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In this paper, we introduce adaptive network enhancement (ANE) method for the best least-squares approxi-
mation using two-layer ReLU neural networks (NNs). For a given function f(x), the ANE method generates a
two-layer ReLU NN and a numerical integration mesh such that the approximation accuracy is within the pre-
scribed tolerance. The ANE method provides a natural process for obtaining a good initialization which is crucial

for training nonlinear optimization problems. Numerical results for functions of two variables exhibiting either
intersecting interface singularities or sharp interior layers demonstrate efficiency of the ANE method.

1. Introduction

Deep neural networks (DNNs) have achieved astonishing perfor-
mance in computer vision, natural language processing, and many other
artificial intelligence tasks. This success encourages wide applications
to other fields, including recent studies of using DNN models to nu-
merically solve partial differential equations (PDEs). Despite their great
successes in many practical applications, it is widely accepted that ap-
proximation properties of DNNs are not yet well-understood and that
understandings on why and how they work could lead to significant
improvements. This explains rapidly increasing interests in theoretical
and algorithmic studies of DNNs during recent years.

DNNs produce a new class of functions through compositions of
linear transformations and activation functions. Their studies and appli-
cations may be traced back to the work of Hebb [1] in the late 1940’s
and Rosenblatt [2] in the 1950’s. An often cited theoretical results on
DNNs are the so-called universal approximation property [3,4], e.g., a
two-layer NN is dense in C(Q) for any compact subset Q € R¢ provided
that the activation function is not a polynomial. Moreover, order of ap-
proximation for functions in the Sobolev space has been obtained for
two-layer NNs using various activation functions [5]. For results on ap-
proximation theory of DNNs before 2000, see a survey article by Pinkus
[6] and references therein.

Despite many efforts and much impressive progress made by numer-
ical analysts, computational scientists, and practitioners, approximation

properties of DNNs remain an active and open research field. Without
complete understanding of approximation properties of DNNs, current
methods on design of network structures are empirical. Tuning of depth
and width is tedious, mainly from experimental results in ablation
studies which typically require domain knowledge about the underly-
ing problems. This leads to a fundamental, open question in machine
learning: given a target function/PDE, what is the minimal network model
required, in terms of width, depth, and number of parameters, to approxi-
mate the function/solution within the prescribed accuracy?

The purpose of this paper is to introduce and study adaptive network
enhancement (ANE) methods for the best least-squares approximation
to a target function by a two-layer ReLU NN, and, hence, to address this
open problem partially. Specifically, for a given target function f(x) and
a given tolerance ¢ > 0, the ANE method generates a two-layer ReLU
neural network such that the approximation accuracy is within the pre-
scribed tolerance. One of key components of the ANE method for the
best least-squares approximation to a given function is the enhance-
ment strategy which determines how many new neurons to be added,
when the current approximation is not within the given accuracy. To ad-
dress this issue, we introduce a global and a local network enhancement
strategies. The global enhancement is based on a fixed convergence rate
(see (5.3); and the local one is done through local error indicators col-
lected on the physical subdomains plus a proper neuron initialization
(detailed in section 5). The ANE method for solving elliptic PDEs is pre-
sented in the companion paper [7].
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Another important ingredient is the numerical integration mesh for
evaluating the loss function. For many problems in machine learning,
integral of the L*(Q) norm is often computed numerically by stochas-
tic sampling approach, which in turn leads to theoretical convergence
rate independent of the dimension. Other numerical integration meth-
ods that are independent of the dimension include quasi-Monte Carlo
method [8] and the sparse grid method [9]. For simplicity, in this paper,
we use adaptive numerical integration based on “mid-point” quadrature
on either uniform or composite mesh. The composite mesh here means
those meshes obtained from adaptive mesh refinement (AMR), where
refinement of an element is done by subdividing it into small uniform
elements. The AMR method presented in the paper is suitable for low
dimensional problems and may be replaced by any adaptive integration
procedure such as adaptive version of Monte Carlo, quasi-Monte Carlo,
or sparse grid, etc. if a high dimensional problem is considered.

Theoretically, we show that the total approximation error is
bounded by the approximation error of the NN plus the error of
numerical integration (see Theorem 4.1) under the assumption of
the Marcinkiewicz problem. This indicates that numerical integration
should be chosen to ensure at least the accuracy of the current NN. For
simple problems, one may simply use a fine uniform mesh which is able
to capture all local behaviors of the integrand. For computationally in-
tensive problems, one might need to use local AMR to generate a proper
composite mesh. The stopping criterion for the AMR is based on if the
mesh refinement of numerical integration improves the approximation
accuracy (see Algorithm 5.2). With AMR for numerical integration, the
ANE method defined in Algorithm 5.3 is able to generate a two-layer
ReLU NN and a composite numerical integration mesh such that the
approximation accuracy is within the prescribed tolerance.

The values of the parameters are trained by iteratively “solving”
the non-convex optimization problem in (4.2). This high dimensional,
non-convex optimization problem tends to be computationally intensive
and complicated. Currently, it is often solved by iterative optimization
methods such as gradient descent (GD), Stochastic GD, Adam, etc. (see,
e.g., [10] for a review paper in 2018 and references therein). Usually
nonlinear optimizations have many solutions, and the desired one is
obtained only if we start from a close enough first approximation. The
ANE method provides a natural process for obtaining a good initial-
ization. Starting with a relatively small NN, the approximation of the
previous NN is already a good approximation to the current NN in the
loops of the ANE method. To provide a better approximation than the
previous one, we divide all network parameters into two groups: linear
parameters (output layer weights and bias) and nonlinear parameters
(hidden layer weights and biases). Initialization of nonlinear parame-
ters is based on their physical partitioning of the domain and initial of
linear parameters are obtained by solving a system of linear equations
with given nonlinear parameters.

