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In this paper, we introduce adaptive network enhancement (ANE) method for the best least-squares approxi-
mation using two-layer ReLU neural networks (NNs). For a given function 𝑓 (𝐱), the ANE method generates a 
two-layer ReLU NN and a numerical integration mesh such that the approximation accuracy is within the pre-
scribed tolerance. The ANE method provides a natural process for obtaining a good initialization which is crucial 
for training nonlinear optimization problems. Numerical results for functions of two variables exhibiting either 
intersecting interface singularities or sharp interior layers demonstrate efficiency of the ANE method.
1. Introduction

Deep neural networks (DNNs) have achieved astonishing perfor-
mance in computer vision, natural language processing, and many other 
artificial intelligence tasks. This success encourages wide applications 
to other fields, including recent studies of using DNN models to nu-
merically solve partial differential equations (PDEs). Despite their great 
successes in many practical applications, it is widely accepted that ap-
proximation properties of DNNs are not yet well-understood and that 
understandings on why and how they work could lead to significant 
improvements. This explains rapidly increasing interests in theoretical 
and algorithmic studies of DNNs during recent years.

DNNs produce a new class of functions through compositions of 
linear transformations and activation functions. Their studies and appli-
cations may be traced back to the work of Hebb [1] in the late 1940’s 
and Rosenblatt [2] in the 1950’s. An often cited theoretical results on 
DNNs are the so-called universal approximation property [3,4], e.g., a 
two-layer NN is dense in 𝐶(Ω) for any compact subset Ω ∈ℝ𝑑 provided 
that the activation function is not a polynomial. Moreover, order of ap-
proximation for functions in the Sobolev space has been obtained for 
two-layer NNs using various activation functions [5]. For results on ap-
proximation theory of DNNs before 2000, see a survey article by Pinkus 
[6] and references therein.

Despite many efforts and much impressive progress made by numer-
ical analysts, computational scientists, and practitioners, approximation 
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properties of DNNs remain an active and open research field. Without 
complete understanding of approximation properties of DNNs, current 
methods on design of network structures are empirical. Tuning of depth 
and width is tedious, mainly from experimental results in ablation 
studies which typically require domain knowledge about the underly-
ing problems. This leads to a fundamental, open question in machine 
learning: given a target function/PDE, what is the minimal network model 
required, in terms of width, depth, and number of parameters, to approxi-
mate the function/solution within the prescribed accuracy?

The purpose of this paper is to introduce and study adaptive network 
enhancement (ANE) methods for the best least-squares approximation 
to a target function by a two-layer ReLU NN, and, hence, to address this 
open problem partially. Specifically, for a given target function 𝑓 (𝐱) and 
a given tolerance 𝜖 > 0, the ANE method generates a two-layer ReLU 
neural network such that the approximation accuracy is within the pre-
scribed tolerance. One of key components of the ANE method for the 
best least-squares approximation to a given function is the enhance-
ment strategy which determines how many new neurons to be added, 
when the current approximation is not within the given accuracy. To ad-
dress this issue, we introduce a global and a local network enhancement 
strategies. The global enhancement is based on a fixed convergence rate 
(see (5.3); and the local one is done through local error indicators col-
lected on the physical subdomains plus a proper neuron initialization 
(detailed in section 5). The ANE method for solving elliptic PDEs is pre-
sented in the companion paper [7].
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Another important ingredient is the numerical integration mesh for 
evaluating the loss function. For many problems in machine learning, 
integral of the 𝐿2(Ω) norm is often computed numerically by stochas-
tic sampling approach, which in turn leads to theoretical convergence 
rate independent of the dimension. Other numerical integration meth-
ods that are independent of the dimension include quasi-Monte Carlo 
method [8] and the sparse grid method [9]. For simplicity, in this paper, 
we use adaptive numerical integration based on “mid-point” quadrature 
on either uniform or composite mesh. The composite mesh here means 
those meshes obtained from adaptive mesh refinement (AMR), where 
refinement of an element is done by subdividing it into small uniform 
elements. The AMR method presented in the paper is suitable for low 
dimensional problems and may be replaced by any adaptive integration 
procedure such as adaptive version of Monte Carlo, quasi-Monte Carlo, 
or sparse grid, etc. if a high dimensional problem is considered.

Theoretically, we show that the total approximation error is 
bounded by the approximation error of the NN plus the error of 
numerical integration (see Theorem 4.1) under the assumption of 
the Marcinkiewicz problem. This indicates that numerical integration 
should be chosen to ensure at least the accuracy of the current NN. For 
simple problems, one may simply use a fine uniform mesh which is able 
to capture all local behaviors of the integrand. For computationally in-
tensive problems, one might need to use local AMR to generate a proper 
composite mesh. The stopping criterion for the AMR is based on if the 
mesh refinement of numerical integration improves the approximation 
accuracy (see Algorithm 5.2). With AMR for numerical integration, the 
ANE method defined in Algorithm 5.3 is able to generate a two-layer 
ReLU NN and a composite numerical integration mesh such that the 
approximation accuracy is within the prescribed tolerance.

The values of the parameters are trained by iteratively “solving” 
the non-convex optimization problem in (4.2). This high dimensional, 
non-convex optimization problem tends to be computationally intensive 
and complicated. Currently, it is often solved by iterative optimization 
methods such as gradient descent (GD), Stochastic GD, Adam, etc. (see, 
e.g., [10] for a review paper in 2018 and references therein). Usually 
nonlinear optimizations have many solutions, and the desired one is 
obtained only if we start from a close enough first approximation. The 
ANE method provides a natural process for obtaining a good initial-
ization. Starting with a relatively small NN, the approximation of the 
previous NN is already a good approximation to the current NN in the 
loops of the ANE method. To provide a better approximation than the 
previous one, we divide all network parameters into two groups: linear 
parameters (output layer weights and bias) and nonlinear parameters 
(hidden layer weights and biases). Initialization of nonlinear parame-
ters is based on their physical partitioning of the domain and initial of 
linear parameters are obtained by solving a system of linear equations 
with given nonlinear parameters.

The paper is organized as follows. Section 2 presents two-layer ReLU 
NNs. The best least-squares approximation and its discrete counterpart 
are described in sections 3 and 4, respectively. The ANE method is in-
troduced in section 5, and initialization of parameters at different stage 
is proposed in section 6. Finally, numerical experiments for functions 
with intersecting interface singularities and interior layer like disconti-
nuities are given in section 7, and conclusion in section 8.

2. Two-layer ReLU neural network

A two-layer NN consists of an input and output layers. The output 
layer does not have an activation function. Layers other than the output 
layer are called hidden layers. So a two-layer NN is also referred to as a 
one-hidden layer NN.

