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Abstract
AI fairness is taskedwith evaluating andmitigating bias in algorithms thatmay discriminate towards
protected groups. This paper examines if bias exists in AI algorithms used in disastermanagement and
inwhatmanner.We consider the 2017HurricaneHarveywhen flood victims inHouston resorted to
socialmedia to request for rescue.We evaluate a RandomForest regressionmodel trained to predict
Twitter rescue request rates from social-environmental data using three fairness criteria (indepen-
dence, separation, and sufficiency). The Social Vulnerability Index (SVI), its four sub-indices, and four
variables representing digital dividewere considered sensitive attributes. The RandomForest
regressionmodel extracted seven significant predictors of rescue request rates, and fromhigh to low
importance theywere percent of renter occupied housing units, percent of roads inflood zone,
percent offlood zone area, percent of wetland cover, percent of herbaceous, forested and shrub cover,
mean elevation, and percent of households with no computer or device. Partial Dependence plots of
rescue request rates against each of the seven predictors show the non-linear nature of their
relationships. Results of the fairness evaluation of the RandomForestmodel using the three criteria
showno obvious biases for the nine sensitive attributes, except that aminor imperfect sufficiencywas
foundwith the SVIHousing andTransportation sub-index. Future AImodeling in disaster research
could apply the samemethodology used in this paper to evaluate fairness and help reduce unfair
resource allocation and other social and geographical disparities.

1. Introduction

Machine learning (ML) as a subset of artificial intelligence (AI) is increasingly employed for decisionmaking in
many aspects of society.MoreML algorithms have been developed and aremade available for use. In disaster
riskmanagement, applications ofML are still limited. Existing applications in thisfield range fromassessing
hazard exposure, social vulnerability and risk assessment, to post-disaster damage estimation, prioritization of
disaster aid distribution, and predictionmodeling (Global Facility forDisaster Reduction andRecovery
(GFDRR) 2018, Gevaert et al 2021). Given the complexity of disaster riskmanagement and its urgent nature
during disastrous events,more and better applications ofML algorithms in thisfieldwould be useful to
emergencymanagement and decisionmaking.

However, despite the ability of AI to assist in decisionmaking, there are concerns related toAImodeling, and
among them are issues related to fairness. Fairness is best described as impartial treatment of data subjects by the
AI (Fjeld et al 2020).Without considering fairness, AImay become biased at different stages of its life cycle. For
example, historical, representation, andmeasurement biases occur during data generation, whereas learning,
aggregation, evaluation, and deployment biases occur duringmodel building and implementation (Suresh and
Guttag 2021).Most existing fairness criteria fall under three general approaches:making the average predicted
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outcome similar for each sensitive group (independence), equalizing predicted outcomes given the ground truth
outcomes (separation), and equalizing ground truth outcomes given the predicted outcome (sufficiency)
(Barocas et al 2019).

This study investigates the fairness in the use ofML in predicting rescue requests from socialmedia during
emergencies. The increasing risk offloods prompts us to consider the case when stranded people request rescue
through socialmedia, like it happened duringHurricaneHarvey (Mihunov et al 2020). HurricaneHarvey hit the
Texas coast near CorpusChristi with category 4wind speeds on 26August 2017. It quickly dissipated and
changed direction, unexpectedly delivering over 1.5 m (5 ft) of rainfall to theHoustonmetropolitan region
(Watson et al 2018), causing unprecedented flooding and leavingmany people stranded. Calls to the 911were
overloaded and could not be connected. As a result,many residents resorted to socialmedia to seek rescue from
floodedwaters (Wang et al 2022, Zhou et al 2022).

HurricaneHarvey events left a digital footprint that prompted extensive research by disastermanagement
scholars (Zou et al 2018,Mihunov et al 2022). Availability of socialmedia data and growing accessibility ofML
methodsmake it likely that black-boxmodels predicting locations of rescue request will emerge and be adopted
for real-world applications. If fairness of thosemodels is not considered, potential biasesmay cause real-world
harm, such as unfair allocation of rescue teams’ resources and inadequate assistance to vulnerable communities.

