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Abstract

Al fairness is tasked with evaluating and mitigating bias in algorithms that may discriminate towards
protected groups. This paper examines if bias exists in Al algorithms used in disaster management and
in what manner. We consider the 2017 Hurricane Harvey when flood victims in Houston resorted to
social media to request for rescue. We evaluate a Random Forest regression model trained to predict
Twitter rescue request rates from social-environmental data using three fairness criteria (indepen-
dence, separation, and sufficiency). The Social Vulnerability Index (SVI), its four sub-indices, and four
variables representing digital divide were considered sensitive attributes. The Random Forest
regression model extracted seven significant predictors of rescue request rates, and from high to low
importance they were percent of renter occupied housing units, percent of roads in flood zone,
percent of flood zone area, percent of wetland cover, percent of herbaceous, forested and shrub cover,
mean elevation, and percent of households with no computer or device. Partial Dependence plots of
rescue request rates against each of the seven predictors show the non-linear nature of their
relationships. Results of the fairness evaluation of the Random Forest model using the three criteria
show no obvious biases for the nine sensitive attributes, except that a minor imperfect sufficiency was
found with the SVI Housing and Transportation sub-index. Future Al modeling in disaster research
could apply the same methodology used in this paper to evaluate fairness and help reduce unfair
resource allocation and other social and geographical disparities.

1. Introduction

Machine learning (ML) as a subset of artificial intelligence (AI) is increasingly employed for decision making in
many aspects of society. More ML algorithms have been developed and are made available for use. In disaster
risk management, applications of ML are still limited. Existing applications in this field range from assessing
hazard exposure, social vulnerability and risk assessment, to post-disaster damage estimation, prioritization of
disaster aid distribution, and prediction modeling (Global Facility for Disaster Reduction and Recovery
(GFDRR) 2018, Gevaert etal 2021). Given the complexity of disaster risk management and its urgent nature
during disastrous events, more and better applications of ML algorithms in this field would be useful to
emergency management and decision making.

However, despite the ability of Al to assist in decision making, there are concerns related to Al modeling, and
among them are issues related to fairness. Fairness is best described as impartial treatment of data subjects by the
Al (Fjeld et al 2020). Without considering fairness, Al may become biased at different stages of its life cycle. For
example, historical, representation, and measurement biases occur during data generation, whereas learning,
aggregation, evaluation, and deployment biases occur during model building and implementation (Suresh and
Guttag 2021). Most existing fairness criteria fall under three general approaches: making the average predicted
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outcome similar for each sensitive group (independence), equalizing predicted outcomes given the ground truth
outcomes (separation), and equalizing ground truth outcomes given the predicted outcome (sufficiency)
(Barocas et al 2019).

This study investigates the fairness in the use of ML in predicting rescue requests from social media during
emergencies. The increasing risk of floods prompts us to consider the case when stranded people request rescue
through social media, like it happened during Hurricane Harvey (Mihunov et al 2020). Hurricane Harvey hit the
Texas coast near Corpus Christi with category 4 wind speeds on 26 August 2017. It quickly dissipated and
changed direction, unexpectedly delivering over 1.5 m (5 ft) of rainfall to the Houston metropolitan region
(Watson et al 2018), causing unprecedented flooding and leaving many people stranded. Calls to the 911 were
overloaded and could not be connected. As a result, many residents resorted to social media to seek rescue from
flooded waters (Wang et al 2022, Zhou et al 2022).

Hurricane Harvey events left a digital footprint that prompted extensive research by disaster management
scholars (Zou et al 2018, Mihunov et al 2022). Availability of social media data and growing accessibility of ML
methods make it likely that black-box models predicting locations of rescue request will emerge and be adopted
for real-world applications. If fairness of those models is not considered, potential biases may cause real-world
harm, such as unfair allocation of rescue teams’ resources and inadequate assistance to vulnerable communities.

The objective of this study is to examine if bias exists in Al algorithms used in disaster management and in
what manner. More specifically, we use rescue request data derived from both Twitter and volunteer-collected
data to examine how Al fairness could impact the prediction of rescue requests. We focus on two sources of
potential biases—social vulnerability and digital divide. Our research questions are:

+ RQI: what are the significant predictors of the rescue request pattern using ML algorithms, and how do they
influence model predictions?

+ RQ2: does the model learnt from the social media rescue data exhibit unfairness based on social vulnerability
and digital access?

We hypothesize that high social vulnerability and limited access to digital technology are associated with low
predicted social media rescue rates, and fairness criteria of independence, separation, or sufficiency are violated
based on the two characteristics.

Specifically, we selected the Social Vulnerability Index (SVI) and indices of its four themes (socioeconomic
status, household composition and disability, minority and language, transportation and housing) as sensitive
attributes because they encompass many characteristics of the communities that may have higher disaster
assistance needs and may experience discrimination (Flanagan et al 2011). In addition, four digital access
variables were assigned as sensitive attributes to evaluate potential algorithm bias introduced due to the digital
divide. By addressing the two research questions, this study could offer new insights into the use of Al modeling
with social media data in future rescue operations, as well as provide baseline information for the development
and applications of fair Al methods for disaster resilience.

