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1. Introduction

The Boussinesq equations have been used as a model in many geophysical applications.
They have been widely studied in both deterministic and stochastic settings. We take
random forces into account and formulate the Bénard convection problem as a system of
stochastic partial differential equations (SPDEs). The need to take stochastic effects into
account for modeling complex systems has now become widely recognized. Stochastic
partial differential equations (SPDEs) arise naturally as mathematical models for nonlinear
macroscopic dynamics under random influences. The Navier–Stokes equations are coupled
with a transport equation for the temperature and with diffusion. The system is subjected
to a multiplicative random perturbation, which will be defined later. Here, u describes the
fluid velocity field, whereas q describes the temperature of the buoyancy-driven fluid, and p
is the fluid’s pressure.

We study the multiplicative stochastic Boussinesq equations

¶tu nDu +  (u  r ) u  +  r p  =  q +  G(u) dW
¶tq kDq +  (u  r q )  =  G(q ) dW in

in (0, T )   D , (1)

(0, T )   D , (2)
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where T  >  0. The processes u : W  (0, T )   D  !  R 2  and q : W  (0, T )   D  !  R  have initial
conditions u0 and q0 in D, respectively. The parameter n >  0 denotes the kinematic viscosity
of the fluid, and k >  0 denotes its thermal diffusivity. These fields satisfy periodic boundary
conditions u(t, x +  Lvi ) =  u(t, x), q(t, x +  Lvi ) =  q(t, x) on (0, T )   ¶D, where vi, i =  1, 2
denotes the canonical basis of R  , and p  : W  (0, T )   D  !  R  is the pressure.
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In dimension 2 without any stochastic perturbation, this system has been extensively
studied with a complete picture about its well-posedness and long-time behavior. In the
deterministic setting, more investigations have been extended to the cases where n =  0
and/or k =  0, with some partial results.

If the ( L2 )2 (resp., L2) norms of u0 and q0 are square integrable, it is known that the
random system (1)–(2) is well-posed, and that there exists a unique solution (u  q ) in
C([0, T]; ( L2 )2  L2 ) \  L2 (W; ( H 1 )2  H 1 ); see, e.g., [1,2].

Numerical schemes and algorithms have been introduced to best approximate the
solution to non-linear PDEs. The time approximation is either an implicit Euler or a time-
splitting scheme coupled with a Galerkin approximation or finite elements to approximate
the space variable. The literature on numerical analysis for SPDEs is now very extensive.
In many papers, the models are either linear, have global Lipschitz properties, or, more
generally, have some monotonicity property. In this case, the convergence was proven to
be in mean square. When nonlinearities are involved that are not of Lipschitz or monotone
type, then a rate of convergence in mean square is more difficult to obtain. Indeed, because
of the stochastic perturbation, one may not use the Gronwall lemma after taking the
expectation of the error bound, since it involves a nonlinear term that is often quadratic;
such a nonlinearity requires some localization.

In a random setting, the discretization of the Navier–Stokes equations on the torus has
been intensively investigated. Various space–time numerical schemes have been studied
for the stochastic Navier–Stokes equations with a multiplicative or an additive noise, where,
in the right hand side of (1) (with no q), we have either G(u) dW or dW. We refer to [3–7],
where the convergence in probability is stated with various rates of convergence in
a multiplicative setting for a time implicit Euler scheme, and [8] for a time splitting
scheme. As  stated previously, the main tool used to obtain the convergence in
probability is the localization of the nonlinear term over a space of large probability. We
studied the strong (that is, L2 (W)) rate of convergence of the time-implicit Euler scheme
(resp., space–time-implicit Euler scheme coupled with finite element space
discretization) in our previous papers [9] (resp., [10]) for an H1-valued initial condition.
The method is based on the fact that the solution (and the scheme) have finite moments
(bounded uniformly on the mesh). For a general multiplicative noise, the rate is
logarithmic. When the diffusion coefficient is bounded (which is a slight extension of an
additive noise), the supremum of the H1-norm of the solution has exponential moments; we
used this property in [9,10] to obtain an explicit polynomial strong rate of convergence.
However, this rate depends on the viscosity and the strength of the noise, and is strictly
less than 1/2 for the time parameter (resp., less than 1 for the spatial one). For a given
viscosity, the time rates on convergence increase to 1/2 when the strength of the noise
converges to 0. For an additive noise, if the strength of the noise is not too large, the
strong (L2 (W)) rate of convergence in time is the optimal one, and is almost 1/2 (see [11]).
Once more, this is based on exponential moments of the supremum of the H1-norm of the
solution (and of its scheme for the space discretization); this enabled us to have strong
polynomial time rates.

In the current paper, we study the time approximation of the Boussinesq Equations (1)
and (2) in a multiplicative setting. To the best of our knowledge, it is the first result where a
time-numerical scheme is implemented for a more general hydrodynamical model with a
multiplicative noise. We use a fully implicit time Euler scheme and once more assume that
the initial conditions u0 and q0 belong to H 1 ( D )  in order to prove a rate of convergence
in L 2 ( D )  uniformly in time. We prove the existence of finite moments of the H1-norms of
the velocity and the temperature uniformly in time. Since we are on the torus, this is quite
easy for the velocity. However, for the temperature, due to the presence of the velocity in
the bilinear term, the argument is more involved and has to be carried out in two steps. It
requires higher moments on the H1-norm of the initial condition. The time regularity of
the solutions u, q is the same as that of u in the Navier–Stokes equations. We then study
rates of convergence in probability and in L2 (W). The rate of convergence in probability is
optimal (almost 1/2); we have to impose higher moments on the initial conditions than
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what is needed for the velocity described by stochastic Navier–Stokes equations. Once
more, we first obtain an L2 (W) convergence on a set where we bound the L2 norm of the
gradients of both the velocity and the temperature. We deduce an optimal rate of
convergence in probability that is strictly less than 1/2. When the H1-norm of the initial
condition has all moments (for example, it is a Gaussian H1-valued random variable), the
rate of convergence in L2 (W) is any negative exponent of the logarithm of the number of
time steps. These results extend those established for the Navier–Stokes equations subject to
a multiplicative stochastic perturbation.

The paper is organized as follows. In Section 2, we describe the model and the
assumptions on the noise and the diffusion coefficients, and describe the fully implicit time
Euler scheme. In Section 3, we state the global well-posedeness of the solution to (1)–(2),
moment estimates of the gradient of u and q uniformly in time and the existence of the
scheme. We then formulate the main results of the paper about the rates of the convergence in
probability and in L2 (W) of the scheme to the solution. In Section 4, we prove moment
estimates in H 1 of u and q uniformly on the time interval [0, T ] if we start with more regular
(H1) initial conditions. This is essential in order to be able to deduce a rate of convergence
from the localized result. Section 5 states the time regularity results of the solution (u, q )
both in L 2 ( D )  and H 1 ( D );  this a crucial ingredient of the final results. In Section 6, we
prove that the time Euler scheme is well-defined and prove its moment estimates in L2

and H1 . Section 7 deals with the localized convergence of the scheme in L2 (W). This
preliminary step is necessary due to the bilinear term, which requires some control of the
H 1 norm of u and q. In Section 8, we prove the rate of convergence in probability and in
L2 (W). Finally, Section 9 summarizes the interest of the model and describes some further
necessary/possible extensions of this work.

As usual, except if specified otherwise, C  denotes a positive constant that may change
throughout the paper, and C ( a ) denotes a positive constant depending on some parameter a.

2. Preliminaries and Assumptions

In this section, we describe the functional framework, the driving noise, the evolution
equations, and the fully implicit time Euler scheme.

2.1. The Functional Framework
Let D  =  [0, L]2 with periodic boundary conditions L p  : =  L p ( D )2  (resp., Wk,p : =

W k, p (D)2) be the usual Lebesgue and Sobolev spaces of vector-valued functions endowed
with the norms k  k p (resp., k  k k,p ).

Let V 0 : =  f u  2  L 2  : div(u) =  0 on Dg. Let P  : L 2  !  V 0 denote the Leray projection,
and let A  =   P D  denote the Stokes operator, with domain Dom( A) =  W2,2 \  V 0 .

Let A  =   D acting on L2 ( D ).  For any non-negative real number k, let

H k =  Dom
 

A 2  , V k =  Dom
 

A 2  , endowed with the norms k  kH k and k  kV k .

Thus, H 0 =  L 2 ( D )  and H k =  Wk,2. Moreover, let V  1 be the dual space of V 1 with respect
to the pivot space V 0 , and h, i  denote the duality between V 1 and V  1.

Let b : (V 1 )3 !  R  denote the trilinear map defined by

b(u1, u2, u3) : =  
Z

D 

 
u1 (x)  r u 2 ( x )

 
 u3 (x) dx.

The incompressibility condition implies that b(u , u2, u3) =   b(u , u3, u2) for u 2  V 1 ,
i =  1, 2, 3. There exists a continuous bilinear map B : V 1  V 1 !  V  1 such that

hB(u1, u2), u3 i =  b(u1, u2, u3), for all ui 2  V 1 , i =  1, 2, 3.
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Therefore, the map B satisfies the following antisymmetry relations:

hB(u1, u2), u3 i =   hB(u1, u3), u2 i, hB(u1, u2), u2 i =  0 for all ui 2  V 1 . (3)
For u, v 2  V 1 , we have B(u, v) : =  P

 
u  r v .

Furthermore, since D  =  [0, L]2 with periodic boundary conditions, we have (see e.g., [12])

hB(u, u), A u i  =  0, 8u 2  V 2 . (4)

Note that, for u 2  V 1 and q1, q2 2  H1 , if ( u . r ) q  =  å i = 1 , 2  ui ¶iq, we have

h[u.r]q1 , q2 i =   h[u.r]q2 , q1 i, (5)

so that h[u.r]q , q i  =  0 for u 2  V 1 and q 2  H1 .
In dimension 2, the inclusions H 1  L p and V 1  L p  for p 2  [2, ¥ )  follow from the

Sobolev embedding theorem. More precisely, the following Gagliardo–Nirenberg inequality
is true for some constant Cp :

kukL p  C p kA 2 ukL2 kuk1 a for a =  1   
p

, 8u 2  V 1 . (6)

Finally, let us recall the following estimate of the bilinear terms ( u . r ) v  and ( u . r ) q .

Lemma 1. Let a, r  be positive numbers and d 2  [0, 1) be such that d +  r  >  1 and a +  d +  r   1.
Let u 2  V a , v 2  V r  and q 2  H r ;  then,

k A d P [ (u.r )v ]kV 0   Ck Aa ukV 0 k Ar vkV 0 ,                                         (7)

k A d [ (u.r)q ]k H 0   Ck Aa ukV 0 kAr qkH 0 ,                                         (8)

for some positive constant C  : =  C(a, d, r ) .

Proof. The upper estimate (7) is Lemma 2.2 in [13]. The argument, which is based on the
Sobolev embedding theorem and Hölder ’s inequality, clearly proves (8).

