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Abstract— There exists motor redundancy during human gait
that allows individuals to perform the same task in different
observable ways (i.e., with varied styles). However, how
differences in observable walking mechanics depend on unique
and underlying biomechanical objectives is unclear. As an
example, these objectives could include metabolic energy
consumption, sum of muscle activations, limb mechanical
loading, balance and combinations thereof. In this study, we
develop predictive neuromuscular simulations to investigate the
relationships between these biomechanical objectives and
observable mechanics during level walking. We simulated 3D
normal walking of five healthy subjects, while optimizing each
of the aforementioned objectives—resulting in 25 forward
dynamics simulations for analysis. We compared the resulting
joint kinematics and moments of different simulations. One of
main findings suggests that decreased hip abduction angle is
tightly related to when the regulation of dynamic balance
(computed as whole-body angular momentum) is included in a
movement cost function. We also find that increased joint
moments are related to including metabolic cost (i.e., objectives
associated with improving the energy economy of movement).
Further, the timing of joint kinematics is adjusted for different
performance objectives. These findings could guide the
development of rehabilitation training and assistive devices that
target specific individuals, tasks, and specific styles of
movement.

I. INTRODUCTION

Human gait is complex, and one can perform a specific
movement task in varied and preferred styles. These
variabilities, resulting from the intrinsic redundancy of human
neuro-musculoskeletal system and the subject-specific
anthropometric characteristics enable us to better adapt to
complicated environments. In rehabilitation and assistive
engineering, it is important to provide the affected individual
with opportunities to fully and effectively participate in
varying functions of daily life. For instance, intent-recognition
and task-dependent algorithms were developed for intelligent
lower-limb prosthesis to provide users with increased
adaptability to different tasks [1]. However, there could be
high-level biomechanical performance objectives associated
with different locomotion tasks that contribute to specific
walking style choices. Therefore, understanding how one
could mediate walking styles (i.e., observable walking
mechanics) for different performance objectives is significant
for the development of rehabilitation training and assistive
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devices that adapt to individual and context.

Several biomechanical objectives could be related to the
different walking styles. Balance is an essential consideration
during human walking, and may significantly affect the
mechanics of gait. Healthy adults make preparatory and
response-based adjustments to dynamic balance based on
walking styles during 45 degree turns [2], and individuals
with Parkinson’s disease experience increased difficulties
maintaining forward balance during stair ambulation [3].
Although balance regulation is critical, there are other
performance objectives that are important during walking.
For example, human walking speed selection is related to
minimum metabolic energy cost per unit distance traveled [4],
which was thought to be continuously optimized in human
walking [5]. Meanwhile, musculoskeletal simulations of
human gait suggest that minimizing muscle effort or fatigue
may be also a governing principle of human walking because
optimization of total muscle activation produced gait with
realistic knee flexion [6]. These objectives are particularly
useful in sedentary populations, and simulations using
fatigue-related objectives successfully predict the higher
metabolic energy consumption, lower walking speed, altered
hip and ankle kinematics of the elderly [7]. Furthermore,
lower-limb loading is another biomechanical factor in human
walking that would be important, especially in populations
with lower-limb amputation that frequently develop joint
diseases like osteoarthritis and osteoporosis [8].

Recently, researchers have used empirical and simulation
approaches to study the gait mechanics in relation to the
underlying biomechanical objectives of human locomotion.
For instance, many studies investigated the balance/stability
regulation strategies and associated different mechanics during
gait through experiment [9], [10]. Antos et al., explored the
relationship between step length-width choices and metabolic
energy expenditure through measuring metabolic power for
two-alternative forced-choice walking paradigm, and found
that longer steps with higher energy expenditures were
preferred over shorter and wider steps [11]. Miller et al.,
investigated the preferred performance objective in human
running through 2D musculoskeletal simulations and
suggested that minimizing muscle activation produced more
realistic and economical running [12]. Recently, Veerkamp et
al., used two-dimensional musculoskeletal model with reflex
control paradigms to show that optimizing various
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Step 1: Contact Optimization
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Fig. 1. Diagram of the two-step simulation framework. Static marker tracking data from experiment were
used to build subject-specific musculoskeletal models that consists of 21 DOF and 92 muscle-tendon
actuators. Gait marker tracking data and GRF data from experiment were then used to perform inverse
kinematics (IK) and computed muscle control (CMC) analyses in OpenSim that produced joint kinematics
and muscle dynamics, respectively. Resulting joint kinematics and experiment GRF data were considered to
be more accurate, and were used to optimize foot-ground contact model parameters in the Step 1 simulation.
Resulting contact model parameters were used for the predictive simulations of Step 2, and CMC results
were used as initial guess of muscle-tendon actuator dynamics for the optimization.