2.Background

Many decisions impacting individuals and communities are assisted or made by algorithms, including hiring,
lending, policing, criminal justice, and stock trading, among others (Lepri et al 2018, Shang et al 2020). Despite
the promise of eliminating the limitations and biases of human decision making, data-driven algorithmic
systems retain some of the same ethical concerns, among which are fairness, transparency, and explainability
(Fjeld et al 2020, Gevaert et al 2021, Lepri et al 2018). Transparency refers to the communication of the internal
functioning of the model, whereas explainability is the ability to interpret how the model makes its predictions
(Leprietal 2018, Mittelstadt et al 2019). Explainability and transparency are both ways of validating ML models
while attaining new domain knowledge about the modeled system (Mittelstadt et al 2019).

Depending on the application, an Al algorithm’s impact on its subjects may be different, including potential
harms. Among the most common types of harms are allocation harms, which happen when the opportunities,
resources, or information are withheld through the Al decisions, and quality-of-service harms, which happen
when a system does not work equally well for different users (Bird et al 2020). For instance, unfair hiring,
lending, or underwriting decisions are examples of allocation harms, whereas poor quality of facial or speech
recognition or incorrect health care decisions due to someone’s race or gender are examples of quality-of-service
harms.

The ML literature has proposed and refined dozens of fairness criteria (Barocas et al 2019, Chouldechova
2017, Steinberg et al 2020). These criteria aim at identifying discrimination of groups of individuals based on a
set of defining characteristics, called sensitive features or protected attributes, for which some groups are
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considered privileged, and some are not. Consider a simple case with a binary classifier where A is the sensitive
attribute, Y is the target variable (i.e., ground truth or dependent variable), Y is the predicted value, and score R
is the probability of the predicted value. The three commonly used fairness criteria are independence, R L A;
separation, R 1. A|Y;and sufficiency Y 1. A|R (Barocas etal2019).

The first criterion, independence, requires that R is independent of A. It has many equivalent and related
definitions, such as demographic parity, statistical parity, group fairness, and others (Barocas et al 2019). It is
satisfied when P{Y = 1|A = a} = P{Y = 1|A = b}. Consider Y = 1as ‘acceptance’, independence thus
requires equal acceptance rate in both groups a, b of the sensitive attribute A.

The second criterion, separation, is used when the protected groups are not equally ‘qualified’ for the same
outcome (Dwork et al 2012). A certain demographic group A = a may have a higher rate of true event Y = 1, which
may justify higher acceptance rate from the group a. This condition is called separation. It is expressedas R 1. A|Y,
where R is independent of A given Y. In binary classification, separation requires P{Y = 1|Y = 1, A = a}
=P{Y=1Y=1,A=b}andP{Y = 1|]Y =0, A = a} =P{Y = 1|Y = 0, A = b}. Since
1 — P{Y = 1|Y = 1} isthe false negativerateand P{Y = 1|Y = 0} is the false positive rate of a classifier, the first
statement stipulates that groups a, b have the same false negative rate, whereas the second one equalizes their false
positive rates. Combining the two constraints, separation calls for error rate parity.

The third criterion, sufficiency,is Y 1 A|R, or Y isindependent of A given R. This corresponds to
P{Y= 1R =r, A = a}=P{Y = 1|R = r, A = b}, which means that each group of the sensitive attribute A
has the same accuracy of the predicted probabilities (Barocas et al 2019). A related model property, calibration is
used to assess how close modeled probabilities are to the probabilities of true events in Y (Zadrozny and Elkan
2002, Niculescu-Mizil and Caruana 2005). Predicted probability scores R are calibrated with respect to the
ground truth Y, when for all predicted probability values r € [0, 1], P{Y = 1|R = r} = r. Accordingly, for any
value r, a prediction of a class with probability r is correct in r fraction of cases. Calibrated probabilities can be
directly interpreted as the model’s confidence in each prediction, which is considered critical information, for
example, in deciding a treatment plan or crime sentencing. Unfairness arises when different confidence
thresholds are applied to different demographic groups for assigning them to a prediction class
(Chouldechova 2017).

Popular metrics such as independence, separation, and sufficiency have been developed for evaluating
classification fairness. However, few studies have used these metrics for evaluating regression fairness
(Fitzsimons et al 2019, Steinberg et al 2020). It has been suggested that once model fairness is evaluated, biases
can be mitigated by targeting the data with adjustment or weighting, applying regularization or penalty to the
model, or post-processing of the predictions (Suresh and Guttag 2021).

Research into Al fairness is limited in disaster risk management and geospatial sciences (Gevaert et al 2021).
One of the key fairness problems in disaster risk management is the uneven access to digital technology, resulting
in disparate representation of vulnerable groups in the emerging geospatial big data (such as mobility and social
media data). For example, timely estimates of population change before and after a disaster can be derived using
mobile phone call records, but they are biased towards those without phone access (Yu et al 2018, Pestre et al
2020). Similarly, models and predictions that use social media data may be biased, due to their inability to
control the representativeness of such data (Zou et al 2018, Wang et al 2019).

Furthermore, Al predictions are rarely explained or tested for bias. For example, the study by Behl et al
(2021) is among the few explainable Al applications in disaster literature. Their study obtains Local Interpretable
Model-Agnostic Explanations (LIME) from the black box algorithms trained to process Twitter data to identify
people’s needs after a disaster, and to show which words contained in the tweets contributed to tweet
classifications. This study will address the lack of research into Al fairness and explainability in disaster risk
management and geospatial sciences and will be among the first to apply explainable and fair Al principles to
predict social-media derived rescue requests using social-environmental data.

