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1. Introduction

The Boussinesq equations have been used as a model in many geophysical applications.
They have been widely studied in both deterministic and stochastic settings. We take
random forces into account and formulate the Bénard convection problem as a system of
stochastic partial differential equations (SPDEs). The need to take stochastic effects into
account for modeling complex systems has now become widely recognized. Stochastic
partial differential equations (SPDEs) arise naturally as mathematical models for nonlinear
macroscopic dynamics under random influences. The Navier-Stokes equations are coupled
with a transport equation for the temperature and with diffusion. The system is subjected
to a multiplicative random perturbation, which will be defined later. Here, u describes the
fluid velocity field, whereas q describes the temperature of the buoyancy-driven fluid, and p
is the fluid’s pressure.

We study the multiplicative stochastic Boussinesq equations

ftu nDu+ (ur)u+rp =g+ G(u)dw in (0,T) D, (1)
frg kDg+ (urg) = G(q)dW in (0,T) D, (2)
divu=0 in (0,T) D,

where T > 0. The processes u : W (0,T) D! R2andg:W (0,T) D! R have initial
conditions ug and ggin D, respectively. The parameter n > 0 denotes the kinematic viscosity
of the fluid, and k > 0 denotes its thermal diffusivity. These fields satisfy periodic boundary
conditions u(t, x + Lv;) = u(t, x), q(t, x+ Lv;) = g(t,x) on (0, T) 9D, wherev;,i= 1,2
denotes the canonical basisof R ,andp : W (0,T) D! R isthe pressure.
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In dimension 2 without any stochastic perturbation, this system has been extensively
studied with a complete picture about its well-posedness and long-time behavior. In the
deterministic setting, more investigations have been extended to the cases where n = 0
and/or k = 0, with some partial results.

If the (L2)2 (resp., L2) norms of ug and gg are square integrable, it is known that the
random system (1)—(2) is well-posed, and that there exists a unique solution (u g) in
C([0, T]; (L2)2 L2)\ L2(W; (H1)2 H1); see, e.g., [1,2].

Numerical schemes and algorithms have been introduced to best approximate the
solution to non-linear PDEs. The time approximation is either an implicit Euler or a time-
splitting scheme coupled with a Galerkin approximation or finite elements to approximate
the space variable. The literature on numerical analysis for SPDEs is now very extensive.
In many papers, the models are either linear, have global Lipschitz properties, or, more
generally, have some monotonicity property. In this case, the convergence was proven to
be in mean square. When nonlinearities are involved that are not of Lipschitz or monotone
type, then a rate of convergence in mean square is more difficult to obtain. Indeed, because
of the stochastic perturbation, one may not use the Gronwall lemma after taking the
expectation of the error bound, since it involves a nonlinear term that is often quadratic;
such a nonlinearity requires some localization.

In a random setting, the discretization of the Navier—Stokes equations on the torus has
been intensively investigated. Various space—time numerical schemes have been studied
for the stochastic Navier—Stokes equations with a multiplicative or an additive noise, where,
in the right hand side of (1) (with no g), we have either G(u) dW or dW. We refer to [3-7],
where the convergence in probability is stated with various rates of convergence in
a multiplicative setting for a time implicit Euler scheme, and [8] for a time splitting
scheme. As stated previously, the main tool used to obtain the convergence in
probability is the localization of the nonlinear term over a space of large probability. We
studied the strong (that is, L2(W)) rate of convergence of the time-implicit Euler scheme
(resp., space—time-implicit Euler scheme coupled with finite element space
discretization) in our previous papers [9] (resp., [10]) for an H!-valued initial condition.
The method is based on the fact that the solution (and the scheme) have finite moments
(bounded uniformly on the mesh). For a general multiplicative noise, the rate is
logarithmic. When the diffusion coefficient is bounded (which is a slight extension of an
additive noise), the supremum of the H1-norm of the solution has exponential moments; we
used this property in [9,10] to obtain an explicit polynomial strong rate of convergence.
However, this rate depends on the viscosity and the strength of the noise, and is strictly
less than 1/2 for the time parameter (resp., less than 1 for the spatial one). For a given
viscosity, the time rates on convergence increase to 1/2 when the strength of the noise
converges to 0. For an additive noise, if the strength of the noise is not too large, the
strong (L%(W)) rate of convergence in time is the optimal one, and is almost 1/2 (see [11]).
Once more, this is based on exponential moments of the supremum of the Hl-norm of the
solution (and of its scheme for the space discretization); this enabled us to have strong
polynomial time rates.

In the current paper, we study the time approximation of the Boussinesq Equations (1)
and (2) in a multiplicative setting. To the best of our knowledge, it is the first result where a
time-numerical scheme is implemented for a more general hydrodynamical model with a
multiplicative noise. We use a fully implicit time Euler scheme and once more assume that
the initial conditions ug and go belong to H1 (D) in order to prove a rate of convergence
in L2(D) uniformly in time. We prove the existence of finite moments of the H!-norms of
the velocity and the temperature uniformly in time. Since we are on the torus, this is quite
easy for the velocity. However, for the temperature, due to the presence of the velocity in
the bilinear term, the argument is more involved and has to be carried out in two steps. It
requires higher moments on the Hl-norm of the initial condition. The time regularity of
the solutions u, g is the same as that of u in the Navier—Stokes equations. We then study
rates of convergence in probability and in L2(W). The rate of convergence in probability is
optimal (almost 1/2); we have to impose higher moments on the initial conditions than



Mathematics 2022, 10, 4246

3 0f 39

what is needed for the velocity described by stochastic Navier—Stokes equations. Once
more, we first obtain an LZ(W) convergence on a set where we bound the L2 norm of the
gradients of both the velocity and the temperature. We deduce an optimal rate of
convergence in probability that is strictly less than 1/2. When the H1-norm of the initial
condition has all moments (for example, it is a Gaussian Hl-valued random variable), the
rate of convergence in L?(W) is any negative exponent of the logarithm of the number of
time steps. These results extend those established for the Navier—Stokes equations subject to
a multiplicative stochastic perturbation.

The paper is organized as follows. In Section 2, we describe the model and the
assumptions on the noise and the diffusion coefficients, and describe the fully implicit time
Euler scheme. In Section 3, we state the global well-posedeness of the solution to (1)-(2),
moment estimates of the gradient of u and g uniformly in time and the existence of the
scheme. We then formulate the main results of the paper about the rates of the convergence in
probability and in L2(W) of the scheme to the solution. In Section 4, we prove moment
estimates in H! of u and g uniformly on the time interval [0, T] if we start with more regular
(H1) initial conditions. This is essential in order to be able to deduce a rate of convergence
from the localized result. Section 5 states the time regularity results of the solution (u, q)
both in LZ(D) and H(D); this a crucial ingredient of the final results. In Section 6, we
prove that the time Euler scheme is well-defined and prove its moment estimates in L2
and H!. Section 7 deals with the localized convergence of the scheme in L2(W). This
preliminary step is necessary due to the bilinear term, which requires some control of the
H! norm of u and g. In Section 8, we prove the rate of convergence in probability and in
L2(W). Finally, Section 9 summarizes the interest of the model and describes some further
necessary/possible extensions of this work.

As usual, except if specified otherwise, C denotes a positive constant that may change
throughout the paper, and C(a) denotes a positive constant depending on some parameter a.

2. Preliminaries and Assumptions

In this section, we describe the functional framework, the driving noise, the evolution
equations, and the fully implicit time Euler scheme.

2.1. The Functional Framework

Let D = [0, L]? with periodic boundary conditions LP := LP(D)?2 (resp., WP :=
WP (D)2) be the usual Lebesgue and Sobolev spaces of vector-valued functions endowed
with the norms k k » (resp., k kv\},p).

Let VO :=fu 2 L2 :div(u) = Oon Dg. Let P : L2 | VO denote the Leray projection,
andlet A = PD denote the Stokes operator, with domain Dom(A) = W22\ VO,

letA= D acting on L2(D). For any non-negative real number k, let

HX = Dom Ax, vk = Dom A2 endowed with the norms k ky« and k ky«.

Thus, H? = L2(D) and H* = Wk2, Moreover, let V ! be the dual space of V! with respect
to the pivot space V9, and h,i denote the duality between V! and v 1.
Let b: (V1)3 I R denote the trilinear map defined by

Z
b(uy, up,uz) : = o ui(x) ruz(x) us(x)dx.

The incompressibility condition implies that b(u,, up, u3) = b(u 4, usz, up) for u; 2 vi,
i = 1,2,3. There exists a continuous bilinear map B: V! vl | v 1such that

hB(uy, us), uzi = b(ug, up,uz), forall u;2 vl i=1,2,3.
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Therefore, the map B satisfies the following antisymmetry relations:

hB(uy, us), uszi = hB(uy, us), uzi, hB(ug, us),uzi= 0 forall u;2 vi. (3)
Foru,v2 V!, wehave B(u,v) := P urv.
Furthermore, since D = [0, L]2 with periodic boundary conditions, we have (see e.g., [12])

hB(u,u), Aui = 0, 8u2 V2. (4)
Note that, for u 2 V! and g1,92 2 HY, if (u.r)q = &1, uiTig, we have

hlu.rlg:, g2i = hlu.rlgz, q1i, (5)

sothat h[u.rlg, gi = Oforu2 V!andg2 HL.

In dimension 2, the inclusions H! LP and V! LP for p 2 [2, ¥) follow from the
Sobolev embedding theorem. More precisely, the following Gagliardo—Nirenberg inequality
is true for some constant Cp:

- 2
kuk.» Cp kAzulkl_z‘kuk1 S for a=1 o 8u2 V% (6)

Finally, let us recall the following estimate of the bilinear terms (u.r)v and (u.r)g.

Lemma 1. Let qg, r be positive numbersand d 2 [0, 1) besuch thatd+ r > lz anda+ d+ r 1.
Letu2 V7, v2 V" andq 2 H'; then,

kA P[(u.r)vlkyo CkA%ukyo kA vkyo, (7)
KA 9[(u.r)glkyo CkA%ukyo kATgk,o, (8)

for some positive constant C := C(a, d, r).

Proof. The upper estimate (7) is Lemma 2.2 in [13]. The argument, which is based on the
Sobolev embedding theorem and Holder’s inequality, clearly proves (8). [

2.2. The Stochastic Perturbation

Let K (resp., K) be a Hilbert space and let (W(t),t 0) (resp., (W(t),t 0)) be
a K-valued (resp., K-valued) Brownian motion with covariance Q (resp., Q), which is a
trace-class operator of K (resp., K) such that Qzj = qjzj (resp., Ciz"j = chz]-), where fz;gjo
(resp., fz}gjo) is a complete orthonormal system of K (resp., ~),qu, q; > 0,and Tr(Q) = 3jo
qj < ¥ (resp, Tr(Q) = 3o gj X ¥). Let fbjgjo (resp., fbjgjo) be a sequence of
independent one-dimensional Brownian motions on the same filtered probability space
(W, F, (Ft, t 0),P). Then,

. P .,

W(t)= 3 qj bj(t)zj, W(t)= g qajbjz.
jo ) o~ "7

For details concerning these Wiener processes, we refer to [14].

Projecting the velocity on divergence-free fields, we consider the following SPDEs for
processes modeling the velocity u(t) and the temperature g(t). The initial conditions ug
and go are Fp-measurable, taking values in V° and HO, respectively, and

fru(t) + nAu(t) + B(u(t), u(t))dt = P(q(t)va) + G(u(t)) dW(t), (9)

feg(t) + kAg(t)+ (u(t).r)g(t) dt= G(q(t)) dW(t), (10)

where n, k are strictly positive constants, and v, = (0, 1) 2 RZ2.
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We make the following classical linear growth and Lipschitz assumptions on the
diffusion coefficients G and G. For technical reasons, we will have to require ug 2 V! and
g 2 H! and prove estimates similar to (19) and (20), raising the space regularity of the
processes by one step in the scale of Sobolev spaces. Therefore, we have to strengthen the
regularity of the diffusion coefficients.