optimization objectives, including energy expenditure, muscle
activations, head stability, derivatives of ground reaction
forces (GRF) and knee extension produces realistic gait [13].
Similarly, many other simulations of human locomotion by
minimizing multiple biomechanical objectives together
produced results that have relatively agreed with gait
experiment data [14], [15]. However, there is still little
understanding on the relationship between the observable
walking mechanics and different biomechanical performance
objectives.

Therefore, in this study we performed predictive neuro-
musculoskeletal simulations of human walking by optimizing
specific performance objectives, and compared joint angles
and moments (i.e., biomechanical metrics that can be
observed/quantified relatively easily in human participants) of
each simulation to investigate the relationship between
biomechanical  objectives and walking mechanics.
Understanding these relationships between observable
walking mechanics and specific performance objectives could
guide the development of rehabilitation training and assistive
devices that target specific individuals, tasks, and specific
styles of movement. This predictive analysis can specify how
the actuation and/or coordination of specific lower-extremity
joints, and their degrees-of-freedom, mediate changes in
movement style. We expect that new device and training
interventions could target not only specific tasks (such as
walking), but to do so with an increased resolution that
incorporates movement style.

II. METHODS

A. Experiment

Subject-specific tracking data for this study was provided
by a prior experiment [2], [16] of five able-bodied subjects
performing level straight walking at their preferred walking

978-1-6654-8829-7/22/$31.00 ©2022 IEEE

!

Step 2: Predictive Simulations
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speeds. All participants provided
written informed consent to
! participate in the experiment that
was approved by the Institutional
Review Board. A 10-camera
motion capture system (Motion
Lab Systems, Inc.) operating at
120 Hz was used to record motion
trajectories of 42 reflective
markers attached on human body.
Ground reaction forces were
recorded by six force plates
operating at 1200 Hz. Recorded
data were processed in Visual3D
(C-Motion, Inc.) and OpenSim
[17].

B. Musculoskeletal Model and
Simulation Framework

= Optimized coordinate
and contact

We built a musculoskeletal
model for each subject in
OpenSim by scaling an generic
model [18] and minimizing the
tracking errors of reflective
markers in static poses. Each
model had 21 degrees of freedom
(DOF) with metatarsophalangeal
joint locked, and was actuated by
92 Hill-type muscle-tendon actuators. Inverse kinematics (IK)
and computed muscle control (CMC) analyses were performed
for a walking trial of each subject to obtain experimental joint
kinematics and muscle dynamics.

The simulation framework of this study was revised from
our previous research [19]. Each simulation was formulated as
an optimal control problem, as in

min J (1-a)

xu
Subject to: x = f(x,u,t) (1-b)
X < x(t) < xyp (1-¢)
uy <ut) < uy, (1-d)

where x is the state vector, including joint angles, joint angular
velocities, muscle fiber length, and muscle activations; u is the
control vector, i.e., muscle excitations; x;;, and x,; are the
lower and upper bound of the state variables; u;;, and u,,, are
the lower and upper bound of the control variables; the state
space equation represents the dynamics of the musculoskeletal
model. The optimal control problem (1a-d) were solved using
direct collocation, and were transformed to a large-scale
nonlinear optimization problem [20]. Customized MATLAB
(Mathworks, Inc.) code was written to solve the nonlinear
optimization problem.

The foot-ground contact was modeled as smoothed Hunt-
Crossley force [21] between 12 spheres under each foot and a
half-space representing the flat ground. For each subject, the
first step of a two-step simulation framework (Fig. 1) was
contact-optimization simulation aimed to optimize locations
of contact spheres and contact model parameters to track the
experimental ground reaction forces and joint kinematics. In
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this step, the optimization variables were discretized joint
angles and angular velocities, and the objective function was
the tracking errors of the resulting ground reaction forces
relative to the experimental GRFs as well as the errors between
optimization variables and IK results. Using the optimized
contact model parameters, the second-step simulations were
then performed, including a metabolic-based simulation, a
balance-based simulation, a muscle-effort-based simulation, a
loading-based simulation and a multi-objective simulation

The metabolic-based simulation used an objective function
with a metabolic energy term and a GRF penalty term (Eq. 2).
The total metabolic energy was calculated as summation of the
time integral of the net metabolic energy rate E of each muscle
[22]. The penalty term P was a function of simulated GRF and
contact force between right and left ankles that aimed to avoid
unrealistic large or small vertical GRF (the first two terms
where relu refers to rectified linear unit function), encourage
smooth GRF trajectories (the third term), and avoid
interferences between limbs (Eq. 3). This GRF penalty term
existed in every second-step simulation objective function.