In 𝑑-dimension, for 𝑖 = 1, 2, ..., 𝑛, let 𝝎𝑖 ∈ ℝ𝑑 and 𝑏𝑖 ∈ ℝ be the 
weights and bias of the first (input) layer, respectively; and let 𝑐𝑖 ∈ ℝ
and 𝑐0 ∈ ℝ be the respective weights and bias of the second (output) 
layer. Then a two-layer ReLU NN with 𝑛 neurons produces the follow-
ing set of functions:
35
̂𝑛(𝜎) =

{
𝑐0 +

𝑛∑
𝑖=1

𝑐𝑖𝜎(𝝎𝑖 ⋅ 𝐱 − 𝑏𝑖) ∶ 𝑐𝑖, 𝑏𝑖 ∈ℝ, 𝝎𝑖 ∈ℝ𝑑

}
,

where 𝜎 is the rectified linear unit (ReLU) activation function given by

𝜎(𝑡) = max{0, 𝑡} =

{
0, 𝑡 < 0,

𝑡, 𝑡 ≥ 0,

for any 𝑡 ∈ℝ. The 𝜎(𝑡) is a continuous piece-wise linear function having 
a breaking point at 𝑡 = 0 and belongs to a class of activation functions 
of the form

𝜎𝑘(𝑡) =
(
max{0, 𝑡}

)𝑘 ={
0, 𝑡 < 0,

𝑡𝑘, 𝑡 ≥ 0
for 𝑘 ∈ℤ+,

where ℤ+ is the set of all positive integers. Note that 𝜎𝑘(𝑡) ∈ 𝐶𝑘−1(ℝ) is 
a piece-wise polynomial of degree 𝑘 with a breaking point at 𝑡 = 0. For 
simplicity of presentation, we restrict our attention to the ReLU acti-
vation function. Extension of results in this paper to general activation 
functions 𝜎𝑘(𝑡) is straightforward.

There are (𝑑 + 2)𝑛 + 1 parameters for functions in the set ̂𝑛(𝜎), 
where 𝑛 +1 of them are the output weights and bias {𝑐𝑖}𝑛𝑖=0 and (𝑑 +1)𝑛
of them are the input weights {𝝎𝑖}𝑛𝑖=1 and bias {𝑏𝑖}

𝑛
𝑖=1. We refer to the 

former as linear parameters and the later nonlinear parameters. Thus, 
̂𝑛(𝜎) has of 𝑛 + 1 linear and (𝑑 + 1)𝑛 nonlinear parameters. To remove 
𝑛 nonlinear parameters, we notice that

𝜎(𝝎 ⋅ 𝐱 − 𝑏) = |𝝎|𝜎(
𝝎|𝝎| ⋅ 𝐱 − 𝑏|𝝎|

)
,

where |𝝎| =√
𝜔2
1 +⋯+𝜔2

𝑑
is the length of a vector 𝝎 ∈ℝ𝑑 . This implies 

that ̂𝑛(𝜎) is equal to

𝑛(𝜎,𝑑) =

{
𝑐0 +

𝑛∑
𝑖=1

𝑐𝑖𝜎(𝝎𝑖 ⋅ 𝐱 − 𝑏𝑖) ∶ 𝑐𝑖, 𝑏𝑖 ∈ℝ, 𝝎𝑖 ∈ 𝑑−1

}
, (2.1)

where 𝑑−1 is the unit sphere in ℝ𝑑 . The number of parameters in 
𝑛(𝜎, 𝑑) is

𝑀(𝑛, 𝑑) = (𝑑 + 1)𝑛+ 1.

Below let us look at 𝑛(𝜎, 𝑑) in one-, two- and 𝑑-dimension, sepa-
rately. When 𝑑 = 1, we have 0 = {−1, 1}. Without loss of generality, 
we will choose 𝜔𝑖 = 1 for all 𝑖 = 1, ..., 𝑛. Then

𝑛(𝜎,1) =

{
𝑣(𝑥,𝜽) = 𝑐0 +

𝑛∑
𝑖=1

𝑐𝑖𝜎(𝑥− 𝑏𝑖) ∶ 𝑐𝑖, 𝑏𝑖 ∈ℝ

}
, (2.2)

where 𝜽 = (𝐜, 𝐛) denotes all parameters 𝐜 = (𝑐0, 𝑐1, ..., 𝑐𝑛) and 𝐛 =
(𝑏1, ..., 𝑏𝑛). The 𝑛(𝜎, 1) is the set of linear splines with 𝑛 free knots 
that had been studied intensively in the late 1960s (see, e.g., [11]). It 
has been shown that the approximation of functions by linear splines 
can generally be dramatically improved if the knots are free [12]; par-
ticularly, the Gibbs phenomena for “rough” functions can be avoided 
[13].

In two dimensions (𝑑 = 2), 1 is a unit circle:

1 =
{
𝝎 = (𝜔1, 𝜔2)𝑡 ∈ℝ2 ∶ 𝜔2

1 +𝜔2
2 = 1

}
=
{
𝝎 =

(
cos 𝛾, sin 𝛾

)𝑡 ∶ 0 ≤ 𝛾 ≤ 2𝜋
}
.

This gives

𝑛(𝜎,2) =

{
𝑐0 +

𝑛∑
𝑖=1

𝑐𝑖𝜎
(
(cos 𝛾𝑖)𝑥1 + (sin 𝛾𝑖)𝑥2 − 𝑏𝑖

)
∶ 𝑐𝑖, 𝑏𝑖 ∈ℝ,

𝛾𝑖 ∈ [0, 2𝜋]

}
, (2.3)

which is the set of continuous piece-wise linear functions with 𝑛 free 
lines
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𝑙𝑖 ∶ (cos 𝛾𝑖)𝑥1 + (sin 𝛾𝑖)𝑥2 − 𝑏𝑖 = 0 for 𝑖 = 1, ..., 𝑛. (2.4)

Similarly, in the 𝑑-dimension, 𝑛(𝜎, 𝑑) is the set of continuous piece-
wise linear functions with 𝑛 free hyper-planes

𝑖 ∶ 𝝎𝑖 ⋅ 𝐱 − 𝑏𝑖 = 0 for 𝑖 = 1, ..., 𝑛. (2.5)

Clearly, 𝑛(𝜎, 𝑑) for 𝑑 ≥ 2 may be treated as a non-standard but 
beautiful extension of linear splines with free knots 𝑛(𝜎, 1) to multi-
dimension.

Let

𝜑𝑖(𝐱) = 𝜑𝑖(𝐱;𝝎𝑖, 𝑏𝑖) = 𝜎(𝝎𝑖 ⋅ 𝐱 − 𝑏𝑖),

which is a piece-wise linear function with free hyper-planes: 𝝎𝑖 ⋅ 𝐱 = 𝑏𝑖
for 𝑖 = 1, ..., 𝑛. Let 𝜑0(𝐱) = 𝜑0(𝐱; 𝝎0, 𝑏0) = 1. For convenience of readers, 
we state and prove a well-known fact on the linear independence of 
{𝜑𝑖(𝐱)}𝑛𝑖=0.

Lemma 2.1. Assume that hyper-planes {𝝎𝑖 ⋅ 𝐱 = 𝑏𝑖}𝑛𝑖=1 are distinct. Then 
{𝜑𝑖(𝐱; 𝝎𝑖, 𝑏𝑖)}𝑛𝑖=0 are linearly independent.