Condition (C-u) (i) Let G : VO I L(K;V?) be such that

kG(u)kzL(K
kG(u1)  G(ua)kf

oy Ko+ Kikukyo>  8u2 VP, (11)

cvoy Likui  uajfe,  8ug,uz 2 VO (12)
(ii) Let also G : V1 I L(K; V1) satisfy the growth condition

KG(u)K{ (,y1) K2+ Kskuk,? — 8u2 V' (13)
and

Condition (C-q) (i) Let G: HO I L(K; H?) be such that

kG“(q)kZL( Ko+ Kikgk®,, ~ 8g2 HC, (14)

K,HO)
kG(q1)  G(a2)Ki ¢ yo, Likar  a2k}jo, 841,42 2 HO. (15)

(ii) Let also G : H1 | L(K; H1) satisfy the growth condition

kG(q)k

L(KHY) Ky+ Kskgk, .2 8g2 H. (16)

Hll
2.3. The Fully Implicit Time Euler Scheme

Fix N 2 f1,2,..g,leth := % denote the time mesh, and, forj= 0,1,...,N, sett; := j%.
The fully implicit time Euler scheme fuk:k=0,1,..., Ng and qu; k=0,1,.. Ngis defined
by u®= up, q°= go,and,forj 2 V!,y 2 H'andl = 1,..,N,

u' u" '+ hnAu' + hB u',u',j = PqI 1v2,j)h

+ G HIwW(L) Wy 1)1,4), 17)
g g '+ hkAg'+ hiu' tirld',y = G(a' HIW() W(ty 1)1, 7)) (18)

3. Main Results

In this section, we state the main results about the well-posedness of the solutions
(u,q), the scheme fu*;k = 0,1,..,Ng and the rate of the convergence of the scheme
f(uk,¢);k=0,1,..,Ng to(u,q).

3.1. Global Well-Posedness and Moment Estimates of (u, q)

The first results state the existence and uniqueness of a weak pathwise solution (that is
a strong probabilistic solution in the weak deterministic sense) of (9) and (10). It is proven
in [1] (see also [2]).

Theorem 1. Let ug 2 L2P(W;V9) and gg 2 L2P(W; HO) for p = 1orp 2 [2,¥). Let the

coefficients G and G satisfy the conditions (C-u)(i) and (C-g)(i), respectively. Then, Equations (9)

and (10) have a unique pathwise solution, i.e.,

e u(resp., q)is an adapted V°-valued (resp., H-valued) process that belongs a.s. to L2(0, T; V1)
(resp., to L2(0, T; HY));
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e Pas.wehaveu2 C([0,T];V°), g2 C(0,T]; H?) and

Z 1 1 Zy
u(t),j+n A2u(s), Azjds +

[u(s) rlu(s),4ds 0
z, z,
= wo )+ Paltvajids+ ], Glu(s)AW(s)
Z Z
a(thy +k = Kiq(s), A}y ds+  [u(s) rlg(s),y ds
0 0
zt
= G y)+ ; f, Glg(s))dW(s) ,

foreveryt 2 [0,T] andeveryj 2 Vlandy 2 HZ.

Furthermore,
Z7
E sup ku(tk® + kAlm(t)sz/1+ ku()k®® Yt ¢ 1+ E(kugk®, . (19)
\) \ \
t2[0,T] 0
Z7
E sup kq(t)k™ 0kA*"qz(t)k2 ol + ka(k*P Vdt € 1+ E(kgok® ., (20)

t2[0,T]

The following result proves that, if ug 2 V1, the solution u to (9) and (10) is more
regular.

Proposition 1. Let ug 2 L2P(W; V1) and gg 2 L2P(W;H?) forp= lorsomep 2 [2,¥), and let
G satisfy condition (C-u) and G satisfy condition (C-g). Then, the solution u to (9) and (10)
belongs a.s. to C([0, T]; V1) \ L2([0, T]; V2). Moreover, for some constant C,

Zq
E sup ku(t)kz‘i/+ kAu(t)k? o1+ KA ® uft)k
0

1

2(p 1

Lo ldt L+ E kuok™ + kagk™ . (21) 210,7)

The next result proves similar bounds for moments of the gradient of the temperature
uniformly in time.

Proposition 2. Let ug 2 L8P*¢(W; V1) and g 2 L&P*€(W; H1) for somee > Oand p = 1or
p2 [2,+¥). Suppose that the coefficients G and G satisfy the conditions (C-u) and (C-g). There
exists a constant C such that
h Zq i
E sup k/xéq(t)kz"0+ kAu(s)szOkAvlq(s)kz(F; YVys c. (22)
H H

tT 0

3.2. Global Well-Posedness of the Time Euler Scheme
The following proposition states the existence and uniqueness of the sequences
fu*gy=o,.,n and fa¥gi-o, -

..........

..........

HL.

3.3. Rates of Convergence in Probability and in LZ(W)

The following theorem states that the implicit time Euler scheme converges to the pair
(u, q) in probability with the “optimal” rate “almost 1/2”. It is the main result of the paper.

Forj=0,..N,setej:=u(t;) uande:=gq(t;) g¢’;then,eg= ep= 0.
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Theorem 2. Suppose that the conditions (C-u) and (C-gq) hold. Let ug 2 L32*¢(w; V1) and

o 2 L32*¢(W; H?) for some e > 0, u, q be the solution to (9) and (10) and fu’, gigj=o, .. n be the
solution to (17) and (18). Then, for every h 2 (0, 1), we have
T
lim P max kek?o+ keykZo+ = gAzejkéo + kAzejki, N F= 0. (23)
Nty DN v H JEN v H

We finally state that the strong (i.e., in L2(W)) rate of convergence of the implicit time
Euler scheme is some negative exponent of In N. Note that, if the initial conditions ug and
go are deterministic, or if their V! and H1-norms have moments of all orders (for example, if
Up and gg are Gaussian random variables), the strong rate of convergence is any negative
exponent of In N. More precisely, we have the following result.

Theorem 3. Suppose that the conditions (C-u) and (C-g)(i) hold. Let u,2 L2%*e(w; V1) and
go 2 L2°*¢(W; HY) forq 2 [5,¥) and some e > 0. Then, for some constant C such that

(29 1+1)
24
N (24)

E max ke k%, + ke k%, + T Kh2ejk?, + kA2ejki, C In(N)
N v H j=1 d v H

for large enough N.

4. More Regularity of the Solution
4.1. Moments of uin L¥(0, T; V1)

In this section, we prove that, if ug 2 V1 and g 2 H?, the H'-norm of the velocity has
bounded moments uniformly in time.

Proof of Proposition 1. Apply the operator A7 to (9) and use (formally) 1t6’s formula for
the square of the k.kyo-norm of Azlu(t). Then, using (4), we obtain
1 z t 1 z t 1 1
kAfu(t)kf/0 +2n kAu(s)kflods= kAfuokf/o+ 2 A2Pg(s)vy, Azu(s)ds (25)
0 0

Zt VAR
+2  AG(u(s))dW(s), Atu(s) + KAZG(u(s))K2 y.yo, Tr(Q)ds.
0 0 !

Let tm := infft : ku(t)ky1 Mg; using (13), integration by parts and the Cauchy-Schwarz
and Young inequalities, we deduce, for M > 0andt2 [0, T],

. Z ¢ty
E KAZu(t™ tpm)kdo + 2n kAu(s)kZods E kugk,,e
0
Zint Z tnt
+ 2E kg(s)kyo kAu(s)kyods+ Tr(Q)E K2 + Kzku(s)kZ, ds
0 0
Z iay 1 Zne oy
E kugkyo®+ n kAu(s)kiods + =E kq(s)k%ods + KpT
0 n 0
Zy
+ K3TE sup ku(t)k\zlO + K3z E kAzlu(s" tM)k\Z/O ds.
0

t2[0,T]

Indeed the stochastic integral in the right hand side of (25) is a square integrable, and hence a
centered martingale. Neglecting the time integral in the left hand side, using (19) and the
Gronwall lemma, we deduce

sup sup EA:? Iiu(t" tm)k?, C< ¥. (26)

M t2[0,T] v
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R
As M| ¥, thisimplies that E OTkAu(s)k%/Ods < Y.
Furthermore, the Davis inequality and Young’s inequality imply
E sup AZG(u(r))dW(r), Azu(r)
0

st

nZz; . oL
3E KAZu(r A tp)k2, Tr(Q) kAZ G (u(r A tm)) K ,vo)dr :
0
. n Z o1
3E supkAzu(s” tm)k o Tr(Q) [Kz + Ksku(s A tm)k2,]ds 2
st 0

Zy

%E supkAZu(s A tM)k\Z/o + 9Tr(Q)E [Ky + Ksku(r? tM)k\leds .
st 0

Thﬁ upper estimates (19), (20), (25) and (26) imply that, for some constant C depending on
E( OT ku(t)k2, + kAzlu(t)kf/0 + kq(t)kZ, ds < ¥,

Z T/\t
supE lsupkAZU(t" tM)k20+ M kAu(s)k\Z/Ods
M 247 0
A

T 2 2
C+ CE kA%u(t)kV1+ kq(t)kl_IO ds < ¥.

As M ! ¥, we deduce
Z7

E sup kA2u(t)kZ, + E kAu(s)kZods C < ¥,
t2[0,T] 0

This proves (21) for p = 1.
Given p 2 [2,¥) and using Itd’s formula for the map x | xP in (25), we obtain
Z taty

kAzlu(t" tM)kf/po+ 2pn kAu(s)k kA?Z u(s)k
0

2(p 1) _ 1 2p
ds— kAqukV0
Ztm 1 1 20p 1)

+ 2p . A3Pg(s)va, Azu(s) kA u(s)k Vo ds

Z tht
v 20 AFG(u(s))dW(s), Atu(s) kAzlu(s)kz(va b

0
Z taty,

+ pTr(Q) kG(u(s)kZL(K_Vl)kAz u(s)k 2(5 Uis
. ;
tAt
+ 2p(p  1)Tr(Q) k A2G(u(s)) Aqu(s)kzk,?(zu(é)kz(p ZSds. (27)
0 \

Integration by parts and the Cauchy-Schwarz, Hélder and Young inequalities imply that
Zv o 1 L e, L t 20p 1)
A2Pg(s)vy, A2u(s)kAz d(s)k “:/0 'ds kAu(s)kyoka(s)kyo kA2 u(sfk(P Vgs

0

Z V4
net z(plonlt 2(p1ozl

kAu(s)k XAz d(s)k2P Ngs 2 kq(s k2 gleAz d(s)k” Vds
p%t 2 1) 1Zt 2 1)
= kAu(s)kzo\kA W(s)k“'% o Tds + | —— kq s)k? A(A W(s)k™® o ds
., 0 z2Pn z,
e kAu(s)k? kA2 s)k*P Yds+ c Kkq(s)k®Pds+ C kAzuL(s)kzpds. (28)
o Vo Vo 0 HO 0 Vo
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Sincea® ! 1+ aP forany a 0, the growth condition (13) implies that
z t
KAZG(u(s))k?  yo,kAZu(s)k2'P Yds

0 vo
Zt

Ky + K3ku(s)k2\9+ K3kA2%J(s)k2\9kAz ul(s)kz(pvol)ds
Z. Zy |
2 2
C T+ . ku(s)kv‘;+ ; kAZu(s)kV%ds . (29)

Furthermore, since kA2G(u(s))A2ufs)k?, [K,+ Kzku(s)k?,]kAzu(s}k?,, the upper
estimate of the corresponding integral is similar to that of (29). Since the stochastic in-
tegral Rt"tm ALG(u(s))dW(s), Alu(s) ku(s)kz(p Y os square integrable, it is centered.
Therefobe, (27) and the above uppér estimates (28) and (29) imply that

0

Z ia
1 2p tim 1 2(p 1)
sup EkA2a(t” ty)k v;’r pn kAu(s)k, kA2 u(s)k Vo
M y4 ° z
t 2p 2p t 1 2p
CT+E ku(s)k™ + kg(s)k™" ds + E kA u(s™t, )k ds,
0 VO HO 0 M VO
Using Gronwall’s lemma we obtain
sup sup E kAzu(s” 1.‘M)k2'D = C< Y, (30)
M t2[0,T] Vo
Z TAtM 1 2( 1)
sup E kAu(s)k? Q/kA*m(s)k po ds= C< ¥. (31)
M 0 v

Finally, using the Davis inequality, the Holder and Young inequalities, we deduce

2 shtm 2(p 1)
E sup 2p A2G(u(r))dW(r), A2 u{r)kA2 u{r)k .
s2[0,t] 0 v
nZtAt M 1 1 4p 2 013
6pE , Tr(Q)kAZ’G(u(s))kzL(K;VO)kAiu(s)kV'; ds

6p Tr(Q) E sup kA%u(s)k'D0
sthty v

nZz 1

2

¢ (o}
(I)(ALG(U(S" tn) Ky (Zyo kA (s A ty)k*P 2ds
4

t t
sup kA?u(s)k®® + CE1+ ku(s)k>P ds + kA2ufs)k’Pds. (32)

Vo Vo vo
$2[0,t ] 0 0

N M

The upper estimates (27), (19) and (32) imply that

supE sup kAiu(s)k2p
M s2[0,TAt ] VO
h Mo Zq i
C 1+ supE kg(s tM)k2p+ Agp(s" tM)kZpdSvf ¥.m
0

As M ! ¥ in thisinequality and in (31), the monotone convergence theorem concludes
the proof of (21). O

4.2. Moment Estimates of g in L¥(0, T; H?)

We next give upper estimates for moments of sup kﬁ%q(t)kHo, i.e., prove Propo-

sition 2.

t2[0,T]
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However, since h[u(s).rlg(s), Ag(s)i = 0, unlike what we have in the proof of the
previous result, we keep the bilinear term. This creates technical problems and we proceed
in two steps. First, using the mild formulation of the weak solution g of (10), we prove that the
gradient of the temperature has finite moments. Then, going back to the weak form, we prove
the desired result.