3. Data collection and feature extraction

Procedures of data collection and analyses used in this study are depicted in figure 1.

3.1. Social media and volunteer-collected rescue requests

Hurricane Harvey tweets posted between August 17 and September 7, 2017 were purchased from Twitter using
keywords ‘hurricane, harvey, disaster, cajun navy, hurricaneharvey, txdps, txtfl, redcross, coastguard,
coastguard, houstonpolice, houstonoem, salvationarmy, flood, sos, flooding, storm, rescue, sendhelp,
cajunnavy, fema, salvation army’. This led to a dataset of close to 45 million tweets. We searched for rescue
request tweets posted between August 27 and August 31 which yielded 4.1 million tweets (retweets excluded).
Rescue requests are defined as rescue seeking messages with geographic addresses (Wang et al 2022). We selected
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Figure 1. Flowchart of data and procedures used in modeling and fairness measurement of social media rescue requests.

Table 1. Social media rescue requests: verified and deduplicated by address
from 2 datasets.

Collected by Matched between Total unique
Twitter volunteers the two datasets requests
962 1,229 383 1,808

tweets containing any ZIP code in the Houston Metropolitan Statistical Area (MSA) and then manually removed
the tweets that did not contain rescue requests. Through this step, 2,105 tweets (rescue requests) were obtained.
The addresses in the tweets were then geoparsed using Google Geocoding AP], such that the coordinates were
assigned based on the addresses mentioned in the body of the tweets. We then manually corrected spelling errors
in the few unassigned tweets and matched them with the correct coordinates, and this resulted in 962 tweets
(table 1).

Additionally, we acquired a dataset with rescue requests collected by volunteers from social media or
through several online forms distributed at the time. The document includes a Google Spreadsheet containing
the addresses and related information of the rescue requests, as well as information on the prioritization and
fulfillment of the requests (Arrazolo 2017). All addresses in the document were identified and de-duplicated.
They were then geocoded, and matching addresses were identified between the Twitter and the volunteer
datasets (table 1). Combining the two datasets led to 1,808 unique rescue request tweets. The geocoded rescue
requests were then tabulated by block group and normalized per 1,000 households, resulting in 535 out 0of 3,017
block groups having rescue requests. One of the block groups that had one Twitter rescue request was removed
due to a missing value of the number of households, thus 534 block groups and 1,807 rescue requests were
considered in subsequent analysis.

3.2. Social vulnerability index (SVI) data collection and calculation

We used the Social Vulnerability Index (SVI), which was designed and implemented by the Centers for Disease
Control and Prevention (CDC), to characterize communities that are at a greater risk during disasters (Flanagan
etal2011). The index is a composite of a total of 15 variables and include four sub-indices: (1) socioeconomic
status, (2) household composition and disability, (3) minority status and language, and (4) housing and
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Table 2. Social vulnerability index variables (n = 3, 017, all block groups in Houston MSA)™

SVITheme Variable Min Max Mean St.D.
1. Socioeconomic status % below poverty 0 0.80 0.17 0.15
Unemployment rate 0 0.22 0.04 0.03
Per capita income (U.S. Dollars) 1,038 207,879 30,364 21,570
% no high school diploma 0 0.38 0.02 0.03
2. Household composition and disability % over 65 y.o. 0 0.65 0.11 0.07
% under 17 y.o. 0 0.58 0.25 0.09
% with disability 0 0.53 0.10 0.06
% single parent households 0 1 0.32 0.25
3. Minority status & language % with minority status 0 1 0.33 0.24
% speaking English ‘less than well’ 0 1 0.10 0.12
4. Housing type & transportation % housing with more than 10 units 0 1 0.18 0.26
% mobile home units 0 0.89 0.05 0.12
% households w/more people than rooms 0 1 0.06 0.08
% households with no vehicle 0 0.68 0.05 0.08
% living in group quarters 0 0.99 0.01 0.06

* Percentage values are listed as proportions.

transportation (table 2). Its early applications included hazard mitigation and planning research (Flanagan et al
2018). More recent studies evaluated its associations with cardiovascular disease and surgical outcomes, house
fire events, health outcomes related to heat events, Hurricanes Katrina, Sandy, and Harvey, as well as health
behaviors and outcomes during the COVID-19 pandemic (Flanagan et al 2018, Li et al 2022, Ramesh et al 2022).
Moreover, Wang et al (2019) used SVI to evaluate whether social disparities existed in social media use leading
up to Hurricane Sandy.

Justifications for SVI variables’ inclusion in each vulnerability theme are similar to our rationale of using
them as characteristics that may make vulnerable communities subject to algorithm bias in a rescue allocation
model (Morrow 1999, Cutter et al 2003, Flanagan et al 2011). For example, income, poverty, employment, and
education variables are related to presumed lesser resources for evacuation, preparation, and recovery, and being
served by less robust public infrastructure. Second, age, single parenting, and disability variables capture the
presence of people that may require special planning and accommodations and additional resources. Third,
race, ethnicity, and English proficiency variables describe groups that are often underserved due to racial
discrimination and language barrier. Fourth, housing type, crowding, and vehicle availability variables represent
lack of access to secure infrastructure. Finally, the composite SVI represents broad vulnerability of the
community. In this study, we assume that vulnerable communities will have more people who need rescue
(Wangetal2019). Testing algorithm fairness using SVI and its four sub-indices allows us to identify potential
bias towards protected groups, who are considered vulnerable in disasters.