Proof. Linear independence of 𝜑0 = 1 and 𝜑1(𝐱; 𝝎1, 𝑏1) is a direct 
consequence of the fact that 𝜑1(𝐱; 𝝎1, 𝑏1) ≡ 0 on ℝ𝑑 ⧵ suppt{𝜑1}. As-
sume that the lemma is valid for 𝑛 = 𝑘, then linear independence of 

{𝜑𝑖(𝐱; 𝝎𝑖, 𝑏𝑖)}𝑘+1𝑖=0 follows from the fact that 
𝑘∑
𝑖=0

𝑐𝑖𝜑𝑖(𝐱; 𝝎𝑖, 𝑏𝑖) ≡ 0 for all 

𝐱 ∈ℝ𝑑 ⧵ suppt{𝜑𝑘+1} and the assumption that all hyper-planes {𝝎𝑖 ⋅ 𝐱 =
𝑏𝑖}𝑘+1𝑖=1 are distinct. This completes the proof of the lemma by induc-
tion. □

3. The best least-squares approximation

Denote vectors of weights and bias by

𝐜 = (𝑐0, 𝑐1, ..., 𝑐𝑛), 𝝎 = (𝝎1, ...,𝝎𝑛), and 𝐛 = (𝑏1, ..., 𝑏𝑛),

respectively, then each function 𝑣 ∈ 𝑛(𝜎, 𝑑) may be represented as 
follows:

𝑣(𝐱;𝜽) = 𝑐0 +
𝑛∑
𝑖=1

𝑐𝑖 𝜎(𝝎𝑖 ⋅ 𝐱 − 𝑏𝑖) =
𝑛∑
𝑖=0

𝑐𝑖 𝜑𝑖(𝐱;𝝎𝑖, 𝑏𝑖), (3.1)

where 𝜽 =
(
𝐜, ̂𝜽

)
with 𝜽̂ =

(
𝝎, 𝐛

)
are parameters.

For a given function 𝑓 (𝐱) defined on 𝑑-dimensional domain Ω ∈ℝ𝑑 , 
the best least-squares approximation is to find 𝑓𝑛(𝐱; 𝜽∗) ∈𝑛(𝜎, 𝑑) such 
that

‖𝑓 (⋅) − 𝑓𝑛(⋅;𝜽∗)‖ = min
𝑣∈𝑛(𝜎,𝑑)

‖𝑓 − 𝑣‖ = min
𝜽∈ℝ𝑀(𝑛,𝑑)

‖𝑓 (⋅) − 𝑣(⋅;𝜽)‖, (3.2)

where ‖ ⋅ ‖ denotes the 𝐿2(Ω) norm, 𝑀(𝑛, 𝑑) is the number of parame-
ters defined in the previous section, and 𝑣(𝐱; 𝜽) is given in (3.1). It was 
proven by Petrushev in [5] (see also [6]) that for any 𝑓 (𝐱) in the Sobolev 
space 𝐻𝑚(Ω) for 𝑚 = 1, ..., 2 + 𝑑 − 1

2
, there exists a positive constant 𝐶

such that

‖𝑓 − 𝑓𝑛‖ ≤ 𝐶 𝑛−𝑚∕𝑑‖𝑓‖𝐻𝑚(Ω). (3.3)

Remark 3.1. In one dimension, when 𝑓 ∈ 𝐿𝑝(Ω) for 0 < 𝑝 ≤∞, it was 
shown (see Rice [14] and Powell [15]) that problem (3.2) has a solution 
𝑓𝑛 ∈ 𝐶[0, 1]. Solution of problem (3.2) is not unique in general; but it 
is unique for sufficiently smooth 𝑓 and large enough 𝑛 (see Chui et al. 
[16]).

Generally, 𝑛(𝜎, 𝑑) is only a set of functions. But for a fixed param-
eter 𝜽̂0 =

(
𝝎
0, 𝐛0

)
, the set 𝑛(𝜎, 𝑑) becomes a subspace

𝑛(𝜎,𝑑) = span{𝜑𝑖(𝐱;𝝎0, 𝑏0)}𝑛 .

𝑖 𝑖 𝑖=0
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Then the best least-squares approximation in (3.2) becomes to find 𝑓 0
𝑛
=

𝑛∑
𝑖=0

𝑐0
𝑖
𝜑𝑖(𝐱; 𝝎0

𝑖
, 𝑏0

𝑖
) ∈𝑛(𝜎, 𝑑) such that

(𝑓 0
𝑛
,𝜑𝑖(𝐱;𝝎0

𝑖
, 𝑏0

𝑖
)) = (𝑓,𝜑𝑖(𝐱;𝝎0

𝑖
, 𝑏0

𝑖
)) ∀ 𝑖 = 0,1, ..., 𝑛,

where 
(
𝑓, 𝑔

)
= ∫Ω 𝑓 (𝐱)𝑔(𝐱) 𝑑𝐱 denotes the 𝐿2(Ω) inner product. The cor-

responding system of algebraic equations is

𝐌(𝜽̂0) 𝐜0 = 𝐹 (𝜽̂0), (3.4)

where 𝐌(𝜽̂0) =
(
𝑀𝑖𝑗

)
(𝑛+1)×(𝑛+1) is the mass matrix with 𝑀𝑖𝑗 =(

𝜑𝑗 (𝐱; 𝝎0
𝑗
, 𝑏0

𝑗
), 𝜑𝑖(𝐱; 𝝎0

𝑖
, 𝑏0

𝑖
)
)
, 𝐜0 = (𝑐00 , 𝑐

0
1 , ..., 𝑐

0
𝑛
)𝑡, and 𝐹 (𝜽̂0) =

(
𝐹𝑖

)
(𝑛+1)×1 is 

the right-hand side vector with 𝐹𝑖 =
(
𝑓, 𝜑𝑖(𝐱; 𝝎0

𝑖
, 𝑏0

𝑖
)
)
.

Lemma 3.2. Assume that the hyper-planes {𝝎0
𝑖
⋅ 𝐱 = 𝑏0

𝑖
}𝑛
𝑖=1 are distinct. 

Then the mass matrix 𝐌(𝜽̂0) is symmetric, and positive definite.

Proof. Clearly, 𝐌(𝜽̂0) is symmetric. For any 𝐯 = (𝑣0, 𝑣1, ..., 𝑣𝑛)𝑡, we have

𝐯𝑡𝐌(𝜽̂0)𝐯 = ‖𝑣‖2,
where 𝑣(𝐱) =

𝑛∑
𝑖=0

𝑣𝑖𝜑𝑖(𝐱; 𝝎0
𝑖
, 𝑏0

𝑖
). By Lemma 2.1, ‖𝑣‖2 is positive for any 

nonzero 𝐯, which, in turn, implies that 𝐌(𝜽̂0) is positive definite. □

4. Effect of numerical integration

In practice, integral of the loss function is often computed numeri-
cally. A common practice in machine learning (see, e.g., [17–19]) uses 
Monte Carlo integration of the form

(𝑣) = ∫
Ω

𝑣(𝐱)𝑑𝐱 ≈ |Ω|
𝑁

𝑁∑
𝑖=1

𝑣(𝐱𝑖), (4.1)

where |Ω| is the volume of the domain Ω and {𝐱𝑖}𝑁𝑖=1 are the sampling 
points randomly generated based on an assumed distribution of 𝐱. This 
stochastic approach is simple and valid for any dimensions. Moreover, 
it leads to theoretical convergence rate independent of the dimension. 
Other numerical integration methods that are independent of the di-
mension include quasi-Monte Carlo method [8] and the sparse grid 
method [9].