Let fS(t)g:o be the semi-group generated by nA, fS(t)g.o be the semi-group
generated by kA, which is S(t) = exp( ntA), and S(f) = exp( ktA) for everyt 0.Note
that, for every a > 0,

kAaS(t)kL(VO;VO) Ct a, 8t> O (33)
kA 7 1d S(t) kL(VO;VO) Cta, 8t> 0. (34)

Similar upper estimates are valid when we replace A with A, S(t) with S{t) and V° with
HO.

Note that if ug 2 L2(W; V1) and go 2 L%(W; H®), we deduce u 2 L2(W; C([0, T];V°)\
L¥([0,T]; V1)) and g 2 L%2(W;C([0,T]; H?))\ L2(W [0,T]; H!). We can write the solu-
tions of (9) and (10) in the following mild form:

z t z t
u(t) = S(t)u, S(t  s)B(u(s),u(s))ds+ S(t s) Pg(t)v, ds
0 0
Z
+ tS(t s)G(u(s))dW(s), (35)
0
Zt Zt
q(t) = S(t)q, S(t s) [u(s).rlg(s) ds+  S(t s)G(q(s))dW(s), (36)
0 0

where the first equality holds a.s. in V° and the second one in HO.
Indeed, since kA%ukyo CkA:2 uk2a kou(s)k1 5‘;, the upper estimate (7) ford+ r > l,g
+ a+ r = 1and the Minkowski inequa\fity imply that

Zy Zy
S(t  s)B(u(s), u(s))ds kAdA dB(u(s),u(s))kvods
0 vo 0
{
C (t s) 9kA%u(s)kyokA u(s)kyods
0 7,
C sup ku(s)k 5 (t s) dds
$2[0,t] 0

Since kS(t)ki(yo,yo) 1,itis easy to see that

Z 4 Zy
S(t  s)Pg(t)v,ds C kq(t)kHods.
0 v o 0
Furthermore,
Zt 2 Zt
E S(t  s)G(u(s))dW(s) Tr(Q)E [Kq+ Klku(t)k\zl0 ds < ¥.
0 vo 0

R
YS(t s)G(u(s))dW(s) 2 VO a.s., and the identity (35)

Therefore, the stochastic integral 0

is true a.s. in VO,
A similar argument shows that (36) holds a.s. in H®. We only show that the convolution
involving the bilinear term belongs to HC. Using the Minkowski inequality and the upper
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estimate (8) with positive constants d, a, r such thata,r 2 (0, 15), d+ r > lz andd+ a+ r =
1, we obtain

zt Zt
S(t  s)[(u(s).r)g(s)lds kAIS(t  s) A d[(u(s).r)q(s)]kHOds
0 HO 0
Z
t
C (t s) “kA%u(s)kyo kA q(s)kyods
0 Zt Zt
1 2r d 1 r 2 r
C sup ku(s)k Vi sup kg(s)k . (t s) *rds kA2 qs)k ds0 < ¥,
s2[0,t] s2[0,t] H 0 0 H

where the last upper estimate is deduced from Holder’s inequality and 1—dr < 1.

The following result shows that, for fixed t, the L2-norm of the gradient of g(t) has
finite moments.

Lemma 2. let p 2 [0,+¥), ug 2 L*P*¢(W; V1) and go 2 L*P*¢(W; H?) for some e 2 (0, 1).
Let the diffusion coefficient G and G'satisfy the condition (C) and (C); respectively. For every N, letty
= infft 0: kA q(t)leyo NgA T; then,

sup sup E kAzq(t” tN)k2p < ¥. (37)
N>0 t2[0,T] HO

Proof. Write g(t) using (36); then, kAzlq(t)kHo éizf’T (), where

Z
Ti(t) = kAZS(t)gokyo, Ta(t) = i AS(t  s)[(u(s).r)q(s)lds "
V4
)= RIS SGals)W(s)

0

The Minkowski inequality implies that, for b 2 (0, %),
Zt 1~ ~
Ty (t) . kKA S(t s)[(u(s).r)g(s)lkyods

£ L. N
KATS(E s)kyguo,uo kA (3 P)[(u(s).r)q(s)kyods.
. ;

Apply (8) withd = 1 b,a= 1andr 2 (b, }). A simple computation proves that
kA" fkyo kAsz;k'_sz(fkl_lo1 2" forany f 2 H!. Therefore,

kA (2 B)[(u(s).r)q(s)kyo CkAzu(s)kyokA’G(s)kpo

CkA2 d(s)kyokA2G(s)k™ ka(s)k™ 2

HO

This upper estimate and (33) imply that

1 2r
0

t
T2(t) C sup kA2u(s)kyo sup kq(s)k (t s) 1+ka%q(s)kerds.
$2[0,T] 52[0,t] 0 H
For p 2 [1,¥), Hélder’s inequality with respect to the measure (t ~s) (1 )1 (s)ds
implies that
1

z, 2
T (1% C sup kA2 d(s)k>P sup kq(s)k2P* 27t s) (1 blgs

s2[0,t] v s2[0,t] H 0
t (1 b) 1 4pr
(t s) kA,q(s)k " ds.
HO
0
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= 2t n) = 21 ) = 1 1 1 1 _ -
Let pr = S, P2 = @ 22 and p3 = 5. Then, nt et 1, 4rpps = 2p and
pp1= p(1 2r)p; := p. Young’s and Hélder’s inequalities imply that
e 1 L o2e o1 2p -
To(t)°P C “—sup kA2u(s)k™" + ~—sup kq(s)k™"
P1 s2[0,t] v P2 s200,t] H )
1 -t t py 11
+ = (t s) 1+bk/!rlzq(s)kz‘) ds (t s) Mbds o
P30 HO 0
. . 1 21 r) . N 201 r) _
Note that the continuous functionr 2 (0, 5) ! 15, increases with lim,g T = 2.
Given e > 0, chooser 2 (0, 1) close enough to 0 to have 2p = ZpZ(l1 Z'V) = 4p+ e, and then
choose b 2 (0,r). The above computations yield
h
T,(t)2° C sup kAz&(s)k4"\j§+ sup kq(s)k™"'
s%?m] s2[0,t]
t
+C (t s) 1+bkﬁciq(s)k2"0ds. (38)
H
0

Finally, Burhholder’s inequality, the growth condition (16) and Holder’s inequality
imply that, fort 2 [0, T],

Zint N, . . N 2p
E A2S(t  s)G(q(s))dW(s)
0 HO
0 z tAt N o1 - 5 p
Cp Tr(Q) E kA2G(q(s))K . "o, ds
0 z . ’
tAEN - - ) . 1 2 P
Co Tr(Q) E L [Ko+ Kakqls)kfo+ KakAzq(s)ko s
h i
C(p, K2, K3, Tr(Q))TP 1+ E sup kq(s)k™®
$2[0,T]
P, P 1Zt k- 2p
+ Cp Tr(Q)PKsPTP E kA g(s " ty)k’P ds. (39)
0

The upper estimates (38), (39) and Ty (t) kAzq’t)kHo kgoky1 used with t» ty
instead of t imply that, for every t 2 [0, T],

I
4pte

h
E kA2q(tA f,\,)kzl_‘pO Cp 1+ EkA2q0R2p+ LSup kA2 u(s)1k4p+e<r/0 sup kg(s)k 4o

s2[0,T] s2[0,T]
z
! 1+b F.oTP 1 i A po) 2P
+ Cp (t s) + K3T E kA g(s™ tN)k Hgs,
0

where the constant Cp does not depend on t and N. Theorem 1, Proposition 1 and the
version of Gronwall’s lemma proved in the following lemma 3 imply that (37) for some
4p+te

constant C depending on E(kuok‘t/p;'e) and E(kgok Ho

plete. [

). The proof of the Lemma is com-

The following lemma is an extension of Lemma 3.3, p. 316 in [15]. For the sake of
completeness, its proof is given at the end of this section.

Lemma 3. Lete 2 (0, 1), a, b, c be positive constants and j be a bounded non-negative function
such that 7

j(t) a+ ' b+ c(t s) *¢ j(s)ds, 8t2 [0,T]. (40)
0

Then, SUPy[0.T) j(t) C for some constant C dependingon a,b,c, T and e.

Proof of Proposition 2. We next prove that the gradient of the temperature has bounded
moments uniformly in time.
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We only prove (22) for p 2 [2,+¥); the other argument is similar and easier.
Applying the operator K7 to Equation (10), and writing 1t6’s formula for the square of
the corresponding H%-norm, we obtain

Z V4
q(t )k20+ 2k kAq(s)kzods- kA 2l kH[J 2 Oth(u(s).r)q(s),Kq(s)ids
A A
+2 t AzG(q(s))dW(s),/x%q(s) + Tr(Q) tkA%G(q(s))kaods.
0 0

7\_
~\>—-

Then, apply 1td’s formula for the map x | xP. This yields, using integration by parts,

z t
21q(t)kf£+ 2pk  kAg(s)k?, kAzq(s)kz(p Ugs = kA2
0
t
2p  h(u(s).rql(s), Arq(s).kﬂrzlq(s)kz‘p Ygs

0
Z

+2p - K1G(g(s)dWi(s), A2g(s) kA g(s)k"F, "
Z

0

+ 2p(p  1)Tr(Q) k A2G(g(s)) Azq{s)kzkxlx(zqté)kz‘p 2 gs. (41)
0 HO

FpTHA)  KAGla(s)) KBk AT q(s)k2E Vas
Z,

The Gagliardo—Nirenberg inequality (6) and the inclusion V! L* implies that

2t Sy el 200 1)
h(u(s).r)g(s), Aq(s)i kA2g(s)k 4o ds
£ ol S TRLILIEY
C kAq(s)kHoku(s)kL4kAiq(s)kL4kAiq(s)kH§ ds
0
Z, 3
C kAq( s oRu(s Jky1kA2G(s)k,o P ds.

0

Then, using the Holder and Young’s inequalities, we deduce
Z ~1 v 2(p 1)
2p h(u(s) r)g(s), Ag(s)ikAz2g(s)k Ho ds
Zt
(2p 1)k kA(q(s))kzokAzq(s) 2o Vs
Z .