The paper is organized as follows. Section 2 presents two-layer ReLU
NNs. The best least-squares approximation and its discrete counterpart
are described in sections 3 and 4, respectively. The ANE method is in-
troduced in section 5, and initialization of parameters at different stage
is proposed in section 6. Finally, numerical experiments for functions
with intersecting interface singularities and interior layer like disconti-
nuities are given in section 7, and conclusion in section 8.

2. Two-layer ReLU neural network

A two-layer NN consists of an input and output layers. The output
layer does not have an activation function. Layers other than the output
layer are called hidden layers. So a two-layer NN is also referred to as a
one-hidden layer NN.

In d-dimension, for i = 1,2, ..., n, let ® € RY and b, € R be the
weights and bias of the first (input) layer, respectively; and let ¢; € R
and ¢ € R be the respective weights and bias of the second (output)
layer. Then a two-layer ReLU NN with » neurons produces the follow-
ing set of functions:
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n
M”(a):{c0+2q6(mi4x—bi) D¢ b ER, col-ele},

i=1
where ¢ is the rectified linear unit (ReLU) activation function given by
0, t<0,

t, t>0,

o(t) =max{0, t} = {

for any t € R. The o(7) is a continuous piece-wise linear function having
a breaking point at =0 and belongs to a class of activation functions
of the form

0,
tk,

where Z, is the set of all positive integers. Note that o,(f) € CK~1(R) is
a piece-wise polynomial of degree k with a breaking point at = 0. For
simplicity of presentation, we restrict our attention to the ReLU acti-
vation function. Extension of results in this paper to general activation
functions o, (7) is straightforward.

There are (d + 2)n + 1 parameters for functions in the set M,,(o),
where n+1 of them are the output weights and bias {c;}/_, and (d + I)n
of them are the input weights {®;}?_| and bias {;}]_ . We refer to the
former as linear parameters and the later nonlinear parameters. Thus,
M,,(a) has of n+ 1 linear and (d + 1)n nonlinear parameters. To remove
n nonlinear parameters, we notice that

)
Xx—— .
|o]

where |@| = \/@? + - + 7 is the length of a vector @ € R?. This implies
that M,,(¢) is equal to

<0,

o () = (max{0, 1})* = for kez,,

t>0

o-(w-x—b)=|w|o-<£-
|o|

n

M, (o,d) = {co + Y co(@;-x=b,) : ¢;. b, R, ®; €S } , 2.1)
i=1

where S%-! is the unit sphere in RY. The number of parameters in

M, (o,d) is

M@m,d)y=(d+ 1n+1.

Below let us look at M, (c,d) in one-, two- and d-dimension, sepa-
rately. When d = 1, we have S° = {~1, 1}. Without loss of generality,
we will choose w; =1 for all i =1, ..., n. Then

n
M, (c,1)= {v(x, 0)=cy+ Z cio(x—>b;) : ¢, b € [R} s (2.2)
i=1
where 6 = (¢, b) denotes all parameters ¢ = (¢, ¢, ....¢,) and b =
(by, ..y b,). The M, (0,1) is the set of linear splines with n free knots
that had been studied intensively in the late 1960s (see, e.g., [11]). It
has been shown that the approximation of functions by linear splines
can generally be dramatically improved if the knots are free [12]; par-
ticularly, the Gibbs phenomena for “rough” functions can be avoided
[13].
In two dimensions (d =2), S! is a unit circle:

S'={o=(0,0,) eR? : 0l +w}=1}

= {a)= (cosy, siny)[ : OS}/SZIK}.
This gives

n
M, (6,2)= {CO + Zcia((cos Y)x +6iny)xy —b;) t ¢, b €R,

i=1

vi €10, 27] }

which is the set of continuous piece-wise linear functions with n free
lines

(2.3)
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I; 0 (cosy) x|+ (siny)x, —b;=0 fori=1, .., n (2.4)

Similarly, in the d-dimension, M, (c,d) is the set of continuous piece-
wise linear functions with » free hyper-planes

P

L w;-x—b,=0 fori=1,..,n (2.5)

Clearly, M, (c,d) for d > 2 may be treated as a non-standard but
beautiful extension of linear splines with free knots M, (c,1) to multi-
dimension.

Let

@;(x)=@,X;0,;, b)) =c(®; - x—b;),

which is a piece-wise linear function with free hyper-planes: o, - x = b;
for i =1, ..., n. Let y(x) = @y(x; @, by) = 1. For convenience of readers,
we state and prove a well-known fact on the linear independence of
{oi®},-

Lemma 2.1. Assume that hyper-planes {@; - x = b;}]_| are distinct. Then
{p:(x;0;, b)) are linearly independent.

Proof. Linear independence of ¢, =1 and ¢,(x;@,,b;) is a direct
consequence of the fact that ¢,(x;®,b;) =0 on R \ suppt{g,}. As-

sume that the lemma is valid for n = k, then linear independence of
k

k1 follows from the fact that ¥ c;¢,(x;@;,b;) =0 for all
i=0

{oi(x;0;,0)} ;7

x € R? \ suppt{ ¢, } and the assumption that all hyper-planes {o, - x =

b,-}f,:rl1 are distinct. This completes the proof of the lemma by induc-
O

tion.