The objective of this study is to examine if bias exists in AI algorithms used in disastermanagement and in
whatmanner.More specifically, we use rescue request data derived frombothTwitter and volunteer-collected
data to examine howAI fairness could impact the prediction of rescue requests.We focus on two sources of
potential biases—social vulnerability and digital divide. Our research questions are:

• RQ1: what are the significant predictors of the rescue request pattern usingML algorithms, and howdo they
influencemodel predictions?

• RQ2: does themodel learnt from the socialmedia rescue data exhibit unfairness based on social vulnerability
and digital access?

We hypothesize that high social vulnerability and limited access to digital technology are associatedwith low
predicted socialmedia rescue rates, and fairness criteria of independence, separation, or sufficiency are violated
based on the two characteristics.

Specifically, we selected the Social Vulnerability Index (SVI) and indices of its four themes (socioeconomic
status, household composition and disability,minority and language, transportation and housing) as sensitive
attributes because they encompassmany characteristics of the communities thatmay have higher disaster
assistance needs andmay experience discrimination (Flanagan et al 2011). In addition, four digital access
variables were assigned as sensitive attributes to evaluate potential algorithmbias introduced due to the digital
divide. By addressing the two research questions, this study could offer new insights into the use of AImodeling
with socialmedia data in future rescue operations, as well as provide baseline information for the development
and applications of fair AImethods for disaster resilience.

2. Background

Many decisions impacting individuals and communities are assisted ormade by algorithms, including hiring,
lending, policing, criminal justice, and stock trading, among others (Lepri et al 2018, Shang et al 2020). Despite
the promise of eliminating the limitations and biases of humandecisionmaking, data-driven algorithmic
systems retain some of the same ethical concerns, amongwhich are fairness, transparency, and explainability
(Fjeld et al 2020, Gevaert et al 2021, Lepri et al 2018). Transparency refers to the communication of the internal
functioning of themodel, whereas explainability is the ability to interpret how themodelmakes its predictions
(Lepri et al 2018,Mittelstadt et al 2019). Explainability and transparency are bothways of validatingMLmodels
while attaining new domain knowledge about themodeled system (Mittelstadt et al 2019).

Depending on the application, anAI algorithm’s impact on its subjectsmay be different, including potential
harms. Among themost common types of harms are allocation harms, which happenwhen the opportunities,
resources, or information arewithheld through the AI decisions, and quality-of-service harms,which happen
when a systemdoes notwork equally well for different users (Bird et al 2020). For instance, unfair hiring,
lending, or underwriting decisions are examples of allocation harms, whereas poor quality of facial or speech
recognition or incorrect health care decisions due to someone’s race or gender are examples of quality-of-service
harms.

TheML literature has proposed and refined dozens of fairness criteria (Barocas et al 2019, Chouldechova
2017, Steinberg et al 2020). These criteria aim at identifying discrimination of groups of individuals based on a
set of defining characteristics, called sensitive features or protected attributes, for which some groups are
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considered privileged, and some are not. Consider a simple case with a binary classifierwhere A is the sensitive
attribute, Y is the target variable (i.e., ground truth or dependent variable), Ŷ is the predicted value, and score R
is the probability of the predicted value. The three commonly used fairness criteria are independence, R A^ ;
separation, R A Y∣^ ; and sufficiency Y A R∣^ (Barocas et al 2019).

Thefirst criterion, independence, requires that R is independent of A. It hasmany equivalent and related
definitions, such as demographic parity, statistical parity, group fairness, and others (Barocas et al 2019). It is
satisfiedwhen Y A a Y A b1 1{ ˆ ∣ } { ˆ ∣ }= = = = =  . Consider Y 1ˆ = as ‘acceptance’, independence thus
requires equal acceptance rate in both groups a, b of the sensitive attribute A.

The second criterion, separation, is usedwhen theprotectedgroups arenot equally ‘qualified’ for the same
outcome (Dwork et al2012). A certaindemographic group A a= mayhave ahigher rate of true eventY 1,= which
may justify higher acceptance rate from the group a.This condition is called separation. It is expressed as R A Y ,∣^
where R is independentof A givenY . Inbinary classification, separation requires Y Y A a1 1,{ ˆ ∣ }= = =

Y Y A b1 1,{ ˆ ∣ }= = = = and Y Y A a1 0,{ ˆ ∣ }= = = Y Y A b1 0,{ ˆ ∣ }= = = = . Since
Y Y1 1 1{ ˆ ∣ }- = = is the false negative rate and Y Y1 0{ ˆ ∣ }= = is the false positive rateof a classifier, thefirst

statement stipulates that groups a, b have the same false negative rate,whereas the secondone equalizes their false
positive rates. Combining the twoconstraints, separation calls for error rate parity.