We calculated the SVI for the 3,017 Houston MSA block groups by summing the percentile rank of each of
the 15 variables from highest to lowest (except per capita income, which is ranked from lowest to highest). A
percentile rank is a proportion of scores in a distribution that a specific score is greater than or equal to:

Percentile Rank = (Rank — 1)/(N — 1) )

where N is the total number of data points. A percentile rank of the sum is then estimated. The result is a score
with arange [0, 1], and its higher values correspond to higher vulnerability. The 15 variables are further grouped
by the four themes, for which separate scores are calculated.

Most variables used in the SVI calculation were accessed from the American Community Survey (ACS) 2015
5-year estimates, except the data on institutionalized and non-institutionalized group quarters’ residents, which
were from the 2010 Decennial Census. The overall SVI and its four sub-indices are included in a training dataset
and used as sensitive attributes (table 3).

3.3. Access to digital devices and internet services

The four digital access variables (percent of households with no computer or device, percent of households with
no Internet, percent of households with cellular data plan, and percent of households with smartphone) were
acquired from the ACS 5-year 2017 estimates (table 3). We employ these data to test whether they are significant
predictors of social media rescue requests and whether the predictive model may exhibit bias due to digital
divide. The groups with low digital adoption rates, such as older adults, are at a disadvantage during a major
disaster, when critical information is disseminated, and relief efforts are coordinated on social media (Dargin
etal 2021, Choi etal 2022). Thus, we assess Al fairness based on these characteristics.
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Table 3. The 25 social-environmental predictors (n = 534, block groups with rescue requests)™

Category Variable Min Max Mean StD
Target Rescue requests per 1000 households 0.17 250.00 5.57 13.83
Land cover (percent of block group area) % Agricultural land area 0 0.88 0.06 0.14
% Wetland area 0 0.50 0.04 0.08
% Water area 0 0.68 0.01 0.04
% Herbaceous, forested, and shrub area 0 0.57 0.07 0.12
% Developed land area 0.02 1 0.82 0.25
Environment Road length per block group area (m/m?) 0.001 0.09 0.02 0.01
% Road length in flood zone 0 1 0.24 0.29
Mean elevation (10 meters) 1.03 65.07 20.06 10.67
% Area in Flood zone 0 1 0.32 0.32
Other socioeconomic characteristics % Renter occupied housing 0 1 0.41 0.30
% Civilian labor force 0.26 0.95 0.67 0.10
% Households with income < $40,000 0 1 0.36 0.22
% With no college degree 0.05 1 0.71 0.24
Total rooms in housing units per household 3.52 10.59 6.34 1.30
% Over 16, no vehicle to commute to work 0 0.84 0.21 0.12
% With no health insurance 0 0.67 0.22 0.14
Access to digital devices and Internet services” % Households with no computer or device 0 0.74 0.13 0.13
% Households with no Internet 0 0.77 0.19 0.16
% Households with cellular data plan 0 1 0.53 0.16
% Households with smartphone 0.18 1 0.74 0.15
CDC Social Vulnerability Index" SVITheme 1 Socioeconomic Status 0 1 0.51 0.29
SVITheme 2 Household comp. & Disability 0.005 0.999 0.49 0.29
SVITheme 3 Minority Status & Language 0 0.999 0.55 0.27
SVITheme 4 Housing and Transportation 0 1 0.50 0.30
SVI 0 0.999 0.51 0.29

* Percentage values are listed as proportions.
® Also used as sensitive attributes in discretized form.

3.4. Social-environmental characteristics

Additional variables were collected to examine if they can help predict rescue requests during hurricane
flooding. For the environmental variables, we collected the 2016 land cover data from the U.S. Geological Survey
(USGS) and Multi-Resolution Land Characteristics Consortium (MRLC) National Land Cover Database
(NLCD) (Yang et al 2018). We then calculated the land cover type area percentage by block group using the
Tabulate Area tool from Zonal toolset in ArcGIS Desktop (Esri 2021). Similarly, mean elevation was tabulated
from the National Elevation Dataset (NED) Digital Elevation Model (DEM) in one arc-second (approximately
30 m) resolution (U.S. Geological Survey (USGS) 2017). The percentage of flood zone area per block group was
tabulated from Federal Emergency Management Agency (FEMA) National Flood Hazard Layer (NFHL) (FEMA
2020). Road length per block group area was tabulated from the U.S. Census (2016) TIGER/Line ‘All Roads’
shapefiles, and percent of road length in flood zone was tabulated by overlaying roads shapefiles with flood zone
polygons. Finally, data for the seven socioeconomic variables, which have been used frequently in previous
vulnerability and resilience studies, were acquired from the ACS 2015 5-year estimates (table 3) (Cai et al 2018,
Lam etal 2016, Wang et al 2023).