3. The best least-squares approximation
Denote vectors of weights and bias by

c=(cp,C1sCp)y @=(®y,...,0,), and b=(b,...,b,),

respectively, then each function v € M, (c,d) may be represented as
follows:

n

Z ¢ (/J,-(X;w;, b)),

n
v(x;0) =cy + ZC,-G((D,- ‘X—b)=
i i=0

i=1

3.1

where 0 = (c,8) with = (»,b) are parameters.

For a given function f(x) defined on d-dimensional domain Q € R?,
the best least-squares approximation is to find f,,(x;6*) € M, (c,d) such
that

LFC) = £ (001 = e min IIf=oll= pemmin (FAORRICLOI} (3.2)
where || - || denotes the L2(Q) norm, M (n,d) is the number of parame-

ters defined in the previous section, and v(x; 6) is given in (3.1). It was
proven by Petrushev in [5] (see also [6]) that for any f(x) in the Sobolev
space H"(Q) for m=1,..,2+ %, there exists a positive constant C
such that

ILf = full < Cn_m/d||f||HM(g)~ (3.3)

Remark 3.1. In one dimension, when f € L?(Q) for 0 < p < o0, it was
shown (see Rice [14] and Powell [15]) that problem (3.2) has a solution
fn € C[0, 1]. Solution of problem (3.2) is not unique in general; but it
is unique for sufficiently smooth f and large enough n (see Chui et al.

[16D).

Generally, M, (c,d) is only a set of functions. But for a fixed param-
eter 8" = (@°,bP), the set M, (c,d) becomes a subspace

M, (o.d) =span {g;(x;00, b))} .
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Then the best least-squares approximation in (3.2) becomes to find 0 =

n
Y & pi(x; @7, 0) € M, (5, d) such that
i=0

Y (00, b)) = (f, (00, b)) Vi=0,1,....m,
where (f, g) = [, f(x)g(x) dx denotes the L2(Q) inner product. The cor-

responding system of algebraic equations is

M@") e = F@°), (3.4

0
where M(0") = (Mij)(n+1)><(n+1)
~0
(0,09, 59, 0,000, )), @ = (c§,¢0,....c0)', and F(&) = (F;)
the right-hand side vector with F, = (£, ¢,(x; @, 57)).

is the mass matrix with M;; =

m+x1 18

Lemma 3.2. Assume that the hyper-planes {&° - x = b7} are distinct.

i i=1

. A0, . . .. ..
Then the mass matrix M(6") is symmetric, and positive definite.

Proof. Clearly, M(éo) is symmetric. For any v = (v, vy, ..., v,)’, we have
VM@ = [lv]?,

n
where v(x) = Y, v;¢,(x; ®°, %). By Lemma 2.1, ||v||? is positive for any

i=0

nonzero v, which, in turn, implies that M(éo) is positive definite. []
4. Effect of numerical integration

In practice, integral of the loss function is often computed numeri-
cally. A common practice in machine learning (see, e.g., [17-19]) uses
Monte Carlo integration of the form

2l 1
1) = / v dx R ; o(x,), (4.1)

Q

points randomly generated based on an assumed distribution of x. This
stochastic approach is simple and valid for any dimensions. Moreover,
it leads to theoretical convergence rate independent of the dimension.
Other numerical integration methods that are independent of the di-
mension include quasi-Monte Carlo method [8] and the sparse grid
method [9].

In this paper, we use adaptive numerical integration as in [20] in
line with the ANE method. For simplicity of presentation, we consider
only “mid-point” quadrature on either uniform or composite mesh. The
composite mesh here means those meshes obtained from adaptive mesh
refinement (AMR), where refinement of an element is done by subdi-
viding it into small uniform elements. To this end, let

where |Q| is the volume of the domain Q and {x;} ,N are the sampling

T ={K : K is an open subdomain of Q}

be a partition of the domain Q. Here, the partition means that union of
all subdomains of 7 equals to the whole domain Q and that any two
distinct subdomains of 7 have no intersection; more precisely,

Q=UgerK and KNT=0, VK TeT.

Let x, be the centroid of T € 7. The x will be used as quadrature
points which are fundamentally different from sampling points used in
the setting of standard supervised learning. The composite “mid-point”
quadrature rule is given by

D o )ITI=Q, (v),

TeT

I(v)= / v(x)dx ~

Q

where |T'| is the volume of element T € 7. Similarly, one may use any
quadrature rule such as composite trapezoidal, Simpson, Gaussian, etc.
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Let Q_ be a quadrature operator, i.e., Z()~Q,_ (v), such that

i, = e, = /2, )

defines a weighted /,-norm. The best discrete least-squares approx-
imation with numerical integration over the partition 7 is to find
[ ej) € M,,(c,d) such that

min
OcRM (n.d)

17O = f, 00l = _min (1f —oll, = £ = o0l (4.2)

M,y (c,d)

Theorem 4.1. Assume that there exists a positive constant a such that
allv))? < ||v||i fordlve Mén(a,d). Let f,_ be a solution of (4.2). Then
there exists a positive constant C such that

. [T -9 )ww)|
Clf-sII< inf If=voll+ sup ———
UEM;K(G,d wEM; (6,d) ”w”
(T -Q ) (fw)l
sup — L 7 (4.3)
weM! (o.d) llell

Proof. Since M, (c,d) is a set, f . EM,(0,d) is then characterized by
the inequality

(f=fv=1.),50 YveM,(,d). 4.4

For any v € M,,(c,d), it follows from the assumption and (4.4) that
allf, - vl < s, - Ulli < f, -0, - f, -0,
=1, -0, =ty =0) + (@ f, =0 = @1, 0,