The third criterion, sufficiency, is Y A R,∣^ or Y is independent of A given R.This corresponds to
Y R r A a1 ,{ ∣ }= = = Y R r A b1 , ,{ ∣ }= = = = whichmeans that each group of the sensitive attribute A

has the same accuracy of the predicted probabilities (Barocas et al 2019). A relatedmodel property, calibration is
used to assess how closemodeled probabilities are to the probabilities of true events in Y (Zadrozny and Elkan
2002,Niculescu-Mizil andCaruana 2005). Predicted probability scores R are calibratedwith respect to the
ground truth Y ,when for all predicted probability values r 0, 1 ,[ ]Î Y R r r1 .{ ∣ }= = = Accordingly, for any
value r, a prediction of a class with probability r is correct in r fraction of cases. Calibrated probabilities can be
directly interpreted as themodel’s confidence in each prediction, which is considered critical information, for
example, in deciding a treatment plan or crime sentencing. Unfairness arises when different confidence
thresholds are applied to different demographic groups for assigning them to a prediction class
(Chouldechova 2017).

Popularmetrics such as independence, separation, and sufficiency have been developed for evaluating
classification fairness. However, few studies have used thesemetrics for evaluating regression fairness
(Fitzsimons et al 2019, Steinberg et al 2020). It has been suggested that oncemodel fairness is evaluated, biases
can bemitigated by targeting the data with adjustment orweighting, applying regularization or penalty to the
model, or post-processing of the predictions (Suresh andGuttag 2021).

Research into AI fairness is limited in disaster riskmanagement and geospatial sciences (Gevaert et al 2021).
One of the key fairness problems in disaster riskmanagement is the uneven access to digital technology, resulting
in disparate representation of vulnerable groups in the emerging geospatial big data (such asmobility and social
media data). For example, timely estimates of population change before and after a disaster can be derived using
mobile phone call records, but they are biased towards thosewithout phone access (Yu et al 2018, Pestre et al
2020). Similarly,models and predictions that use socialmedia datamay be biased, due to their inability to
control the representativeness of such data (Zou et al 2018,Wang et al 2019).

Furthermore, AI predictions are rarely explained or tested for bias. For example, the study by Behl et al
(2021) is among the few explainable AI applications in disaster literature. Their study obtains Local Interpretable
Model-Agnostic Explanations (LIME) from the black box algorithms trained to process Twitter data to identify
people’s needs after a disaster, and to showwhichwords contained in the tweets contributed to tweet
classifications. This studywill address the lack of research into AI fairness and explainability in disaster risk
management and geospatial sciences andwill be among the first to apply explainable and fair AI principles to
predict social-media derived rescue requests using social-environmental data.

3.Data collection and feature extraction

Procedures of data collection and analyses used in this study are depicted infigure 1.

3.1. Socialmedia and volunteer-collected rescue requests
HurricaneHarvey tweets posted betweenAugust 17 and September 7, 2017were purchased fromTwitter using
keywords ‘hurricane, harvey, disaster, cajun navy, hurricaneharvey, txdps, txtf1, redcross, coastguard,
coastguard, houstonpolice, houstonoem, salvationarmy, flood, sos, flooding, storm, rescue, sendhelp,
cajunnavy, fema, salvation army’. This led to a dataset of close to 45million tweets.We searched for rescue
request tweets posted betweenAugust 27 andAugust 31which yielded 4.1million tweets (retweets excluded).
Rescue requests are defined as rescue seekingmessages with geographic addresses (Wang et al 2022).We selected
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tweets containing any ZIP code in theHoustonMetropolitan Statistical Area (MSA) and thenmanually removed
the tweets that did not contain rescue requests. Through this step, 2,105 tweets (rescue requests)were obtained.
The addresses in the tweets were then geoparsed usingGoogleGeocoding API, such that the coordinates were
assigned based on the addressesmentioned in the body of the tweets.We thenmanually corrected spelling errors
in the fewunassigned tweets andmatched themwith the correct coordinates, and this resulted in 962 tweets
(table 1).