IE|I; + w.P) dt. )

tf 1
= f [ umaer—
0 Step Length « BW

_tf GRFy\? GRF, 2
P=J (w1 *relu(LB— BW) +w, *relu(W—UB) +
d2GRF\?
3 (S) + wallE13) de. 3)

The balance-based simulation used an objective function
minimizing normalized whole-body angular momentum (H)
about the body’s center-of-mass that is a measure of dynamic
balance with smaller value indicating tighter regulation of
dynamic balance [2], [19], as in:
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Fig. 2. Mean and one standard deviation of resulting biomechanical
performances of each simulation, i.e., (A) normalized metabolic energy,
(B) normalized sum of muscle activations, (C) maximum lower-limb
loading, and (D) range of 3D normalized whole-body angular
momentum (/), a measure of dynamic balance.

Jo = [/ willHI3 + woP)d. (4)

The muscle-effort or activation-based simulation used an
objective function that minimized the summation of the time
integral of muscle activation level a of all muscles, as in:

©)

The loading-based simulation minimized the maximum of
simulated vertical GRF that was approximated as in:

log (Z exp (M)) +w, fotf Pdt.

constant

Js = J," Wy llall3 + w,P)dt.
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Fig 3. Mean (solid lines) and one standard deviation (shaded areas) of resulting joint angles of metabolic-energy, muscle-activation, dynamic-balance,
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The objective function of multi-objective simulation
includes all of the four above-mentioned biomechanical
objectives, as in:

Is=h+tlL+]z+]s (7

Collectively, we randomly selected one trial from each
subject, and optimized this trial for each of the five
aforementioned performance objects. 25 predictive
simulations in total were performed. For each simulation,
periodic constraints were applied to each simulation so that the
coordinates or joint angles at initial time equal those at final
time. After predictive simulations, we analyzed the resultant
data from right-leg toe-off to toe-off. Inverse Dynamics
analyses were performed in OpenSim to obtain the resulting
joint moments.

C. Statistical Analysis

The magnitude and timing of peak joint angles, maximum
and minimum joint moments were compared among different
simulations as well as experiment using one-way repeated
measures ANOVA (0=0.05). Post-hoc comparisons were
performed using Tukey-Kramer’s criterion.

III. RESULTS

The first-step simulation optimized contact model
parameters, and produced experiment-matched GRFs and joint
kinematics that matched IK results. The second-step predictive
simulation resulted in increased biomechanical performances
for each simulation (Fig. 2).

The timing of peak kinematics (Fig. 3) of balance-based
simulation was leading for trunk extension relative to multi-
objective simulation (p = 0.042, 95% CI: 1.30 — 51.90% gait

trunk extension trunk bending

0.1

cycle) and experiment (p = 0.032, CI: 2.15-31.85%), and was
lagging in trunk bending relative to all but activation-based
simulations and experiment (p < 0.035, CI: 1.16 —24.27%), in
trunk rotation relative to metabolic-based simulation (p =
0.021, CI: 2.53 — 19.87%), in right hip extension relative to
experiment (p = 0.035, CI: 1.03 — 19.37%), in right hip
adduction compared with metabolic, multi-objective
simulations and experiment (p < 0.026, CI: 1.29 — 22.64%), in
right hip abduction relative to multi-objective simulations and
experiment (p < 0.044, CI: 0.31 — 19.92%), in right ankle
plantarflexion relative to experiment (p = 0.024, CIL: 2.28 —
20.92%), in right subtalar inversion compared with metabolic,
multi-objective simulation and experiment (p < 0.048, CI:
0.095 — 15.51%), in left hip adduction compared to metabolic,
multi-objective simulations and experiment (p < 0.032, CI:
1.19 — 25.07%), in left hip abduction compared to experiment
(p <0.019, CI: 2.50 — 17.50%), in left ankle plantarflexion
relative to experiment (p = 0.015, CI: 3.35 — 19.05%), and in
left subtalar eversion compared with activation-based
simulation and experiment (p < 0.021, CI: 2.52 — 19.48%).