+ C(k, p) sup ku(s)k* . kA%q(s)k 0ds. (42)
$2[0,T] Voo H

The growth condition (16) and Hélder’s and Young inequalities imply that

zt z,
A2G (q(s))k kAzq(s) 2(5 Uds ¢ 1+ kaq( s)k ?’rpkAzq(s)k ds (43)

N

0

and a similar computation yields
Zy
ATTG(q(s)) A2qT8)k? kAza($k*" 2)gs

0
Zt

C 1+ kg(s)k? + kA ™g(s)k? ds. (44)
0 HO HO

Let ty := infft 0: kAZ"ql(t)kHo Ng. The upper estimates (41)—(44) written fort?
ty instead of timply
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. 2p Z 1apy
sup kA2qg(t " t“N)kH0+ k
t2[0,T 0
+ C sup ku(s)k“l kA%q(s)ka ds+ C
$2[0,T] 0 0
z tNh ey

+2p sup K2 G(q(s))dW (s), A2q(s)kAzg(s)k* P,
t2[0,71] © H

qu(s)kﬁokA%q(s)ki‘g Uds kAl”qgksz

0

1+ kq(s)k®® + kA2Yq(s)k>P ds
0 HO HO

Using the Cauchy-Schwarz inequality, Fubini’s theorem, (21) and (37), we deduce

z T/\r Nl
E sup ku(s)kf‘/1 kA2 q(s)k?" ds
s2[0,T] 0 H
n oinZry ) oL
E sup ku(s)k, E kAzg(s en)klh ds * C. (45)
s2[0,T] 0

The Davis inequality, the growth condition (16) and the Cauchy-Schwarz, Young and
Holder inequalities imply that

Ztr. 1 1 2(p 1)
E sup A" G(q(s))dW(s), A gfs)kA qts)k™ "
t2[0,T] © H
nZrs . oL
CE Tr(Q) Ky + Kakg(s ™ fu)k2, kAzq(s” fiy)k, s “ds
0
h
CE  sup kAZg(sh tu)k® (Tr(Q)) %
sT
nZry » ) 20 1) o1 4
Kz # K3kg(s » ty)kyo # KskA2g(s ~ tn)k? okA2g(s™ ty)k™ " ds "E
0
sup kAz2q(s” tN)kzp
— sT N 0
4p Z H .
2 ¢l 2
+ CE . 1+ kg(s™ rN)kao+ kAzg(s™ t”N)ka0 ds .
Therefore, the upper estimates (20), (37) and (45) imply that
1 ; 2 Zrnty 2(p 1)
EE supkAzg(s ™ tn)k png kE kAg(s™ ty)k? 0kﬁzq(?;k P Hgls CsT
0

for some constant C independent of N. As N | +¥, we deduce (22); this completes the
proof of Proposition 3. [J

We conclude this section with the proof of an extension of the Gronwall lemma.
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Proof of Lemma 3. Fort 2 [0, T], iterating (40) and using the Fubini theorem, we obtain

z, h  Z, i
j(t) a+ b+ c(t s) ] a+ b+ c(s r) Mj(r)dr ds
0 0
Z
a 1+ [b+ c(t s) *ds
zz,
+ b+ c(t s) *e]lb+ c(s r) *€]dsj(r)dr
2o " e z, i
Ag+ b2(t r)+ ZT(t r)€+ ¢ (t s) M™e(s r) *eds j(r)dr
Z.n z ' [

1 I
A+ By+ Cq(t r) *2e 7 lreq ) *edy j(r)dr,
0 0

for positive constants A; (depending on a,b,c, T, e), B; (depending on b,c, T, e) and C;
(depending on c and e). One easily proves by induction on k that, for every integer k 1,
Z +h Zy i
j(t) Ap+ By+ cCy 1 (t s) Yke(s r) *eds j(r)dr
0 r

tZ
A+ By + Cy(t r) rk+Deingr,
0

for some positive constants Ay, B, and C, depending on a, b, c, T and e. Indeed, a change in
variables implies that
Zy Z,
(t S) 1+ke(s I‘) 1+ed$ (t r) 1+(k+1)e / l+k€(1 /) 1+edl
r 0
Ce(t ) trlkelle

for some constant Ck depending on k and e.
Let k be the largest integer such that ke < 1;thatis, ke < 1 (k + 1)e. Then, since
(t r) 1rlkelle 1 1+(k+l)e \ye deduce that

Zq
j(t) A+ Bj(r)dr,
0

for some positive constants A and B depending on the parameters a,b,c,T and e. The
classical Gronwall lemma concludes the proof of the lemma. [

5. Moment Estimates of Time Increments of the Solution

In this section ,we prove moment estimates for various norms of time increments of
the solution to (9) and (10). This will be crucial for deducing the speed of the convergence of
numerical schemes. We first prove the time regularity of the velocity and temperature in L2.

Proposition 4. Let ug, go be Fo-measurable; suppose that G and G satisfy (C-u) and (C-q),
respectively.

(i) Letug2 L*P(W;V1)andgg2 L2P(W;H?). Thenfor0 t; < t, T,
E ku(ty) u(t1)k2po City tjP. (46)
Y
(i) Letug 2 LBP*e(W; V1), go 2 LBP*¢(W; H1) forsomee > 0. Then,for0 t; < t, T,
E kq(t2) q(tl)sz"o Cita  tjP. (47)
Proof. Recall that 5(t) = e "*A is the analytic semi group generated by the Stokes operator A

multiplied by the viscosity n and that S(t) = e kA js the semi group generated by A =
D. We use the mild formulation of the solutions stated in (35) and (36).
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(i) Let O t; < t, T;then, u(ty) u(ty) = &%, Ti(ty, t2), where
Ti(t1, t2) = S(t2)ug  S(t1)uo = S(t2)  S(t1)S(t1)uy,
t tl
To(ti, t2) = 2 2S(t;  s)B(u(s),u(s))ds 2 S(tr s)B(u(s), u(s))ds,
Zof2 Z. 0
T3(t1, t2) = . S(t; s)Pg(s)vads . S(t1  s)Pg(s)vads
Z t, z t
Ta(ty, t2) = . S(ta  s)G(u(s))dW(s) . S(t1 s)G(u(s))dW(s). (48)

The arguments used in the proof of Lemma 2.1 [11], using (7), (33), (34) and (21) yield

E kTi(ty, t)k® + kTa(t1, to)k*® C1+ E(kuok®™)ljts  tjP. (49)
v o v o vi
Let T3(t1, t2) = T3,1(t1, t2) + T3,2(t1, t2), where
Z ty
T3,1(t1, t2) = [S(t; t1) Id]IS(t1 s)Pg(s)vads,
z°,
T3,2(t1, t2) = S(t s)Pq(s)vads.

t1

Since the family of sets fA(t, M)gt is decreasing, using the Minkowski inequality, (33) and
(34), we obtain

z t
KTs1(ts, to)kyo  KA*S(t; s)kpo,vo) KA C[8(t2 1) Idlk vo,vo)kPg(s)vakyods
0

1
Cta t1 sup kq(s)kyo,
52(0,T]

and
VA t
kTs3,2(t1, t2) kyo kS(t s)Pg(s)vakyods t; t1 sup kq(s)kyo.1
ts2[0,T]

The inequality (20) implies that

EkTs(t1, o)k*" Ct t1j® E(kgok™® ). (50)
vo HO
Finally, decompose the stochastic integral as follows:
z z

t, t
Ta,1(t1, ) = O[S(fz t1) 1d]S(t1  s)G(s)dW(s), T42(t1, t2) = . S(t;  s)G(s)dW(s).

The Burkholder inequality, (34), Holder’s inequality and the growth condition (13) yield
z t

E kTy1k2) CpE "KIS(t,  t1)  1dIS(ti  s)G(u(s))kZoTr(Q)ds ©
0
zt p
c(Tr(Q))PE KA 3[S(t2 1) 1d]1kgyo.yo kA2 G(u(s))k? ods
Z 0 ) v
CE ty t1 Ko+ ngu(s)kvlds 2
C1+ E(kUok®®)jt, tj®, (51)

v1
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where the last upper estimate is a consequence of (19) and (21). A similar easier argument

implies that
Z, o
s)G(u(s))k\zloTr(Q)ds

kZS(tz
(52)

E KkTs2klh CpoE
t
tlp.

C 1+ E(kakZp\)0 ty

The inequalities (49)—(52) complete the proof of (46).
q(t1) = &,_, P(t1;t2), where

(ii) As in the proof of (i), for0 t; < t, T, letq(t;)

Ta(ty, t2) = Stz t1)  1dS(t1)qo,
t t
Tyt t2) = 2 2SN(tz s) [u(s).rlq(s)ds + g S(t1  s) [u(s).rlg(s)ds
Zt Zty
T,(t,t,) = S‘(t2 s)G(q(s))dW (s) 9(1‘1 s)G(q(s))dW (s). (53)
0 0
The inequality (34) implies that
kTi(t1, t2)kyo = kA 1St t1) 1dS(t1)Az2gokyo
(54)

Cty t]_jlquokHl.

Decompose Ty(t1, t2) = To1(t1, t2) + T2,2(t1, t2), where

A t
S(t, t1) 1d]S(t;
0

Z tZ ~
To2(t1, 1) = . S(t2 s) [u(s).rlg(s) ds.

Let d 2 (0, 3); the Minkowski inequality, (33), (34) and (8) applied witha = r = 1 imply

s) [u(s).rlg(s)ds,

Ty,1(ty, tp) =

that
z t N
kTZ,l(tlltZ)kHO kS(t1 S)S(tz t1) Id [u(s).r]q(s)kHods
0
“u e ¢ lre
o kA2 S(t]_ S)kL(HO;HO)kA Z[S(tz t]_) |d]kL(H0;H0)
kA 9 [u(s).rlq(s)kods

Zy (Lid) 11 1
C (t1 s) '27%jt  t1j2 kA2u(s)kyo kA2g(s)kyods
0
Zy
l‘ljzl sup kA%u(S)kVo 1(t1 s) (3+d) kﬂzlq(s)kHo ds.
0

s2[0,T]
- Letpa be the conjugate exponent of p;; we have (, +
s) (l‘”‘”l[o,tl)(s)ds
2

Cjit,

Letp12 2,2+ 4@andletdz 0, 1p

d)lpz < 1. Thus, Hélder’s inequality forthe finite measure (t;
and then, ds with conjugate exponents p; and p; imply

with exponents 2p and 20p1/
Zy
klel(tl,tz)szpo Ct, t:° sup kAzlu(s)kzs0 1(t1 s) (%"d)kﬁzlq(s)szpods
$2[0,T] 0
nZz t 0, 1
1(t1 s) (Jrdrgs P
0
VA
p 1 2p nen L 2pp, Opr
Ct t sup kA u(s)k kA~ g(s)k ds
2 1 Vo HO
. $2[0,T] 0
n t (o]
Yt s) Girdeagg

0
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Since 2ppy < 4p+ % and 2pp; < 4p, Holder’s inequality and Fubini’s theorem, together
with the upper estimates (21) and (37), imply that

n o 1
E klel(tl,tz)szpo Cty tljp E sup kAZl%I(S)kzp\fg P2
s2[0,T]
nZ t ) o _
E kA29{s)k™Pids ° Gt t jP. (55)
0 HO 2 1
A similar argument proves that for h 2 (0, 1),
Z 2 1~he(s 1 h
kT22(t1, t2) ko kA*"S(E S)ky(no, o) kA [u(s).rlg(s)kyods
t
Zt 1+h | p L !
C (t s) " kAZu(s)kyo kA2g(s)kyods
tq Z
ih 1 & 1+h 1
Ct, t1j" sup kAzu(s)kyo (t; s) kA2q(s)kyods.
s2[0,T] t1
Let h 2 200 1,1, fore > 0, let p;,p2 2 (1,+¥) be conjugate exponents such that,
. apigpss P1 < 2; then (1 h)p, < 1. Holder’s inequality implies that
2 1 2 z t ~1 2
kTy,2(t1, t2)k po Ct tj2P VP sup kAzZu(s)k po (t; s) Y kAzg(s)k pods
H $2[0,T] Vi H
5 nZ t, 01
Ct , tlj(2p Dh sup kA#u(s)k“P (t2 s) (1 hez2gg 5,
0
$2[0,T] v t
nZz t,

2 0, 1
kA2gys)k“PPids P17
Ho

t
1

Since (2p 1)h > p, } < 2; furthermore, 2pp, < 4p+ £ and 2pp; 4p. Holder’s
inequality together with the upper estimates (21) and (22) imply that

n o 1
E kToa(t, K25, Cty t° E sup KA a(s)k*"P2 72
$2[0,T]
nZy, 20p op 1 .
E kA2gis)k™ "*ds * Ct t jP. (56)
¢ HO 2 1
1
This inequality and (55) yield
E k-Fz(tl,tz)kZp Ct tljp. (57)
HO

Finally, an argument similar to that used to prove (51) and (52), using the growth
condition (16) and (20), implies that
E kTg(tl,tz)kZP Ct tlp. (58)
HO
The upper estimates (54), (57) and (58) complete the proof of (47). [

We next prove some time regularity for the gradient of the velocity and the temperature.

