
  

 
 

Abstract— There exists motor redundancy during human gait 

that allows individuals to perform the same task in different 

observable ways (i.e., with varied styles). However, how 

differences in observable walking mechanics depend on unique 

and underlying biomechanical objectives is unclear. As an 

example, these objectives could include metabolic energy 

consumption, sum of muscle activations, limb mechanical 

loading, balance and combinations thereof. In this study, we 

develop predictive neuromuscular simulations to investigate the 

relationships between these biomechanical objectives and 

observable mechanics during level walking. We simulated 3D 

normal walking of five healthy subjects, while optimizing each 

of the aforementioned objectives—resulting in 25 forward 

dynamics simulations for analysis. We compared the resulting 

joint kinematics and moments of different simulations. One of 

main findings suggests that decreased hip abduction angle is 

tightly related to when the regulation of dynamic balance 

(computed as whole-body angular momentum) is included in a 

movement cost function. We also find that increased joint 

moments are related to including metabolic cost (i.e., objectives 

associated with improving the energy economy of movement). 

Further, the timing of joint kinematics is adjusted for different 

performance objectives. These findings could guide the 

development of rehabilitation training and assistive devices that 

target specific individuals, tasks, and specific styles of 

movement. 

I. INTRODUCTION 

Human gait is complex, and one can perform a specific 
movement task in varied and preferred styles. These 
variabilities, resulting from the intrinsic redundancy of human 
neuro-musculoskeletal system and the subject-specific 
anthropometric characteristics enable us to better adapt to 
complicated environments. In rehabilitation and assistive 
engineering, it is important to provide the affected individual 
with opportunities to fully and effectively participate in 
varying functions of daily life. For instance, intent-recognition 
and task-dependent algorithms were developed for intelligent 
lower-limb prosthesis to provide users with increased 
adaptability to different tasks [1]. However, there could be 
high-level biomechanical performance objectives associated 
with different locomotion tasks that contribute to specific 
walking style choices. Therefore, understanding how one 
could mediate walking styles (i.e., observable walking 
mechanics) for different performance objectives is significant 
for the development of rehabilitation training and assistive 
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devices that adapt to individual and context. 

Several biomechanical objectives could be related to the 
different walking styles. Balance is an essential consideration 
during human walking, and may significantly affect the 
mechanics of gait. Healthy adults make preparatory and 
response-based adjustments to dynamic balance based on 
walking styles during 45 degree turns [2], and individuals 
with Parkinson’s disease experience increased difficulties 
maintaining forward balance during stair ambulation [3]. 
Although balance regulation is critical, there are other 
performance objectives that are important during walking. 
For example, human walking speed selection is related to 
minimum metabolic energy cost per unit distance traveled [4], 
which was thought to be continuously optimized in human 
walking [5]. Meanwhile, musculoskeletal simulations of 
human gait suggest that minimizing muscle effort or fatigue 
may be also a governing principle of human walking because 
optimization of total muscle activation produced gait with 
realistic knee flexion [6]. These objectives are particularly 
useful in sedentary populations, and simulations using 
fatigue-related objectives successfully predict the higher 
metabolic energy consumption, lower walking speed, altered 
hip and ankle kinematics of the elderly [7]. Furthermore, 
lower-limb loading is another biomechanical factor in human 
walking that would be important, especially in populations 
with lower-limb amputation that frequently develop joint 
diseases like osteoarthritis and osteoporosis [8].  

Recently, researchers have used empirical and simulation 
approaches to study the gait mechanics in relation to the 
underlying biomechanical objectives of human locomotion. 
For instance, many studies investigated the balance/stability 
regulation strategies and associated different mechanics during 
gait through experiment [9], [10]. Antos et al., explored the 
relationship between step length-width choices and metabolic 
energy expenditure through measuring metabolic power for 
two-alternative forced-choice walking paradigm, and found 
that longer steps with higher energy expenditures were 
preferred over shorter and wider steps [11]. Miller et al., 
investigated the preferred performance objective in human 
running through 2D musculoskeletal simulations and 
suggested that minimizing muscle activation produced more 
realistic and economical running [12]. Recently, Veerkamp et 
al., used two-dimensional musculoskeletal model with reflex 
control paradigms to show that optimizing various 
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optimization objectives, including energy expenditure, muscle 
activations, head stability, derivatives of ground reaction 
forces (GRF) and knee extension produces realistic gait [13]. 
Similarly, many other simulations of human locomotion by 
minimizing multiple biomechanical objectives together 
produced results that have relatively agreed with gait 
experiment data [14], [15]. However, there is still little 
understanding on the relationship between the observable 
walking mechanics and different biomechanical performance 
objectives. 