Additionally, we acquired a dataset with rescue requests collected by volunteers from socialmedia or
through several online forms distributed at the time. The document includes aGoogle Spreadsheet containing
the addresses and related information of the rescue requests, as well as information on the prioritization and
fulfillment of the requests (Arrazolo 2017). All addresses in the documentwere identified and de-duplicated.
Theywere then geocoded, andmatching addresses were identified between the Twitter and the volunteer
datasets (table 1). Combining the two datasets led to 1,808 unique rescue request tweets. The geocoded rescue
requests were then tabulated by block group andnormalized per 1,000 households, resulting in 535 out of 3,017
block groups having rescue requests. One of the block groups that had oneTwitter rescue request was removed
due to amissing value of the number of households, thus 534 block groups and 1,807 rescue requests were
considered in subsequent analysis.

3.2. Social vulnerability index (SVI)data collection and calculation
Weused the Social Vulnerability Index (SVI), whichwas designed and implemented by theCenters forDisease
Control and Prevention (CDC), to characterize communities that are at a greater risk during disasters (Flanagan
et al 2011). The index is a composite of a total of 15 variables and include four sub-indices: (1) socioeconomic
status, (2) household composition and disability, (3)minority status and language, and (4) housing and

Figure 1. Flowchart of data and procedures used inmodeling and fairnessmeasurement of socialmedia rescue requests.

Table 1. Socialmedia rescue requests: verified and deduplicated by address
from 2datasets.

Twitter
Collected by
volunteers

Matched between
the two datasets

Total unique
requests

962 1,229 383 1,808
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transportation (table 2). Its early applications included hazardmitigation and planning research (Flanagan et al
2018).More recent studies evaluated its associations with cardiovascular disease and surgical outcomes, house
fire events, health outcomes related to heat events, Hurricanes Katrina, Sandy, andHarvey, as well as health
behaviors and outcomes during theCOVID-19 pandemic (Flanagan et al 2018, Li et al 2022, Ramesh et al 2022).
Moreover,Wang et al (2019) used SVI to evaluate whether social disparities existed in socialmedia use leading
up toHurricane Sandy.

Justifications for SVI variables’ inclusion in each vulnerability theme are similar to our rationale of using
them as characteristics thatmaymake vulnerable communities subject to algorithmbias in a rescue allocation
model (Morrow 1999, Cutter et al 2003, Flanagan et al 2011). For example, income, poverty, employment, and
education variables are related to presumed lesser resources for evacuation, preparation, and recovery, and being
served by less robust public infrastructure. Second, age, single parenting, and disability variables capture the
presence of people thatmay require special planning and accommodations and additional resources. Third,
race, ethnicity, and English proficiency variables describe groups that are often underserved due to racial
discrimination and language barrier. Fourth, housing type, crowding, and vehicle availability variables represent
lack of access to secure infrastructure. Finally, the composite SVI represents broad vulnerability of the
community. In this study, we assume that vulnerable communities will havemore people who need rescue
(Wang et al 2019). Testing algorithm fairness using SVI and its four sub-indices allows us to identify potential
bias towards protected groups, who are considered vulnerable in disasters.

We calculated the SVI for the 3,017HoustonMSAblock groups by summing the percentile rank of each of
the 15 variables fromhighest to lowest (except per capita income, which is ranked from lowest to highest). A
percentile rank is a proportion of scores in a distribution that a specific score is greater than or equal to:

Percentile Rank Rank N1 1 1/( ) ( ) ( )= - -

where N is the total number of data points. A percentile rank of the sum is then estimated. The result is a score
with a range 0, 1 ,[ ] and its higher values correspond to higher vulnerability. The 15 variables are further grouped
by the four themes, for which separate scores are calculated.

Most variables used in the SVI calculationwere accessed from theAmericanCommunity Survey (ACS) 2015
5-year estimates, except the data on institutionalized and non-institutionalized group quarters’ residents, which
were from the 2010Decennial Census. The overall SVI and its four sub-indices are included in a training dataset
and used as sensitive attributes (table 3).