The peak trunk counter-clockwise rotation angle was
larger in multi-objective simulation compared with
experiment (p = 0.017, CI: 0.94 — 6.17). The peak right hip
extension angle reduced in loading-based simulation relative
to experiment (p = 0.037, CI: 0.18 — 4.13). The peak right hip
abduction angle decreased in balance-based simulation
compared with experiment (p = 0.041, CI: 0.14 — 4.30). The
peak right plantarflexion angle reduced in balance-based
simulation relative to metabolic-based simulation (p = 0.045,
CI: 0.14 — 9.00) and experiment (p = 0.008, CI: 2.47 — 9.49).
The right subtalar inversion angle reduced in activation-based
(» =0.020, CI: 0.58 — 4.53) and multi-objective simulation (p
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Fig 4. Mean (solid lines) and one standard deviation (shaded areas) of resulting joint moments of metabolic-energy, muscle-activation, dynamic-
balance, limb-loading, multi-objective-based simulations and experiment mean. Top, middle and bottom rows are joint moments of trunk, right limb

and left limb, respectively.
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=0.029, CI: 0.38 —4.62) compared with experiment. The peak
left subtalar inversion angle increased in balance-based
simulation compared to multi-objective simulation (p = 0.049,
CI: 0.007 —2.70).

The maximum trunk right bending moment increased in
activation-based simulation relative to multi-objective
simulation (p = 0.044, CI: 0.0046 — 0.25). The maximum right
hip adduction moment was larger in metabolic, activation and
load-based simulations than experiment (p < 0.046, CI: 0.030
—2.09), and decreased in activation-based simulation relative
to load-based simulation (p = 0.008, CI: 0.18 — 0.68). The
maximum right hip abduction moment increased in metabolic-
based simulation compared with load-based simulation and
experiment (p <0.021, CI: 0.26 —2.40), and increased in multi-
objective simulation relative to experiment (p =0.012, CI: 0.44
— 0.68). The maximum left hip adduction moment was greater
in balance-based simulation than experiment (p = 0.022, CI:
0.28 — 2.37), and the maximum left hip abduction moment
increased in all simulations except metabolic compared with
experiment (p < 0.017, CI: 0.31 — 2.51). The maximum right
knee extension moment increased in balance and multi-
objective simulation relative to experiment (p < 0.044, CI:
0.021 — 1.02). The maximum left subtalar inversion moment
was larger in metabolic and load-based simulation than
experiment (p < 0.044, CI: 0.0080 — 0.44).

IV. DISCUSSION

In this study, we performed predictive simulations of
normal human walking using dynamic optimization and direct
collocation approaches. Different biomechanical performance
metrics were used as optimization objective functions to
investigate the variations of human walking styles, i.e.,
observable kinematics and joint kinetics, associated with these
biomechanical objectives. The targeted performances, i.e.,
metabolic energy cost, sum of muscle activations, lower-limb
loading (measured as maximum vertical GRF) and balance
regulation (measured by whole-body angular momentum)

(B) Vertical

Fore-aft

P
|

Right GRF (BW)

o
w

were improved in each simulation, and associated joint
kinematic and kinetic changes were observed.

During balance-based simulation dynamic balance was
more tightly regulated, with reduced range of whole-body
angular momentum (Fig. 2C), which was achieved through
adjusting specific joint kinematics. During swing phase the
right hip abduction angle significantly decreased in balance-
based simulation relative to experiment (Fig. 3). While not
statistically significant, during single-leg stance phase the right
hip adduction angle increased in balance-based simulation
compared to other simulations as well as experiment for each
subject (Fig. 3 shows average). This adjustment could be a
strategy to maintain mediolateral balance during gait.
Individuals may translate the horizontal projection of body
center of mass (CM) to fall into the base of support through
modifying hip adduction/abduction angle, and thus, increase
walking balance. Another explanation of the adjustment to
stance-leg hip adduction could be related to centroidal moment
pivot (CMP), the point where a line parallel to the ground
reaction force, passing through the CM, intersects with the
ground [23]. This movement could translate the center of
pressure (CP) position towards and coincide with CMP, and
therefore, decrease horizontal moments about CM as well as
whole-body angular momentum. Furthermore, these adjusted
right hip adduction kinematics did not increase the maximum
moment of associated joints (Fig. 4), which may suggest it as
a potential strategy for strictly regulating dynamic balance that
does not require high joint loading. These findings of adjusted
hip adduction for more balanced walking may also suggest that
future assistive devices should target at not only the ankle joint
but also the hip joint for enhanced balance assistance.
Furthermore, the reduced right plantarflexion angles (Fig. 3)
in balance-based simulations may suggest less dependence of
dynamic balance on increased plantarflexion that many
currently-available assistive technologies are trying to produce
with active push-off. However, future work is needed to
further investigate the mechanics of amputee walking to