+(f ~v.f, —v)

which, together with the Cauchy-Schwarz inequality, implies

(T -9 )(fw)
allf, vl sup ————
weM), (o.d) llewll
T -Q )vw)
+ sup —_—+||f =l
weM) (0.d) llwll

Combining the above inequality with the triangle inequality

I = £ 1< 1F = oll +llo= 7,

and taking the infimum over all v € M;n(a,d) yield (4.3). This com-
pletes the proof of the theorem. []

Theorem 4.1 indicates that the total error of the best least-squares
approximation with numerical integration is bounded by the approx-
imation error of the neural network and the error of the numerical
integration. To ensure the approximation accuracy of the given neural
network, we need to choose a numerical integration with a compatible
accuracy, e.g., the composite “mid-point” numerical integration on an
adaptively refined uniform partition.

Remark 4.2. The assumption in Theorem 4.1 is known as the Marcin-
kiewicz problem in literature and has not been verified for functions
in M;n(a,d). Recently, Temlyakov [21] introduced a new technique
to systematically study this and related issues for functions in various
finite dimensional subspaces.
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5. Adaptive network enhancement (ANE) method

For a given target function f(x), let f (x, 9:) be the solution of prob-
lem (4.2). For a given tolerance € > 0, this section studies self-adaptive
method for creating a two-layer ReLU NN and a numerical integration
mesh such that the approximation accuracy is within the prescribed tol-
erance, i.e.,

ILf = £ <ell sl (5.1)

First, we consider the case that the numerical integration based on
a partition 7 is sufficiently accurate. Similar to the idea of the stan-
dard adaptive mesh-based numerical methods, we start with a two-layer
ReLU NN with a small number of neurons, solve the optimization prob-
lem in (4.2), and estimate the total error by computing a posteriori error
estimator

e=1s=1,0, /11 5.2)

If £ > ¢, we then enhance the NN by adding new neurons and this pro-
cedure repeats until (5.1) is met. This process is referred as the adaptive
network enhancement (ANE) and it generates a two-layer ReLU NN
whose approximation to f satisfies a given approximation accuracy tar-
get.

An immediate key question for the ANE method is: how many new
neurons will be added at each adaptive step? To address this issue, we
propose two network enhancement strategies. One is global and the
other is local. The global one is based on the assumption that the net-
work approximation to the target function f has a fixed convergence
rate a:

EO =11 = sl = O,

where f;") is the approximation in M,, (c.,d), n; is the number of neu-
rons of the k* NN, and « is the order of approximation. A simple
calculation suggests the following number of neurons for the next net-
work:

1y = min {an,l, [(E(k_l)/e)l/ak nk,l] } ,

where «, is an approximation to the order «. For k >3, a, =
In (£k=2) /80e=1)) /ln (mi_1/n;_3). Possible choice for a, is 1 (linear rate)
or some positive real number based on some a priori information of the
target function.

To introduce our local network enhancement strategy, we notice
that M, (e, d) is the set of continuous piece-wise linear functions with n
free hyper-planes given by (2.5). For any bounded domain Q € R¢, these
n hyper-planes plus the boundary of the domain Q form a partition,
K, ={K}, of the domain Q. Again, the partition means that union of all
subdomains of K, equals the whole domain Q and that any two distinct
subdomains of K, have no intersection. We will refer to K, = {K} as
the physical partition of the domain Q.

This observation implies that the network enhancement strategy
could make use of local errors on elements of the physical partition £,.
Specifically, let us introduce local error indicator £, for each element
Kek,:

(5.3)

1/2

Ee=lr=fil, =l X (=l )IK (5.4)

xgr€K
We then define a subset K, of K, by using either the following average

marking strategy:

lén={1<eicn;.»: > L (5.5)

where #KC,, is the number of elements of K, or the bulk marking strat-
egy: finding a minimal subset K, of K, such that
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> Ez2y Y & for e D), (5.6)

Kek, Kex,

With the subset £, the number of new neurons to be added to the NN
is equal to the number of elements in £,,.

With an accurate numerical integration, the ANE method is defined
in Algorithm 5.1.

Algorithm 5.1 Adaptive two-layer ReLU NN with a fixed 7.

Given a target function f(x) and a tolerance ¢ > 0, starting with a two-layer ReLU NN
with a small number of neurons,

(1) solve the optimization problem in (4.2);
1/2
(2) estimate the total error by computing & = < > §z > /If1l_, where K is the physi-
KeKk

cal partition of the current approximation;

(3) if & <, then stop; otherwise, go to Step (4);

(4) add new neurons to the network by using the network enhancement strategy, then
go to Step (1).

Next, we consider adaptive mesh refinement (AMR) on numerical
integration for a fixed NN. Let f (x, 9*;) be the solution of problem

(4.2) associated with the partition 7. Let 7 be a subset of T gener-
ated by using either the average or the bulk marking strategy. For each
marked element T € 7, this d-dimensional cube is subdivided into 2¢
small cubes of equal size. The new partition 7’ consists of elements in
7\ 7 and new elements generated from 7. Denote by 1 & 0;) the
solution of problem (4.2) associated with the partition 7’. For both so-
lutions f - and I based on the mesh 7 and its refinement 7, define
the following global estimators:

1/2
nf,)= < > nT(fT)2> and #(f,,)= (
TeT

where local indicators on 7' are given by

1/2
> nT<f,,>> :

TeT'

n (D=0 = f N, and n.(f)=1F =11, .7)

The following algorithm generates a numerical integration mesh
which ensures approximation accuracy of a given NN.