Therefore, in this study we performed predictive neuro-
musculoskeletal simulations of human walking by optimizing 
specific performance objectives, and compared joint angles 
and moments (i.e., biomechanical metrics that can be 
observed/quantified relatively easily in human participants) of 
each simulation to investigate the relationship between 
biomechanical objectives and walking mechanics. 
Understanding these relationships between observable 
walking mechanics and specific performance objectives could 
guide the development of rehabilitation training and assistive 
devices that target specific individuals, tasks, and specific 
styles of movement. This predictive analysis can specify how 
the actuation and/or coordination of specific lower-extremity 
joints, and their degrees-of-freedom, mediate changes in 
movement style. We expect that new device and training 
interventions could target not only specific tasks (such as 
walking), but to do so with an increased resolution that 
incorporates movement style. 

II. METHODS 

A. Experiment 

Subject-specific tracking data for this study was provided 
by a prior experiment [2], [16] of five able-bodied subjects 
performing level straight walking at their preferred walking 

speeds. All participants provided 
written informed consent to 
participate in the experiment that 
was approved by the Institutional 
Review Board. A 10-camera 
motion capture system (Motion 
Lab Systems, Inc.) operating at 
120 Hz was used to record motion 
trajectories of 42 reflective 
markers attached on human body. 
Ground reaction forces were 
recorded by six force plates 
operating at 1200 Hz. Recorded 
data were processed in Visual3D 
(C-Motion, Inc.) and OpenSim 
[17]. 

B. Musculoskeletal Model and 

Simulation Framework  

We built a musculoskeletal 
model for each subject in 
OpenSim by scaling an generic 
model [18] and minimizing the 
tracking errors of reflective 
markers in static poses. Each 
model had 21 degrees of freedom 
(DOF) with metatarsophalangeal 
joint locked, and was actuated by 

92 Hill-type muscle-tendon actuators. Inverse kinematics (IK) 
and computed muscle control (CMC) analyses were performed 
for a walking trial of each subject to obtain experimental joint 
kinematics and muscle dynamics.  

The simulation framework of this study was revised from 
our previous research [19]. Each simulation was formulated as 
an optimal control problem, as in 

                                      min
𝒙,𝒖

𝐽                                      (1-a) 

                        Subject to: 𝒙̇ = 𝑓(𝒙, 𝒖, 𝑡)                    (1-b) 

                             𝒙𝑙𝑏 ≤ 𝒙(𝑡) ≤ 𝒙𝑢𝑏                           (1-c) 

                             𝒖𝑙𝑏 ≤ 𝒖(𝑡) ≤ 𝒖𝑢𝑏                          (1-d) 

where 𝒙 is the state vector, including joint angles, joint angular 
velocities, muscle fiber length, and muscle activations; 𝒖 is the 
control vector, i.e., muscle excitations; 𝒙𝑙𝑏  and 𝒙𝑢𝑏  are the 
lower and upper bound of the state variables; 𝒖𝑙𝑏 and 𝒖𝑢𝑏 are 
the lower and upper bound of the control variables; the state 
space equation represents the dynamics of the musculoskeletal 
model. The optimal control problem (1a-d) were solved using 
direct collocation, and were transformed to a large-scale 
nonlinear optimization problem [20]. Customized MATLAB 
(Mathworks, Inc.) code was written to solve the nonlinear 
optimization problem. 