2.2. The Stochastic Perturbation

Let K  (resp., K) be a Hilbert space and let (W (t), t  0) (resp., (W (t), t  0) )  be
a K-valued (resp., K-valued) Brownian motion with covariance Q (resp., Q), which is a
trace-class operator of K  (resp., ˜) such that Qz j =  qjz j (resp., Qz j =  qjz j), where fz jgj0

(resp., fz jgj0) is a complete orthonormal system of K  (resp., ˜), qj, qj >  0, and Tr(Q) =  å j 0
qj <  ¥  (resp., Tr(Q) =  å j 0  qj <  ¥ ) .  Let fb jgj0 (resp., fb jgj0) be a sequence of
independent one-dimensional Brownian motions on the same filtered probability space
(W, F ,  ( F t ,  t  0), P). Then,

W (t) =  å  p q j  b j (t) z j,
j0

W (t) =  å  
q

q j  b j z j.
j0

For details concerning these Wiener processes, we refer to [14].
Projecting the velocity on divergence-free fields, we consider the following SPDEs for

processes modeling the velocity u(t) and the temperature q (t). The initial conditions u0
and q0 are F0-measurable, taking values in V 0 and H0 , respectively, and

¶t u(t) +  n Au(t) +  B(u(t), u(t))dt =  P(q ( t )v2 ) +  G(u(t)) dW(t),                  (9)
¶t q(t) +  k Aq (t ) +  (u ( t ) . r ) q ( t )  dt =  G(q (t)) dW(t),                                         (10)

where n, k are strictly positive constants, and v2 =  (0, 1) 2  R2 .
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We make the following classical linear growth and Lipschitz assumptions on the
diffusion coefficients G and G. For technical reasons, we will have to require u0 2  V 1 and
q 2  H 1 and prove estimates similar to (19) and (20), raising the space regularity of the
processes by one step in the scale of Sobolev spaces. Therefore, we have to strengthen the
regularity of the diffusion coefficients.

Condition (C-u) (i) Let G : V 0 !  L ( K ; V 0 )  be such that

kG(u)kL(K ,V 0 )  K0 +  K1kukV 0 ,

kG(u1)   G(u2 )kL(K ,V 0 )  L1ku1 u2jV0 ,

8u 2  V 0 , (11)

8u1, u2 2  V 0 . (12)

(ii) Let also G : V 1 !  L ( K ; V 1 )  satisfy the growth condition

kG(u)kL(K ;V 1 )  K2 +  K3kukV1 , 8u 2  V 1 . (13)

and

Condition (C-q) (i) Let G : H 0 !  L ( K ;  H 0 ) be such that

kG(q )kL(K , H 0 )  K0 +  K1kqk2 
0 ,

kG(q1 )   G(q2 )kL(K , H 0 )  L1kq1 q2k2 
0 ,

8q 2  H0, (14)

8q1, q2 2  H0 . (15)

(ii) Let also G : H 1 !  L ( K ;  H 1 ) satisfy the growth condition

kG(q )kL(K ; H 1 )  K2 +  K3kqkH1 , 8q 2  H1. (16)

2.3. The Fully Implicit Time Euler Scheme
Fix N  2  f1, 2, ...g, let h : =  T  denote the time mesh, and, for j =  0, 1, . . . , N , set tj : =  j T  .

The fully implicit time Euler scheme fuk ; k =  0, 1, ..., Ng and fq k ; k =  0, 1, ..., N g is defined
by u0 =  u0, q0 =  q0, and, for j  2  V 1 , y  2  H 1 and l =  1, ..., N ,

ul ul 1 +  hnAul +  hB
 

ul , ul , j
 
=

 
P q l  1v2, j ) h

+  
 
G(ul  1 )[W(tl ) W(tl  1 )] , j ) , (17)

q l q l  1 +  hk Aq l +  h[ul 1 .r ] q l ,  y      =  G(q l  1 )[W(tl ) W(tl  1 )] , j ) . (18)

3. Main Results
In this section, we state the main results about the well-posedness of the solutions

(u, q), the scheme fuk ; k =  0, 1, ..., Ng and the rate of the convergence of the scheme
f(uk , qk ); k =  0, 1, ..., Ng to (u, q).

3.1. Global Well-Posedness and Moment Estimates of (u, q )

The first results state the existence and uniqueness of a weak pathwise solution (that is
a strong probabilistic solution in the weak deterministic sense) of (9) and (10). It is proven
in [1] (see also [2]).

Theorem 1. Let u0 2  L2 p (W; V 0 ) and q0 2  L2 p (W; H 0 ) for p =  1 or p 2  [2, ¥ ) .  Let the
coefficients G and G satisfy the conditions (C-u)(i) and (C-q)(i), respectively. Then, Equations (9)
and (10) have a unique pathwise solution, i.e.,

•  u (resp., q) is an adapted V0-valued (resp., H0-valued) process that belongs a.s. to L2 (0, T ; V 1 )
(resp., to L2 (0, T; H1 ));
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• P  a.s. we have u 2  C([0, T]; V 0 ), q 2  C(0, T]; H 0 ) and

 
u(t), j + n  

Z t  
A 2  u(s), A 2  j d s  +  

Z t

[u(s)  r ] u ( s ) ,  j d s0
Z t

0
Z t

=  u0, j )  + Pq (t)v2 , j ) d s  + j ,  G(u(s))dW (s) ,
Z t Z t

q(t), y  + k A 2  q (s), A 2  y  ds + [u(s)  r ] q ( s ) ,  y  ds
0

Z t
0

=  q , y )  + f ,  G(q (s))dW (s) ,
0

for every t 2  [0, T ] and every j  2  V 1 and y  2  H1 .

Furthermore,

E
 

sup ku(t)k2p +  
Z T  

kA
1 

u(t)k2 
0 1 +  ku(t)k2( p 1)dt

 
 C

 
1 +  E(ku0k2 p , (19)

t2[0,T]

E
 

sup kq(t)k2p +  
Z T  

kA
1 

q(t)k2 
0 1 +  kq(t)k2( p 1)dt

 
 C

 
1 +  E(kq0k2 p . (20)

t2[0,T]

The following result proves that, if u0 2  V 1 , the solution u to (9) and (10) is more
regular.

Proposition 1. Let u0 2  L2 p (W; V 1 ) and q0 2  L2 p (W; H 0 ) for p =  1 or some p 2  [2, ¥ ) ,  and let
G satisfy condition (C-u) and G satisfy condition (C-q). Then, the solution u to (9) and (10)
belongs a.s. to C([0, T]; V 1 ) \  L2 ([0, T]; V 2 ). Moreover, for some constant C,

E
 

sup ku(t)k2p +  
Z T

k Au(t)k2 
0 1 +  kA

1 
u(t)k2( p 1) dt

 
 C1 +  E

 
ku0k2p +  kq0k2p . (21) t2[0,T]

The next result proves similar bounds for moments of the gradient of the temperature
uniformly in time.

Proposition 2. Let u0 2  L8 p+ e (W; V 1 ) and q0 2  L8 p+e (W; H 1 ) for some e >  0 and p =  1 or
p 2  [2, + ¥ ) .  Suppose that the coefficients G and G satisfy the conditions (C-u) and (C-q). There
exists a constant C  such that

E
h 

sup kA 2 q(t)k2p +  
Z T  

kAq (s)k2     kA 2 q(s)k2( p 1) ds
i 

 C. (22)
tT 0

3.2. Global Well-Posedness of the Time Euler Scheme
The following proposition states the existence and uniqueness of the sequences

fuk gk=0,...,N and fq k gk=0,...,N .

Proposition 3. Let condition (G-u)(i) and (C-q)(i) be satisfied, u0 2  V 0 and q0 2  H 0 a.s. The
time fully implicit scheme (17) and (18) has a unique solution ful gl =1,...,N 2  V 1 , fq l gl =1,...,N 2
H  .

3.3. Rates of Convergence in Probability and in L2 (W)

The following theorem states that the implicit time Euler scheme converges to the pair
(u, q ) in probability with the “optimal” rate “almost 1/2”. It is the main result of the paper.
For j =  0, ..., N , set ej : =  u(t j )      uj and ej : =  q (t j )      q j; then, e0 =  e0 =  0.
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Theorem 2. Suppose that the conditions (C-u) and (C-q) hold. Let u0 2  L32+ e (W; V 1 ) and
q0 2  L32+e (W; H 1 ) for some e >  0, u, q be the solution to (9) and (10) and fu j , q jgj=0,...,N be the
solution to (17) and (18). Then, for every h 2  (0, 1), we have

lim P
 

1
max keJk2 

0 +  keJk2 
0 
 
+  

T  

j = 1 
kA 2 ejk2 

0 +  kA 2 ejk2 
0 

 
 N  h

 
=  0. (23)

We finally state that the strong (i.e., in L2 (W)) rate of convergence of the implicit time
Euler scheme is some negative exponent of ln N. Note that, if the initial conditions u0 and
q0 are deterministic, or if their V 1 and H1-norms have moments of all orders (for example, if
u0 and q0 are Gaussian random variables), the strong rate of convergence is any negative
exponent of ln N. More precisely, we have the following result.

Theorem 3. Suppose that the conditions (C-u) and (C-q)(i) hold. Let u 2  L2q + e (W; V 1 ) and
q0 2  L2q +e (W; H 1 ) for q 2  [5, ¥ )  and some e >  0. Then, for some constant C  such that

E
 

1
max keJk2 

0 +  keJk2 
0 
 
+  

N  j = 1 
kA 2 ejk2 

0 +  kA 2 ejk2 
0 

 
 C

 
ln( N )  (2q 1 + 1 )      (24)

for large enough N.

4. More Regularity of the Solution

4.1. Moments of u in L ¥ (0 ,  T ; V 1 )

In this section, we prove that, if u0 2  V 1 and q0 2  H0 , the H1-norm of the velocity has
bounded moments uniformly in time.

Proof of Proposition 1. Apply the operator A 2  to (9) and use (formally) Itô’s formula for
the square of the k.kV0 -norm of A 2  u(t). Then, using (4), we obtain

kA 2 u(t)k2 
0 +  2n 

Z

0

t 
kAu(s)k2 

0 ds =  kA 2 u0k2 
0 +  2 

Z

0

t  
A 2  Pq (s)v2 , A 2  u(s)ds (25)

t t
+  2 

0
A 2  G(u(s))dW(s), A 2  u(s) +  

0 
kA 2 G(u(s))kL(K ;V 0 )  Tr(Q)ds.

Let tM  : =  infft : ku(t)kV 1  Mg; using (13), integration by parts and the Cauchy–Schwarz
and Young inequalities, we deduce, for M >  0 and t 2  [0, T],

Z t ^ t
E  kA 2 u(t ^  tM )kV 0 +  2n kAu(s)kV 0 ds      E  ku0kV0

 Z t ^ t  Z t ^ t
+  2E kq (s)kH0 k Au(s)kV 0 ds +  Tr( Q)E K2 +  K3 ku(s)kV 1     ds

Z t ^ t  Z t ^ t
E  ku0kV0 +  n kAu(s)kV 0 ds +      E kq (s)kH0 ds +  K2 T

Z t      
+  K 3 T E  sup ku(t)k 0       +  K3 E  kA 2 u(s ^  tM )k 0      ds.

t2[0,T]

Indeed the stochastic integral in the right hand side of (25) is a square integrable, and hence a
centered martingale. Neglecting the time integral in the left hand side, using (19) and the
Gronwall lemma, we deduce

sup sup E A 2  ku(t ^  tM )k2 
0 

 
 C  <  ¥ . (26)

M t2[0,T]
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As M !  ¥ ,  this implies that E
 R

 
T  kAu(s)k2 

0 ds
 
<  ¥ .