In this paper, we use adaptive numerical integration as in [20] in 
line with the ANE method. For simplicity of presentation, we consider 
only “mid-point” quadrature on either uniform or composite mesh. The 
composite mesh here means those meshes obtained from adaptive mesh 
refinement (AMR), where refinement of an element is done by subdi-
viding it into small uniform elements. To this end, let

 = {𝐾 ∶ 𝐾 is an open subdomain of Ω}

be a partition of the domain Ω. Here, the partition means that union of 
all subdomains of  equals to the whole domain Ω and that any two 
distinct subdomains of  have no intersection; more precisely,

Ω̄ = ∪𝐾∈ 𝐾̄ and 𝐾 ∩ 𝑇 = ∅, ∀ 𝐾, 𝑇 ∈  .
Let 𝐱

𝑇
be the centroid of 𝑇 ∈  . The 𝐱

𝑇
will be used as quadrature 

points which are fundamentally different from sampling points used in 
the setting of standard supervised learning. The composite “mid-point” 
quadrature rule is given by

(𝑣) = ∫
Ω

𝑣(𝐱)𝑑𝐱 ≈
∑
𝑇∈

𝑣(𝐱
𝑇
) |𝑇 | ≡

(
𝑣
)
,

where |𝑇 | is the volume of element 𝑇 ∈  . Similarly, one may use any 
quadrature rule such as composite trapezoidal, Simpson, Gaussian, etc.
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Let  be a quadrature operator, i.e., (𝑣) ≈
(
𝑣
)
, such that

‖𝑣‖ =
√

(𝑣, 𝑣) =
√


(
𝑣2

)
defines a weighted 𝑙2-norm. The best discrete least-squares approx-
imation with numerical integration over the partition  is to find 
𝑓 (𝐱; 𝜽

∗
 ) ∈𝑛(𝜎, 𝑑) such that

‖𝑓 (⋅) − 𝑓 (⋅;𝜽
∗
 )‖ = min

𝑣∈𝑛(𝜎,𝑑)
‖𝑓 − 𝑣‖ = min

𝜽∈ℝ𝑀(𝑛,𝑑)
‖𝑓 (⋅) − 𝑣(⋅;𝜽)‖ , (4.2)

Theorem 4.1. Assume that there exists a positive constant 𝛼 such that 
𝛼 ‖𝑣‖2 ≤ ‖𝑣‖2 for all 𝑣 ∈ 1

2𝑛(𝜎, 𝑑). Let 𝑓 be a solution of (4.2). Then 
there exists a positive constant 𝐶 such that

𝐶 ‖𝑓 − 𝑓 ‖ ≤ inf
𝑣∈1

2𝑛(𝜎,𝑑)

⎧⎪⎨⎪⎩‖𝑓 − 𝑣‖+ sup
𝑤∈1

2𝑛(𝜎,𝑑)

|( − )(𝑣𝑤)|‖𝑤‖
⎫⎪⎬⎪⎭

+ sup
𝑤∈1

2𝑛(𝜎,𝑑)

|( − )(𝑓𝑤)|‖𝑤‖ . (4.3)

Proof. Since 𝑛(𝜎, 𝑑) is a set, 𝑓 ∈𝑛(𝜎, 𝑑) is then characterized by 
the inequality

(𝑓 − 𝑓 , 𝑣− 𝑓 ) ≤ 0 ∀ 𝑣 ∈𝑛(𝜎,𝑑). (4.4)

For any 𝑣 ∈𝑛(𝜎, 𝑑), it follows from the assumption and (4.4) that

𝛼‖𝑓 − 𝑣‖2 ≤ ‖𝑓 − 𝑣‖2 ≤ (𝑓,𝑓 − 𝑣) − (𝑣,𝑓 − 𝑣)

=
(
(𝑓,𝑓 − 𝑣) − (𝑓,𝑓 − 𝑣)

)
+
(
(𝑣,𝑓 − 𝑣) − (𝑣,𝑓 − 𝑣)

)
+(𝑓 − 𝑣,𝑓 − 𝑣)

which, together with the Cauchy-Schwarz inequality, implies

𝛼‖𝑓 − 𝑣‖ ≤ sup
𝑤∈1

2𝑛(𝜎,𝑑)

|( − )(𝑓𝑤)|‖𝑤‖
+ sup

𝑤∈1
2𝑛(𝜎,𝑑)

|( − )(𝑣𝑤)|‖𝑤‖ + ‖𝑓 − 𝑣‖.
Combining the above inequality with the triangle inequality

‖𝑓 − 𝑓 ‖ ≤ ‖𝑓 − 𝑣‖+ ‖𝑣− 𝑓 ‖
and taking the infimum over all 𝑣 ∈ 1

2𝑛(𝜎, 𝑑) yield (4.3). This com-
pletes the proof of the theorem. □

Theorem 4.1 indicates that the total error of the best least-squares 
approximation with numerical integration is bounded by the approx-
imation error of the neural network and the error of the numerical 
integration. To ensure the approximation accuracy of the given neural 
network, we need to choose a numerical integration with a compatible 
accuracy, e.g., the composite “mid-point” numerical integration on an 
adaptively refined uniform partition.

Remark 4.2. The assumption in Theorem 4.1 is known as the Marcin-
kiewicz problem in literature and has not been verified for functions 
in 1

2𝑛(𝜎, 𝑑). Recently, Temlyakov [21] introduced a new technique 
to systematically study this and related issues for functions in various 
finite dimensional subspaces.
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5. Adaptive network enhancement (ANE) method

For a given target function 𝑓 (𝐱), let 𝑓 (𝐱, 𝜽
∗
 ) be the solution of prob-

lem (4.2). For a given tolerance 𝜖 > 0, this section studies self-adaptive 
method for creating a two-layer ReLU NN and a numerical integration 
mesh such that the approximation accuracy is within the prescribed tol-
erance, i.e.,

‖𝑓 − 𝑓 ‖ ≤ 𝜖 ‖𝑓‖. (5.1)

First, we consider the case that the numerical integration based on 
a partition  is sufficiently accurate. Similar to the idea of the stan-
dard adaptive mesh-based numerical methods, we start with a two-layer 
ReLU NN with a small number of neurons, solve the optimization prob-
lem in (4.2), and estimate the total error by computing a posteriori error 
estimator

𝜉 = ‖𝑓 − 𝑓 ‖ ∕‖𝑓‖. (5.2)

If 𝜉 > 𝜖, we then enhance the NN by adding new neurons and this pro-
cedure repeats until (5.1) is met. This process is referred as the adaptive 
network enhancement (ANE) and it generates a two-layer ReLU NN 
whose approximation to 𝑓 satisfies a given approximation accuracy tar-
get.