This data collection resulted in a dataset with socioeconomic and environmental predictors, as well as SVI
indices for all 3,017 block groups of the Houston MSA. The target variable represented by the rescue request rate
had values in 534 block groups. We thus made a subset of the 534 block groups containing rescue requests for
training the model (531 after removing the three cases with missing values in the independent variables).

For the fairness testing, we chose nine variables (the SVI, its sub-indices and digital access variables) as
sensitive attributes, hypothesizing that they were the likely barriers to access social media to request for rescue.
Since fairness tests are concerned with binary sensitive attributes, SVI and its themes were discretized by splitting
the cases at the 0.25 quantile and assigning the 0-0.25 group as privileged (low vulnerability). For the digital access
variables, the block groups were also split at the 0.25 quantile with the high adoption group assigned as privileged.

3.5. Comparison data: Boston housing value dataset

We used an independent dataset to provide a reference point for our algorithm fairness testing. This dataset was
Boston Housing Value from Harrison and Rubinfeld (1978), which was corrected for a few minor errors and
augmented with census tract-level coordinates (Pace and Gilley 1997; accessible from the statlib index). The
dataset consists of 506 cases and 14 variables, one of which is the target variable ‘Median value of owner-
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occupied homes in $1000’s’ (MEDV'), and the remaining 13 variables are used as predictors. Among them are B
and LSTAT. B isthe value of 1000(Bk — 0.63)?, where Bk is the proportion of black people, and LSTAT is
percent of the population with ‘lower status’ (adults without some high school education and proportion of male
workers classified as laborers). We considered B and LSTAT as sensitive attributes, because housing values are
likely unfair on the basis of race and socioeconomic status. The remaining variables are related to environment
and infrastructure. For the B variable, we split the setat B = 360, with values above 360 being the privileged
group, as they reflect zero to low proportion of black people per census tract. For LSTAT we used the dataset
mean (LSTAT = 12.65) as the split, with the values below the mean being the privileged group.

4. Analysis methods

4.1.Random Forest Regression and variable selection

We used the ranger package in R for variable selection and Random Forest model fitting (Breiman 2001; Wright

and Ziegler 2017). Random Forest is a supervised ML method that creates many decision trees (i.e., an ensemble
or a forest) with their individual predictions being used in a voting scheme to make final predictions (Esri 2022).

A random subset of the training data and a random subset of explanatory variables are used in each tree and then
the votes from all decision trees are considered. This way the overfitting associated with individual decision trees
is addressed. The mean square error and R” are obtained from the out-of-bag data (data excluded in the training
step) to evaluate the model performance.

We adopted the modeling steps recommended in Altmann et al (2010) to fit Random Forest with relevant
features. First, Random Forest is fit with all 25 potential predictors (table 3), and corrected impurity importance
for each predictor is estimated (Nembrini et al 2018). The impurity importance can be used to rank predictors
using Gini coefficients, and it reflects the number of times a predictor variable is responsible for a split
(individual decision within a tree) and the impact of that split per the number of trees. Corrected impurity
importance is modified to be compatible with further statistical testing for importance significance.

Then, permutation importance as in Altmann et al (2010) is computed by permuting the response vector
(target variable) several times and producing a vector of importance values for each predictor across all
permutations, from which p-values are retrieved. Predictors with significant p-values are then retained in a more
parsimonious model. We used 100 permutations, as a larger number of permutations did not change the order
of returned p-values. Finally, the Random Forest model with a traditional impurity measure and significant
predictors selected in the previous step was used for model explanations and fairness evaluations.

4.2. Model diagnostics

4.2.1. Dataset level exploration

Toaddress RQ1, which is to explain the predictors’ influence on model predictions, we employed a dataset-level
exploration. We utilized Partial Dependence (PD) plots that show the expected values of model predictions as a
function of a selected explanatory variable while holding other variables constant (Goldstein et al 2015). They are
derived by averaging many (or possibly all) instances of ceteris-paribus (CP) profiles, which are plots that show
the change of a predicted value induced by a change of a single explanatory variable for a single observation
(Biecek 2018).

4.2.2. Regression fairness

To address RQ2, which is to examine whether the Random Forest model exhibits bias, we utilized the fairness
criteria of independence, separation, and sufficiency, adapted for regression by Steinberg et al (2020) and
implemented in the R package fairmodels (Wisniewski and Biecek 2022).

Referring to definitions in section 2, for the regression case we denote Y as the continuous dependent
variable (ground truth) and § as the continuous predicted values (in place of binary Y and predicted class Y). To
define a continuous measure of the degree to which the fairness criteria are satisfied, Steinberg et al (2020)
transforms them as ratios:

. PGS|A=1)
ratio;, = PE1A=0)

. PS|Y,A=1)
ratiog, = PEIY A=0)

. _ P(Y|S,A=1)
ratiog; = PEIS A<D

The model that satisfies a given criterion will have its ratio close to 1. Steinberg et al (2020) then transforms
each ratio using Bayes’ Theorem so that they can be estimated using the density ratios. The density ratios are
obtained in expectation, by approximating them as an empirical average over the data with the outputs of the
probabilistic classifiers p(als), p(aly, s),and p(aly). Using p(als), ratio;,  is determined by how much more
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Figure 2. Study area, its physical (a) and social (b) vulnerability and sensitive attributes by block group: (c) SVI Theme 1
Socioeconomic Status, (d) SVI Theme 2 Household composition & Disability, (e) SVI Theme 3 Minority Status & Language, (f) SVI
Theme 4 Housing and Transportation, (g) % households with no computer or device, (h) % households with no Internet, (i)%
households with cellular data plan (reversed), (j) % households with smartphone (reversed). Darker shade is higher vulnerability.