Proposition 5. Let N 1 be an integer and, for k = 0, ,N, sett, = kT vmhere Gand G
satisfy conditions (C-u) and (C-q), respectively, and let h 2 (0, 1).
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(i) Letp2 [2,¥), ug2 L*P(W; V1) and gg 2 L2P(W; H?). Then, there exists a positive constant
C (independent of N) such that

N Zt j ) P T ho
E Bu(s) u(tj)k .+ ku(\7§) u(t; 1)kZ; ds C N (59)
j=1 %1

(i) Letp2 [2,¥), ug2 L¥P*e(w; V1) and gg 2 L6P*¢(W; HO) for some e > 0. Then,

Nzt

| ; .
E g(s) qltpk o+ kaly) qlt; 1)kZ, ds € —
j=1 b1 N

(60)
Proof. (i) For j = 1,.., N, write the decomposition (48) of u(tj;) u(s) used in the proof
of Lemma 4 (thatis, t; = s, t; = tj), and apply AZ. The upper estimates of the sum of
terms A%Tl(s, tj) and A%Tz(s, tj) obtained in the proof of Lemma 2.2 in [11] imply that, for

h2(0,1),
N Z t. h
E 3 kAzTils, t)k%0 4 kA2 Tols, t)k?ods C(E(kuok®?)) T '1,1 . (61)
j=1 Y1

The Minkowski inequality and the upper estimates (33) and (34) imply, ford 2 (0, 21)

Z
KAZT3 (s, tj)kyo OlkAzJ'aS(tj s)kpvo.voy KA 9S(t; s)  1d kyyo,yo)

kPg(s)vakyo ds
VA
. .d Y (L+d)
Cjt; sj® sup kq(s)kyo (ty s) ‘27%ds,
s2[0,;] 0

Hence, we deduce

N 2y p T 2pd
3 : kAlZTgll(S,tj)kz\P ds C —sup kq(s)kzpj=1 I
t 1 s2[0,T] ;

N Zy Z 2 p

(s r) (i“”)dr ds
j=1 1 0

T 2pd 2 2T 4 gy P T2 2p

C _ sup kq(s)k S ds C sup_kq(s)k™ .

H® o N HO

s2[0,T] s2[0,T]

Using the Minkowski inequality and (33) once more, we obtain

NZy z z

o ! lT 2 P 2 N+1 tj 1 2 P
3 kA2 312(s,tj)k\9ds a kA2S(t; r)Pq(r)vokyoedr ds
j=1 %1 j=1 Y s
N 4 t . Zt . 2
C sup kg(r)k ipo 3 ! J(tj s) zdr ds P
r2(0,T] j=1 1 s
2p T p

C sup kg(r)k .
r2[0,T] HO N

The above estimates of T3,1 and T3, together with (20), imply, for h 2 (0, 1), that
N Z j hp

E 3 kAT (s, t)k2 ds® ¢ L " (62)
j=1 41 v N
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We next study the stochastic integrals. Using Holder’s inequality, the Burkholder
inequality, (33), (34) and the growth condition (13) twice, we obtain for d 2 (0, 13)

N Zt .
p p
E - BA2Toa(s i)k o} N P13 E  KAZTauls, t))k2ods
j=1 j=1 45 1
V4 V4
p 1 Noy s 2p
N Pl 3 E AdS(s  r)A 9S(t; s) 1d]AZG(u(r))dW(r) | ds
N j=1 tj 1 0 \
N Zt- 4 s 1 p
CpTP ! 8 E S 29t $)2/kA2G(u(r))kHE o Tr(Q)dr ~ ds
j=1 b1
Z Z
T 2dp T S p
— E (s r) 29K, + Ksku(r)k,%dr ds
Np 0z, 0 z i
¢ Puie Tkumk® 2gsqr ¢ 0T 63
N — . u(r) r\(/si r) “dsdr C -, — (63)

where the last upper estimates are deduced from the Fubini theorem, and from the upper

estimates (19) and (21).
A similar argument proves that

N
kA2 Bra(s, tj)k ods
j=1

] ]

E S(t; s)AlzG(u(r))dW(r)zpdsJ':l
s vo

lNZt. zt-
TP a

p 1 o fy 2 4.
C 'I") Tr(Q) 3 E K + szu(gk dr \(/:Ils
j=1 tj 1 S
N Zt. Zt.
Tr 1
C = K"+ KPE(kA2u(r)R%?)drds
d 2 3 A
N s
z t. Zt .
T b KP4 KPE(KAZu(r)k2®) Yds dr
2 3 VO
N j=1 tj 1 r
z i
T 0y T T »
-1 E(kAZu(s)k20)ds € — . (64)

j=1 41

QJOZ

N
The inequalities (63) and (64) imply that, for h 2 (0, 1),

N Zt -
p T hp
E BA2Ta(s, tifk ods 2 c — . (65)
j=1 i1 N

The above arguments (61), (62) and (65) prove similar inequalities when replacing
T.(s, t;) with T,(tj 1,s)fori= 1,..,4andj= 1,..,N. Using (46), this concludes the proof

of (59).
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~1 ~
(ii) As above, we apply A2 to the terms Ti (s, tj),i = 1,2,3 of the decomposition (53) of

q(tj) q(s) introduced in the proof of Proposition 4 (ii). Ford 2 (0, 21—), the inequalities (33)
and (34) imply that

N Z t.
o J 1 = s 2 P
a kA 5(s)S(t; s) Idqgok 9
j=1 41
o Ktj d ¢ ~ L 2 p
a kKAYS(sTA “S(t; s)  IdA7gok q
j=1 41
N 2y 2d
o G 247 91 P
C 1a ts hAquk 0dsH=1 j
VA
T 2dp T p
C _kAz2q k%po s 2dgs .
N HO o
Hence, for h 2 (0, 1),
NZy o
ol - ~ P hp
E gA2s(s) S(t] s) Id qokZo  CE kgok ¢ rr (66)
j=1 %1 N

Let b2 (0,1)andd2 (0,1 d). The Minkowski inequality, (33), (34) and (8) applied
witha = r = 1imply that, fors 2 [t; 1,1],

Z S
AzS(s r)set s) Id [u(r).rlg(r)dr
0 J H O
Z S
kA2*P*ds(s r) A bsit; s) 1d A9 [u(r).rlg(r) kyodr C
0
Z S
(s [) (3+b+d) NEkAzu%r)kvo kA2 §fr)kyo dr.
0

Therefore, using the Cauchy-Schwarz inequality and Fubini’s theorem, we obtain

NZe g P
E BA2Ty1(s, fj)k 0de=1'2_|j 1
t h N Z Z
T 2bp ti, s
T E sup kA2u(si*’ . (s r) (#7P+d) e pdq(r)k?
N VO a HO
s2[0,T] j=1 Y 0
z, . ol
(s r) (a¥brdlgr ds
C 0
17 17 1 i
T 26p T T pl
N E supsﬂf(,'}rﬁu(s)kzp VRA2gfr)k? ds H{s r r) A gsgr
A 1
26p N oinZy R o1
c I e sup katu(s)k®s  © E kAlq(rk® dr
N s2[0,T] 0
The upper estimates (21) and (37) imply, for h 2 (0, 1), that
N Z t .
~l o~ p T hp
E BATou(s Gk ods 2 c - . (67)
=1 b N
j=1 %1

Using the Minkowski inequality, (33) and (8) with a = r = }, and Fubini’s theorem, we
obtain, ford 2 (0, 1),
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NZgo P
BA2T2a(s, )k 0de=1'2_|j 1
t N 2 t z t 1 1 1 2
3 (t, r) (2””kAzu(r)kVokAzq(r)kHodr ds
j=1 {1 s
NZy Zg
C sup kA2d(r)k*° 5 e ) U kaig(s)k? dr
r2[0,T] Ve Sy, os ! H
z t 1 p
(t; r) @*dr ds
° 2p o ﬁti 2 th p
C sup kAz2¥r)k a kA2gfr)k » dsdr
r2[0,T] v j=1 1 r
T pz

C sup kA2 L;l‘—(r)kZp
r2[0,T]

T 20
~ kAz2q(s)k" " dr
AN 0 HO

Using the Cauchy-Schwarz inequality, (21) and (37), we obtain

NZy o
“1 p T »
E BA2T22(s )k ods 2 c — . (68)
j=1 tj 1 N
Finally, arguments similar to those used to prove (65) imply, for h 2 (0, 1), that
N Z t .
~1 -~ p T he
E - BA2Ts(s, K ods 2 c — . (69)
j=1 1 N
The upper estimates (66)—(69) conclude the proof of
N Z t .
~ p T he
E BA2 g(t)"" q(s) Kiods € — , h2(0,1).
j=1 %1 N

Using (47), a similar argument completes the proof of (60). [

6. The Implicit Time Euler Scheme

We first prove the existence of the fully time-implicit time Euler scheme fuX; k =
0,1,..,Ng and fg*; k = 0,1, .., Ng defined by (17) and (18). Set DJW := W(t;) W(t; ;)
and D|V\7 = W(t|) W(t| 1), | = 1,...,N.

6.1. Existence of the Scheme

Proof of Proposition 3. The proof is divided into two steps.

Step 1 For technical reasons, we consider a Galerkin approximation. Let fe g, denote an
orthonormal basis of V? made of elements of V2 that are orthogonal in V! (resp., let felg,
denote an orthonormal basis of H? made of elements of H? that are orthogonal in H1).

Form= 1,2,.. letVm = span(e,...,em) V% andlet Py :V® ! Vy denote the
projection from VO to Vm. Similarly, let Hn = span feq,...;em) HZ and let Py, : HO | HAp
denote the projection from H 0to Hy,.
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In order to find a solution to (17) and (18), we project these equations onto Vi, and Hm,

respectively, which we define by induction as fuk(m)gy-o N 2 Vm and fg*(m)gy-o, . n 2
Hm suchthatuqm) = Pm(ug), g m) = Pm(qgo), and,fork= 1,..,N,j 2 Vmandy 2 Hp,”
h
uk(m) uk 1(m),j + hn AZ%Jk(m),AZ}) +
B u¥(m), u¥(m), j
= h Pg* vp,j + G(uf H(m))D W, (70)
g“(m) g* Y(m),y + h k Azg“(m), Azy) + k
[u* *k(m).rlg“(m),y
= G(g" '(m)DW,y (71)

For almost every w set, R(0, w) = kug(w)kyo and R(0, w) = kgo(w)kyo. Fix k= 1,.., N
and suppose that, for j = 0,...,k 1, the Ft,- measurable random variables ui(m)and
g’ (m) have been defined, and that

R(j, w) := supkul(m, w)kt, < ¥ and R(j, w):= supkg'(m, w)kl, < ¥

ml ml

for almost every w. We prove that uk(m) and g*(m) exist and satisfy SUPm1 kuk(m, w)kyo <
¥ and sup,,; kg*(m, w)kyo < ¥ as.
Forw2 W, letFk , :Vm ! Vm (resp., Fk ,) be defined for f 2 Vi (resp., for f'2 Hm)
as the solution of
h
Fkw(f),j = f uk Y(m,w),j + hn Alf,Alj +
PmB(fI f)lf |
Pg* Y(m)vy,j PmG(u* *(m, w))DyW (w), ], 8j 2 Vm,
h
Fkw(fly = £7 ¢ Ymw),y+h k ATT AT} +
[u* *(m).A2]f]y

~l o~

RmG(qk 1(ml W))DkW(W)IyI 8)’ 2 Hm-
Then, the Cauchy-Schwarz and Young inequalities imply

uk s w), f 1ka20+ kuk 1(m, w)k?,
4 Vv \"
2

g Hm ), £ kI, + kgt Hm, wk g,

Pak Um wh f Tkfkz, + kot Hm, wh?,,
2 v oH

G(u* Y(m,w))DW, f 1kfk20+VkG(uk L(m, w))k VZO)kaWkZ
4

L(K,

llszzov+ Ko+ Kiku® Y(m, w)kzokVDkaZ,

K
. o~ 1 - ~ 2 S22
G”(qk Ym, w))D W, f kK2, kGlgk 1(m, WK, o, KDk Wky
RfkZ o+ Ko + Kiku® Y(m, w)k? kD WK? .