determine the effects of such joint kinematics.

In metabolic-based simulation, peak hip
extension tended to increase near contralateral
heel-strike (Fig. 3), while not statistically
significant. This may be related to the objective
function of metabolic-based simulations (Eq. 2)
that normalizes cost of transport (CoT) by step
length. With increased contralateral hip extension
at heel-strike, the model could increase step
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Fig. 5. Mean (solid lines) and one standard deviation (shaded areas) of the trajectories of
resulting fore-aft and vertical ground reaction forces of metabolic-energy, muscle-
limb-loading, multi-objective-based simulations and
experiment mean. GRFs in mediolateral direction were small and not shown in this figure.
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length and thus, decrease CoT. However, this
strategy of minimizing CoT may be at cost.
Lower-limb loading or vertical GRFs were
higher in metabolic-based simulations relative to
other simulations (Fig. 2B, Fig. 5). In contrast to
the aggressive movement adjustments and higher
limb loadings of metabolic-based simulations,
muscle-activation-based  simulations  could
produce similar metabolic energy and total
muscle activations with lower limb loadings (Fig.
2A, B, C). Therefore, muscle activations may be
a more realistic biomechanical objectives for
human locomotion relative to metabolic-based
objectives, which supports the conclusion of a
previous study that suggests a potential control

80 100
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strategy centered on muscle activations for economical
running [12]. Furthermore, the maximum moment of right hip
adduction, abduction and left subtalar inversion also increased
in metabolic-based simulation relative to experiment (Fig. 4).
Since hip adduction/abduction could contribute to balance
regulation as discussed beforehand, it may require excessive
effort to maintain balance to reduce metabolic energy cost in
metabolic-based simulations.

Despite the magnitude, the timing of joint kinematics was
also adjusted for different simulations. During balance-based
simulations, there were phase lags of trunk and lower-limb
movements compared to other simulations, such as trunk
bending, trunk rotation, hip extension, hip adduction,
abduction, ankle plantarflexion, and subtalar inversion (Fig.
3). This may be due to the elongated double support phase of
balance-based simulations (Fig. 5), which has been thought to
be beneficial for balance regulation during gait [24].
Furthermore, the eclongated double support phase could
provide more time for neuromuscular adjustments in
preparation of single support phase that is more challenging in
balance regulation. However, metabolic-based simulations
tended to create leading phases of lower-limb movements
relative to other simulations, such as hip flexion, knee angle,
ankle angle and subtalar angle (Fig. 3). The timing of first peak
vertical GRF of right (p = 0.035, CI: 0.92 - 14.68%) and left
(» = 0.033, CI: 0.81 - 11.19%) leg during metabolic-based
simulation was leading relative to experiment (Fig. 5 B, D).
This movement strategy may lead to a shorter period of single-
leg support phase that was found to represent the greatest
percentage of total muscular energy cost [22]. Therefore, joint
kinematic phasing of walking could be related to specific
performance objectives, and may need to be targeted in the
development of intelligent assistive devices.

In this study, we performed predictive simulations of human
walking to investigate different walking mechanics that relate
to specific biomechanical objectives. Altered hip
adduction/abduction angle during balance-based simulations
could be related to tight regulation of dynamic balance.
Increased joint moment is found in metabolic-based
simulations, which may suggest greater effort to reduce
metabolic energy cost. Furthermore, altered phasing of joint
kinematics was found associated with specific performance
objectives. These findings could guide the development of
rehabilitation training and assistive devices that target specific
individuals, tasks, and specific styles of movement. However,
there are limitations within this study. The model of this study
did not include arms or MTP joint, which could be important
in specific gait functions. The results of the current study were
produced by computer simulation and optimization
algorithms and future study is needed to further assess these
simulation results to investigate whether they are realistic.
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