 The foot-ground contact was modeled as smoothed Hunt-
Crossley force [21] between 12 spheres under each foot and a 
half-space representing the flat ground. For each subject, the 
first step of a two-step simulation framework (Fig. 1) was 
contact-optimization simulation aimed to optimize locations 
of contact spheres and contact model parameters to track the 
experimental ground reaction forces and joint kinematics. In 

 
Fig. 1. Diagram of the two-step simulation framework. Static marker tracking data from experiment were 
used to build subject-specific musculoskeletal models that consists of 21 DOF and 92 muscle-tendon 

actuators. Gait marker tracking data and GRF data from experiment were then used to perform inverse 

kinematics (IK) and computed muscle control (CMC) analyses in OpenSim that produced joint kinematics 
and muscle dynamics, respectively. Resulting joint kinematics and experiment GRF data were considered to 

be more accurate, and were used to optimize foot-ground contact model parameters in the Step 1 simulation. 

Resulting contact model parameters were used for the predictive simulations of Step 2, and CMC results 
were used as initial guess of muscle-tendon actuator dynamics for the optimization.  
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this step, the optimization variables were discretized joint 
angles and angular velocities, and the objective function was 
the tracking errors of the resulting ground reaction forces 
relative to the experimental GRFs as well as the errors between 
optimization variables and IK results. Using the optimized 
contact model parameters, the second-step simulations were 
then performed, including a metabolic-based simulation, a 
balance-based simulation, a muscle-effort-based simulation, a 
loading-based simulation and a multi-objective simulation 

The metabolic-based simulation used an objective function 
with a metabolic energy term and a GRF penalty term (Eq. 2). 
The total metabolic energy was calculated as summation of the 

time integral of the net metabolic energy rate 𝐸̇ of each muscle 
[22]. The penalty term 𝑃 was a function of simulated GRF and 
contact force between right and left ankles that aimed to avoid 
unrealistic large or small vertical GRF (the first two terms 
where relu refers to rectified linear unit function), encourage 
smooth GRF trajectories (the third term), and avoid 
interferences between limbs (Eq. 3). This GRF penalty term 
existed in every second-step simulation objective function. 

𝐽1 = ∫ (𝑤1
1

𝑆𝑡𝑒𝑝 𝐿𝑒𝑛𝑔𝑡ℎ ∗ 𝐵𝑊
‖𝐸̇‖

2

2
+ 𝑤2𝑃) 𝑑𝑡

𝑡𝑓

0
.        (2) 

𝑃 = ∫ (𝑤1 ∗ 𝑟𝑒𝑙𝑢 (𝐿𝐵 −
𝐺𝑅𝐹𝑦

𝐵𝑊
)

2
+ 𝑤2 ∗ 𝑟𝑒𝑙𝑢 (

𝐺𝑅𝐹𝑦

𝐵𝑊
− 𝑈𝐵)

2
+

𝑡𝑓

0

𝑤3 (
𝑑2𝐺𝑅𝐹

𝑑𝑡2
)

2

+ 𝑤4‖𝐹𝑐‖2
2) 𝑑𝑡 .             (3) 

The balance-based simulation used an objective function 
minimizing normalized whole-body angular momentum (H) 
about the body’s center-of-mass that is a measure of dynamic 
balance with smaller value indicating tighter regulation of 
dynamic balance [2], [19], as in: 

𝐽2 = ∫ (𝑤1‖𝐻‖2
2 + 𝑤2𝑃)𝑑𝑡

𝑡𝑓

0
.             (4) 

The muscle-effort or activation-based simulation used an 
objective function that minimized the summation of the time 
integral of muscle activation level a of all muscles, as in: 

𝐽3 = ∫ (𝑤1‖𝑎‖2
2 + 𝑤2𝑃)𝑑𝑡

𝑡𝑓

0
.             (5) 

The loading-based simulation minimized the maximum of 
simulated vertical GRF that was approximated as in: 

𝐽4 =
𝑤1

𝐵𝑜𝑑𝑦𝑊𝑒𝑖𝑔ℎ𝑡
log (∑ exp (

𝐺𝑅𝐹𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
)) + 𝑤2 ∫ 𝑃𝑑𝑡

𝑡𝑓

0
.    (6) 

 
Fig. 2. Mean and one standard deviation of resulting biomechanical 

performances of each simulation, i.e., (A) normalized metabolic energy, 

(B) normalized sum of muscle activations, (C) maximum lower-limb 

loading, and (D) range of 3D normalized whole-body angular 

momentum (H), a measure of dynamic balance.  