Furthermore, the Davis inequality and Young’s inequality imply

Z s ^ t
E  sup A 2  G(u(r))dW(r), A 2  u(r)

st      0

n  Z t o 1

 3E kA 2 u(r ^  tM )kV 0  Tr(Q) kA 2 G(u(r ^  tM ))kL ( K ;V 0 ) dr

n Z t o 1

 3E  sup kA 2 u(s ^  tM )k 0      Tr(Q) [K2 +  K3ku(s ^  tM )k 1 ]ds
st

 Z t
E  sup kA 2 u(s ^  tM )k 0       +  9Tr(Q)E [K2 +  K3ku(r ^  tM )k 1 ds .

st

The upper estimates (19), (20), (25) and (26) imply that, for some constant C  depending on
E (  T      ku(t)kV 0 +  kA 2 u(t)k2 

0 +  kq (t)kH0     ds <  ¥ ,

Z T ^ t
sup E supkA 2 u(t ^  tM )k 0 + kAu(s)k 0 ds

M                  tT
Z

 C  +  C E kA 2 u(t)k2     +  kq(t)k2 ds     <  ¥ .
0

As M !  ¥ ,  we deduce

 Z T
E  sup kA 2 u(t)k 0       +  E kAu(s)k 0 ds      C  <  ¥ .

t2[0,T]

This proves (21) for p =  1.
Given p 2  [2, ¥ )  and using Itô’s formula for the map x !  xp in (25), we obtain

kA 2 u(t ^  tM )k2 p +  2pn 
Z t ^ tM  

k Au(s)kV 0 kA 2 u(s)k2( p 1)ds =  kA 2 u0k2p

+  2p 
Z

0

t^tM  
A

1  
Pq (s)v2 , A

1  
u(s)

 
kA

1 
u(s)k2( p 1)ds

+  2p
t^ tM  

A 2  G(u(s))dW (s), A 2  u(s)
 
kA 2 u(s)k2( p 1)

+  pTr(Q) 
Z t ^ tM 

kG(u(s)kL(K ;V 1 ) k A 2 u(s)k2( p 1)ds

+  2p(p 1)Tr(Q) 
Z t ^ tM  

k
 

A 2  G(u(s))
 

A 2  u(s)k2 kA 2 u(s)k2( p 2)ds. (27)
0

Integration by parts and the Cauchy–Schwarz, Hölder and Young inequalities imply that

 
Z t 

A 2  Pq (s)v2 , A 2  u(s)k A 2 u(s)k2( p 1)ds  
Z 

k Au(s)kV 0 kq (s)kH0 kA 2 u(s)k2( p 1)ds

 
n  Z t 

k Au(s)kV 0 kA 2 u(s)k2( p 1) ds
o

2 
n  Z t 

kq(s)k2 
0 kA 2 u(s)k2( p 1) ds

o
2

 
2 

Z t 
kAu(s)k2 

0 kA
1 

u(s)k2( p 1)ds +  
2pn 

Z t 
kq(s)k2 

0 kA
1 

u(s)k2( p 1)ds

 e 
Z t

kAu(s)k2 kA 2 u(s)k2( p 1)ds +  C
Z t

kq(s)k2p ds +  C
Z t

kA 2 u(s)k2p ds. (28)
0 0 0
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Since ap 1  1 +  ap for any a  0, the growth condition (13) implies that

Z

0

t 
k A 2 G(u(s))kL(K ,V 0 ) k A 2 u(s)k2( p 1)ds

t 
K2 +  K3ku(s)k2 

0 +  K3 k A 2 u(s)k2 
0 k A 2 u(s)k2( p 1)ds

Z T Z t
 C  T  + ku(s)k + kA 2 u(s)k ds . (29)

0 0

Furthermore, since 
 
k A 2 G(u(s))A 2 u(s)k2 

0  [K2 +  K3ku(s)k2 
1 ]kA 2 u(s)k2 

0 , the upper
estimate of the corresponding integral is similar to that of (29). Since the stochastic in-
tegral t^ tM       A

1  
G(u(s))dW(s), A

1  
u(s) ku(s)k2( p 1)     is square integrable, it is centered.

Therefore, (27) and the above upper estimates (28) and (29) imply that

sup Ek A 2 u(t ^  tM )k2 p +  pn 
Z

0

t^tM 
k Au(s)kV 0 kA 2 u(s)k2( p 1)

 C T  +  E
 Z t 

ku(s)k2p +  kq(s)k2p ds
 
+  

Z t 
E

 
kA

1 
u(s ^  t  )k2p ds.

0 0

Using Gronwall’s lemma we obtain

sup sup E
 
k A 2 u(s ^  tM )k2 p  =  C  <  ¥ , (30)

M     t2[0,T]

sup E
 Z T ^ t M  

kAu(s)k2 
0 kA

1 
u(s)k2( p 1)ds

 
=  C  <  ¥ . (31)

M

Finally, using the Davis inequality, the Hölder and Young inequalities, we deduce

E
 
sup 2p

 Z s ^ tM   
A 2  G(u(r))dW(r), A 2  u(r)k A 2 u(r)k2( p 1)

s2[0,t] 0

n  Z t ^ t o 1

 6p E
0

Tr(Q)k A 2 G(u(s))kL(K ;V 0 ) k A 2 u(s)kV 0 ds

 6p Tr(Q) 
1 

E sup k A
1 

u(s)kp 
0

st^ tM

 
n  Z t 

kA
1 

G(u(s ^  tN ) )kL ( K ; V 0 ) k A
1  

u(s ^  tM )k2 p 2ds
o 1

 
1

E sup kA 2 u(s)k2p 

 
+  C E 1  +  

Z t 
ku(s)k2p ds +  

Z t 
kA 2 u(s)k2p ds.     (32)

s2[0,t^tM ] 0 0

The upper estimates (27), (19) and (32) imply that

sup E sup kA 2 u(s)k2p

M             s2 [0,T ^ t  ]

 C
h

1 +  sup E
 Z T  

kq(s ^  tM )k2 p +  ku(s ^  tM )k2 p ds
i 

<  ¥ .  M

As M !  ¥  in this inequality and in (31), the monotone convergence theorem concludes
the proof of (21).

4.2. Moment Estimates of q in L ¥ (0 ,  T; H 1 )

We next give upper estimates for moments of sup kA 2 q (t)kH0 , i.e., prove Propo-
sition 2.
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However, since h[u(s).r]q (s), A q ( s ) i  =  0, unlike what we have in the proof of the
previous result, we keep the bilinear term. This creates technical problems and we proceed
in two steps. First, using the mild formulation of the weak solution q of (10), we prove that the
gradient of the temperature has finite moments. Then, going back to the weak form, we prove
the desired result.

Let fS(t)gt 0 be the semi-group generated by  n A, fS(t)gt 0 be the semi-group
generated by  k A, which is S(t ) =  exp( nt A), and S(t ) =  exp( k t A) for every t  0. Note
that, for every a >  0,

k Aa S(t)kL(V 0 ;V 0 )  Ct  a, 8t >  0 (33)

k A a Id S(t ) kL(V 0 ;V 0 )   Cta ,      8t >  0. (34)

Similar upper estimates are valid when we replace A  with A, S(t ) with S(t ) and V 0 with
H0 .

Note that if u0 2  L2 (W; V 1 ) and q0 2  L2 (W; H0 ), we deduce u 2  L2 (W; C([0, T ]; V 0 ) \
L ¥ ( [0,  T ]; V 1 )) and q 2  L2 (W; C([0, T]; H 0 ) )  \  L2 (W  [0, T]; H1 ). We can write the solu-
tions of (9) and (10) in the following mild form:

Z t Z t
u(t) =  S(t)u  S(t s)B(u(s), u(s)) ds + S(t s) P q ( t )v ds

Z t
0 0

+ S(t s)G(u(s))dW (s), (35)
0

Z t Z t
q (t) =  S(t)q  S(t s) [u(s ).r ]q ( s ) ds + S(t s)G(q (s))dW (s), (36)

0 0

where the first equality holds a.s. in V 0 and the second one in H0 .
Indeed, since kAa ukV 0  Ck A 2  uk2a ku(s)k1 2a, the upper estimate (7) for d +  r  >  1 , d

+  a +  r  =  1 and the Minkowski inequality imply that

 Z t Z t
S(t s)B(u(s), u(s))ds k A A B(u(s), u(s))k 0 ds

0 0

 C  
0

t
(t s)  d kAa u(s)kV 0 k A r u(s)kV 0 ds

t
 C  sup ku(s)k 1 (t s) ds

s2[0,t]

Since kS(t)kL(V 0 ;V 0 )  1, it is easy to see that

 Z t Z t
S(t s)Pq ( t )v ds  C kq(t)k 0 ds.

0 0

Furthermore,

 Z t  Z t
E  S(t s)G(u(s))dW (s)  Tr( Q)E [K +  K  ku(t)k ds     <  ¥ .

0 0

Therefore, the stochastic integral 
R t S(t s)G(u(s))dW (s) 2  V 0 a.s., and the identity (35)

is true a.s. in V 0.
A  similar argument shows that (36) holds a.s. in H0 . We only show that the convolution

involving the bilinear term belongs to H0 . Using the Minkowski inequality and the upper
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estimate (8) with positive constants d, a, r  such that a, r  2  (0, 1 ), d +  r  >  1 and d +  a +  r  =
1, we obtain

 
Z t 

S(t s)[(u(s).r )q (s) ]ds  
Z t 

k Ad S(t s) A  d [ (u(s).r )q (s) ]k ds
0

Z
H 0

 C (t s)  d kAa u(s)kV 0 k A r q (s)k H 0 d s

 C  sup ku(s)k sup kq(s)k1 2r
 Z t

(t s)      1 r  ds
1 r  Z t 

kA 2 q(s)k2     ds
r 

<  ¥ ,
s2[0,t] s2[0,t] 0 0

where the last upper estimate is deduced from Hölder ’s inequality and 1 r  <  1.

The following result shows that, for fixed t, the L2-norm of the gradient of q (t) has
finite moments.

Lemma 2. Let p 2  [0, + ¥ ) ,  u0 2  L4 p + e (W; V 1 ) and q0 2  L4 p+e (W; H 1 ) for some e 2  (0, 1 ).
Let the diffusion coefficient G and G satisfy the condition (C) and (C), respectively. For every N, let t N

: =  infft  0 : kA
1 

q (t)kH0  N g ̂  T ; then,

sup sup E
 
kA 2 q(t ^  tN )k2 p  <  ¥ . (37)

N > 0  t2[0,T]

Proof. Write q (t) using (36); then, kA 2 q (t)kH0  å i = 1  T  (t), where

 Z t
T1 (t) =  kA 2 S(t)q0kH0 , T2 (t) =  A 2  S(t s)[(u(s).r )q (s) ]ds 

0
,

 Z t
T  (t ) =  A 2  S(t s)G(q (s))dW (s) .

0

The Minkowski inequality implies that, for b 2  (0, 2 ),

T2 (t)  
Z

0

t 
kA

1 
S(t s)[(u(s).r )q (s) ]k H 0  ds

 
0

t 
kA1 b S(t s)kL ( H 0 ; H 0 ) k A ( 1  b ) [ (u(s) .r )q (s )k H 0  ds.