An immediate key question for the ANE method is: how many new 
neurons will be added at each adaptive step? To address this issue, we 
propose two network enhancement strategies. One is global and the 
other is local. The global one is based on the assumption that the net-
work approximation to the target function 𝑓 has a fixed convergence 
rate 𝛼:

𝜉(𝑘) = ‖𝑓 − 𝑓 (𝑘)
 ‖ =(𝑛−𝛼

𝑘
),

where 𝑓 (𝑘)
 is the approximation in 𝑛𝑘

(𝜎, 𝑑), 𝑛𝑘 is the number of neu-
rons of the 𝑘𝑡ℎ NN, and 𝛼 is the order of approximation. A simple 
calculation suggests the following number of neurons for the next net-
work:

𝑛𝑘 =min
{
2𝑛𝑘−1,

⌈(
𝜉(𝑘−1)∕𝜖

)1∕𝛼𝑘
𝑛𝑘−1

⌉}
, (5.3)

where 𝛼𝑘 is an approximation to the order 𝛼. For 𝑘 ≥ 3, 𝛼𝑘 =
ln

(
𝜉(𝑘−2)

/
𝜉(𝑘−1)

)/
ln

(
𝑛𝑘−1∕𝑛𝑘−2

)
. Possible choice for 𝛼2 is 1 (linear rate) 

or some positive real number based on some a priori information of the 
target function.

To introduce our local network enhancement strategy, we notice 
that 𝑛(𝜎, 𝑑) is the set of continuous piece-wise linear functions with 𝑛
free hyper-planes given by (2.5). For any bounded domain Ω ∈ℝ𝑑 , these 
𝑛 hyper-planes plus the boundary of the domain Ω form a partition, 
𝑛 = {𝐾}, of the domain Ω. Again, the partition means that union of all 
subdomains of 𝑛 equals the whole domain Ω and that any two distinct 
subdomains of 𝑛 have no intersection. We will refer to 𝑛 = {𝐾} as 
the physical partition of the domain Ω.

This observation implies that the network enhancement strategy 
could make use of local errors on elements of the physical partition 𝑛. 
Specifically, let us introduce local error indicator 𝜉

𝐾
for each element 

𝐾 ∈𝑛:

𝜉
𝐾
= ‖𝑓 − 𝑓 ‖𝐾, ≡

⎛⎜⎜⎝
∑

𝑥𝐾′ ∈𝐾
(𝑓 − 𝑓 )

2(𝐱
𝐾′ )|𝐾 ′|⎞⎟⎟⎠

1∕2

. (5.4)

We then define a subset ̂𝑛 of 𝑛 by using either the following average 
marking strategy:

̂𝑛 =

{
𝐾 ∈𝑛 ∶ 𝜉

𝐾
≥ 1

#𝑛

∑
𝐾∈𝑛

𝜉
𝐾

}
, (5.5)

where #𝑛 is the number of elements of 𝑛, or the bulk marking strat-
egy: finding a minimal subset ̂𝑛 of 𝑛 such that
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∑
𝐾∈̂𝑛

𝜉2
𝐾
≥ 𝛾1

∑
𝐾∈𝑛

𝜉2
𝐾

for 𝛾1 ∈ (0, 1). (5.6)

With the subset ̂𝑛, the number of new neurons to be added to the NN 
is equal to the number of elements in ̂𝑛.

With an accurate numerical integration, the ANE method is defined 
in Algorithm 5.1.

Algorithm 5.1 Adaptive two-layer ReLU NN with a fixed  .
Given a target function 𝑓 (𝐱) and a tolerance 𝜖 > 0, starting with a two-layer ReLU NN 
with a small number of neurons,

(1) solve the optimization problem in (4.2);
(2) estimate the total error by computing 𝜉 =

( ∑
𝐾∈

𝜉2
𝐾

)1∕2

∕‖𝑓‖ , where  is the physi-
cal partition of the current approximation;

(3) if 𝜉 < 𝜖, then stop; otherwise, go to Step (4);
(4) add new neurons to the network by using the network enhancement strategy, then 

go to Step (1).

Next, we consider adaptive mesh refinement (AMR) on numerical 
integration for a fixed NN. Let 𝑓 (𝐱, 𝜽

∗
 ) be the solution of problem 

(4.2) associated with the partition  . Let ̂ be a subset of  gener-

ated by using either the average or the bulk marking strategy. For each 
marked element 𝑇 ∈ ̂ , this 𝑑-dimensional cube is subdivided into 2𝑑
small cubes of equal size. The new partition  ′ consists of elements in 
 ⧵ ̂ and new elements generated from ̂ . Denote by 𝑓 ′ (𝐱, 𝜽∗ ′

) the 
solution of problem (4.2) associated with the partition  ′. For both so-
lutions 𝑓 and 𝑓 ′ based on the mesh  and its refinement  ′, define 
the following global estimators:

𝜂(𝑓 ) =
(∑
𝑇∈

𝜂
𝑇
(𝑓 )

2

)1∕2

and 𝜂(𝑓 ′ ) =

( ∑
𝑇∈ ′

𝜂
𝑇
(𝑓 ′ )

)1∕2

.

where local indicators on  ′ are given by

𝜂
𝑇
(𝑓 ) = ‖𝑓 − 𝑓 ‖𝑇 , and 𝜂

𝑇
(𝑓 ′ ) = ‖𝑓 − 𝑓 ′ ‖𝑇 , ′ . (5.7)

The following algorithm generates a numerical integration mesh 
which ensures approximation accuracy of a given NN.

Algorithm 5.2 Adaptive Mesh Refinement with a fixed NN.
Given a target function 𝑓 (𝐱) and the solution of problem (4.2) on the partition  ,

(1) refine  by the refinement strategy to obtain a new partition  ′

(2) solve the minimization problem in (4.2) on  ′ ;

(3) if 𝜂(𝑓 ′ ) ≤ 𝛾
2
𝜂(𝑓 ), then go to Step (1) with  =  ′ ; otherwise, output  .

The stopping criterion used in Algorithm 5.2 is based on whether or 
not the mesh refinement on numerical integration improves approxima-
tion accuracy. When the refinement does not improve accuracy much, 
the AMR stops and outputs the current mesh.

Finally, we are ready to present adaptive network enhancement 
(ANE) method for a two-layer ReLU NN including AMR for numeri-
cal integration in Algorithm 5.3. The purpose of the AMR for numerical 
integration is to ensure approximation accuracy with less quadrature 
points than a fine uniform partition. Comparing with the ANE, the AMR 
is secondary.

6. Strategies for training (iterative solvers)

The exceptional power of DNNs in approximation comes with a 
price: the procedure for determining the values of the parameters is now 
a problem in nonlinear optimization. This high dimensional, nonlinear 
optimization problem tends to be computationally intensive and com-
plicated. Currently, it is often solved by iterative optimization methods 
38
Algorithm 5.3 Adaptive two-layer ReLU NN.
Given a target function 𝑓 (𝐱) and a tolerance 𝜖 > 0, starting with a coarse uniform partition 
0 of the domain Ω for numerical integration and with a two-layer ReLU NN with a small 
number of neurons,

(1) solve the minimization problem in (4.2);
(2) use Algorithm 5.2 to generate a numerical integration mesh  ;
(3) solve the minimization problem in (4.2) associated with  ;
(4) estimate the total error by computing 𝜉 =

( ∑
𝐾∈

𝜉2
𝐾

)1∕2

∕ ‖𝑓‖ , where  is the physi-
cal partition of the current approximation;

(5) if 𝜉 < 𝜖, then stop; otherwise, go to Step (6);
(6) add new neurons to the network by using the network enhancement strategy, then 

go to Step (1).

such as gradient descent (GD), Stochastic GD, Adam, etc. (see, e.g., [10]
for a review paper in 2018 and references therein). Usually nonlinear 
optimizations have many solutions, and the desired one is obtained only 
if we start from a close enough first approximation. The ANE method 
provides a natural process for obtaining a good initialization. This sec-
tion describes our initialization for all three stages of the ANE method.