 
Fig 3. Mean (solid lines) and one standard deviation (shaded areas) of resulting joint angles of metabolic-energy, muscle-activation, dynamic-balance, 

limb-loading, multi-objective-based simulations and experiment mean. Top, middle and bottom rows are joint angles of trunk, right limb and left limb, 

respectively. The data shown were from right heel-strike (0% gait cycle) to right heel-strike (100% gait cycle). 
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The objective function of multi-objective simulation 
includes all of the four above-mentioned biomechanical 
objectives, as in: 

𝐽5 = 𝐽1 + 𝐽2 + 𝐽3 + 𝐽4.               (7) 

Collectively, we randomly selected one trial from each 
subject, and optimized this trial for each of the five 
aforementioned performance objects. 25 predictive 
simulations in total were performed. For each simulation, 
periodic constraints were applied to each simulation so that the 
coordinates or joint angles at initial time equal those at final 
time. After predictive simulations, we analyzed the resultant 
data from right-leg toe-off to toe-off. Inverse Dynamics 
analyses were performed in OpenSim to obtain the resulting 
joint moments.  

C. Statistical Analysis  

The magnitude and timing of peak joint angles, maximum 
and minimum joint moments were compared among different 
simulations as well as experiment using one-way repeated 
measures ANOVA (α=0.05). Post-hoc comparisons were 
performed using Tukey-Kramer’s criterion. 

III. RESULTS 

The first-step simulation optimized contact model 
parameters, and produced experiment-matched GRFs and joint 
kinematics that matched IK results. The second-step predictive 
simulation resulted in increased biomechanical performances 
for each simulation (Fig. 2).  

The timing of peak kinematics (Fig. 3) of balance-based 
simulation was leading for trunk extension relative to multi-
objective simulation (p = 0.042, 95% CI: 1.30 – 51.90% gait 

cycle) and experiment (p = 0.032, CI: 2.15 – 31.85%), and was 
lagging in trunk bending relative to all but activation-based 
simulations and experiment (p < 0.035, CI: 1.16 – 24.27%), in 
trunk rotation relative to metabolic-based simulation (p = 
0.021, CI: 2.53 – 19.87%), in right hip extension relative to 
experiment (p = 0.035, CI: 1.03 – 19.37%), in right hip 
adduction compared with metabolic, multi-objective 
simulations and experiment (p < 0.026, CI: 1.29 – 22.64%), in 
right hip abduction relative to multi-objective simulations and 
experiment (p < 0.044, CI: 0.31 – 19.92%), in right ankle 
plantarflexion relative to experiment (p = 0.024, CI: 2.28 – 
20.92%), in right subtalar inversion compared with metabolic, 
multi-objective simulation and experiment (p < 0.048, CI: 
0.095 – 15.51%), in left hip adduction compared to metabolic, 
multi-objective simulations and experiment (p < 0.032, CI: 
1.19 – 25.07%), in left hip abduction compared to experiment 
(p < 0.019, CI: 2.50 – 17.50%), in left ankle plantarflexion 
relative to experiment (p = 0.015, CI: 3.35 – 19.05%), and in 
left subtalar eversion compared with activation-based 
simulation and experiment (p < 0.021, CI: 2.52 – 19.48%).  

The peak trunk counter-clockwise rotation angle was 
larger in multi-objective simulation compared with 
experiment (p = 0.017, CI: 0.94 – 6.17). The peak right hip 
extension angle reduced in loading-based simulation relative 
to experiment (p = 0.037, CI: 0.18 – 4.13). The peak right hip 
abduction angle decreased in balance-based simulation 
compared with experiment (p = 0.041, CI: 0.14 – 4.30). The 
peak right plantarflexion angle reduced in balance-based 
simulation relative to metabolic-based simulation (p = 0.045, 
CI: 0.14 – 9.00) and experiment (p = 0.008, CI: 2.47 – 9.49). 
The right subtalar inversion angle reduced in activation-based 
(p = 0.020, CI: 0.58 – 4.53) and multi-objective simulation (p 