predictive Sis of A, over the base rate distribution of A. The separation ratio uses p(aly, s)and p(aly) to find
the additional predictive power that the joint distribution of Y and S has in predicting A over the marginal
distribution of Y. Similarly, sufficiency ratio is derived from p(aly, s) and p(als) to show how much more
predictive the joint distribution of Y and S is of A over the marginal distribution of S.

5.Results

5.1. Spatial patterns of rescue requests, vulnerability, and digital access
We mapped the spatial patterns of key variables to provide exploratory analysis of their real-world
representation and aid the analysis of model fairness (figure 2).
Figure 2(a) depicts the mean flood depth per block group during Hurricane Harvey. These flood depths were
measured by USGS using the high-water marks method and were tabulated from raster data into block groups
by the authors using the ArcGIS Zonal Statistics tool (FEMA 2018; Esri 2021). In most cases the pattern of flood
depth coincides with the location of major rivers and water bodies in the study area (figure 3). On the contrary,
the pattern of social vulnerability represented by SVI (figure 2(b)) is scattered across the urban Harris County
(the city of Houston, TX) and the neighboring suburban counties.
In terms of the individual SVI themes, the socioeconomic theme (figure 2(c)) appears very similar to the
overall SVI (figure 2(b)), whereas the household composition and disability theme (figure 2(d)) shows many
more vulnerable block groups located farther from the urban core, potentially due to many families caring for
children and older or disabled adults, settling farther from the urban areas. The minority status and language
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Figure 3. Combined social media and volunteer rescue requests per 1,000 households.

barrier theme points to most of the vulnerable populations concentrated within Harris County (figure 2(e)).
Finally, the housing type and transportation theme shows an evenly scattered pattern across the study area
(figure 2(f)).

As for the digital access variables (figures 2(g)—(j)), lack of access to cellular data plan is overall higher than
the values of the other three variables (figure 2(i)). No cellular data connection may become a barrier for social
media access during a major disaster when other means of communication go offline. Other digital disparities,
like lack of access to Internet, computer, or a device, and specifically a smartphone, are less pronounced. The
patterns of the four variables are similar, with minor differences in intensity. We note that the patterns of digital
access resemble the pattern of SVI Theme 2 Household composition and disability (figure 2(d)), which could
suggest a lesser adoption of technology by vulnerable age and disability groups.

Figure 3 shows the spatial pattern of the target variable, which is combined social media and volunteer-
collected rescue requests per 1,000 households in each block group. Despite most of the study area has been
flooded, we found rescue requests through social media in only 534 out of 3,017 block groups.

The map shows that rescue requests were mostly from Harris County with high concentration in its central
part (figure 3). Adjacent counties to the north of Harris County (Liberty, Montgomery, and Waller) received
high level of flooding but with few social media rescue requests (figure 3). Overall, we do not observe a striking
mismatch between the rescue request locations (figure 3) and social vulnerability or access to digital technology
(figurex 2(b)—(g)). We found that many of the rescue locations were from socially vulnerable block groups with
limited access to smartphones or internet. This is likely due to many of the requests being posted on behalf of
elderly or disabled family members. However, we also found that many socially vulnerable block groups had
very few or no rescue requests. We conducted further modeling and fairness measurement to test whether this
mismatch will lead to Al bias, when predicting rescue request rates.

5.2. Random forest model of rescue requests
The results of the Random Forest model fitting were as follows. First, the model with all 25 variables (table 3) was
fit and p-values as a measure of variable importance were estimated with 100 permutations, resulting in a model
with 70.28 MSE (mean squared error) and 0.11 out-of-bag R*. Next, the model was fit with the seven variables
that had p-value < 0.05 (table 4). This led to an improvement in model performance with 64.47 MSE and 0.19
out-of-bag R?. Table 4 lists the predictor variables in the order from highest to lowest importance, along with
their importance scores and numbers of block groups excluded from the test set due to their corresponding
values being out of the training set’s range. The values in the Importance column are the sum of the Gini
coefficients from all the trees for each variable listed.

Five out of the seven significant predictors were features of the physical environment, such as percent of
roads in flood zone, percent of flood zone area, mean elevation, and percent of forested and wetland areas. Only
two selected features were related to the social environment, and they were percent of renter occupied housing
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Figure 4. Predicted rescue request values (per 1,000 households), excluding 137 out of 3,017 cases for which predictors’ values were
out-of-range of the training data.

Table 4. Random forest variable importance and number of predictors’ cases out of

range.

Variable Importance ~ <Min > Max
% of renter occupied housing 6,987.5 0 0

% ofroads in flood zone 6,298.8 0 0

% of flood zone area 5,292.3 0 0

% of wetland area 3,715.5 0 37
% of herbaceous, forested, and shrub area 5,139.7 0 29
Mean Elevation 5,288.4 5 70

% of households with no computer or device 4,863.4 0 3

units and percent of households with no computer or device. Overall, the selected variables are reasonable
predictors of rescue needs. The predicted values of rescue requests produced by the final model are mapped in

figure 4.