Apply (8) with d =  2   b, a =  2 and r  2  (b, 2 ). A  simple computation proves that
k A r  f kH0  kA 2 f kH0 k f kH0 for any f 2  H1 . Therefore,

k A ( 2  b ) [ (u(s).r)q (s) ]k H 0   Ck A 2  u(s)kV 0 k A r q (s)k H 0

 Ck A 2  u(s)kV 0 kA 2 q (s)k2r kq(s)k1 2r .

This upper estimate and (33) imply that

T2 (t)  C  sup kA 2 u(s)kV 0 sup kq(s)k1 2r 
Z t

(t s)  1+ b k A 2 q (s)k2r ds.
s2[0,T] s2[0,t]

For p 2  [1, ¥ ) ,  Hölder ’s inequality with respect to the measure (t s)  (1 b)1[0,t) (s)ds
implies that

T  (t)2 p  C  sup kA 2 u(s)k2p sup kq(s)k2p(1 2r )
 Z t

(t s)  (1 b)ds
2p 1

s2[0,t] s2[0,t] 0

 
 Z t

(t s)  (1 b) kA
1 

q(s)k4 pr ds.
0
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Let p1 =  2(1 r ) , p2 =  2(1 r )  and p3 =  2r . Then, p 
  +  p 

  +  p 
  =  1, 4r p p3 =  2p and

pp1 =  p(1 2r) p2 : =  p. Young’s and Hölder ’s inequalities imply that

T2 (t)2 p  C
h 1 

sup kA 2 u(s)k2p +  
1 

sup kq(s)k2p

s2[0,t] s2[0,t]

+  
1  Z t

(t s)  1+ b k A
1 

q(s)k2p ds
 Z t

(t s)  1+b ds
p3  1 i

.
3 0 0

Note that the continuous function r  2  (0, 2 ) !  2(1 r )  increases with l i m r ! 0  
2(1 r )  =  2.

Given e >  0, choose r  2  (0, 2 ) close enough to 0 to have 2p =  2p 2(1 r )  =  4p +  e, and then
choose b 2  (0, r ) .  The above computations yield

T2 (t)2 p  C      sup kA 2 u(s)k4 p+e +  sup kq (s)k4 p+e

s2[0,t] s2[0,t]

+  C  
Z t

(t s)  1+ b k A
1 

q(s)k2p ds. (38)
0

Finally, Burhholder’s inequality, the growth condition (16) and Hölder ’s inequality
imply that, for t 2  [0, T],

 Z t ^ t
E  A 2  S(t s)G(q (s))dW (s)

0
 Z t ^ t

 Cp Tr(Q)     E   
0

kA 2 G(q (s))kL(K ;
H

0 ) ds
t ^ t

 Cp     Tr(Q)     E  [K2 +  K3kq (s)k 0 +  K3 k A 2 q (s)k 0     ds

C( p, K2 , K3 , Tr(Q))T p
h

1 +  E
 

sup kq(s)k2p 
i

s2[0,T]

+  C p
 

Tr(Q)p K3
p T p 1 

Z

0

t 
E

 
kA

1 
q(s ^  tN )k2 p ds. (39)

The upper estimates (38), (39) and T1 (t)  kA 2 q0kH0      kq0kH1 used with t ^  t N
instead of t imply that, for every t 2  [0, T],

E
 
kA 2 q(t ^  tN )k2 p   Cp

h
1 +  Ek A 2  q0k2p +  sup k A 2 u(s)k4 p+e +  sup kq (s)k4 p+ e

i

s2[0,T] s2[0,T]

+  C p 

Z

0

t 
(t s)  1 + b +  K3 T p  1 E

 
kA

1 
q(s ^  tN )k2 p ds,

where the constant C p does not depend on t and N. Theorem 1, Proposition 1 and the
version of Gronwall’s lemma proved in the following lemma 3 imply that (37) for some
constant C  depending on E(ku0 k4 p+e ) and E(kq0 k4 p+e ). The proof of the Lemma is com-
plete.

The following lemma is an extension of Lemma 3.3, p. 316 in [15]. For the sake of
completeness, its proof is given at the end of this section.

Lemma 3. Let e 2  (0, 1), a, b, c be positive constants and j  be a bounded non-negative function
such that Z

j ( t )   a + b +  c(t s)  1 + e     j ( s )  ds, 8t 2  [0, T]. (40)
0

Then, supt2[0,T] j ( t )   C  for some constant C  depending on a, b, c, T  and e.

Proof of Proposition 2. We next prove that the gradient of the temperature has bounded
moments uniformly in time.
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We only prove (22) for p 2  [2, + ¥ ) ;  the other argument is similar and easier.
Applying the operator A 2  to Equation (10), and writing Itô’s formula for the square of

the corresponding H0-norm, we obtain

Z Z
kA 2 q(t)k2 

0 +  2k 
0 

kAq (s)k2 
0 ds =  kA 2 q0k2 

0 2 
0 

h(u(s).r )q (s ), Aq (s) ids
t t

+  2 A 2  G(q (s))dW(s), A 2  q (s) +  Tr(Q) kA 2 G(q (s))k ds.
0 0

Then, apply Itô’s formula for the map x !  xp. This yields, using integration by parts,

kA 2 q(t)k2p +  2pk 
Z t 

kAq (s)k2 
0 kA 2 q(s)k2( p 1)ds =  kA 2 q0k2p

2p 
Z t

h(u(s).r)q (s), Aq (s ) ik A 2  q(s)k2( p 1)ds

+  2p 
Z

0
t  

A
1  

G(q (s))dW(s), A
1  

q (s)k A
1 

q(s)k2( p 1)

+  pTr(Q) 
Z t 

kA 2 G(q (s))kH 0 kA 2 q(s)k2( p 1)ds

+  2p(p 1)Tr(Q) 
Z t 

k
 

A 2  G(q (s))
 

A 2  q(s)k2 kA 2 q(s)k2( p 2)ds. (41)
0

The Gagliardo–Nirenberg inequality (6) and the inclusion V 1  L 4  implies that

Z t 
h(u(s).r )q (s) ,  A q ( s ) i  kA 2 q(s)k2( p 1)ds

0

 C
t 
k Aq (s)kH 0 ku(s)kL4 kA

1 
q (s)kL4 kA

1 
q(s)k2( p 1)ds

C  
Z

0

t 
kAq (s)k

3 

0 ku(s)kV 1 kA 2 q (s)kH 0     

3 
ds.

Then, using the Hölder and Young’s inequalities, we deduce

2p 
Z t

h(u(s).r)q (s), Aq (s ) ik A 2  q(s)k2( p 1)ds

 (2p 1) k 
Z t 

k A(q (s))k2 
0 kA

1 
q(s)k2( p 1)ds

+  C(k , p) sup ku(s)k4    
 

Z t 
kA 2 q(s)k2p ds. (42)

s2[0,T] 0

The growth condition (16) and Hölder ’s and Young inequalities imply that

Z

0

t 
k A 2 G(q (s))kH 0 kA 2 q(s)k2( p 1)ds  C  

Z

0

t 
1 +  kq (s)kH0 +  kA 2 q(s)k2p ds, (43)

and a similar computation yields

Z t  
A 2  G(q (s))

 
A 2  q(s)k2 kA 2 q(s)k2( p 2)ds

0

 C
t 

1 +  kq(s)k2p +  kA
1 

q(s)k2 p ds. (44)
0

Let t N  : =  infft  0 : k A 2 q (t)kH0  Ng. The upper estimates (41)–(44) written for t ^
t N  instead of t imply
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sup kA
1 

q(t ^  tN )k2 p +  k 
Z T ^ t N  

kAq (s)k2 
0 kA

1 
q(s)k2( p 1)ds  kA

1 
q0k2p

t2[0,T]

+  C  sup ku(s)k4 
Z T ^ t N  

kA 2 q(s)k2p ds +  C  
Z T ^ t N 

1 +  kq(s)k2p +  kA 2 q(s)k2p ds
s2[0,T] 0 0

+  2p sup 
Z t ^ tN   

A 2  G(q (s))dW(s), A 2  q (s)k A 2 q(s)k2( p 1) .
t2[0,T]     0

Using the Cauchy–Schwarz inequality, Fubini’s theorem, (21) and (37), we deduce

Z T ^ t
E  sup ku(s)k 1 kA 2 q (s)k 0 ds

s2[0,T]

n  o 1  n  Z T o 1

     E  sup ku(s)k 1 E  kA 2 q(s ^  tN ) k 0     ds  C. (45)
s2[0,T]

The Davis inequality, the growth condition (16) and the Cauchy–Schwarz, Young and
Hölder inequalities imply that

E
 

sup  
Z t ^ tN   

A
1  

G(q (s))dW(s), A
1  

q (s)k A
1 

q(s)k2( p 1)

t2[0,T] 0

n  Z T o 1

 C  E
0     

Tr(Q) K2 +  K3kq (s ^  tN )k H 1      kA 2 q(s ^  tN )k H 0        ds

 C  E sup kA 2 q(s ^  tN )k p 
0     (Tr(Q)) 2

sT

 
n  Z T  

K2 +  K3kq (s ^  tN )k H 0  +  K3 k A 2 q(s ^  tN )k2 
0 kA 2 q(s ^  tN )k2( p  1) ds

o 1  
 

1 
E

sup 
 
k A 2 q(s ^  tN )k2 p

sT

T
+  C E 1 +  kq(s ^  t  )k +  kA 2 q(s ^  t  )k ds .

0

Therefore, the upper estimates (20), (37) and (45) imply that

1
E

 
sup kA 2 q(s ^  tN )k2 p 

 
+  k E

 Z T ^ t N  
kAq (s ^  tN )k2 

0 kA 2 q(s)k2( p 1)ds
 
 C  sT

for some constant C  independent of N . As  N  !  + ¥ ,  we deduce (22); this completes the
proof of Proposition 3.

We conclude this section with the proof of an extension of the Gronwall lemma.
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Proof of Lemma 3. For t 2  [0, T], iterating (40) and using the Fubini theorem, we obtain

j ( t )   a +  
Z t 

b +  c(t s)  1+e ]
h

a +  
Z s  

b +  c(s r)  1 + e j (r )dr
i
d s

0 0

a 1 +  
t
[b +  c(t      s) 1+e ]ds

+  
Z tZ t

b +  c(t s)  1+e ][b +  c(s r)  1+e ]ds j(r )dr

 A1 +  
Z t h

b2(t r) +  2bc
(t r)e +  c2 

Z t
(t s)  1+ e (s r)  1 + e d s

i
j (r ) dr

A1 +  
Z

0

t h
B1 +  C1 (t r)  1+2e

Z

0 
l  1+ e (1      l )  1 + e d l

i
j ( r ) d r ,

for positive constants A1 (depending on a, b, c, T, e), B1 (depending on b, c, T, e) and C1
(depending on c and e). One easily proves by induction on k that, for every integer k  1,

j ( t )   Ak +
Z

0

t  h
Bk +  c Ck  1 

Z

r

t
(t s)  1+k e (s r)  1 + e d s

i
j (r ) dr

Ak +  
0

t 
Bk +  Ck (t r)  1 + ( k + 1 ) e j (r )dr ,

for some positive constants Ak , Bk and Ck depending on a, b, c, T  and e. Indeed, a change in
variables implies that

Z t
(t s)  1+k e (s r)  1+e ds =  (t r)  1 + ( k + 1 ) e  

Z 1 
l  1+k e (1 l )  1 + e d l

r 0

=  Ck (t      r) 1+ ( k +1) e ,

for some constant C  depending on k and e.
Let k be the largest integer such that ke <  1; that is, ke <  1  (k +  1)e. Then, since

(t r)  1 + ( k + 1 ) e   T  1+ ( k +1) e , we deduce that

Z T
j ( t )   A  + B j (r )dr ,

0

for some positive constants A  and B depending on the parameters a, b, c, T  and e. The
classical Gronwall lemma concludes the proof of the lemma.