4- H H K

h

R2(k,w):=4 R2(k 1,w)+ hR(k 1,w)’

kfk\zlo
i
+ Ko+ Ki R%(k 1,w) kD\W(w)kz
h i

kfldo = R2(k,w):=2 R%(k Lw)+ Ko+ KiR*(k 1, w)kDW(w)k?,
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we deduce

ka,w(f),f 1kLk22 ) kuk (m, W)ki2+ hnkA2fk?, h%kg" 1(m,w)k2HO
Ko + Kiku® (m, w)k? kD W (w)k? 0
K

P (F), £k ket Hmw)k? N hkAs fi? g
Ko+ Krkg® *(m, w)k? okD W (w)k? 0.
H K

Using ([16], Cor 1.1) page 279, which can be deduced from Brouwer’s theorem, we
deduce the existence of an element u¥(m, w) 2 V(m) (resp., ¢“(m, w) 2 A(m)), such that
FK(m, w)(u¥(m, w)) = 0 (resp., F¥(m, w)(g*(m, w)) = 0) and ku*(m, W)\I/(2 o R%(k, w)
(resp., kg¥(m, W)kHo R2(k, w)) a.s. Note that these elements u¥(m, w) and g%(m, w) need not
be unique. Furthermore, the random variables u¥(m) and ¢*(w) are F+¢ —mgasurable.

The definition of uX(m) (resp., g¢(m)) implies that it is a solution to (70) (resp., (71)).
Taking j = uk(m) in (70), using the antisymmetry property (3) and the Young inequality,
we obtain

kuK(m)k?, + hnkAauk(m)k?, = u* Y(m),u¥(m)+ h Pg* *(m)vy, u¥(m)
+ G(u* Ym)D,W, uk(m)

3|<uk(m)|<20v+ ku® (m)k?Zo+ kg* 1(m)k? o+ Ko+ Kiku® 1(m)k? kD Wk?.
4 v H %

Hence, a.s.,

h i
1 -
sup Zkuk(m, W)kf/0+ hnkAlzuk(m, W)k%lo R2(k 1,w)+ R%(k  1,w)

ml

+ Ko+ KiR%(k 1,w) kD W (w)k2.

A similar computation using y = g*(m) in (71) implies that
h i
1 ~ ~
sup Equ(m, w)kZHO+ hkk/s%qk(m,w)szo R2 Tk 1)+ Ko+ K{R*(k  1)kD Wk -,

ml

Therefore, for fixed k and almost every w, the sequence fu¥(m, w)gm is bounded in
V1; it has a sub-sequence (still denoted as fuk(m, w)gm) that converges weakly in V! to
fk(w). The random variable f is Ft -measurable. Similarly, for fixed k and almost every
w, the sequence fgk(m, w)gm is bouhded in H 1 it has a sub-sequence (still denoted as
fg*(m, w)gm) that converges weakly in H! to f~ (w), which is Fy -measurable.

Since D is bounded, the embedding of V! in VO (resp., of Hin H°) is compact; hence,
the sub-sequence fuk(m, w)gm converges strongly to f, (w) in V° (resp., fgX(m, w)gm con-
verges strongly to fi (w) in HO).

Step 2 We next prove that the pair (f,f ) is a solution to (17) and (18). By definition,
u®(m) converges strongly to ug in V2, and ¢°(m) converges strongly to go in H®. We next
prove by induction on k that the pair (f¥, f¥) solves (17) and (18). Fix a positive integer mg
and consider the Equation (70) fork = 1,...,N,j 2 Vm, andm mg. As m! ¥, we have,
a.s.,

uk(m) U Tm), ) b L0, AauK(m), Aaf L AfK A,

Pa* Ymvy,j = ¢ Hm)va,j ! ffva, ).
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Furthermore, the antisymmetry of B (3) and the Gagliardo—Nirenberg inequality (6)
yield, a.s.,

B u¥(m),uf(m) B(f* f*),J
Bufm) £ ,u¥m) + BfYj ,uf(m) f*
kA2 jkyokuk(m) ks kuK(m)ka + kfk

C kjkyo maxkuX(m)ky: + kfkkvl]kAlukgm) f*k2 kuk(m) fki,1 0
\

m \

asm! ¥.
Finally, the Cauchy—Schwarz inequality and the Lipschitz condition (12) imply that

G u* Ym) G f* IDW,j kjkyokG(u¥ *(m) G(f* M)k o kDKWkk  Lg
P — kjk.2 ku® Y(m) f* Yk, kDWkg! 0

asm ! ¥. Therefore, lettingm ! ¥ in (70), we deduce that

)

O FC T hnAf e nB 5 = Pe Ty, j 4 GIFC T DOW, ), 8) 2 Vm,-

Since [myVm, is dense in V, we deduce that ff¥gx=0,... N is a solution to (17). A similar
argument proves that fk is a solution to (18). This concludes the proof. [

6.2. Moments of the Euler Scheme

We next prove the upper bounds of moments of u* and g* uniformlyink= 1,...,N.

Proposition 6. Let G and G satisfy the condition (C-u)(i) and (C-g)(i), respectively. Let K 1 be

an integer, and let up 2 L2 (W;V°) and go 2 L2 (W; H?), respectively. Let fukg,o .y and
fqx8k=0,...,n bethe solution of (17) and (18), respectively. Then,
supE max ku'k® + max kq'k® < ¥ (72)
0 vo © 4o
N N1 N N LN ;
supEh skA2d8'k?,ku'k? 2+ h skAzd'k?,kg'k? 2< ¥, (73)
N1 €1 v Vo =N H HO

Proof. Write (17) withj = u', (18) withy = ¢' and use the identity (f, f g) = ik
kgk22 + kf gk22 . Using the Cauchy-Schwarz and Young inequalities, the antisymmetry
(3) and the growth condition (11) yields, forl = 1,...,N,
%ku'kzO ku' k%, + ku'  u' K2+ hnkAly'kz0
v v v v
= h(Pg' Tepu')+ G(u' HDw, '), (74)

1 1 ~
Ekq'k2Fq kq' 1ki{0+ kg' ¢ 1ki‘0+ hkkA g'k2ﬁ= Glq' )D;W;q'). (75)
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Fix L = 1,...,, N and add both equalities for | = 1, ..., L; this yields

1 1,2 2 L2 2 iht | 11,2 Lo a0 Rl
EkUk\9 kuok\9+ qu,q kqok'q+ 3 Bu u k04\-/ R g kOH
E1

L ptt L1
° 1,2 ~11) 2 12 1,2 L2
+ h n A2uk,+ k A2g'k —k§ k° + k&'k? o+ hku“k® o
an gt kAT SR KK+ ikuTk ok
o E1

& 1,2 2, L o0 12 o L 1 1
+ g kG(u )k L(|<;v0)kD|Wk o i(u u k\?+ a G(u )DIW, U’ " g
E1

1 L - -

+ |%1k6rql )k 2o kDI Wk 2 j(q' g g+ |—1é G(§ How,g" .. (76)

—

Let N be large enough to have h = ,% 8.l|'aking the expected values, we obtain

L
Ekutk?, + kq'k?, + l,éku' u' k2o + k' g Kokl
v 20y nkAzyH'kZO% kkAz2g'k?, E Ku%k? o + ka®k2 o+ 2TKoTr(Q) + KoTr(Qlr: .
v H 1 v H
+ ha+ 2max(KiTr(Q), KiTr(Q)  3E ku'k? o kq'k? g4 k0

Neglecting both sums in the left hand side and using the discrete Gronwall lemma, we

deduce that
sup E ku'k,+ kq'k%, C, (77)
1LN
where
C = 2E ku0k20+ kqok20 + 2TKoTr(Q) + KOTI‘N(Q)eT:HZ max(K1Tr(Q),K1Tr(Q) R
v H

is independent of N. This implies

N
supE  skAu'k?,+ kAg'k?, + ku' u K2+ k' g K%, < ¥,
N1 a, v H v H

which proves (73) for K = 1. Fors 2 [tj,tj+1),j= 0,...,N 1,and sets = t;. The Davis
inequality, and then the Cauchy-Schwarz and Young inequalities, imply that for any e > 0,
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L

I 1 1 1 I 1.
E 1L’\|"nax g(u ))DIW;U + G(q DIW'q
|=1Z t Z t
E sup G(us)dW(s),us + E sup G(gs)dW(s), gs
t2[0,T] © t2(0,7] ©
Z T ;2
3E kG (u®)kEK o ku ko Tr(Q)ds
O ’
A T 1
+ 3E kG"(qi)kuKAHO)kqs—kzﬁTr(Qfds 2
O ’
. h | N D1, i
1 . ,
3Tr(Q) E, rrl;az( ku'k Voh a[K d K Iiu k Jo
1=0
h [ N I 1,2 )
+ 3Tr(Q)%2E max kg kHoh é[K~ar K "qu k Lo
1IN 120
9 N
eE max ku'k? + E ku®k? )+ ~Tr(Q)h Ks+ K E(ku' k%)
1IN VO VO 4e a 0 1 VO
I=1
N
+ eE max kq'k? + E k¢°k? )+ 9'mo\)h K o+K E(kg' K2 ). (78)
1IN HO HO  4e o 1 HO

I=1
Taking the maximum over L in (76) and using (78), we deduce

E _max ku'k?,+ g'k?, 2E kuk?,+ kq®k?, + h kq' flk20+ ku' 1k, + 2eE

N v H v il d H v
max ku'k?,+ kg'k?,+  Tr(Q)h Ko+ KiE(ku' k2,)
1 4e | N
:g' o
9 - a
+ 2@ 3 ks KiE(ka™ R ). '
de I=1
Fore= %, (77) proves that
h i
sup E sup ku"kZQl+ E sup kgtk?, < ¥, N1
1LN 1LN

which proves (72) for K = 1.

We next prove (72) and (73) by induction on K. Multiply (74) by ku'k?, and (75)
by kg'k?,. Using the identity a(a b) = } a> b2+ ja bj? fora = ku k?/o (resp.,
a= kg'k?,)and b= ku 1k2\}] (resp., b= kg 1kzﬁ), we deduce, forl = 1,...,N, that

1
= ku'klo  ku' ko + ku'k?y o ku! 1k\2/02+ k'k®y  kq' k&,
i
1,2 I 1,2 2
+ kg'k 9 kg kHo

n %kuI u' 1kzoku'k20+ kg' ¢' k% ,kq'k?, + hnkAli,J'kzoku'kz0
v H H

\ \ \Y
+ hkkASg'k? okg'k? 5 = h Pg' vy ulku! k%o + 34T (1), (79)
H H V i=1 1
where
Ti() = G(u' YD, u' Tku'k?, T2() = G How,u' u' Tku'k?y,
T3(1) = G(g' )DW,q" ' kg' k2,  Ta(l)= G(q' )DW,q' ¢ ! ka'Ko.
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The Cauchy-Schwarz and Young inequalities imply that
PqI 1vz,u'ku'kz0 kqI 1kHoku'k3O kqI 1k, + ku'B40. (80)
v Yl ¢ - v

Using once more the Cauchy—Schwarz and Young inequalities, we deduce that fore,é > 0,

iT2(Dj kG(u' Mk (,vo ku' u' TkZoku'k?,

eku! u' 1k\2/0ku'k3/0
+ 4}eke‘.(u' 1)k;(K;VO)kD.Wk2 ku' k%, + ku'k?,  ku' K%,
1 K \% \% \
eku' u' k2 ku'k?, + T kG(u' 1)|<;('<,V0)|<D.Wk2 ku' Tkyo
12 V|1V22511 I 1y 4K ) 4
+ ekuk\9 ku kVo + 1WZé‘kG(u )k, ;VO)kD|Wk < (81)

A similar argument proves, for e, é > 0, that

. . 1, =
iTa(hj ekq'  g' Tkiokg'kfo+ —kGlg' 1)k EAkDWK kg' K2 g

1,2 I 1,2 2 11 I 1y LK 4
+ ekqg'k 9 kg kH° + 1WZékG"(q )k ;HO)kD|WT<K.~ (82)

A similar argument shows, for é > 0, that
iTi(Nj kG(u' )DWkyoku' k3,
+ kG(u' 1)DWkyoku' Tkyo ku'k?  ku' 'kZ,

SRG(U KK o kDWE? + I Tk + eku'k ku' Tkyok?®
U K v v
+ é&ekG(u' l)kQ(K;Vo)kD|Wk2Kku' 'k, (83)

and

. P 3 - 2
iTs(Dj kG (g" MK o kDIWK® 4 ka" ko p ekd'l?o kg thyok?