5.3. Rescue request model explorations

To better understand the pattern of individual variables’ contributions to the model predictions, we conducted
dataset-level explorations using the partial dependence (PD) plots (figure 5). These plots show that the
contributions of the predictors are not monotonically increasing or decreasing. For example, as the percent of
herbaceous and forested area increases, the predicted rescue request rate increases until it reaches the level of
40% where the rate of predictions’ growth flattens. This shows that herbaceous cover of the block group
contributes to the rescue request rate, likely due to the lack of roads and inability to pass flooded forested areas,

which would leave people stranded.

We observe a similar but less steep upward growth in predicted rescue rate with respect to the percent of
flood zone area where a notable peak exists when it reaches 100%. Percent of road length in flood zone behaves
similarly to the percent of flood zone area, but in a step-like pattern, with the lower predicted rescue rates
occuring when the road length in flood zone is under 50%. The variable percent of wetland cover produces a
similar step-like prediction pattern, but with a steep increase that occurs at the 20%-25% of wetland area.
Opverall, all three variables show how flood-prone the area is, and two of them suggest a threshold effect. That is,
when a block group has more than 50% of roads in flood zone or more than 20% wetland cover, it will resultin a
much higher rescue request rate. On the contrary, mean elevation has a negative relationship with flood hazard
(percent of flood zone area and percent of road length in flood zone), and its impact on the predicted rescue rate
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Figure 5. Partial dependence plots (in the order of variable importance from left to right). Y-axes represent average rescue rate
predictions, and X-axes are values of each predictor.

is most pronounced at elevations lower than 180 meters. While higher values of the features related to flood
hazard and environmental vulnerability produce higher rescue request predictions, the housing and digital
access variables show an unexpected pattern of contribution. On one hand, the block groups with the lowest
percent of renter occupied units get the highest predicted rescue rates, pointing to a potential social disparity due
to home ownership. On the other hand, we found that higher rates of social media rescue requests are predicted
for the block groups with less access to technology (percent of households with no computer or device). The PD
plots (figure 5) demonstrate that complex patterns of variable contributions to ML models can be observed and
analyzed. These patterns may have implications for understanding the real rescue request needs during a
hazardous event.

5.4. Rescue request model fairness measurements

As stated before, we assigned the group with SVI and its four themes in the lowest 0.25 quantile as privileged (the
least vulnerable in the study area). Similarly, based on the four digital connectivity variables the group within the
0.25 quantile highest access is privileged. The bounds of the privileged groups in each sensitive attribute, and the
calculated independence, separation, and sufficiency ratios are shown in table 5. In sum, we found no unfairness in
the prediction model based on social vulnerability characteristics or digital access variables, therefore our
hypothesis that the model is unfair is not accepted.

However, we note a slight deviation from complete fairness in the sufficiency value for the SVI Theme 4
Housing and Transportation variable (table 5). This implies a slightly uneven distribution of error between the
two groups, or that Y and S are better at predicting A than just S (i.e., S is less sufficient). However, the
sufficiency ratio is still close to 1, and there is no discernable difference in the pattern of predictions between the
groups (figure 6(a)). A related attribute, percent of renter-occupied housing, is a predictor in the final model and
shows a notable difference in predicted rescue rate between its low and high values in the PD profile (figure 5).

5.5. Alternative dataset fairness measurement: Boston housing data

We applied the same modeling and fairness testing approach to a well-studied Boston housing dataset to compare
the fairness ratios with the rescue model. We tested variable significance using the permutation importance
measure on the Boston data and found that none of the variables needed to be excluded, thus, the entire dataset
was used. Fitting Random Forest on the Boston housing data with all 13 predictors resulted in out-of-bag MSE

of 10.06 and 0.88 out-of-bag R*. Fairness ratios for the protected attribute B were 11.45 (independence),
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Figure 6. Predictions plotted against ground truth of (a) rescue rates (red dots belong to privileged group, and blue to protected group
according to SVI Theme 4 Housing and Transportation) and (b) housing prices from Boston dataset, demonstrating an unfair model
(privileged cases have higher housing prices than non-privileged).

Table 5. Algorithm fairness metrics per binary sensitive feature.

Sensitive attribute Privileged Min Privileged Max 1ati0,,q ratiog, ratiog,s
SVI 0.0003 0.265° 1.002 1.002 1.001
SVITheme 1 0.003 0.255% 1.006 1.006 1.002
SVITheme 2 0.005 0.238" 1.002 1.002 1.021
SVITheme 3 0 0.324° 1.001 1.001 1.002
SVITheme 4 0 0.245% 1.002 1.004 1.116
% No computer or device 0 0.028° 1.001 1.001 1.003
% No Internet 0 0.055* 1.002 1.002 1.0003
% With cellular data plan 0.647° 0.902 1.005 1.005 1.0007
% With smartphone 0.857° 1 1.006 1.005 1.001

* Dataset’s 0.25 quantile.