5. Moment Estimates of Time Increments of the Solution
In this section ,we prove moment estimates for various norms of time increments of

the solution to (9) and (10). This will be crucial for deducing the speed of the convergence of
numerical schemes. We first prove the time regularity of the velocity and temperature in L2.

Proposition 4. Let u0, q0 be F0-measurable; suppose that G and G satisfy (C-u) and (C-q),
respectively.
(i) Let u0 2  L4 p (W; V 1 ) and q0 2  L2 p (W; H0 ). Then for 0  t1  <  t2   T ,

E
 
ku(t2 ) u(t1 )k2 p   C  jt2 t1 j p . (46)

(ii) Let u0 2  L8 p+e (W; V 1 ), q0 2  L8 p+e (W; H 1 ) for some e >  0. Then, for 0  t1  <  t2   T ,

E
 
kq (t2 ) q (t1 )k2 p   C  jt2 t1 j p . (47)

Proof. Recall that S(t ) =  e nt A is the analytic semi group generated by the Stokes operator A
multiplied by the viscosity n and that S(t ) =  e kt A is the semi group generated by A  =
D. We use the mild formulation of the solutions stated in (35) and (36).



4
i

2
Z Z 1

0 0
2 1

2
Z Z

1

V 0 V 0 V 1

0

t

t
2 2

2

t

V 0 H 0

1

0

2

t

2p

0

1 2
p

Z

0

1 2 1

V

0

2

V 1

Mathematics 2022, 10, 4246 16 of 39

(i) Let 0  t1  <  t2   T ; then, u(t2 ) u(t1 ) =  å i = 1  T  (t1 , t2 ), where
T1 (t1 , t2 )  =  S(t2 )u0 S(t1 )u0 =  S ( t2 )  S(t1 )S( t1 )u0 ,

t t
T2 (t1 , t2 )  = S ( t2  s)B(u(s), u(s))ds  S ( t1  s)B(u(s), u(s))ds,

Z t Z t
T3 (t1 , t2 )  =  

0      
S ( t2  s)Pq (s)v2 ds   

0      
S ( t1  s)Pq (s)v2 ds

t t
T4 (t1 , t2 )  =  

0      
S ( t2  s)G(u(s))dW (s)   

0      
S ( t1  s)G(u(s))dW (s). (48)

The arguments used in the proof of Lemma 2.1 [11], using (7), (33), (34) and (21) yield

E
 
kT1 (t1 , t2 )k2 p +  kT2 (t1 , t2 )k2 p   C1 +  E(ku0k4 p ) ] jt2      t1 j p .                 (49)

Let T3 (t1 , t2 )  =  T3,1 (t1 , t2 )  +  T3,2 (t1 , t2 ), where

T3,1 (t1 , t2 )  =  
Z t1  

[S (t2 t1 )  Id]S(t1 s)Pq (s)v2 ds,

T3,2 (t1 , t2 )  =  
Z t2  

S ( t2       s)Pq (s)v2 ds.
1

Since the family of sets f A ( t ,  M)gt is decreasing, using the Minkowski inequality, (33) and
(34), we obtain

kT3,1 (t1, t2 )kV 0   
Z

0 

1
kA

1 
S ( t1       s)kL(V 0 ;V 0 ) k A     1 

[S (t2      t1 )       Id]kL(V 0 ;V 0 ) kPq (s)v2 kV 0 ds

 C t2       t1
1         

sup kq (s)kH0 ,
s2[0,T]

and

kT3,2 (t1, t2 )kV 0  
Z t2  

kS ( t  s)Pq (s)v2 kV 0 ds  t2  t1
 

sup kq(s)kH0 . 1

s2[0,T]

The inequality (20) implies that

EkT3 ( t1 , t2 )k2 p 
 
 C  t2  t1 j p E(kq0k2 p ). (50)

Finally, decompose the stochastic integral as follows:

T4,1 (t1 , t2 )  =  
Z t

[ S ( t2      t1 )       Id]S(t1      s)G(s)dW (s), T4,2 (t1 , t2 ) =
Z  t  

S ( t2       s)G(s)dW(s).
1

The Burkholder inequality, (34), Hölder ’s inequality and the growth condition (13) yield
 Z t

E  kT4,1kV0  C p E  k[S(t2 t1 )  Id]S(t1 s)G(u(s))kV 0 Tr(Q)ds

 C (Tr(Q)) p E
t1  

k A     2 [S (t2 t1 )  Id]kL(V 0 ;V 0 ) k A 2 G(u(s))k2 
0 ds

p

C E  
Z t1  

t2       t1
 
K2 +  K3ku(s)kV 1 ds

p

 C1 +  E(ku0k2 p ) j t2  t1 j p , (51)
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ĩ

˜
˜

˜ ˜
Z Z

˜ ˜

˜ 13 2

Z

2

Z

1˜ ˜ ˜ ˜ ˜ ˜

˜ 1 ˜ ˜ ˜ 1˜
2

˜ ˜ ˜

˜ ˜ ˜

˜
Z 2

t
˜  

2 2

˜
0

˜ ˜

t 1 ˜ 1 1˜ ˜ ˜

˜
Z

0

1 1 ˜1 1

0

1 1 1 ˜ 1

 e 1  1
1

1 2

2p

˜ 1 1 1

0
˜

H V H0 0 0

1

0

2 1
˜2 2

V H0 0

 1

1
1

 1

Mathematics 2022, 10, 4246 17 of 39

where the last upper estimate is a consequence of (19) and (21). A  similar easier argument
implies that

 Z t
E  kT4,2kV0  C p E   

t1      
kS(t2 s)G(u(s))kV 0 Tr(Q)ds

 C  1 +  E(ku0k2 p )  t2  t1
p . (52)

The inequalities (49)–(52) complete the proof of (46).
(ii) As in the proof of (i), for 0  t1  <  t2   T , let q (t2 )      q (t1 ) =  å i = 1  T  (t1 , t2 ), where

T1 (t1 , t2 )  =  S ( t2  t1 )  IdS(t1 )q0 ,

T2 (t1 , t2 )  =    
0

t2 
S ( t2  s)

 
[u(s).r ]q (s)ds +  

0

t1 
S ( t1  s)

 
[u(s).r ]q (s)ds

T  ( t  , t  )  =
t2  

S ( t  s)G(q (s))dW (s)  
t1  

S ( t  s)G(q (s))dW (s). (53)
0 0

The inequality (34) implies that

kT1 (t1 , t2 )k H 0 =  k A     2 S ( t2  t1 )  IdS( t1 ) A 2  q0kH0

 C t2  t1 j
1 

kq0kH1 . (54)

Decompose T2 (t1 , t2 )  =  T2,1 (t1 , t2 )  +  T2,2 (t1 , t2 ), where

T2,1 (t1 , t2 )  =  
Z

0

t1 
S ( t2  t1 )  Id] S ( t1  s) 

 
[u(s).r]q (s)ds,

t
T2,2 (t1 , t2 )  =        S ( t2  s) [u(s ).r ]q ( s ) ds.

1

Let d 2  (0, 1 ); the Minkowski inequality, (33), (34) and (8) applied with a =  r  =  1 imply
that

kT2,1 (t1, t2 )k H 0  
Z t1  

kS(t1 s) S ( t2  t1 )  Id
 

[u(s).r ]q (s)k H 0  ds
Z

 
0      

kA 2 + d S ( t1  s)kL ( H 0 ; H 0 ) k A     2 [S (t2 t1 )  Id]kL( H 0 ; H 0 )

k A d [u(s).r ]q (s)k H 0  ds

 C
t1  

( t1  s)  ( 2 + d )  jt2 t1 j 2 kA 2 u(s)kV 0 kA 2 q (s)kH0 ds

 C j t2  t1 j 2       sup kA 2 u(s)kV 0 

Z t1  
( t1  s)  ( 2 + d )  kA 2 q (s)kH0 ds.

s2[0,T]

Let p1 2  
 
2, 2 +  4p  

and let d 2  
 
0, 2   p 

 . Let p2 be the conjugate exponent of p1; we have ( 2 +

d)p2 <  1. Thus, Hölder ’s inequality for the finite measure ( t1  s)  ( 1 +d) 1[0,t1 ) (s)ds
with exponents 2p and 2p 1 , and then, ds with conjugate exponents p1 and p2 imply

kT2,1 (t1, t2 )k2 p  C t2  t1
p      sup k A 2 u(s)k2p 

Z t1  
( t1  s)  ( 2 + d ) k A 2  q(s)k2p ds

s2[0,T]

 
n  Z t1  

( t1  s)  ( 2 +d ) ds
o2 p 1

 C  t  t  p      sup kA
1 

u(s)k2p 
n  Z t1  

kA
1 

q(s)k2p p1 ds
o

p1

s2[0,T] 0

 
n  Z t1  

( t  s) ( 2 +d ) p 2 ds
o

p2 .
0
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Since 2pp1 <  4p +  e and 2pp2 <  4p, Hölder ’s inequality and Fubini’s theorem, together
with the upper estimates (21) and (37), imply that

E
 
kT2,1 (t1, t2 )k2 p   C t2  t1 j p

n
E

 
sup kA 2 u(s)k2pp2 

o
p2

s2[0,T]

 
n  Z t1  

E  
 
kA 2 q(s)k2p p1 ds

o
p 

  

 C  t  t  jp. (55)
0

A  similar argument proves that for h 2  (0, 1),

kT2,2 (t1, t2 )k H 0  
Z

t1

2 
kA1 h S(t2 s)kL ( H 0 ; H 0 ) k A (1 h )  

[u(s).r ]q (s)k H 0  ds

C
t2  

( t2  s)  1 + h k A
1 

u(s)kV 0 kA
1 

q (s)kH0 ds

 C  t2  t1 jh     sup k A
1 

u(s)kV 0     

Z t2  
( t2  s)  1 + h k A

1 
q (s)kH0 ds.

s2[0,T] 1

Let h 2  
 

2p 1 , 1; for e >  0, let p1, p2 2  (1, + ¥ )  be conjugate exponents such that h
_  4 p+e      <  p1 <  2; then (1 h)p2 <  1. Hölder ’s inequality implies that

kT2,2 (t1, t2 )k2 p  C  t2  t1 j(2 p 1)h     sup kA 2 u(s)k2 p 
Z t2  

( t2  s)  1 + h k A 2 q(s)k2 p ds
s2[0,T] 1

 C  t  t  j(2 p 1)h     sup kA 2 u(s)k2p 
n  Z t2  

( t  s) (1 h)p2 ds
o  1

s2[0,T] t1

 
n  Z t2  

kA 2 q(s)k2pp1 ds
o

p1 .
t

1

Since (2p   1)h >  p, h <  2; furthermore, 2pp2 <  4p +  2 and 2pp1  4p. Hölder ’s
inequality together with the upper estimates (21) and (22) imply that

E
 
kT2,2 (t1, t2 )k2 p   C  t2  t1 j p 

n
E

 
sup kA

1 
u(s)k2p p2 

o
p2

s2[0,T]

 
n  Z t2  

E
 
kA 2 q(s)k2p p1 ds

o
p1  C  t  t  jp. (56)

t
1

This inequality and (55) yield

E
 
kT2 (t1 , t2 )k2 p   C  t2  t1 j p . (57)

Finally, an argument similar to that used to prove (51) and (52), using the growth
condition (16) and (20), implies that

E
 
kT3 (t1 , t2 )k2 p   C  t2  t1

p . (58)

The upper estimates (54), (57) and (58) complete the proof of (47).