1
+ —

4eké(q' 1)kf(K~’_H0)kD|\/\7k2K~kq' o (84)

Add the inequalities (79)—(84) for | = 1toL N, choosee = 1 gnd e= llgnd use the
growth conditions (11) and (14). This yields

14
ku'k?, + kg'k* o+ - § ku'k?, ku' 1K2,%+ ku'  u' K% ku'k?,
v 2., v v v v
+ kq'kzl_? q' 1k'2_|02+ kg' ¢ 1ki|0kq'kf_|0
+ 4h § nkA2u'k? ku'k?, + kkAzg'k? ,kg'k?,
I=1 v v H H
T 3L,
kuok4gv+ kgok* ot Iz I%I;q k* ot rz |é-k1u k4°v
+ C& Ko+ Kiku' k2 ku' k2 ,kDWK2 + Ko + Kiku' k%, 2kD;WK* |0

+ C& Ko+ Kikg' k2, K" 1Kk2 kBWK2 + Ko + Kikg' k2 . 2kBWK*. (89) -0
H H K H K
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Taking expected values, we deduce, forevery L = 1,...,N and h = ,I— 1, that

1 o
Eku'k?, + kq'k*, + = & ‘ku'k?, ku' 1k2,%+ ku' ol K2 ku'k?,
v H 21=1 v v v v
+ kq'kzl_P q' 1kf_|0 + k¢ ¢ 1k'2_|okq'kf_‘0
+ E4h § inkA2ulk? jku'k? + kkA2q'k? 1kg'k? o |4
Vv \Y HL 1 H
E(kugk? o+ kgok® o+ 3hE(ku'k®o)+ C+ Ch  Zku'k®o 4 ka'k? g 1=0

for some constant C depending on K;, Ki, Tr(Q), Tr(Q) and T that does not depend on N.
Let N be large enough to have 3 h < % Neglecting the sums in the left hand side and using
the discrete Gronwall lemma, we deduce, for E kuok‘\‘/0 + kqok‘:10 < ¥, that

sup max Ekutk?, + kgtk*, < ¥. (86)
W LN v H
This yields
supEh § kA2 utk? ku'k?,+ kA2¢'%? kg'k?, < ¥, (87)
" -, v v Ho  H

which proves (73) for K = 2. The argument used to prove (78) implies

E G(u' Hpw,u' Tku' K%,
lhax 3§ v
eE  max ku'ky + C(e) I+ max E(ku‘k®,) i
1 LN 1 LN
and
E G(¢' ")D/W,q' Tkug' 'K,
l¥nax ’
eE  max quk40H + C(e) ™+ max E(kg'k* o] I
1 LN 1 LN

Taking the maximum for L = 1,...,, N and using (86), we deduce (72) for K = 2. The details
of the induction step, similar to the proof in the case K = 2, are left to the reader. [

7. Strong Convergence of the Localized Implicit Time Euler Scheme

Due to the bilinear terms [u.r]u and [u.r]g, we first prove an L?(W) convergence
of the L2(D)-norm of the error, uniformly on the time grid, restricted to the set Wy (N)
defined below for some M > 0:
n o n o
Wm(j) :=  sup kAzlu(s)k\Z/O M\ sup kﬂ%q(s)kao M, 8j=0,...,N,
s2[0,t] s2[0,t;]
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and let Wy := W (N). Recall that, for j= 0,..., N, set ej := u(t;) ul and & := q(t;) ql;
then, eg = & = 0. Using (9), (10), (17) and (18), we deduce, forj= 1,..,N, f 2 V! and
y 2 H1, that

Zt~ Zt
e e 1,j+n ! A2‘1[u(s) uj],Azljds+
z, 'B(u(s), u(s)) Bgl:i,uj),jdsfl i
= plgls) ¢ Mvyds+ | [Glu(s)  G(W Y)ldW(s), j, (89)
tj tj 1
and
Zt‘ Zt,
& & 1,y+k  Adlg(s) o'l Azyds+
5 "Tu(s).rlg(s) [urlg’]l, yds; -
t; .
= [G(q(s)) Gl(g' 1)IdW(s), y. (90)

tj 1

In this section, we will suppose that N is large enough to have h : = NT— 2 (0,1). The
following result is a crucial step towards the rate of convergence of the implicit time Euler
scheme.

Proposition 7. Suppose that the conditions (C-u) and (C-g) hold. Let ug 2 L32*¢(wW; V1) and
go 2 L32*¢(W; H) for some e > 0, u, g be the solution to (9) and (10) and fu’, gigj=o,..n be
the solution to (17) and (18). Fix M > 0 and let Wy, = W pn(N) be defined by (88). Then, for h 2
(0, 1), there exists a positive constant C, independent of N, such that, for large enough N,

h

) ) T N )
El max ku(t) uk® + kg(t) ¢'k* + s kAl[g(t ) ul]k?
Wnm o i VO i HO N i Vo
1jN j=1
ol 2 ! cemyt TH
+ kAZ[q(t;) gkl C(1+ Mm)eSMT T — (91)

N
where "
9(1+ g)C; - gk}M
for some g > 0, and C, is the constant in the right hand side of the Gagliardo—Nirenberg inequality

(6).

C(M) =

Proof. Write (89) with j = ejand (90) with y = ql; using the equality (f,f g) =
skfk3  kgk?, + kf gk?, ,weobtainforj=1,...,N

1 o 7
kejk\zlo ke; 1|<\2/0+ fej g 1|<50+ nhkA%ejk\Z/o a T (92)
=1

=N e

1 o 6 ~
kejkao ke; 1ki‘o+ ger g 1k|240+ khkA‘zlejkilo a T (93)
=1

N |
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where, by the antisymmetry property (3), we have that

A t
Tj,l =
Zt . Z, t
B eju, eds =
B ej,ul(tj), ejds, ;1 i1
5
TJ,2 -
ZtB u(s) u(tj), u(t;) ejds, ; 5
1
5
TJ,3 -
t ttj
B u(s), u(s) u(tj), ejds = z
B u(s), e, u(s) wu(tj)ds, 1 i1
t. t. .
Tia= n  Af(u(s) ult)), Afeds, Tis= Pla(s) ¢ 'lva, ejds,
t1 jt1
Zy -
Tj6 = [G(u(s)) G(u *)dW(s), e € 1,i
t1
Zy .
Tj7 = [G(u(s)) G(u' “)dW(s), e 1,
t1
and
R z Y . .
Tj1=
Zt . Z tj t
lej 1.rlq’, ejds =
lej 1.r]q(t;), ejds, j 1 it
Y
lez = -
[(u(s)  ‘u(tj 1).rlg(t;), ejds,
it
~ J ~ ~
TJ,3 -
t Zttj
ﬁU(S)-r](q(S) q(tj), ejds =
[u(s).rlej, (q(s) ql(tj)ds, ;1 i
4 .
Tia= n o A2(q(s) qlt)), A7 eds,
o
z, '
~ ) ~ ~ . ~ ~ ~
Tjs = [G(q(s)) G(g' N)dW(s), & & 1,
o1
th. )
Ti6 = [G(u(s)) G(ul 1)dW(s), e 1,
t1

We next prove upper estimates of the terms T; | for| = 1,...,5and T],l forl=1,...,4,

and of the expected value of Tj6, Tj,7 Tj,5 and T.

The Holder and Young inequalities and the Gagliardo—Nirenberg inequality (6) imply,

for dy > 0, that

jTi1j CahkejkyokA” ekyok A t(t))kyo
22
1 C 1
dinhkA:2 ejkV02+ 4d1_n4h kA2 u(tj)kvozkejkvof

and, for dy, d, > 0, that

~ - 1 1 ~ 1 1 ~
jTj,lj Cs hkA2 elj 1k20\}(8j 1k20\}(A2 eljkzqkejkzq_‘(Aqu(tj)kHo
1 ~ ~1,
dynhkAzej 1kyo* dihkkA2ejK, o’
¢z, ¢2
+ —hkA2q(tj)khoke; 1kfo+

16d,n 16d1k

~1 R
—= hkA2q(t;)k%oke; k.

(94)

(95)
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Hélder’s inequality and the Sobolev embedding V! L# imply, for d3 > 0, that
z tj 1 1 1 1
iTj2i C ku(s) u(tj)kvlkAIu(tj)kVokAZe,—k\jokejk\jods
tj 1
i 2 2 Cial , 2y 2
dsnhkA” ek, + hkejk, o™+ g —KA" w(tj)k,,o ku(t;j) u(s)kvlds, (96)
nd_3 i1
whereas, for d, > 0,
Zy,
jTi2i dRhkA2€k + hkejk® o+ —  kA2U(s) u(t; 1)k?gds2
H Ho o kd
C Z t;
+ —kAZg(tj)k*y ku(s) u(t; 1)k2ods. (97)
kd2 H tj 1 v
Similar arguments prove, for dg, d~3 > 0, that
Z
. . 1 2 C 2 1 2
jT;,3) danhkA™ gk ot —- sup ku(s)k” , ku(s) u(tj)ke .ds, (98)
ndy s210,1] Vi b v
1k C Z
jTiai dskhkA2e; 2o+ —sup ku(s)k?;, = kq(s)  q(t;)k?.ds. (99)
3 52[0,T] LR
The Cauchy-Schwarz and Young inequalities imply, for ds, ds > 0, that
Z.
iTial dsnhkAzeik2 e+ "— ' KkA2[l(s)  u(t)]kZeds, (100)
4ds ¢ 1
k 2y
iTjai d47<hkAz"eljk20H+ i kA3 [g(s) q(tj)1k? ods. (101)
4 Y
Using once more the Cauchy-Schwarz and Young inequalities, we deduce
Z t;
iTi5i kq(s) q(tj 1)kyo + ke 1kyo kejkyods
t1
2 h ~ 12 1 %y 2
lzeejk ot lzeej 1k ogt 7. kg(s) qlt; 1)kH0ds. (102)
j 1

Note that the sequence of subsets fWy(j)gojn is decreasing. Therefore, since ey
= e = 0,givenlL = 1,...,N, we obtain

maxjéJ lw, i pkejkyy  kej 1kyo + kejkyo ke 1kyo
a1
L

1LWM(J 1)k€]k20 + keJ'k2 0

uL,
max v "
+ é 1W (j 2) 1W (i 1)k€j 1k ot kej .lk20j=2
Y M v H
max sly (; ykesk?o+ kejk? o j=2
. @ M v H

Hence, for 4°_, d; 13nd a;.7d; < 1,using Young’s inequality, we deduce, for every
a> 0,that
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6 max 1y, 0 1)keJkV02+ kejk