 
Fig 4. Mean (solid lines) and one standard deviation (shaded areas) of resulting joint moments of metabolic-energy, muscle-activation, dynamic-
balance, limb-loading, multi-objective-based simulations and experiment mean. Top, middle and bottom rows are joint moments of trunk, right limb 

and left limb, respectively. 
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= 0.029, CI: 0.38 – 4.62) compared with experiment. The peak 
left subtalar inversion angle increased in balance-based 
simulation compared to multi-objective simulation (p = 0.049, 
CI: 0.007 – 2.70). 

The maximum trunk right bending moment increased in 
activation-based simulation relative to multi-objective 
simulation (p = 0.044, CI: 0.0046 – 0.25). The maximum right 
hip adduction moment was larger in metabolic, activation and 
load-based simulations than experiment (p < 0.046, CI: 0.030 
– 2.09), and decreased in activation-based simulation relative 
to load-based simulation (p = 0.008, CI: 0.18 – 0.68). The 
maximum right hip abduction moment increased in metabolic-
based simulation compared with load-based simulation and 
experiment (p < 0.021, CI: 0.26 – 2.40), and increased in multi-
objective simulation relative to experiment (p = 0.012, CI: 0.44 
– 0.68). The maximum left hip adduction moment was greater 
in balance-based simulation than experiment (p = 0.022, CI: 
0.28 – 2.37), and the maximum left hip abduction moment 
increased in all simulations except metabolic compared with 
experiment (p < 0.017, CI: 0.31 – 2.51). The maximum right 
knee extension moment increased in balance and multi-
objective simulation relative to experiment (p < 0.044, CI: 
0.021 – 1.02). The maximum left subtalar inversion moment 
was larger in metabolic and load-based simulation than 
experiment (p < 0.044, CI: 0.0080 – 0.44). 

IV. DISCUSSION 

In this study, we performed predictive simulations of 
normal human walking using dynamic optimization and direct 
collocation approaches. Different biomechanical performance 
metrics were used as optimization objective functions to 
investigate the variations of human walking styles, i.e., 
observable kinematics and joint kinetics, associated with these 
biomechanical objectives. The targeted performances, i.e., 
metabolic energy cost, sum of muscle activations, lower-limb 
loading (measured as maximum vertical GRF) and balance 
regulation (measured by whole-body angular momentum) 

were improved in each simulation, and associated joint 
kinematic and kinetic changes were observed.  

During balance-based simulation dynamic balance was 
more tightly regulated, with reduced range of whole-body 
angular momentum (Fig. 2C), which was achieved through 
adjusting specific joint kinematics. During swing phase the 
right hip abduction angle significantly decreased in balance-
based simulation relative to experiment (Fig. 3). While not 
statistically significant, during single-leg stance phase the right 
hip adduction angle increased in balance-based simulation 
compared to other simulations as well as experiment for each 
subject (Fig. 3 shows average). This adjustment could be a 
strategy to maintain mediolateral balance during gait. 
Individuals may translate the horizontal projection of body 
center of mass (CM) to fall into the base of support through 
modifying hip adduction/abduction angle, and thus, increase 
walking balance. Another explanation of the adjustment to 
stance-leg hip adduction could be related to centroidal moment 
pivot (CMP), the point where a line parallel to the ground 
reaction force, passing through the CM, intersects with the 
ground [23]. This movement could translate the center of 
pressure (CP) position towards and coincide with CMP, and 
therefore, decrease horizontal moments about CM as well as 
whole-body angular momentum. Furthermore, these adjusted 
right hip adduction kinematics did not increase the maximum 
moment of associated joints (Fig. 4), which may suggest it as 
a potential strategy for strictly regulating dynamic balance that 
does not require high joint loading. These findings of adjusted 
hip adduction for more balanced walking may also suggest that 
future assistive devices should target at not only the ankle joint 
but also the hip joint for enhanced balance assistance. 
Furthermore, the reduced right plantarflexion angles (Fig. 3) 
in balance-based simulations may suggest less dependence of 
dynamic balance on increased plantarflexion that many 
currently-available assistive technologies are trying to produce 
with active push-off. However, future work is needed to 
further investigate the mechanics of amputee walking to 

determine the effects of such joint kinematics. 