We next prove some time regularity for the gradient of the velocity and the temperature.

Proposition 5. Let N   1 be an integer and, for k =  0,    , N , set tk =  kT , where G and G
satisfy conditions (C-u) and (C-q), respectively, and let h 2  (0, 1).
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(i) Let p 2  [2, ¥ ) ,  u0 2  L4 p (W; V 1 ) and q0 2  L2 p (W; H0 ). Then, there exists a positive constant
C  (independent of N) such that

 N  Z t  
E  ku(s) u(tj )k 1 +  ku(s) u(tj 1 )k 1     ds  C (59)

j = 1      j 1

(ii) Let p 2  [2, ¥ ) ,  u0 2  L16 p+e (W; V 1 ) and q0 2  L16 p+e (W; H 0 ) for some e >  0. Then,

 N  Z t  
E  kq (s) q(t j )k 1 +  kq (s) q(tj 1 )k 1     ds  C (60)

j = 1      j 1

Proof. (i) For j =  1, ..., N , write the decomposition (48) of u(t j )   u(s) used in the proof

of Lemma 4 (that is, t1  =  s, t2  =  tj), and apply A 2  . The upper estimates of the sum of

terms A 2  T1 (s, tj ) and A 2  T2 (s, t j ) obtained in the proof of Lemma 2.2 in [11] imply that, for
h 2  (0, 1),

E
 N  Z tj      

kA 2 T1 (s, tj )k2 
0 +  kA 2 T2 (s, tj )k2 

0 ds
p 

 C(E(ku0 k4 p )) 
 T  h p

. (61)
j = 1      j 1

The Minkowski inequality and the upper estimates (33) and (34) imply, for d 2  (0, 2 )

kA 2 T3,1 (s, tj )kV0  
Z

0

tj 
kA 2 + d S(t j  s)kL(V 0 ;V 0 ) k A d S(t j s) Id kL (V 0 ;V 0 )

 kPq (s)v2 kV 0 ds
Z

 Cjt j sjd     sup kq (s)kH0 (t1 s)  ( 2 +d ) ds,
s2[0,tj ]

Hence, we deduce

 N  Z tj       
kA

1 
T3,1(s, tj )k2 

0 ds
p 

 C
 T  2pd 

sup kq(s)k2p 
j = 1      j

s2[0,T]

  
N  Z tj       

Z s
(s r)  ( 1 +d) dr

2
ds

p

j = 1     tj 1 0

 C
 T  2pd 

sup kq(s)k2p  
Z T  

s1 2dds
p 

 C
 T  2pd 

sup kq(s)k2p .
s2[0,T] 0 s2[0,T]

Using the Minkowski inequality and (33) once more, we obtain

 N  Z tj 
k A 2 T3,2 (s, tj )k2 

0 ds
p 

  å
Z  t j+1 

 Z tj 
k A 2 S(t j r)Pq (r)v2 kV 0 dr

2
ds

p

j = 1     j 1 j = 1     j

 N  Z t       Z t
 C  sup kq(r)k (t s) 2 dr ds

r2[0,T]                              j = 1      tj 1          s

 C  sup kq(r)k2p 
 T  p

.
r2[0,T]

The above estimates of T3,1 and T3,2, together with (20), imply, for h 2  (0, 1), that

 N  Z t  
E  kA 2 T  (s, t )k ds  C . (62)

j = 1     tj 1
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We next study the stochastic integrals. Using Hölder ’s inequality, the Burkholder
inequality, (33), (34) and the growth condition (13) twice, we obtain for d 2  (0, 1 )

 N  N  Z t
E  kA 2 T4,1 (s, tj )k 0 ds  N E  kA 2 T4,1 (s, tj )k 0 ds

j = 1                                                                                  j = 1                  j

N  Z t  Z s
N E  A  S(s r ) A [S(t j s) Id] A 2 G(u(r))dW (r) ds

j = 1     j 1

Z  Z
 Cp T p 1 

j = 1     tj 1 
E   

0 
(s r)  2d(tj s)2d kA 2 G(u(r))kL(K

,V 0 ) Tr(Q)dr ds

C
 T  2dp Z T  

E
 Z s

(s r)  2d K2 +  K3 ku(r)kV 1 dr
p

ds

 C  
 

N
2d p h

1 +  E
 Z

0

T 
ku(r)k2p 

 Z

r

T
(s r)  2d dsdr

i 
 C  

 

N
2d p

, (63)

where the last upper estimates are deduced from the Fubini theorem, and from the upper
estimates (19) and (21).

A  similar argument proves that

 N   E
kA 2 T4,2(s, tj )k 0 ds

j = 1

 T p  1 
N  Z tj     

E
 Z tj 

S(t j s) A
1 

G(u(r))dW(r)
2 p 

ds j = 1
j 1

 C  T p 1Tr(Q) p 
N  Z tj     

E  
Z tj 

K  +  K  ku(r)k2 dr
p

ds
j = 1     tj 1 s

 C  
N  Z tj       T  p 1 Z tj 

K p +  K p E(k A 2  u(r)k2p )drds
j = 1     tj 1 s

N  Z t  Z t
 C K2 +  K3 E(k A 2  u(r)k 0 ) ds dr

j = 1      j 1

 h Z T i
 C  

N
1 +  

0     
E(k A 2  u(s)kV 0 )ds  C  

N
. (64)

The inequalities (63) and (64) imply that, for h 2  (0, 1),

 N  Z t  
E  kA 2 T4 (s, tj )k 0 ds  C . (65)

j = 1      j 1

The above arguments (61), (62) and (65) prove similar inequalities when replacing
T  (s, tj ) with T  (t j 1, s) for i =  1, ..., 4 and j =  1, ..., N . Using (46), this concludes the proof
of (59).
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(ii) As above, we apply A 2  to the terms T  (s, tj ),i =  1, 2, 3 of the decomposition (53) of
q(t j ) q (s) introduced in the proof of Proposition 4 (ii). For d 2  (0, 1 ), the inequalities (33)
and (34) imply that

 
N  Z tj      

kA
1 

S ( s )S ( tj  s) Idq0k2 
0 

p

j = 1      j 1

 
 
å  

Z tj 
k A d S(s) A d S(tj  s) IdA

1 
q0k2 

0 

p

j = 1      j 1

 C  N  Z tj 
s 2d

 T  2d
kA 2 q0k2 

0 ds
p 

j = 1      j
1

 C
 T  2dp 

kA 2 q k2p 
 Z T  

s 2dds
p
.

0

Hence, for h 2  (0, 1),

 N  Z t  
E  kA 2 S(s ) S ( tj  s) Id q0k 0  C E  kq0k 0 . (66)

j = 1      j 1

Let b 2  (0, 2 ) and d 2  (0, 2 d). The Minkowski inequality, (33), (34) and (8) applied
with a =  r  =  2 imply that, for s 2  [tj 1, tj],

 
Z s 

A 2  S(s r)S(t s) Id
 

[u(r ).r]q (r )dr
0  

 
Z s 

kA 2 + b + d S ( s  r) A  b S(t j s) Id

H 

 d 
[u(r ) .r ]q (r )

 
kH0 dr  C

Z

0

s
(s r)  ( 2 + b + d )

 

N
b k A 2 u(r)kV 0 kA 2 q (r)kH 0 dr.

Therefore, using the Cauchy–Schwarz inequality and Fubini’s theorem, we obtain

 N  Z t
E  kA 2 T2,1 (s, tj )k 0 ds j = 1      j 1

 C
 T  2bp 

E
h  

sup kA 2 u(s)k2 p  
N  Z t j+1  Z s

(s r)  ( 2 + b + d ) k A 2  q(r)k2

s2[0,T] j = 1     tj 0

s
(s r)  ( 2 + b + d ) dr ds

p

 C
 T  2bp 

E
h  

sup kA 2 u(s)k2 p
  Z T

k A 2 q(r)k2     ds
 Z T

(s r)  ( 2 + b + d ) dsdr
p i

s2[0,T] 0 r

n  o 1  n  Z T o 1

 C E  sup kA 2 u(s)k 0 E  kA 2 q (r)k 0     dr
s2[0,T]

The upper estimates (21) and (37) imply, for h 2  (0, 1), that

 N  Z t  
E  kA 2 T2,1 (s, tj )k 0 ds  C . (67)

j = 1      j 1

Using the Minkowski inequality, (33) and (8) with a =  r  =  2 , and Fubini’s theorem, we
obtain, for d 2  (0, 2 ),
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 N  Z t
kA 2 T2,2 (s, tj )k 0 ds j = 1      j 1

Z  Z
 (t r)  ( 2 + d ) k A 2  u(r)k 0 kA 2 q (r)k 0 dr ds

j = 1     tj 1 s

 C  sup kA 2 u(r)k2p 
 N  Z tj  Z tj 

(t r)  ( 2 + d ) k A 2  q(s)k2     dr
r2[0,T] j = 1     tj 1 s

Z

s     
(t j r)  ( 2 +d ) dr ds

 C  sup kA 2 u(r)k2p  å  
Z tj      

kA 2 q(r)k2 
0 

 Z tj 
dsdr

p

r2[0,T] j = 1      j 1

 C  sup kA 2 u(r)k2p 
 T  p Z T  

kA 2 q(s)k2p dr
r2[0,T] 0

Using the Cauchy–Schwarz inequality, (21) and (37), we obtain

 N  Z t  
E  kA 2 T2,2 (s, tj )k 0 ds  C . (68)

j = 1      j 1

Finally, arguments similar to those used to prove (65) imply, for h 2  (0, 1), that

 N  Z t  
E  kA 2 T3 (s, tj )k 0 ds  C . (69)

j = 1      j 1

The upper estimates (66)–(69) conclude the proof of

 N  Z t  
E  kA 2     q(t j ) q (s) k 0 ds  C , h 2  (0, 1).

j = 1      j 1

Using (47), a similar argument completes the proof of (60).

6. The Implicit Time Euler Scheme
We first prove the existence of the fully time-implicit time Euler scheme fuk ; k =

0, 1, ..., Ng and fq k ; k =  0, 1, ..., Ng defined by (17) and (18). Set DlW : =  W (tl ) W(tl  1 )
and DlW =  W(tl ) W(tl  1 ), l =  1, ..., N .