14

HO2
1JL
+ _Qa 1WM(J 1) keJ

2 2
e 1k, + e e 1k,
] v k=i ] H

oL 41
h &lw, G nkejkyo

CZ - 1 "2
-47+il(_.&2 u(tlJ 1)k20+ ( ﬁ&zq(
j=1 1n n

4 (1+ a)C* 3

+ha 1y  nkeik®, oo kAt DKo+ T+ 2
A H 16d,k H

+ max é ].WM(J- 1) Tie+ fj,S + max aNM(j 1) Ti7+ Tie ~, (103)

uL 5 UL,

where

Zy = Ch & kejkyo kA1[u(t;) u(t; 1)lkyo+ kAﬁ[q t) atj l)]kﬁo
j=1

L
+ Ch g kekokA3[g(t) qlt; mkz.o
j=1

L z
+ Csup ku(s)k |+ 1\2/ ! ku(t;) u(s)k\2/1+ ku(s) ult; 1I\%/ 1
dsj=1 s2[0,T] t o
~1 4 z 5
kAZq(t; 1)Ko ku(s)

ta

L
+C3

u(tj 1)k ods
j=1

L z
+ Csup ku(s)k ,+ 1\2/ '

kq(s)  q(t;)k 1ds.
j=1  s2[0,T]

tji 1

(104)
The Cauchy-Schwarz and Young inequalities imply that

° . . [} 2
_alWM(J 1)iTj6l g lw iy pke; € 1kv°
j=1 j=1
Z 5
! i1
lwy, (i 1) G(u(s)) G(ul Hdw(s)

tj 1

N W
Qo

j=1

(105)
VO

o . . o N 2
alw,( 1)iTjs] 2 lw (, vkej~ ¢ 1kio
j=1 j=1
z. ,
i - T
lw,, (i 1) G(4(s)) G(g" Y)dw(s) .

tj 1

N W
Qo

j=1

(106)
HO

Using the upper estimates (103)—(106), taking expected values and using the Cauchy—

Schwarz and Young inequalities, as well as the inequalities (19), (20), (37), (46), (59), (60)
and (72), we deduce that, forh 2 (0,1) andeveryL = 1,...,N,
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n o1
E(z,) CE sup ku(s)k4 + max kuJ'ki‘/0 2
$2[0,T] OjN
N 1 2 ~1 2 202 :
Eh BA2 u(t)) u(ty 1)k>g + kAZg(t;) qlty 1)k =1
n
n Olz
4 ks
+ C E sup kq(s)kH0+ Orr’\]ax qukHO
s2[0,T] J
n N zol
Eh 3 kA qlt;) qlt; 1)k?y 1
n oin N Z; ;
+C E 1+ sup ku(s)k®, * E 3 ku(s) u(tj)k2,
v . ) Y
0sT j=1 j 1t
1+
ku(s) u(ty 1)kZo + ka(s) q(tj)k%o :
N th L n, 021
+C3 E kA’q(tj)ksp‘ 2 E ku(s) u(t; 1)kf/0 ds Ch", (107)
j=1 %1

for some constant C independent of L and N. Furthermore, the Lipschitz conditions (12)

and (15), the inclusion W (j 1) Wm(j 2) for j = 2,...,, N and the upper estimates (46)
and (47) imply that

L Zt.

) 2
E §lw g1y Glu(s) Glul Hdw(s) j=1
W tj 1 Vo
L th .
aE lw,,(j 1)liku(s) u! 1k\Z/oTr(Q)ds
j=1 ti 1
L L z y
2Li7r(Q)h § E(lw,( okej 1kjo + C3 E . kuls)ufy 1)Ko ds
j=2 j=1 i1
2L, Tr(Q) h & E(1y (j gkej 1kyoyt Ch, (108)
j=2 M
L th - 2
E 3lw (1 - Glq(s)) Glg' *)dWTs) =1
J
ZLlIr(QLh é LE(].W (i Z)kej ,.1kH02+ Ch. (109)

j=2 M



Mathematics 2022, 10, 4246 35 of 39

Finally, the Davis inequality, the inclusion Wpm(J 1) W] 1) for j J, the local
property of stochastic integrals, the Lipschitz condition (12), the Cauchy-Schwarz and
Young inequalities and the upper estimate (46) imply, for /| > 0, that

J

E max 1y (J 1) é Tj7
1L M j=1
LN z t; . 01 ,
35 1w, 1) ) 1kG(u(s)) G(ul 1)kL(K’_\§0)Tr(Q)kej 1kyod3
j=1 j
L h nZ; J_ A 0;2
3 3 E max IWM(j 1)kej 1kv0 L1Tr(Q)ku(s) uj 1k\2/0ds
j=1 1jL o1
L Zt. .
IE max 1 ke k» + CE o L Tr(Q)ku(s) uw k% ds
Wnm(i 1) 1 yo d 1 VO
1jL j=1 tj 1
L
IE 1roLmax Ly 2 Ke; 1k\2/0 + Chjé,!1 E(ke, 1k\2/0)+ Ch. (110)

A similar argument, using the Lipschitz condition (15) and (47), yields, for/ > 0,
J
ME CURI U
j=

IE max 1 ke k2 + Ch

) E(ke. k + Ch. 111
maxly ke ke (ke k2 ) (111)

1

1Qo —

J

Collecting the upper estimates (94)—(111), we obtain, for ési=1 di < %, é‘::l di < %, h2(0,1)
anda,l > 0,

E max 1y, 1) kejkdo+ kejkdo

1IN
N h 5 . 4 . i
+E Q3 1wy pn2 63 d kAzelo+ k2 63 d kA2§Kp
=1 i=1 i=1
N 1 h3(1+ G)C "2 1 1 i
h 3Bl pkejk? —h 4 =
jzla Ww(j 1)K€K 0 2ndi | 4d,
hN"lE 1 kéjk? h3(1+a)c‘iM ci
+ J_a=1 Wl ke g — M+
+ C(1+ M)hE sup ku(t)k?,+ kg(t)k? o+ max kulk?, + kglk?,
t2[0,T] \ H 1jN \Y H
+ 12/E max lw, nkej 1k?o+ kejk?, + Chf. (112)
iN v " H
Therefore, given g 2 (0, 1), choosing | 2 (0, ;5) and a > 0 such that %~ < 1+ g,

neglecting the sum in the left hand side and using the discrete Gronwall lemma, we deduce,
for h 2 (0, 1), that

E _max 1y, nkejk?o + kejk? o C(1+ M)eT“Mhh (113)
1 A
N v H
where "
3(1+ g)C 1 1 1
C(M) := L_ﬂ.‘l max ,

—+ e TM
2 dn  Adn 4dk
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for&2, di< }anddi < }(andchoosingd;,i= 3,4,5andd;,i = 2,3,4suchthatd ;2 di< #
and &1, di < 1). Letd, < } anddi = 4d,. Then, for some g > 0, we have that

9(1 >
1+ 9% x5 W
—8 n-k—

Plugging the upper estimate (113) in (112), we conclude the proof of (91). [

C(M) =

8. Rate of Convergence in Probability and in L2 (W)

In this section, we deduce from Proposition 7 the convergence in probability of the
implicit time Euler scheme with the “optimal” rate of convergence of “almost 1/2” and a
logarithmic speed of convergence in LZ(W). The presence of the bilinear term in the
It6 formula for kA"zlq(t)kf_‘0 does not enable us to prove exponential moments for this

norm, which prevents us from using the general framework presented in [10] to prove a
polynomial rate for the strong convergence.

8.1. Rate of Convergence in Probability

In this section, we deduce the rate of the convergence in probability (defined in [17])
from Propositions 1, 2, 6 and 7.

Proof of Theorem 2. For N 1and h 2 (0,1), let
n T N N 0
AN, h) = max kejk?g+ kejld g + N.—1§<Azejll<20-{-/ kA2ek?, N
i=

Let A2 (h,1), M(N) = In(InN) for N 3. Then,
P A(N,h) P A(N,h)\ Wyn) + P (Wpmn))S,

where Wy (n)= W(n)(N) is defined in Proposition 7. The inequality (91) implies that

P A(N, h)\ Wnm(n)
h T N 1 1
N E Wy 1mja’j( kejkyo2+ kejk, @ + NfékAzerjkv02+ kA2€jk, 2
j=1
Th

N" C1+ In(In N)eTC¢!n(inN)
c1+ In(inN) InN°TN 70 1o & asn 1y
The inequalities (20)—(22) imply that

1
P (Wpm(n))© E sup ku(t)k?;+ sup kq(t)k?,! 0 asN ! ¥.
M(N)  t200T] Vo t200,T] H

The two above convergence results complete the proof of (23). [

8.2. Rate of Convergence in L2(W)

We finally prove the strong rate of convergence, which is also a consequence of
Propositions 1, 2, 6 and 7.
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Proof of Theorem 3. For any integer N l1land M 2 [1,+¥), let Wy = Wnm(N) be
defined by (88). Let p be the conjugate exponent of 29. Holder’s inequality implies that

o) 1
EL(wyy)e max ke;k? o ke,konnP (Wm)e *
0, q
E sup ku(s)k® + sup kg(s)k? + max kulk® + max kg¢'k?'
n ve HO  gin AAETIY HO
$2[0,T] s2[0,T] n
o1
cC P (Wnm © ', (114)
where the last inequality is a consequence of (19), (20) and (72).
Using (21) and (22), we deduce that
P(Wm) M 2 'E sup ku(s)k® + sup kq(s)k?, = cm 2* 7" (115)

s2[0,T] vl s2[0,T] H
Using (91), we choose M(N) ! ¥ asN ! ¥ suchthat,forh2 (0,1)andg> 0,

1 ( .
M(N) M(N) M N) &

N
P 8 n~ k
which, taking logarithms, yields
9(1+ g)C} 5 1 01
hin(N) + T—T 7'_7<M(N) 29 2 In(M(N)).
Set
M(N) = - - — - hIn(N) 29 1+ 11In In(N)
E— k!
4
- - —8— — hnN.
g5 T
a - L)
Then,
9(1+ g)C2
hin(N) + %A_T E_%M(NH In(M(N)) 29 14+ 11In In(N) + 0(1),
n

29 14 11n M(N) 29 14 11In(N)+ 0(1).

This implies that

E keyk o+ keskyo. C In(N) 2 *Y)
1max eskyof keykyo, n(N) .

IN
The inequalities (21) and (22) for p = 1and (73) for K = 1imply

T N 1 y L L

supE 3 KA uft;)kZ, + kA ulk?, + kA qit))k? o + kA gik?, < ¥.
N v v H H

N1 J=1

Using a similar argument, we obtain
T o N 1 2 1 2
E ~a kA ejzk ot kA e:kk.g C |n(N) cj=1
N Vv H
This yields (24) and completes the proof. [
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9. Conclusions

This paper provides the first result on the rate of the convergence of a time discretiza-
tion of the Navier—Stokes equations coupled with a transport equation for the temperature,
driven by a random perturbation; this is the so-called Boussinesq/Bénard model. The
perturbation may depend on both the velocity and temperature of the fluid. The rates of
the convergence in probability and in L2(W) are similar to those obtained for the stochastic
Navier—Stokes equations. The Boussinesq equations model a variety of phenomena in
environmental, geophysical and climate systems (see, e.g., [18,19]). Even if the outline of
the proof is similar to that used for the Navier—Stokes equations, the interplay between the
velocity and the temperature is more delicate to deal with in many places. This
interplay, which appears in Bénard systems, is crucial for describing more general
hydrodynamical models. The presence of the velocity in the bilinear term describing the
dynamics of the temperature makes it more difficult to prove bounds of moments for the
Hl-norm of the temperature uniformly in time and requires higher moments of the initial
condition. Such bounds are crucial to deduce rates of convergence (in probability and in
L2(W)) from the localized one.

This localized version of the convergence is the usual first step in a non-linear (non-
Lipschitz and non-monotonous) setting. Numerical simulations, which are the ultimate
aim of this study since there is no other way to “produce” trajectories of the solution, would
require a space discretization, such as finite elements. This is not dealt with in this paper
and will be carried out in a forthcoming work. This new study is likely to provide results
similar to those obtained for the 2D Navier—Stokes equations.

In addition, note that another natural continuation of this work would be to consider
a more general stochastic 2D magnetic Bénard model (as discussed in [1]) that describes the
time evolution of the velocity, temperature and magnetic field of an incompressible fluid.

It would also be interesting to study the variance of the L2(D)-norm of the error term,
in both additive and multiplicative settings, for the Navier-0Stokes equations and more
general Bénard systems. This would give some information about the accuracy of the
approximation. Proving a.s. the convergence of the scheme for Bénard models is also a
challenging question.
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