Algorithm 5.2 Adaptive Mesh Refinement with a fixed NN.
Given a target function f(x) and the solution of problem (4.2) on the partition 7,

(1) refine 7 by the refinement strategy to obtain a new partition 7’
(2) solve the minimization problem in (4.2) on 7';
(3) if n(f,,) <7,n(f,), then go to Step (1) with 7 =T"; otherwise, output 7.

The stopping criterion used in Algorithm 5.2 is based on whether or
not the mesh refinement on numerical integration improves approxima-
tion accuracy. When the refinement does not improve accuracy much,
the AMR stops and outputs the current mesh.

Finally, we are ready to present adaptive network enhancement
(ANE) method for a two-layer ReLU NN including AMR for numeri-
cal integration in Algorithm 5.3. The purpose of the AMR for numerical
integration is to ensure approximation accuracy with less quadrature
points than a fine uniform partition. Comparing with the ANE, the AMR
is secondary.

6. Strategies for training (iterative solvers)

The exceptional power of DNNs in approximation comes with a
price: the procedure for determining the values of the parameters is now
a problem in nonlinear optimization. This high dimensional, nonlinear
optimization problem tends to be computationally intensive and com-
plicated. Currently, it is often solved by iterative optimization methods
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Algorithm 5.3 Adaptive two-layer ReLU NN.

Given a target function f(x) and a tolerance ¢ > 0, starting with a coarse uniform partition
7, of the domain Q for numerical integration and with a two-layer ReLU NN with a small
number of neurons,

(1) solve the minimization problem in (4.2);
(2) use Algorithm 5.2 to generate a numerical integration mesh 7;
(3) solve the minimization problem in (4.2) associated with T;

1
(4) estimate the total error by computing & = ( ¥ 52) / e where K is the physi-
Kek X

cal partition of the current approximation;

(5) if & < e, then stop; otherwise, go to Step (6);

(6) add new neurons to the network by using the network enhancement strategy, then
go to Step (1).

such as gradient descent (GD), Stochastic GD, Adam, etc. (see, e.g., [10]
for a review paper in 2018 and references therein). Usually nonlinear
optimizations have many solutions, and the desired one is obtained only
if we start from a close enough first approximation. The ANE method
provides a natural process for obtaining a good initialization. This sec-
tion describes our initialization for all three stages of the ANE method.

The first stage is the beginning of the ANE method, in which we
specify the size of the NN, both input and output weights and bias,
and a partition of the domain for numerical integration. Due to the fact
that input weights and bias determine physical locations of breaking
hyper-planes, we first subdivide the domain Q by a coarse, uniform
partition and then distribute those breaking hyper-planes on the mesh
of this partition. For example, when Q = (0, 1), the two-layer NN with
2(mgy + 1) neurons use the following initial breaking lines:

x=-— and y=L

for i=0,1, ..., m.
mg mg

This breaking lines imply the following input weights and bias:

0= <(1, 0), —> and 6, = ((o, D, mL)
0

i
mg
for i =0, 1, ..., my. For numerical integration, we again start with a uni-
form partition 7 of the domain Q which, in general, is much finer than
the previous physical partition initializing the NN. Initial of the out-
put weights and bias is given by the solution of the system of linear
equations in (3.4).

The second stage is the AMR for numerical integration. For each new
partition 7, natural initial of parameters 6 is the corresponding values
of the current approximation since the NN remains unchanged.

The third stage is when the NN is enhanced by adding new neurons.
Clearly, parameters corresponding to old neurons will use the current
approximation as their initial. To initialize corresponding parameters
of new neurons, for the global enhancement strategy, one can add new
neurons randomly; or add new neurons uniformly across the domain
(i.e. set their input weights and biases with corresponding break hyper
planes uniformly subdividing the domain). For the local enhancement
strategy, we propose to make use of the subset I@,, marked in (5.5) or
(5.6). For each element K € I@,,, we add one neuron whose initial is cor-
responding to the breaking hyper-plane that passes through the centroid
of K and orthogonal to the direction vector with the smallest variance
of quadrature points in K. This direction vector may be computed by
the Principal Component Analysis method (or PCA [22]). For output
weights and biases corresponding to new neurons, a simple initial is to
set them zero. This means that the initial of the approximation is the
current approximation. A better way is to solve problem (3.4) for all
output weights and bias by using the current breaking hyper-planes for
the input weights and bias.

7. Numerical experiments

In this section, we present our numerical experiments on using ANE
to approximate various functions. In all experiments, the minimization
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Fig. 1. Results of using two-layer ReLU networks for approximating function (7.1).

problem (4.2) is solved using the Adam version of gradient descent [23].
For each run during the adaptive process, the stopping criteria for the
iterative solver is set as follows: the solver stops when the loss function
7= £l . decreases within 0.1% in the last 2000 iterations. This stop-
ping criteria is set to explore the network approximation power without
constraining the number of iterations.

7.1. Smooth function

The first test problem is a smooth function of one variable
fx)=x <e7<x7%)2/k - e_g/k> ,

which is defined on the interval Q = [0, 1]. When k = 0.01, this function
is the solution to a Poisson equation studied in [24,20]. We use this
simple toy problem to test the efficacy of the proposed ANE method.
The target approximation accuracy is set as e = 0.005. A fixed
uniform partition 7 with 1000 quadrature points is used for this ex-
periment. We start from 10 neurons for the input layer with their

(7.1)

39

break points initialized uniformly across the domain, i.e., b; =0.1i for
i=0,1,-,9. The initial network model’s output weights and biases are
set by solving the linear system in (3.4). This initial model is shown in
Fig. 1(a).