6.1. Existence of the Scheme

Proof of Proposition 3. The proof is divided into two steps.

Step 1 For technical reasons, we consider a Galerkin approximation. Let fe g denote an
orthonormal basis of V 0 made of elements of V 2 that are orthogonal in V 1 (resp., let fe g
denote an orthonormal basis of H 0 made of elements of H 2 that are orthogonal in H1).

For m =  1, 2, ..., let Vm =  span (e , . . . , em)  V 2 and let Pm : V 0 !  Vm denote the
projection from V 0 to Vm . Similarly, let Hm =  span (e1, ..., em)  H 2 and let Pm : H 0 !  Hm
denote the projection from H  to Hm .



˜

0 0˜ ˜ ˜

1 1

k
h ˜ ˜1 1

˜ ˜

˜
j

L ˜ L

˜k k ˜ ˜

k 2 2

i

˜ k ˜ ˜ ˜ 1 ˜ ˜ 1 ˜ 1 ˜

˜ ˜˜ ˜

4 V V

˜
4

˜
H H

4 V H

4 V
2

K

V V K4
1˜ ˜

H
˜ ˜ ˜ 2

˜
˜ 2

1 ˜ ˜ ˜
H H

˜
K̃

V
˜

2 2
K

˜
H

˜ ˜ ˜ ˜ ˜ ˜
K̃

Mathematics 2022, 10, 4246 23 of 39

In order to find a solution to (17) and (18), we project these equations onto Vm and Hm ,
respectively, which we define by induction as fuk (m)gk=0,...,N 2  Vm and fq k (m)gk=0,...,N 2
Hm such that u (m) =  Pm(u0), q (m) =  Pm(q0), and, for k =  1, ..., N , j  2  Vm and y  2  Hm ,

 
uk (m) uk 1 (m), j

 
+  h

h
n

 
A 2  uk (m), A 2  j )  +

B
 

uk (m), uk (m), j
=  h

 
P q k  1v2, j

 
+  

 
G(uk 1 (m))D W , j (70) 

qk (m) qk 1 (m), y
 
+  h k

 
A 2  qk (m), A 2  y )  +

[uk 1 k(m).r]q k (m), y
=  

 
G(qk 1 (m))DkW , y (71)

For almost every w set, R(0, w) =  ku0(w)kV0 and R(0, w) =  kq0(w)kH0 . Fix k =  1, ..., N
and suppose that, for j =  0, . . . , k   1, the F t j  - measurable random variables u (m)and
q j (m) have been defined, and that

R( j, w) : =  sup kuj(m, w)k 2 <  ¥ and
m1

R( j, w) : =  sup kq j (m, w)k 2 <  ¥
m1

for almost every w. We prove that uk (m) and qk (m) exist and satisfy supm1 kuk(m, w)kV 0 <
¥  and supm1 kqk(m, w)kH0 <  ¥  a.s.

For w 2  W, let F m , w : Vm !  Vm (resp., Fm,w ) be defined for f 2  Vm (resp., for f 2  Hm )
as the solution of

 
Fm,w ( f ), j

 
=  

 
f uk 1(m, w), j

 
+  h

h
n

 
A

1  
f , A

1  
j

 
+

PmB( f , f ), j
 

P q k  1(m)v2, j
  

PmG(uk 1(m, w))DkW(w), j , 8 j  2  Vm ,
 

Fm,w ( f ), y
 
=  

 
f qk 1(m, w), y

 
+  h

h
k

 
A 2  f , A 2  y

 
+

[uk 1 (m).A 2 ] f ], y  
PmG(qk 1(m, w))DkW(w), y , 8y 2  Hm .

Then, the Cauchy–Schwarz and Young inequalities imply

 
uk 1(m,  w),  f   1 k f k2 
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0
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0 
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4
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we deduce
 

F k  
,w ( f ), f

 1
k f k2 

2 kuk 1(m, w)k2 
2 +  hnkA 2 f k2 

0 h2kqk 1(m, w)k2 
0

K0 +  K1kuk 1(m, w)k2 
0 kDkW(w)k2  0

 
F k  

,w ( f ), f
 1

k f k2 
0 kqk 1(m, w)k2 

0 +  hkA
1 

f k2 
0

K0 +  K1kqk 1(m, w)k2 
0 kDkW(w)k2  0.

Using ([16], Cor 1.1) page 279, which can be deduced from Brouwer’s theorem, we
deduce the existence of an element uk(m, w) 2  V ( m) (resp., qk (m, w) 2  H(m)), such that
F k (m, w)(uk (m, w )) =  0 (resp., F k (m, w)(qk (m, w )) =  0) and kuk(m, w)k2 

0  R2 (k, w)
(resp., kqk(m, w)k 0  R2 (k, w)) a.s. Note that these elements uk(m, w) and qk(m, w) need not
be unique. Furthermore, the random variables uk (m) and qk (w) are F t  -measurable.

The definition of uk (m) (resp., qk (m)) implies that it is a solution to (70) (resp., (71)).
Taking j  =  uk (m) in (70), using the antisymmetry property (3) and the Young inequality,
we obtain

kuk (m)k2 
0 +  h nkA 2 uk (m)k2 

0 =  
 

uk 1 (m), uk (m)
 
+  h 

 
P q k  1 (m)v2, uk (m)

+  G(uk 1(m)DkW, uk (m)

 
3

kuk (m)k2 
0 +  kuk 1(m)k2 

0 +  kqk 1 (m)k2 
0 +  K0 +  K1kuk 1(m)k2 

0 kDkWk2 .

Hence, a.s.,

sup 
h 1

kuk(m, w)k2 
0 +  h nkA

1 
uk(m, w)k2 

0 

i  
 R2 (k 1, w) +  R2 (k 1, w)

m1

+  K0 +  K1 R2 (k 1, w) kDkW(w)k2 .

A  similar computation using y  =  qk (m) in (71) implies that

sup 
h 1

kqk(m, w)k2 
0 +  h kkA 2 qk(m, w)k2 

0 

i  
 R2 (k 1) +  K0 +  K1 R2 (k 1)kDkWk  ̃.

m1

Therefore, for fixed k and almost every w, the sequence fuk (m, w)gm is bounded in
V 1 ; it has a sub-sequence (still denoted as fuk (m, w)gm) that converges weakly in V 1 to
fk (w ) . The random variable f k  is F t  -measurable. Similarly, for fixed k and almost every
w, the sequence f q  (m, w)gm is bounded in H  ; it has a sub-sequence (still denoted as
fq k (m, w)gm) that converges weakly in H 1 to f  (w ), which is F t  -measurable.

Since D  is bounded, the embedding of V 1 in V 0 (resp., of H 1 in H0) is compact; hence,
the sub-sequence fuk (m, w)gm converges strongly to fk ( w )  in V 0 (resp., fq k (m, w)gm con-
verges strongly to fk ( w )  in H  ).

Step 2 We next prove that the pair ( f  , f  )  is a solution to (17) and (18). By definition,
u0 (m) converges strongly to u0 in V 0 , and q0 (m) converges strongly to q0 in H0 . We next
prove by induction on k that the pair ( f k ,  f k )  solves (17) and (18). Fix a positive integer m0
and consider the Equation (70) for k =  1, . . . , N , j  2  Vm0 and m  m0. As m !  ¥ ,  we have,
a.s.,

 
uk (m) uk 1 (m), j )  !  

 
f k  f k  1, j ) ,

 
A 2  uk (m), A 2  f

 
!  

 
A 2  f k ,  A 2  f ,

P q k  1 (m)v2, j  =  qk 1 (m)v2, j  !  fk v2 , j ) .
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Furthermore, the antisymmetry of B (3) and the Gagliardo–Nirenberg inequality (6)
yield, a.s.,

B
 

uk (m), uk (m)
 
  B( f k ,  f k ) ,  j

  B uk (m) f k ,  j  , uk (m)  +   B f k ,  j  , uk (m) f k

kA 2 j k V 0  kuk (m) f k k L 4  kuk (m)kL4 +  k f k kL 4

 C  k jk V 0  
 
max kuk (m)kV 1 +  kfk kV 1 ]kA

1 
uk (m) fk k 2  

0 kuk (m) fk k 2  
0 !  0

as m !  ¥ .
Finally, the Cauchy–Schwarz inequality and the Lipschitz condition (12) imply that
 
G

 
uk 1 (m)

 
  G

 
f k  1DkW, j   k jkV 0  kG(uk 1 (m)   G ( f k  1 )kL(K ;V 0 ) kDk W kK       L1

k j k L 2  kuk 1 (m)      f k  1 kL2 kDkWkK !  0

as m !  ¥ .  Therefore, letting m !  ¥  in (70), we deduce that

f k  f k  1 +  h n A f k  +  hB
 

f k ,  f k ,  j
 
=  

 
P q k  1v2, j

 
+  

 
G ( f k  1

)

DkW , j ) , 8 j  2  Vm0 .

Since [ m 0 Vm 0  is dense in V , we deduce that ffk gk =0,. . . , N is a solution to (17). A  similar
argument proves that f  is a solution to (18). This concludes the proof.

6.2. Moments of the Euler Scheme

We next prove the upper bounds of moments of uk and qk uniformly in k =  1, . . . , N.

Proposition 6. Let G and G satisfy the condition (C-u)(i) and (C-q)(i), respectively. Let K   1 be
an integer, and let u0 2  L2 K  (W; V 0 ) and q0 2  L2 K  (W; H0 ), respectively. Let fuk gk=0,...,N and
fqk gk=0,.. .,N be the solution of (17) and (18), respectively. Then,

sup E
 

0
max kuLk2K 

+  
0
max kq Lk2K 

 
<  ¥ (72)

sup Eh 
N  

kA 2 ulk2 
0 kul k2K  2 +  h 

N  
kA 2 q l k2 

0 kq l k2K  2 <  ¥ , (73)
N 1 l = 1 l = 1

Proof. Write (17) with j  =  ul , (18) with y  =  q l and use the identity ( f , f g) =  1 k f kL2

kgk 2 +  k f   gk 2 . Using the Cauchy–Schwarz and Young inequalities, the antisymmetry
(3) and the growth condition (11) yields, for l =  1, . . . , N,

2
kulk2 

0 kul 1k2 
0 +  kul ul 1k2 

0 

 
+  hnkA

1 
ulk2 

0

=  h ( P q l  1e2, ul ) +  G(ul  1)DlW, ul ), (74)
1

kq l k2 
0 kq l  1k2 

0 +  kq l q l  1k2 
0 
 
+  hkkA

1 
q l k2 

0 =  
 
G(q l  1)DlW, q l ). (75)
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Fix L  =  1, ..., N  and add both equalities for l =  1, ..., L; this yields

1
kuLk2 

0      ku0k2 
0 +  kq Lk2 

0      kq0k2 
0
  
+  

1 h L  
kul      ul 1k2 

0 +  
L  

kq l      q l  1k2 
0
 i  l= 1

l= 1

+  h å  n
k

A 2 ul k2 
0 +  k

k
A 2 q l k2 

0 

 
 

h L  1 
kq l k2     +  h 

L  1 
kul k2 

0 +  hkuLk2 
0 l= 1

l= 0 l= 1

+  å  
k

G
(
ul 1

)
k2 

(K;V 0 ) kDl Wk2 +  
1

kul      ul 1k2 
0 

 
+  å  

 

