and Zywina [50, Conj. 1.12].

Assuming (1) does not hold, elliptic curves as in (2) correspond to points on finitely 
many modular curves of genus greater than 2, so there are at worst finitely many j-
invariants in this case [12, Tables 6–14, Theorem 16A]. Additionally, there are no elliptic 
curves in the LMFDB database [26] as in (2), so in particular, any elliptic curve as in (2)
must have conductor larger than 400, 000. (The Galois representation computations in 
LMFDB were carried out using the algorithm from [44].) If we do not assume (1) does 
not hold, then we must consider the case where �1 > 37. In this case the elliptic curves 
of interest no longer correspond to points on finitely many modular curves, but never-
theless, Lemos has shown that such elliptic curves do not exist, assuming that im ρE,�2

is contained in the normalizer of a split Cartan subgroup or in a Borel subgroup [29,30].
Sutherland and Zywina’s classification of modular curves of prime-power level with 

infinitely many points [47] shows that there are only finitely many rational j-invariants 
corresponding to elliptic curves as in (3), and suggests that in fact they do not exist. 
Table 8.1 gives, for each prime �, the maximal prime-power level for which there exists a 
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Table 8.1
Maximal prime-power level for which there exists a mod-
ular curve with infinitely many rational points.

� 3 5 7 11 13 17 37
max level 27 25 7 11 13 1 1

modular curve of that level with infinitely many rational points. Therefore, for 3 ≤ � ≤
37, respectively, there are already only finitely many j-invariants of elliptic curves with 
an �-adic Galois representation of level at least 81, 125, 49, 121, 169, 17, or 37. Since 
such j-invariants are already rare, it seems reasonable to expect any such correspond to 
elliptic curves of �-adic level exactly 81, 125, 49, 121, 169, 17 and 37, respectively.

This has been (conditionally) verified by Drew Sutherland in the cases � = 17 and 
� = 37. For these primes, there are conjecturally only 4 j-invariants corresponding to 
elliptic curves with non-surjective �-adic Galois representation: −17 · 3733/217, −172 ·
1013/2, −7 · 113, and −7 · 1373 · 20833 [50, Conj. 1.12]. For each of these j-invariants, 
Sutherland computed that the �-adic Galois representation is the full preimage of the 
mod � representation, so the representations are indeed of level � and not level �2 [45].7

Proof. Let x ∈ X1(n) be a non-cuspidal non-CM isolated point with j(x) ∈ Q. Let E
be an elliptic curve over Q with j(E) = j(x). Assume that (1) does not hold, so in 
particular E has surjective mod � representation for every � > 17 and � 	= 37. Thus 
Proposition 5.7 and Theorem 4.3 together imply that x maps to an isolated point on 
X1(n′) where n′ is the largest divisor of n that is not divisible by any primes greater 
than 17 except possibly 37.

Now assume further that (2) does not hold, so there is at most one prime p > 3 for 
which the p-adic Galois representation is not surjective. If the p-adic Galois representa-
tion of E is surjective for all primes larger than 3, then we will abuse notation and set 
p = 1. Under these assumptions, additional applications of Proposition 5.7 and Theo-
rem 4.3 show that x maps to an isolated point on X1(n′′) where n′′ is a divisor of n′ with 
Supp(n′′) ⊂ S := {2, 3, p}8 and p ∈ {1, 5, 7, 11, 13, 17, 37}. Furthermore, Corollary 5.3
shows that x maps to an isolated point on X1(gcd(n′′, M)), where M is the level of the 
m∞

S Galois representation of E.
Now we will further assume that (3) does not hold. Let E denote the set of all non-CM 

elliptic curves over Q. Proposition 6.1 states that there is an integer M1(S, E) such that 
the level of the m∞

S Galois representation of E divides M1(S, E) for all E ∈ E . We will 
show that M1({2, 3, p}, E) divides 2ap3bppc for p, ap, bp, c as in (4).

By the assumption that (3) does not hold and [39, Corollary 1.3], we have the following 
values for the constant M1({�}, E) from Proposition 6.1.

7 Sutherland used a generalization of the algorithm in [44] to prove in each case the index of the mod-�2

image is no smaller than that of the mod-� image. It then follows from [47, Lemma 3.7] that the �-adic 
image is the full preimage of the mod-� image.

8 When p = 1, we conflate the set {2, 3, p} with the set {2, 3}.



A. Bourdon et al. / Advances in Mathematics 357 (2019) 106824 29
Table 8.2
Cardinality of GL2(Z/�Z).

� 2 3 5 7 11 13 17 37
# GL2(Z/�Z) 2 · 3 243 25315 25327 24315211 25327113 293217 253419137

� 2 3 5 7 11 13 17 37
M1({�}, E) 25 34 53 72 112 132 17 37

By Proposition 6.1(2),

v�(M1(S, E)) ≤ max(v�(M1({�}, E)), v�(2�)) +
∑

�′∈S−{�}
v�(# GL2(Z/�′Z)).

This upper bound combined with Table 8.2 yields the desired divisibility except for the 
case where p = 17 or p = 37.

Let us consider the case that p = 17, so ρE,17 is not surjective. Since we are not in 
case (1), we know im ρE,17 is not contained in the normalizer of the non-split Cartan. 
Thus [50, Thms. 1.10 and 1.11] show that # im ρE,17 = 2617, so Proposition 6.1(2)
implies that the level of the m∞

S Galois representation divides 2153517.
The case when p = 37 proceeds similarly. In this case [50, Thms. 1.10 and 1.11] show 

that # im ρE,37 = 243337 and so Proposition 6.1(2) implies that the level of the m∞
S

Galois representation divides 2133837. �
8.2. Rational j-invariants of non-CM non-cuspidal sporadic points on X1(n) for 
particular values of n

Proposition 8.4. Fix a prime �. If x ∈ X1(�) is a non-CM non-cuspidal sporadic point 
with j(x) ∈ Q then � = 37 and j(x) = −7 · 113.