1.28 (separation), and 1.09 (sufficiency), which are above the fairness threshold of 1.25. For LSTAT the results were
even more striking, with ratio;,q = 889, 292.7, ratio,, = 1, 769.66, and ratios; = 9.62 (figure 6(b)).

To mitigate the model bias, we removed the sensitive attributes B (represents the proportion of black
people) and LSTAT (represents th population with lower status) from the set of model predictors. As a result,
Random Forest performance decreased slightly (MSE 14.16; R* 0.83), but unfairness persisted, with only a slight
improvement in fairness ratios. For the protected attribute B, the independence ratio was 9.87, separation—1.07,
and 1.00 sufficiency. For LSTAT, the independence ratio became 112,024, separation reduced to 2.13, and
sufficiency to 1.00. The model remains unfair, and further fairness mitigation beyond removing the sensitive
attributes from training data is needed. By contrast, the rescue model appears fair.

6. Discussion

This study aimed to examine if bias exists in Al algorithms used in disaster management, specifically social media
rescue models. The Random Forest rescue model and its explorations provide useful information on physical and
social vulnerabilities that put residents at risk at getting stranded due to flooding, thus needing urgent assistance.
This study demonstrates how the model can be evaluated for algorithm bias using the three criteria—
independence, separation, and sufficiency, which is a novel contribution to the disaster risk management literature.

We did not find that the rescue model violates independence, separation, or sufficiency for any of the nine
sensitive attributes tested. However, some data biases may be difficult to evaluate due to the demographic features
being inferred from the flood victims’ locations, rather than directly based on their identity. Similarly, the data
may be incomplete or missing, which poses a limitation, despite that we made the best possible effort to find every
social media or volunteer-collected rescue request from Houston MSA. Further research, such as approximating
rescue needs from indirect indicators, may be conducted to identify how many people needed but could not reach
rescue volunteers because of the potential barriers to doing so. We adopt Steinberg et al (2020) density ratio
implementation to calculate the three fairness metrics independence, separation, and sufficiency for our regression
task. Experiments using other implementations of these three metrics may lead to varying results.
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ML and Al are often employed to overcome limitations of multivariate statistics, for example, its required
assumptions for linear models. It should be noted that the fairness criteria used in this study are applicable to
evaluate fairness of the linear models, because linear models can also be unfair. In fact, modern Al fairness
literature has drawn many ideas from the fairness criteria developed for linear models in the 1960s and 1970s,
primarily in the fields of education testing and psychometrics (Barocas et al 2019). Despite that, the urgency and
necessity to consider fairness of Al models arises from its rising popularity and availability, its ability to capture
complex interactions from big data (whereas linear statistics assume no collinearity), and difficulty of explaining
its internal structure (Barocas et al 2019).

An additional research need arises at the intersection of fair Al and geospatial AI. Al fairness usually
considers an individual as the subject of Al decisions, whereas in geo-Al the subject is an areal unit in which a
group of people may be residents, or owners of the property, or have some other relation. While we demonstrate
an application of regression fairness metrics to two geospatial datasets, this aspect is largely unexplored in Al
fairness literature. For example, more research is needed on how notions of group and individual fairness
translate from traditional to spatial applications, where an individual (a single data instance) represents a group
of people, and a group of cases is a group of groups.

7. Conclusion

The objective of this study was to analyze if potential biases exist towards protected groups in a Random Forest
regression of social media rescue requests from Hurricane Harvey. Nine sensitive attributes tabulated at the
census block group level were considered, including the Social Vulnerability Index (SVI), its four sub-indices,
and rates of access to any computer or device, a smartphone, Internet, and cellular data plan, as they are
considered as likely barriers to access rescue through social media.

The study addresses two related research questions. To answer RQ1, seven variables were found to be
significant predictors of the rescue request rates. In the order of importance, they were percent of renter
occupied housing units, percent of roads in flood zone, percent of flood zone area, percent of wetland cover,
percent of herbaceous, forested and shrub cover, mean elevation, and percent of households with no computer
or device. In general, more rescue requests are expected in the block groups with higher physical or
environmental vulnerability. On the other hand, higher home ownership rates (lower percent of renter occupied
housing) and lower rate of access to a computer or device per household are associated with higher rescue needs.
The Partial Dependence plots show non-linear relationships, which help further explain the complex
relationships between rescue request rates and the seven predictor variables.

Regarding RQ2, we found that the model learnt from the social media rescue data satisfied the three fairness
criteria—independence, separation, and sufficiency ratios—for all of the nine sensitive attributes, which were
social vulnerability and digital access variables. Our hypothesis that higher social vulnerability and lower digital
access are associated with lower predicted social media rescue rates, which leads to unfair predictions based on
these characteristics, is rejected. All three ratios for all assessed sensitive attributes are close to 1.0, indicating that
the model is fair. We found one small deviation from perfect fairness, as reflected by the sufficiency ratio, for the
variable of SVI Theme 4 Housing and Transportation vulnerability.

Our study of the rescue Al model contributes new insights on the physical and social vulnerabilities that put
residents at risk of getting stranded due to flooding, and thus needing urgent assistance. Moreover, by providing
an explanation of the Random Forest model and evaluating its fairness, we demonstrate how the same
methodology of fairness evaluation could be applied in future Al modeling in disaster research and help reduce
allocation or quality-of-service harms that could deepen social and geographical disparities.
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