After the first run network training (solving (4.2) using the Adam
solver), the network adjusts its parameters to adapt the target function
f. The resulting optimized network model with 10 neurons is shown in
Fig. 1(b). This NN model provides a near-optimum free-knot piecewise
linear spline with 10 knots shown as the green break points in the Fig-
ure. Base on the partition of the domain with current set of break points,
we adopt the average marking strategy (5.5) to mark the elements with
errors larger than average, and then add neurons accordingly by setting
the newly added neuron’s initial biases at the centers of the elements
to be refined. We then resolve for the new output layer’s parameters
using (3.4) and trained the network for the second run. This process re-
peats until the approximation error is lower than the target ¢. The ANE
method iterates itself three runs from 10 to 13 then to 20 neurons. The
intermediate result at 13 neurons is depicted in Fig. 1(c). The ANE pro-



M. Liu, Z. Cai and J. Chen

0.0014

Computers and Mathematics with Applications 113 (2022) 34-44

0.000200
0.0012

0.000175
00010 0.000150

0.0008 0.000125

00006 0000100

0.000075
0.0004
0.000050

00002 0000025

0.0000 0.000000

00 02

04 06 08 10

00

02

(a) 10 neurons (with three marked el-

ements) elements

04

(b) 13 neurons (with seven marked

0.000040
0.000035
0.000030
0.000025
0.000020
0.000015
0.000010
0.000005

0.000000 -
0.

06 08 10 04 06 08

(¢) 20 neurons
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Table 1
Comparing adaptive neural network with fixed networks
for testing problem (7.1).

Network (neurons) # Parameters L= 7000
Fixed (20) 41 0.007644
Fixed (38) 77 0.003762
Adaptive (10-13-20) 41 0.003837

cess ends at 20 neurons, which gives a relative approximation accuracy
of £ =0.003837, falling below the target e.

In this one-dimensional problem, we utilize a fixed learning rate
of 0.001. Fig. 2(a) and 2(b) show the error per element distribution
on the physical partition generated through the iterative process. In
those two figures, red bars correspond with marked elements where
new neurons are to be added. Marked red elements are refined and the
iterative process gradually drags all elements error down to a smaller
scale with a trend to distribute the error evenly among the physical
partitions, see error distribution of the final network model in Fig. 2(c).

We further compare the performance of our adaptive network struc-
ture with a network model of fixed number of neurons. This is to check
if the adaptive process has a potential to land in a better global mini-
mum. The comparison results are illustrated in Table 1 and Fig. 3. In
particular, they show that approximation accuracy of the adaptive net-
work using ANE with 20 neurons is almost same as that of the fixed
network with 38 neurons, and is better than the fixed network structure
of the same size. This experiment indicates that fix networks might tend
to be trapped in local minimums.

Finally, we test the performance of enhancement strategy using
(5.3), and compare two methods of initialization under the global adap-
tive enhancement scheme. The first initialization method is to add new
neurons randomly and set their corresponding output weights as ze-
ros as initial; and the second method is to add new neurons uniformly
across the domain and solve (3.4) for output weights and bias. Table 2
list the results of this experiment. Due to the non-convex optimization,
one can see that different initialization strategy result in differences in
approximation results. The first initialization method is easily trapped
in local minimum under the Adam optimizer. Considering the random-
ness in the initial of newly added neurons, we repeat this test three
times and report the best result in the table. While in the second strat-
egy, we start from a better point using global uniform refinement, this
results in a better performance. However, the uniform initial strategy
during the adaptive process does not consider the error distribution
evaluated from the previous stage, which explains why it is still infe-
rior to the local error based marking and refinement strategy. For the
rest experiments, we only use the local enhancement method.

7.2. Functions with intersecting interface singularities

This section reports the numerical results for a two-dimension prob-
lem with intersecting interface singularity. Let Q = (—1,1)> and

40

- Adaptive Network(10-13-20 Neurons)

=2 1 —— Fixed Network(20 Neurons)
: - Fixed Network(38 Neurons)
_4 &

Log(Loss)
b

0 50000 100000150000 200000 250000 300000 350000 400000
Epochs

Fig. 3. Log training loss with three different network models in the first numer-
ical experiment.

Table 2
Global network enhancement and initialization strategy for testing problem

7.1).

Network (adaptive neurons) Initialization # Parameters L= 200

10-20-40 random 81 0.005221

10-20-30 uniform 61 0.004455
1.0)=r" @) (7.2)

in the polar coordinates at the origin with

cos((z/2 —o)p) - cos((0 —x /2 + p)p), if 0<6<nx/2,

@)= cos(pp) - cos((6 — = + o)p), if 7/2<0<m,
He= cos(8p) -cos((@ - — p)f),  if ©<0<3n/2,
cos((m/2 = p)B) - cos((0 = 3z/2 —6)p),  if 3zx/2<0<2r,

where g =0.1, 0 = —14.92256510455152, and p = = /4 are parameters.
The function f(r,0) (see Fig. 4(a)) is the solution of the elliptic interface
problem with intersecting interface singularity and a benchmark test
problem for adaptive finite element method (see, e.g., [25,26]).