In metabolic-based simulation, peak hip 
extension tended to increase near contralateral 
heel-strike (Fig. 3), while not statistically 
significant. This may be related to the objective 
function of metabolic-based simulations (Eq. 2) 
that normalizes cost of transport (CoT) by step 
length. With increased contralateral hip extension 
at heel-strike, the model could increase step 
length and thus, decrease CoT. However, this 
strategy of minimizing CoT may be at cost. 
Lower-limb loading or vertical GRFs were 
higher in metabolic-based simulations relative to 
other simulations (Fig. 2B, Fig. 5). In contrast to 
the aggressive movement adjustments and higher 
limb loadings of metabolic-based simulations, 
muscle-activation-based simulations could 
produce similar metabolic energy and total 
muscle activations with lower limb loadings (Fig. 
2A, B, C). Therefore, muscle activations may be 
a more realistic biomechanical objectives for 
human locomotion relative to metabolic-based 
objectives, which supports the conclusion of a 
previous study that suggests a potential control 

 
Fig. 5. Mean (solid lines) and one standard deviation (shaded areas) of the trajectories of 

resulting fore-aft and vertical ground reaction forces of metabolic-energy, muscle-

activation, dynamic-balance, limb-loading, multi-objective-based simulations and 
experiment mean. GRFs in mediolateral direction were small and not shown in this figure. 
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strategy centered on muscle activations for economical 
running [12]. Furthermore, the maximum moment of right hip 
adduction, abduction and left subtalar inversion also increased 
in metabolic-based simulation relative to experiment (Fig. 4). 
Since hip adduction/abduction could contribute to balance 
regulation as discussed beforehand, it may require excessive 
effort to maintain balance to reduce metabolic energy cost in 
metabolic-based simulations. 

Despite the magnitude, the timing of joint kinematics was 
also adjusted for different simulations. During balance-based 
simulations, there were phase lags of trunk and lower-limb 
movements compared to other simulations, such as trunk 
bending, trunk rotation, hip extension, hip adduction, 
abduction, ankle plantarflexion, and subtalar inversion (Fig. 
3). This may be due to the elongated double support phase of 
balance-based simulations (Fig. 5), which has been thought to 
be beneficial for balance regulation during gait [24]. 
Furthermore, the elongated double support phase could 
provide more time for neuromuscular adjustments in 
preparation of single support phase that is more challenging in 
balance regulation. However, metabolic-based simulations 
tended to create leading phases of lower-limb movements 
relative to other simulations, such as hip flexion, knee angle, 
ankle angle and subtalar angle (Fig. 3). The timing of first peak 
vertical GRF of right (p = 0.035, CI: 0.92 - 14.68%) and left 
(p = 0.033, CI: 0.81 - 11.19%) leg during metabolic-based 
simulation was leading relative to experiment (Fig. 5 B, D). 
This movement strategy may lead to a shorter period of single-
leg support phase that was found to represent the greatest 
percentage of total muscular energy cost [22]. Therefore, joint 
kinematic phasing of walking could be related to specific 
performance objectives, and may need to be targeted in the 
development of intelligent assistive devices. 

In this study, we performed predictive simulations of human 

walking to investigate different walking mechanics that relate 

to specific biomechanical objectives. Altered hip 

adduction/abduction angle during balance-based simulations 

could be related to tight regulation of dynamic balance. 

Increased joint moment is found in metabolic-based 

simulations, which may suggest greater effort to reduce 

metabolic energy cost. Furthermore, altered phasing of joint 

kinematics was found associated with specific performance 

objectives. These findings could guide the development of 

rehabilitation training and assistive devices that target specific 

individuals, tasks, and specific styles of movement. However, 

there are limitations within this study. The model of this study 

did not include arms or MTP joint, which could be important 

in specific gait functions. The results of the current study were 

produced by computer simulation and optimization 

algorithms and future study is needed to further assess these 

simulation results to investigate whether they are realistic. 
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