The first stage is the beginning of the ANE method, in which we 
specify the size of the NN, both input and output weights and bias, 
and a partition of the domain for numerical integration. Due to the fact 
that input weights and bias determine physical locations of breaking 
hyper-planes, we first subdivide the domain Ω by a coarse, uniform 
partition and then distribute those breaking hyper-planes on the mesh 
of this partition. For example, when Ω = (0, 1)2, the two-layer NN with 
2(𝑚0 + 1) neurons use the following initial breaking lines:

𝑥 = 𝑖

𝑚0
and 𝑦 = 𝑖

𝑚0
for 𝑖 = 0, 1, ..., 𝑚0.

This breaking lines imply the following input weights and bias:

𝜽1,𝑖 =
(
(1, 0), 𝑖

𝑚0

)
and 𝜽2,𝑖 =

(
(0, 1), 𝑖

𝑚0

)
for 𝑖 = 0, 1, ..., 𝑚0. For numerical integration, we again start with a uni-
form partition  of the domain Ω which, in general, is much finer than 
the previous physical partition initializing the NN. Initial of the out-
put weights and bias is given by the solution of the system of linear 
equations in (3.4).

The second stage is the AMR for numerical integration. For each new 
partition  , natural initial of parameters 𝜽 is the corresponding values 
of the current approximation since the NN remains unchanged.

The third stage is when the NN is enhanced by adding new neurons. 
Clearly, parameters corresponding to old neurons will use the current 
approximation as their initial. To initialize corresponding parameters 
of new neurons, for the global enhancement strategy, one can add new 
neurons randomly; or add new neurons uniformly across the domain 
(i.e. set their input weights and biases with corresponding break hyper 
planes uniformly subdividing the domain). For the local enhancement 
strategy, we propose to make use of the subset ̂𝑛 marked in (5.5) or 
(5.6). For each element 𝐾 ∈ ̂𝑛, we add one neuron whose initial is cor-
responding to the breaking hyper-plane that passes through the centroid 
of 𝐾 and orthogonal to the direction vector with the smallest variance 
of quadrature points in 𝐾 . This direction vector may be computed by 
the Principal Component Analysis method (or PCA [22]). For output 
weights and biases corresponding to new neurons, a simple initial is to 
set them zero. This means that the initial of the approximation is the 
current approximation. A better way is to solve problem (3.4) for all 
output weights and bias by using the current breaking hyper-planes for 
the input weights and bias.

7. Numerical experiments

In this section, we present our numerical experiments on using ANE 
to approximate various functions. In all experiments, the minimization 
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Fig. 1. Results of using two-layer ReLU networks for approximating function (7.1).
problem (4.2) is solved using the Adam version of gradient descent [23]. 
For each run during the adaptive process, the stopping criteria for the 
iterative solver is set as follows: the solver stops when the loss function ‖𝑓 − 𝑓‖ decreases within 0.1% in the last 2000 iterations. This stop-
ping criteria is set to explore the network approximation power without 
constraining the number of iterations.

7.1. Smooth function

The first test problem is a smooth function of one variable

𝑓 (𝑥) = 𝑥

(
𝑒
−(𝑥− 1

3 )
2∕𝑘 − 𝑒

− 4
9 ∕𝑘

)
, (7.1)

which is defined on the interval Ω = [0, 1]. When 𝑘 = 0.01, this function 
is the solution to a Poisson equation studied in [24,20]. We use this 
simple toy problem to test the efficacy of the proposed ANE method.

The target approximation accuracy is set as 𝜖 = 0.005. A fixed 
uniform partition  with 1000 quadrature points is used for this ex-
periment. We start from 10 neurons for the input layer with their 
39
break points initialized uniformly across the domain, i.e., 𝑏𝑖 = 0.1𝑖 for 
𝑖 = 0, 1, ⋯ , 9. The initial network model’s output weights and biases are 
set by solving the linear system in (3.4). This initial model is shown in 
Fig. 1(a).

After the first run network training (solving (4.2) using the Adam 
solver), the network adjusts its parameters to adapt the target function 
𝑓 . The resulting optimized network model with 10 neurons is shown in 
Fig. 1(b). This NN model provides a near-optimum free-knot piecewise 
linear spline with 10 knots shown as the green break points in the Fig-
ure. Base on the partition of the domain with current set of break points, 
we adopt the average marking strategy (5.5) to mark the elements with 
errors larger than average, and then add neurons accordingly by setting 
the newly added neuron’s initial biases at the centers of the elements 
to be refined. We then resolve for the new output layer’s parameters 
using (3.4) and trained the network for the second run. This process re-
peats until the approximation error is lower than the target 𝜖. The ANE 
method iterates itself three runs from 10 to 13 then to 20 neurons. The 
intermediate result at 13 neurons is depicted in Fig. 1(c). The ANE pro-
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Fig. 2. Error distribution on physical partitions generated in the ANE process for the first test problem, where red partitions are the elements to be refined.
Table 1

Comparing adaptive neural network with fixed networks 
for testing problem (7.1).
Network (neurons) # Parameters ‖𝑓 − 𝑓 ‖ ∕‖𝑓‖
Fixed (20) 41 0.007644

Fixed (38) 77 0.003762

Adaptive (10→13→20) 41 0.003837

cess ends at 20 neurons, which gives a relative approximation accuracy 
of 𝜉 = 0.003837, falling below the target 𝜖.

In this one-dimensional problem, we utilize a fixed learning rate 
of 0.001. Fig. 2(a) and 2(b) show the error per element distribution 
on the physical partition generated through the iterative process. In 
those two figures, red bars correspond with marked elements where 
new neurons are to be added. Marked red elements are refined and the 
iterative process gradually drags all elements error down to a smaller 
scale with a trend to distribute the error evenly among the physical 
partitions, see error distribution of the final network model in Fig. 2(c).

We further compare the performance of our adaptive network struc-
ture with a network model of fixed number of neurons. This is to check 
if the adaptive process has a potential to land in a better global mini-
mum. The comparison results are illustrated in Table 1 and Fig. 3. In 
particular, they show that approximation accuracy of the adaptive net-
work using ANE with 20 neurons is almost same as that of the fixed 
network with 38 neurons, and is better than the fixed network structure 
of the same size. This experiment indicates that fix networks might tend 
to be trapped in local minimums.

Finally, we test the performance of enhancement strategy using 
(5.3), and compare two methods of initialization under the global adap-
tive enhancement scheme. The first initialization method is to add new 
neurons randomly and set their corresponding output weights as ze-
ros as initial; and the second method is to add new neurons uniformly 
across the domain and solve (3.4) for output weights and bias. Table 2
list the results of this experiment. Due to the non-convex optimization, 
one can see that different initialization strategy result in differences in 
approximation results. The first initialization method is easily trapped 
in local minimum under the Adam optimizer. Considering the random-
ness in the initial of newly added neurons, we repeat this test three 
times and report the best result in the table. While in the second strat-
egy, we start from a better point using global uniform refinement, this 
results in a better performance. However, the uniform initial strategy 
during the adaptive process does not consider the error distribution 
evaluated from the previous stage, which explains why it is still infe-
rior to the local error based marking and refinement strategy. For the 
rest experiments, we only use the local enhancement method.