We test the ANE method with a fixed integration mesh using 400 x
400 quadrature points. The target approximation accuracy is set as ¢ =
0.01. The ANE process starts with a small network of 20 neurons, and
the network is initialized such that the break lines are distributed evenly
in the domain, with half of them parallel to x-axis (&; =0 and b, =
—1+40.2i for i =0,---,9) and the other half parallel to y-axis (®; = z/2
and b; = -1+ 0.2(i — 10) for i = 10,---,19). See Fig. 4(b) for the initial
partition of the domain. The initial network model using this uniform
physical partition is obtained by solving the linear system in (3.4) and
is shown in Fig. 4(c). After the first run network training, the optimum
break lines corresponding to the 20-neuron two-layer ReLU network
are shown in Fig. 4(d) and the corresponding network model is plotted
in Fig. 4(e). With 20 neurons (61 parameters), the adaptive network
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Fig. 4. ANE results of using 2-layer ReLU networks for approximating function in (7.2).

can approximate the target function f in (7.2) with a relative error
£=0.038733.

To achieve the target accuracy, the ANE calculates per element er-
ror base on the automatic generated physical partition of the domain.
Elements with relative large errors are marked using the bulk mark-
ing strategy (5.6) with y; = 0.7 (see the 15 elements with blue dots
shown in Fig. 4(f)). ANE process adds the same number of neurons
as the 15 marked elements, and those new neurons are initialized as
follows: their corresponding breaking lines pass through the centroids
of marked elements, with their directions aligned with the maximum
principal directions of each geometric element. See Fig. 4(f) for the ini-
tial physical partition at the second run with the newly added neuron’s
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breaking lines drawn in light blue. The second run network training
converged at a relative error & = 0.019582 (see the generated physical
partition and marked elements in Fig. 4(g)). The ANE process stops
at 69 neurons with the corresponding physical partition and network
model plotted in Fig. 4(h) and Fig. 4(i). Notice that to calculate per el-
ement error, and to find an element’s centroid and principal direction,
we group the quadrature points located in the same element and use
the point set within the element to compute its local error, centroid and
PCA. This approximation method has an advantage of its computational
simplicity; by avoiding calculation of the exact geometric shape of each
element, this method can be easily extended to higher dimension prob-
lems or higher order activation functions.
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The effect of numerical integration for the second testing problem (7.2).

Network (# quadrature) Integration accuracy |(Z — Q)(/)|/IZ(f)|

Training accuracy |/ — /, ||, /Il Testing accuracy I/ = /. Il, /IIfl

Fixed (50x50) 0.002638
Fixed (100x100) 0.000753
Fixed (200x200) 0.000462
Fixed (400x400) 0.000370
ANE (400x400) 0.000370

0.007885 0.013187
0.008515 0.010257
0.009319 0.009877
0.009702 0.009850
0.008319 0.008476

A fixed learning rate of 10~ is adopted in this ANE process. The final
network model achieves a L2 relative error of & = 0.008476, which meets
our approximation accuracy target. The generated physical partition is
highly adapted to the target function. Notice there is a point singular-
ity around the origin in the function f, while the physical partition
obtained in the adaptive network adjusts its elements shape and size
such that the partition is dense around the singular point, this is a very
favorable property of using NN model to approximate functions with
singularities. Comparing with adaptive finite element methods (AFEMs)
(see, e.g., [26]), the ANE method has much fewer degrees of freedom
than AFEMs.

To evaluate the effect of numerical integration to the total approxi-
mation error, we tested a two-layer network of 69 neurons using varying
7 with different number of quadrature points. The results are given in
Table 3. As shown in the table, with finer integration meshes of more
number of quadrature points, the integration accuracy can be improved
(refer to the ‘Integration accuracy’ column in the table). Meanwhile,
training a network model on finer mesh is harder which results in a
lower training accuracy (see the ‘Training accuracy’ column). However,
the approximating power to the true function f is improved (see the
‘Testing accuracy’ column in Table 3). Notice here the testing accuracy
is estimated using a fine mesh 7’ of 1000 x 1000 quadrature points. The
gap between training accuracy and testing accuracy is reduced when
more number of quadrature points is adopted. This experiment also
shows that the adaptive network may achieve better approximation re-
sult compared with the fixed network of the same size, see the last two
rows in Table 3.

7.3. Functions with transition layers

The last problem we tested is a two-dimensional function with a
transition layer around a circular region:

£(x,y) = tanh (1(x2 - l)) — tanh (i) 7.3)
€ 4 4e

defined on the domain Q = [-1, 1]?. By varying e, this type of functions

shows different level of difficulties due to the presence of transition

layers. We set € =0.01 in this experiment, and the corresponding func-

tion f presents a large transition in a sharp circular zone, as shown in

Fig. 5(a).

For this problem, we ran three tests to compare the results of using
an uniform integration mesh versus adaptive mesh refinement (AMR).
(1) The first experiment utilizes an uniformly allocated 400 x 400 = 1.6 X
10° quadrature points and the ANE Algorithm 5.1 to obtain a network
model of 578 neurons with target accuracy e = 0.05. (2) The second
experiment uses Algorithm 5.3 which generates an AMR of 22201 ~ 2.2 X
10* quadrature points (as shown in Fig. 5(b)) and an adaptive NN of 578
neurons as well. The 22201 quadrature points are generated by adaptive
local mesh refinement of an initial mesh of 100 x 100 quadrature points,
using average marking strategy. We set the last run ANE process to stop
at 578 neurons to allow a fair comparison to the first experiment. (3) the
third experiment matches the number of quadrature points used in the
second experiment, but with those 150 x 150 quadrature points allocated
uniformly across the domain, and a fixed network model of 578 neurons
was tested to compare the approximation performances with the ANE
network using AMR integration mesh.