G
(ul  1)DlW, ul 1 

l= 1

l= 1

+  
l = 1  

kG(q l  1 )kL(K; H 0 ) kDl W kK +  
1

kq l      q l  1k2 
0 

 
+  

l = 1  

 
G(q l  1 )DlW, q l  1. (76)

Let N  be large enough to have h =  N   8 . Taking the expected values, we obtain

EkuL k2 
0 +  kq Lk2 

0 +  
1 L  

kul      ul 1k2 
0 +  kq l      q l  1k2 

0 

 
l= 1

+  2h å  nkA 2 ulk2 
0 +  kkA 2 q l k2 

0 

 
 E

 
ku0k2 

0 +  kq0k2 
0 

 
+  2T K0 Tr(Q) +  K0 Tr(Q)

 
l= 1

+  h4 +  2 max(K1 Tr(Q), K1 Tr(Q)
 L  1

 
E

 
kul k2 

0 +  kq l k2 
0 . l= 0

Neglecting both sums in the left hand side and using the discrete Gronwall lemma, we
deduce that

sup E  kuLk2 
0 +  kq Lk2 

0        C, (77)
1L N

where
C  =  2E

 
ku0k2 

0 +  kq0k2 
0 
 
+  2T K0 Tr(Q) +  K0 Tr(Q)eT 4+2 max(K1 Tr(Q),K1 Tr(Q)

is independent of N. This implies

sup E
 N  

kAul k2 
0 +  kAq l k2 

0 
 
+  kul ul 1k2 

0 +  kq l q l  1k2 
0 ; 

 
<  ¥ ,

N 1 l = 1

which proves (73) for K  =  1. For s 2  [tj, t j+1 ), j =  0, . . . , N  1, and set s =  tj. The Davis
inequality, and then the Cauchy-Schwarz and Young inequalities, imply that for any e >  0,
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The Cauchy–Schwarz and Young inequalities imply that
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4
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Using once more the Cauchy–Schwarz and Young inequalities, we deduce that for e, e >  0,
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Add the inequalities (79)–(84) for l =  1 to L   N , choose e =  1 and e =   1  and use the
growth conditions (11) and (14). This yields
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Taking expected values, we deduce, for every L  =  1, . . . , N  and h =  N   1, that
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for some constant C  depending on Ki , Ki , Tr(Q), Tr(Q) and T  that does not depend on N.
Let N  be large enough to have 3 h <      . Neglecting the sums in the left hand side and using
the discrete Gronwall lemma, we deduce, for E  ku0k4 

0 +  kq0k4 
0       <  ¥ ,  that

sup 
0
max EkuL k4 

0 +  kq Lk4 
0 
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This yields

sup Eh å  kA 2 ulk2 
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0 
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N 1 l = 1

which proves (73) for K  =  2. The argument used to prove (78) implies

E
 

1L N l = 1   
G(ul  1)DlW, ul 1kul 1k2 

0

 eE 
1
max kuLk4 

0       +  C (e )  1 +  
1
max E(kuL k4 

0 )

and

E
 

1L N l = 1   
G(q l  1)DlW, q l  1kuq l 1k2 

0

 eE 
1
max kq Lk4 

0       +  C (e )  1 +  
1
max E(kq L k4 

0 )

Taking the maximum for L  =  1, ..., N  and using (86), we deduce (72) for K  =  2. The details
of the induction step, similar to the proof in the case K  =  2, are left to the reader.

7. Strong Convergence of the Localized Implicit Time Euler Scheme
Due to the bilinear terms [u.r ]u and [u.r ]q ,  we first prove an L2 (W) convergence

of the L2 (D)-norm of the error, uniformly on the time grid, restricted to the set W M ( N )
defined below for some M >  0:

n o n o
WM (j) : =  sup kA 2 u(s)k 0  M     \ sup kA 2 q (s)k 0  M , 8j =  0, . . . , N ,
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and let WM : =  W M ( N ). Recall that, for j =  0, ..., N, set ej : =  u(t j ) uj and ej : =  q (t j ) q j;
then, e0 =  e0 =  0. Using (9), (10), (17) and (18), we deduce, for j =  1, ..., N, f  2  V 1 and
y  2  H1 , that

 
ej ej 1 , j

 
+  n

Z tj  
A 2  [u(s) uj], A 2  j d s  +  

Z tj
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tj 1

In this section, we will suppose that N  is large enough to have h : =  T  2  (0, 1). The
following result is a crucial step towards the rate of convergence of the implicit time Euler
scheme.

Proposition 7. Suppose that the conditions (C-u) and (C-q) hold. Let u0 2  L32+ e (W; V 1 ) and
q0 2  L32+e (W; H 1 ) for some e >  0, u, q be the solution to (9) and (10) and fu j , q jgj=0,...,N be
the solution to (17) and (18). Fix M >  0 and let WM =  W M ( N ) be defined by (88). Then, for h 2
(0, 1), there exists a positive constant C, independent of N , such that, for large enough N,
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for some g >  0, and C4 is the constant in the right hand side of the Gagliardo–Nirenberg inequality
(6).
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where, by the antisymmetry property (3), we have that
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Z tj
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, ejds, j 1 j 1
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We next prove upper estimates of the terms Tj,l for l =  1, ..., 5 and Tj,l for l =  1, . . . , 4,
and of the expected value of Tj,6, Tj,7 Tj,5 and Tj,6.

The Hölder and Young inequalities and the Gagliardo–Nirenberg inequality (6) imply,
for d1 >  0, that
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Hölder ’s inequality and the Sobolev embedding V 1  L 4  imply, for d3 >  0, that
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The Cauchy–Schwarz and Young inequalities imply that
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Using the upper estimates (103)–(106), taking expected values and using the Cauchy–
Schwarz and Young inequalities, as well as the inequalities (19), (20), (37), (46), (59), (60)
and (72), we deduce that, for h 2  (0, 1) and every L  =  1, . . . , N,
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for some constant C  independent of L  and N. Furthermore, the Lipschitz conditions (12)
and (15), the inclusion WM (j 1)  WM(j 2) for j =  2, ..., N  and the upper estimates (46)
and (47) imply that
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Finally, the Davis inequality, the inclusion WM(J 1)  WM(j 1) for j  J, the local
property of stochastic integrals, the Lipschitz condition (12), the Cauchy–Schwarz and
Young inequalities and the upper estimate (46) imply, for l  >  0, that

J
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A  similar argument, using the Lipschitz condition (15) and (47), yields, for l  >  0,
J

E  
1JL

1WM (J 1) 
j = 1  

Tj7

L
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Collecting the upper estimates (94)–(111), we obtain, for å 5 di <  1 , å 4 di <  1 , h 2  (0, 1)
and a, l  >  0,
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Therefore, given g 2  (0, 1), choosing l  2  (0,  1 )  and a >  0 such that  1 + a  <  1 +  g,
neglecting the sum in the left hand side and using the discrete Gronwall lemma, we deduce,
for h 2  (0, 1), that
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for å i = 1  di <  3 and d1 <  3 (and choosing di , i =  3, 4, 5 and di , i =  2, 3, 4 such that å i = 1  di <  3
and å i = 1  di <  3 ). Let d2 <  15 and d1 =  4d2. Then, for some g >  0, we have that

C ( M) =  
9(1 +  g)C4 max 

n 
, 

k

 
M.

Plugging the upper estimate (113) in (112), we conclude the proof of (91).

8. Rate of Convergence in Probability and in L 2 ( W )

In this section, we deduce from Proposition 7 the convergence in probability of the
implicit time Euler scheme with the “optimal” rate of convergence of “almost 1/2”  and a
logarithmic speed of convergence in L2 (W). The presence of the bilinear term in the
Itô formula for kA 2 q(t)k2 

0 does not enable us to prove exponential moments for this
norm, which prevents us from using the general framework presented in [10] to prove a
polynomial rate for the strong convergence.

8.1. Rate of Convergence in Probability

In this section, we deduce the rate of the convergence in probability (defined in [17])
from Propositions 1, 2, 6 and 7.

Proof of Theorem 2. For N   1 and h 2  (0, 1), let
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where W M( N ) =  W M ( N ) ( N ) is defined in Proposition 7. The inequality (91) implies that
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The inequalities (20)–(22) imply that
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The two above convergence results complete the proof of (23).

8.2. Rate of Convergence in L2 (W)

We finally prove the strong rate of convergence, which is also a consequence of
Propositions 1, 2, 6 and 7.
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Proof of Theorem 3. For any integer N   1 and M 2  [1, + ¥ ) ,  let WM =  W M ( N ) be
defined by (88). Let p be the conjugate exponent of 2 . Hölder ’s inequality implies that

E1(W M ) c 
1
max keJk2 
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0 

 
 
n
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o
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n
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+  max kq jk2q 

o2 q

s2[0,T] s2[0,T] 1jN 1jN n
o 1

 C  P (W M ) , (114)

where the last inequality is a consequence of (19), (20) and (72).
Using (21) and (22), we deduce that
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Using (91), we choose M( N ) !  ¥  as N  !  ¥  such that, for h 2  (0, 1) and g >  0,
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This implies that
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The inequalities (21) and (22) for p =  1 and (73) for K  =  1 imply
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This yields (24) and completes the proof.
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9. Conclusions

This paper provides the first result on the rate of the convergence of a time discretiza-
tion of the Navier–Stokes equations coupled with a transport equation for the temperature,
driven by a random perturbation; this is the so-called Boussinesq/Bénard model. The
perturbation may depend on both the velocity and temperature of the fluid. The rates of
the convergence in probability and in L2 (W) are similar to those obtained for the stochastic
Navier–Stokes equations. The Boussinesq equations model a variety of phenomena in
environmental, geophysical and climate systems (see, e.g., [18,19]). Even if the outline of
the proof is similar to that used for the Navier–Stokes equations, the interplay between the
velocity and the temperature is more delicate to deal with in many places. This
interplay, which appears in Bénard systems, is crucial for describing more general
hydrodynamical models. The presence of the velocity in the bilinear term describing the
dynamics of the temperature makes it more difficult to prove bounds of moments for the
H1-norm of the temperature uniformly in time and requires higher moments of the initial
condition. Such bounds are crucial to deduce rates of convergence (in probability and in
L2 (W)) from the localized one.

This localized version of the convergence is the usual first step in a non-linear (non-
Lipschitz and non-monotonous) setting. Numerical simulations, which are the ultimate
aim of this study since there is no other way to “produce” trajectories of the solution, would
require a space discretization, such as finite elements. This is not dealt with in this paper
and will be carried out in a forthcoming work. This new study is likely to provide results
similar to those obtained for the 2D Navier–Stokes equations.

In addition, note that another natural continuation of this work would be to consider
a more general stochastic 2D magnetic Bénard model (as discussed in [1]) that describes the
time evolution of the velocity, temperature and magnetic field of an incompressible fluid.

It would also be interesting to study the variance of the L2 (D)-norm of the error term,
in both additive and multiplicative settings, for the Navier-0Stokes equations and more
general Bénard systems. This would give some information about the accuracy of the
approximation. Proving a.s. the convergence of the scheme for Bénard models is also a
challenging question.
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