7.2. Functions with intersecting interface singularities

This section reports the numerical results for a two-dimension prob-
lem with intersecting interface singularity. Let Ω = (−1, 1)2 and
40
Fig. 3. Log training loss with three different network models in the first numer-
ical experiment.

Table 2

Global network enhancement and initialization strategy for testing problem 
(7.1).

Network (adaptive neurons) Initialization # Parameters ‖𝑓 − 𝑓 ‖ ∕‖𝑓‖
10→20→40 random 81 0.005221

10→20→30 uniform 61 0.004455

𝑓 (𝑟, 𝜃) = 𝑟𝛽𝜇(𝜃) (7.2)

in the polar coordinates at the origin with

𝜇(𝜃) =

⎧⎪⎪⎨⎪⎪⎩

cos((𝜋∕2 − 𝜎)𝛽) ⋅ cos((𝜃 − 𝜋∕2 + 𝜌)𝛽), if 0 ≤ 𝜃 ≤ 𝜋∕2,
cos(𝜌𝛽) ⋅ cos((𝜃 − 𝜋 + 𝜎)𝛽), if 𝜋∕2 ≤ 𝜃 ≤ 𝜋,

cos(𝜃𝛽) ⋅ cos((𝜃 − 𝜋 − 𝜌)𝛽), if 𝜋 ≤ 𝜃 ≤ 3𝜋∕2,
cos((𝜋∕2 − 𝜌)𝛽) ⋅ cos((𝜃 − 3𝜋∕2 − 𝜎)𝛽), if 3𝜋∕2 ≤ 𝜃 ≤ 2𝜋,

where 𝛽 = 0.1, 𝜎 =−14.92256510455152, and 𝜌 = 𝜋∕4 are parameters. 
The function 𝑓 (𝑟, 𝜃) (see Fig. 4(a)) is the solution of the elliptic interface 
problem with intersecting interface singularity and a benchmark test 
problem for adaptive finite element method (see, e.g., [25,26]).

We test the ANE method with a fixed integration mesh using 400 ×
400 quadrature points. The target approximation accuracy is set as 𝜖 =
0.01. The ANE process starts with a small network of 20 neurons, and 
the network is initialized such that the break lines are distributed evenly 
in the domain, with half of them parallel to 𝑥-axis (𝝎𝑖 = 0 and 𝑏𝑖 =
−1 + 0.2𝑖 for 𝑖 = 0, ⋯ , 9) and the other half parallel to 𝑦-axis (𝝎𝑖 = 𝜋∕2
and 𝑏𝑖 = −1 + 0.2(𝑖 − 10) for 𝑖 = 10, ⋯ , 19). See Fig. 4(b) for the initial 
partition of the domain. The initial network model using this uniform 
physical partition is obtained by solving the linear system in (3.4) and 
is shown in Fig. 4(c). After the first run network training, the optimum 
break lines corresponding to the 20-neuron two-layer ReLU network 
are shown in Fig. 4(d) and the corresponding network model is plotted 
in Fig. 4(e). With 20 neurons (61 parameters), the adaptive network 
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Fig. 4. ANE results of using 2-layer ReLU networks for approximating function in (7.2).
can approximate the target function 𝑓 in (7.2) with a relative error 
𝜉 = 0.038733.

To achieve the target accuracy, the ANE calculates per element er-
ror base on the automatic generated physical partition of the domain. 
Elements with relative large errors are marked using the bulk mark-
ing strategy (5.6) with 𝛾1 = 0.7 (see the 15 elements with blue dots 
shown in Fig. 4(f)). ANE process adds the same number of neurons 
as the 15 marked elements, and those new neurons are initialized as 
follows: their corresponding breaking lines pass through the centroids 
of marked elements, with their directions aligned with the maximum 
principal directions of each geometric element. See Fig. 4(f) for the ini-
tial physical partition at the second run with the newly added neuron’s 
41
breaking lines drawn in light blue. The second run network training 
converged at a relative error 𝜉 = 0.019582 (see the generated physical 
partition and marked elements in Fig. 4(g)). The ANE process stops 
at 69 neurons with the corresponding physical partition and network 
model plotted in Fig. 4(h) and Fig. 4(i). Notice that to calculate per el-
ement error, and to find an element’s centroid and principal direction, 
we group the quadrature points located in the same element and use 
the point set within the element to compute its local error, centroid and 
PCA. This approximation method has an advantage of its computational 
simplicity; by avoiding calculation of the exact geometric shape of each 
element, this method can be easily extended to higher dimension prob-
lems or higher order activation functions.
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Table 3

The effect of numerical integration for the second testing problem (7.2).
Network (# quadrature) Integration accuracy |( −)(𝑓 )|∕|(𝑓 )| Training accuracy ‖𝑓 − 𝑓 ‖ ∕‖𝑓‖ Testing accuracy ‖𝑓 − 𝑓 ‖ ′ ∕‖𝑓‖
Fixed (50x50) 0.002638 0.007885 0.013187

Fixed (100x100) 0.000753 0.008515 0.010257

Fixed (200x200) 0.000462 0.009319 0.009877

Fixed (400x400) 0.000370 0.009702 0.009850

ANE (400x400) 0.000370 0.008319 0.008476
A fixed learning rate of 10−3 is adopted in this ANE process. The final 
network model achieves a 𝐿2 relative error of 𝜉 = 0.008476, which meets 
our approximation accuracy target. The generated physical partition is 
highly adapted to the target function. Notice there is a point singular-
ity around the origin in the function 𝑓 , while the physical partition 
obtained in the adaptive network adjusts its elements shape and size 
such that the partition is dense around the singular point, this is a very 
favorable property of using NN model to approximate functions with 
singularities. Comparing with adaptive finite element methods (AFEMs) 
(see, e.g., [26]), the ANE method has much fewer degrees of freedom 
than AFEMs.

To evaluate the effect of numerical integration to the total approxi-
mation error, we tested a two-layer network of 69 neurons using varying 
 with different number of quadrature points. The results are given in 
Table 3. As shown in the table, with finer integration meshes of more 
number of quadrature points, the integration accuracy can be improved 
(refer to the ‘Integration accuracy’ column in the table). Meanwhile, 
training a network model on finer mesh is harder which results in a 
lower training accuracy (see the ‘Training accuracy’ column). However, 
the approximating power to the true function 𝑓 is improved (see the 
‘Testing accuracy’ column in Table 3). Notice here the testing accuracy 
is estimated using a fine mesh  ′ of 1000 × 1000 quadrature points. The 
gap between training accuracy and testing accuracy is reduced when 
more number of quadrature points is adopted. This experiment also 
shows that the adaptive network may achieve better approximation re-
sult compared with the fixed network of the same size, see the last two 
rows in Table 3.