The comparison results are illustrated in Table 4. The ANE method
using AMR for numerical integration achieves better performance com-
pared with a finer uniform mesh of six times more quadrature points
and it is superior compared with the similar mesh size but evenly
distributed quadrature points. If limited computational resources are
allocated which allows only certain number of quadrature points for nu-
merical integration and network training, allocating quadrature points
using AMR might achieve better approximation performance compared
with the uniformly allocated quadrature points.

The function approximation result shown in Fig. 5(c) exhibits a cer-
tain level of oscillation which is not acceptable in some applications.
Notice that the generated physical partition (see Fig. 5(d)) does capture
the circular transition layers well when using 578 break lines. How-
ever, this partition is too dense in the region where the function does
not fluctuate much. A deeper ReLU network, which provides piece-wise
breaking lines, might work better for this testing case. We verified this
conjecture by using a three-layer ReLU network to approximate this
function. Each hidden layer was set as fixed 20 neurons which defines
a network model of 501 parameters. The relative approximation error
¢ using this three-layer ReLU network is 0.033967. Comparing to the
578 neurons and 1735 parameters we used previously in the two-layer
networks, a three-layer ReLU network of smaller size can approximate
the same function with better accuracy (see Table 5). As illustrated
in Fig. 6(a), a three-layer network can reduce the oscillation exhib-
ited in the shallow network, while archiving a better approximation
accuracy with less complicated domain partition, see Fig. 6(b) for the
physical partition generated with the three-layer network. This exper-
iment gives us insights for our follow-up work [27] on an adaptive
network enhancement method which will study the problem of generat-
ing multi-layer networks, in terms of both width and depth, in order to
approximate functions/PDEs of different characteristics accurately and
efficiently.

8. Discussion and conclusion

This paper studies a fundamental question in machine learning on
how to design the architecture of two-layer neural networks in order to
approximate functions accurately and efficiently. For a given function,
we introduce and test an adaptive network enhancement (ANE) method
that adaptively constructs a two-layer NN with a relatively small num-
ber of neurons and parameters such that its approximation accuracy
is within the prescribed tolerance. One of key components of the ANE
method for the best least-squares approximation to a given function is
the enhancement strategy which determines how many new neurons to
be added, when the current approximation is not within the given accu-
racy. To address this issue, a global and a local network enhancement
strategies are introduced and tested. The efficacy of the local enhance-
ment strategy is demonstrated numerically for several test problems in
this paper. Due to uncertainty of non-convex optimization, numerical
results also show that the local strategy is better than the global one.
Nevertheless, efficiency and robustness of both the global and local en-
hancement strategies need further numerical and theoretical studies.

To disentangle the numerical integration error and network approx-
imation error, an AMR method is proposed for automatically generating
an integration mesh which adapts itself to improve the numerical inte-
gration accuracy. The AMR method presented in the paper is suitable for
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Fig. 5. ANE with AMR results of using 2-layer ReLU networks for approximating function in (7.3).

Table 4
Networks approximation performances of uniform v.s. AMR integration mesh.
Integration mesh # quadrature # neurons Training accuracy || f — fr ||T JIAI Testing accuracy || f — fﬂ ||7, JIAN
Uniform 400x400 ANE 578 0.050552 0.050587
AMR 22201 ANE 578 0.047423 0.048771
Uniform 150x150 Fixed 578 0.052497 0.053040
Table 5
Approximation performances of a two-layer v.s. a three-layer NN.
NN structure (neurons) #Quadrature #Parameters Training accuracy || f — fr ||T JIAI Testing accuracy || f — fr, ||7, JIAN
Two-layer (578) AMR 22201 1735 0.047423 0.048771
Three-layer (20-20) uniform 150x150 501 0.033751 0.033969
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(a) a three-layer network model of 20 neurons in each
hidden layer, £ = 0.033967
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Fig. 6. Approximation results of using a three-layer ReLU network for approximating function in (7.3).

low dimensional problems and may be replaced by any adaptive inte-
gration procedure such as adaptive version of Monte Carlo, quasi-Monte
Carlo, or sparse grid, etc. if a high dimensional problem is considered.
Nevertheless, for a given function, how to adaptively choose a proper
numerical integration in the context of NN functions remains open and
requires further investigation.

Determining the values of the parameters of NNs is a problem in
non-convex optimization which is computationally intensive and com-
plicated and is a bottleneck in using NNs. Commonly used iterative
solvers for optimization in NN applications are iterative methods of the
gradient descent type. It is a common sense that it is extremely difficult,
if not impossible, to develop a computationally feasible iterative solver
that would converge to the desired global optimizer. This, in turn, im-
plies the prominent importance of a close enough first approximation
for all iterative solvers, as experienced in our numerical experiments.
The method of continuation [28] is a common way to obtain a good
initial and the ANE is a natural continuation process by itself with re-
spect to the number of neurons. In particular, weights and bias of newly
added neurons are initialized based on the implicit physical partition of
the domain Q for the NN approximation at the previous network. This
deterministic initialization strategy ensures that the starting point of
each iteration is always superior to the previous iteration when the net-
work is enhanced, and plays an essential role in training the current
network.

Experimental results for functions exhibiting intersecting interface
singularities or sharp interior layer like discontinuities show the effi-
cacy of the propose method. In the second part of the paper [7], we
extend the application of the proposed ANE method to elliptic partial
differential equation with an underlying minimization principle.
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