Proof. Let x = [(E, P )] be a non-CM sporadic point on X1(�) with j(E) ∈ Q. We 
may assume E is defined over Q. Note that X1(�) has infinitely many rational points 
for � ≤ 10. Further, X1(�) has gonality 2 for � = 11, 13, and no non-cuspidal rational 
points [34]. Hence if x ∈ X1(�) is a non-cuspidal non-CM sporadic point, � > 13.

If the mod � Galois representation of E is surjective, then x cannot be a sporadic 
point on X1(�) by Corollary 5.4, so assume that ρE,� is not surjective. Then the im ρE,�

is contained in a maximal subgroup, which can be an exceptional subgroup, a Borel 
subgroup or the normalizer of a (split or non-split) Cartan subgroup of GL2(F�) [40, 
Section 2]. We will analyze each case separately.

In the case where im ρE,� is contained in the normalizer of the non-split Cartan 
subgroup, Lozano-Robledo [32, Theorem 7.3] shows that the degree of a field of definition 
of a point of order � is greater than or equal to (�2 − 1)/6. Since � > 13 we have

gonQ(X1(�)) ≤ genus(X1(�)) ≤ 1
24(�2 − 1).

Therefore x cannot be sporadic in this case.
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If im ρE,� is contained in the normalizer of the split Cartan subgroup, then by [3], � has 
to be less than or equal to 13. Similarly, if im ρE,� is one of the exceptional subgroups, 
then by [32, Theorem 8.1], � ≤ 13.

If im ρE,� is contained in a Borel subgroup, then E has a rational isogeny of degree �. 
By [33], � is one of the following primes: 2, 3, 5, 7, 11, 13, 17, 37. Thus we need only consider 
� = 17 and 37. For � = 17, [32, Table 5] shows that deg(x) ≥ 4. Since the gonality of 
X1(17) is also 4, x cannot be sporadic.

Finally when � = 37, there are exactly two non-cuspidal points in X0(37)(Q) [32, 
Table 5]. The one corresponding to an elliptic curve with j-invariant −7 · 113 gives a 
degree 6 point on X1(37), which is sporadic since gonQ X1(37) = 18. The other gives a 
point on X1(37) of degree 18, which is not sporadic. �
Proposition 8.5. Let s ≥ 1. If x ∈ X1(2s) is a non-cuspidal non-CM sporadic point, then 
j(x) /∈ Q.

Proof. By [39, Cor. 1.3], the 2-adic Galois representation of any non-CM elliptic curve 
over Q has level at most 32. Thus, by Proposition 5.8 it suffices to show that X1(2s) has 
no non-cuspidal non-CM sporadic points with rational j-invariant for s ≤ 5.

If s = 1, 2 or 3, then modular curve X1(2a) is isomorphic to P 1
Q and so has no sporadic 

points. When s = 4, the modular curve X1(16) has genus 2 and hence gonality 2 which 
implies that it has infinitely many points of degree 2. Additionally, as first established by 
Levi [31], X1(16) has no non-cuspidal points over Q and so has no non-cuspidal sporadic 
points.

Now we consider X1(32), which has gonality 8 (see [15, Table 1]). Let x = [(E, P )] be a 
non-CM sporadic point on X1(32) with j = j(E) ∈ Q. We may assume that E is defined 
over Q. Since x is a sporadic point, there are only finitely many points y ∈ X1(32) with 
deg(y) ≤ deg(x). Since the degree of a point y ∈ X1(32) can be calculated from the mod 
32 Galois representation of an elliptic curve with j-invariant j(y), this implies that there 
are only finitely many j-invariants whose mod 32 Galois representation is contained in 
a conjugate of im ρE,32. By [39, Table 1], there are only eight non-CM j-invariants with 
this property:

211, 24173,
40973

24 ,
2573

28 , −8579853

628 ,
9194253

4964 ,

−3 · 182499203

1716 , and − 7 · 17231878060803

7916 .

Using Magma, we compute the degree of each irreducible factor of 32nd division polyno-
mial for each of these j-invariants and we find that the least degree of a field where a 
point of order 32 is defined is 32, hence there are no non-CM sporadic points on X1(32)
with a rational j-invariant. �
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Proposition 8.6. Let n be a positive integer with min(Supp(n)) ≥ 17. Assume [44, 
Conj. 1.1] or [50, Conj. 1.12]. If x ∈ X1(n) is a non-cuspidal non-CM sporadic point 
with j(x) ∈ Q, then 37|n and j(x) = −7 · 113.

Proof. Let E be an elliptic curve over Q with j(E) = j(x). We apply Theorem 8.1. By 
assumption and Remark 8.3, cases (1) and (3) of Theorem 8.1 do not occur. Further, 
case (2) only occurs if 17 · 37|n and im ρE,17 and im ρE,37 are both contained in Borel 
subgroups (see proof of Proposition 8.4), which is impossible (see, e.g., [32, Table 4]).

Hence, we must be in case (4) of Theorem 8.1. Since min(Supp(n)) ≥ 17, the only 
possible divisors of n of the form 2a3bpc (with a, b, c, p as in Theorem 8.1(4)) are 17 or 
37. Thus, for one of � = 17 or 37 we must have �|n and x maps to a sporadic point on 
X1(�). Proposition 8.4 then completes the proof. �
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