7.3. Functions with transition layers

The last problem we tested is a two-dimensional function with a 
transition layer around a circular region:

𝑓 (𝑥, 𝑦) = tanh
(1
𝜀
(𝑥2 + 𝑦2 − 1

4
)
)
− tanh

( 3
4𝜀

)
(7.3)

defined on the domain Ω = [−1, 1]2. By varying 𝜀, this type of functions 
shows different level of difficulties due to the presence of transition 
layers. We set 𝜀 = 0.01 in this experiment, and the corresponding func-
tion 𝑓 presents a large transition in a sharp circular zone, as shown in 
Fig. 5(a).

For this problem, we ran three tests to compare the results of using 
an uniform integration mesh versus adaptive mesh refinement (AMR). 
(1) The first experiment utilizes an uniformly allocated 400 ×400 = 1.6 ×
105 quadrature points and the ANE Algorithm 5.1 to obtain a network 
model of 578 neurons with target accuracy 𝜖 = 0.05. (2) The second 
experiment uses Algorithm 5.3 which generates an AMR of 22201 ≈ 2.2 ×
104 quadrature points (as shown in Fig. 5(b)) and an adaptive NN of 578 
neurons as well. The 22201 quadrature points are generated by adaptive 
local mesh refinement of an initial mesh of 100 ×100 quadrature points, 
using average marking strategy. We set the last run ANE process to stop 
at 578 neurons to allow a fair comparison to the first experiment. (3) the 
third experiment matches the number of quadrature points used in the 
second experiment, but with those 150 ×150 quadrature points allocated 
uniformly across the domain, and a fixed network model of 578 neurons 
was tested to compare the approximation performances with the ANE 
network using AMR integration mesh.
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The comparison results are illustrated in Table 4. The ANE method 
using AMR for numerical integration achieves better performance com-
pared with a finer uniform mesh of six times more quadrature points 
and it is superior compared with the similar mesh size but evenly 
distributed quadrature points. If limited computational resources are 
allocated which allows only certain number of quadrature points for nu-
merical integration and network training, allocating quadrature points 
using AMR might achieve better approximation performance compared 
with the uniformly allocated quadrature points.

The function approximation result shown in Fig. 5(c) exhibits a cer-
tain level of oscillation which is not acceptable in some applications. 
Notice that the generated physical partition (see Fig. 5(d)) does capture 
the circular transition layers well when using 578 break lines. How-
ever, this partition is too dense in the region where the function does 
not fluctuate much. A deeper ReLU network, which provides piece-wise 
breaking lines, might work better for this testing case. We verified this 
conjecture by using a three-layer ReLU network to approximate this 
function. Each hidden layer was set as fixed 20 neurons which defines 
a network model of 501 parameters. The relative approximation error 
𝜉 using this three-layer ReLU network is 0.033967. Comparing to the 
578 neurons and 1735 parameters we used previously in the two-layer 
networks, a three-layer ReLU network of smaller size can approximate 
the same function with better accuracy (see Table 5). As illustrated 
in Fig. 6(a), a three-layer network can reduce the oscillation exhib-
ited in the shallow network, while archiving a better approximation 
accuracy with less complicated domain partition, see Fig. 6(b) for the 
physical partition generated with the three-layer network. This exper-
iment gives us insights for our follow-up work [27] on an adaptive 
network enhancement method which will study the problem of generat-
ing multi-layer networks, in terms of both width and depth, in order to 
approximate functions/PDEs of different characteristics accurately and 
efficiently.

8. Discussion and conclusion

This paper studies a fundamental question in machine learning on 
how to design the architecture of two-layer neural networks in order to 
approximate functions accurately and efficiently. For a given function, 
we introduce and test an adaptive network enhancement (ANE) method 
that adaptively constructs a two-layer NN with a relatively small num-
ber of neurons and parameters such that its approximation accuracy 
is within the prescribed tolerance. One of key components of the ANE 
method for the best least-squares approximation to a given function is 
the enhancement strategy which determines how many new neurons to 
be added, when the current approximation is not within the given accu-
racy. To address this issue, a global and a local network enhancement 
strategies are introduced and tested. The efficacy of the local enhance-
ment strategy is demonstrated numerically for several test problems in 
this paper. Due to uncertainty of non-convex optimization, numerical 
results also show that the local strategy is better than the global one. 
Nevertheless, efficiency and robustness of both the global and local en-
hancement strategies need further numerical and theoretical studies.

To disentangle the numerical integration error and network approx-
imation error, an AMR method is proposed for automatically generating 
an integration mesh which adapts itself to improve the numerical inte-
gration accuracy. The AMR method presented in the paper is suitable for 
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Fig. 5. ANE with AMR results of using 2-layer ReLU networks for approximating function in (7.3).

Table 4

Networks approximation performances of uniform v.s. AMR integration mesh.
Integration mesh # quadrature # neurons Training accuracy ‖𝑓 − 𝑓 ‖ ∕‖𝑓‖ Testing accuracy ‖𝑓 − 𝑓 ′ ‖ ′ ∕‖𝑓‖
Uniform 400x400 ANE 578 0.050552 0.050587

AMR 22201 ANE 578 0.047423 0.048771

Uniform 150x150 Fixed 578 0.052497 0.053040

Table 5

Approximation performances of a two-layer v.s. a three-layer NN.
NN structure (neurons) #Quadrature #Parameters Training accuracy ‖𝑓 − 𝑓 ‖ ∕‖𝑓‖ Testing accuracy ‖𝑓 − 𝑓 ′ ‖ ′ ∕‖𝑓‖
Two-layer (578) AMR 22201 1735 0.047423 0.048771

Three-layer (20-20) uniform 150x150 501 0.033751 0.033969
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Fig. 6. Approximation results of using a three-layer ReLU network for approximating function in (7.3).
low dimensional problems and may be replaced by any adaptive inte-
gration procedure such as adaptive version of Monte Carlo, quasi-Monte 
Carlo, or sparse grid, etc. if a high dimensional problem is considered. 
Nevertheless, for a given function, how to adaptively choose a proper 
numerical integration in the context of NN functions remains open and 
requires further investigation.

Determining the values of the parameters of NNs is a problem in 
non-convex optimization which is computationally intensive and com-
plicated and is a bottleneck in using NNs. Commonly used iterative 
solvers for optimization in NN applications are iterative methods of the 
gradient descent type. It is a common sense that it is extremely difficult, 
if not impossible, to develop a computationally feasible iterative solver 
that would converge to the desired global optimizer. This, in turn, im-
plies the prominent importance of a close enough first approximation 
for all iterative solvers, as experienced in our numerical experiments. 
The method of continuation [28] is a common way to obtain a good 
initial and the ANE is a natural continuation process by itself with re-
spect to the number of neurons. In particular, weights and bias of newly 
added neurons are initialized based on the implicit physical partition of 
the domain Ω for the NN approximation at the previous network. This 
deterministic initialization strategy ensures that the starting point of 
each iteration is always superior to the previous iteration when the net-
work is enhanced, and plays an essential role in training the current 
network.

Experimental results for functions exhibiting intersecting interface 
singularities or sharp interior layer like discontinuities show the effi-
cacy of the propose method. In the second part of the paper [7], we 
extend the application of the proposed ANE method to elliptic partial 
differential equation with an underlying minimization principle.
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