3.3. Access to digital devices and internet services
The four digital access variables (percent of householdswith no computer or device, percent of households with
no Internet, percent of households with cellular data plan, and percent of households with smartphone)were
acquired from theACS 5-year 2017 estimates (table 3).We employ these data to test whether they are significant
predictors of socialmedia rescue requests andwhether the predictivemodelmay exhibit bias due to digital
divide. The groupswith low digital adoption rates, such as older adults, are at a disadvantage during amajor
disaster, when critical information is disseminated, and relief efforts are coordinated on socialmedia (Dargin
et al 2021, Choi et al 2022). Thus, we assess AI fairness based on these characteristics.

Table 2. Social vulnerability index variables (n 3, 017,= all block groups inHoustonMSA)a.

SVI Theme Variable Min Max Mean St. D.

1. Socioeconomic status %below poverty 0 0.80 0.17 0.15
Unemployment rate 0 0.22 0.04 0.03
Per capita income (U.S.Dollars) 1,038 207,879 30,364 21,570
%nohigh school diploma 0 0.38 0.02 0.03

2.Household composition and disability %over 65 y.o. 0 0.65 0.11 0.07
%under 17 y.o. 0 0.58 0.25 0.09
%with disability 0 0.53 0.10 0.06
% single parent households 0 1 0.32 0.25

3.Minority status& language %withminority status 0 1 0.33 0.24
% speaking English ‘less thanwell’ 0 1 0.10 0.12

4.Housing type& transportation %housingwithmore than 10 units 0 1 0.18 0.26
%mobile home units 0 0.89 0.05 0.12
%households w/more people than rooms 0 1 0.06 0.08
%households with no vehicle 0 0.68 0.05 0.08
% living in group quarters 0 0.99 0.01 0.06

a Percentage values are listed as proportions.
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3.4. Social-environmental characteristics
Additional variables were collected to examine if they can help predict rescue requests during hurricane
flooding. For the environmental variables, we collected the 2016 land cover data from theU.S. Geological Survey
(USGS) andMulti-Resolution LandCharacteristics Consortium (MRLC)National LandCoverDatabase
(NLCD) (Yang et al 2018).We then calculated the land cover type area percentage by block group using the
Tabulate Area tool fromZonal toolset in ArcGISDesktop (Esri 2021). Similarly,mean elevationwas tabulated
from theNational ElevationDataset (NED)Digital ElevationModel (DEM) in one arc-second (approximately
30 m) resolution (U.S. Geological Survey (USGS) 2017). The percentage offlood zone area per block groupwas
tabulated fromFederal EmergencyManagement Agency (FEMA)National FloodHazard Layer (NFHL) (FEMA
2020). Road length per block group areawas tabulated from theU.S. Census (2016)TIGER/Line ‘All Roads’
shapefiles, and percent of road length inflood zonewas tabulated by overlaying roads shapefiles withflood zone
polygons. Finally, data for the seven socioeconomic variables, which have been used frequently in previous
vulnerability and resilience studies, were acquired from theACS 2015 5-year estimates (table 3) (Cai et al 2018,
Lam et al 2016,Wang et al 2023).

This data collection resulted in a dataset with socioeconomic and environmental predictors, as well as SVI
indices for all 3,017 block groups of theHoustonMSA. The target variable represented by the rescue request rate
had values in 534 block groups.We thusmade a subset of the 534 block groups containing rescue requests for
training themodel (531 after removing the three cases withmissing values in the independent variables).

For the fairness testing,we chosenine variables (the SVI, its sub-indices anddigital access variables) as
sensitive attributes, hypothesizing that theywere the likely barriers to access socialmedia to request for rescue.
Since fairness tests are concernedwith binary sensitive attributes, SVI and its themeswere discretized by splitting
the cases at the 0.25 quantile and assigning the 0–0.25 group as privileged (low vulnerability). For the digital access
variables, the block groupswere also split at the 0.25 quantilewith the high adoption group assigned as privileged.

3.5. Comparison data: Boston housing value dataset
Weused an independent dataset to provide a reference point for our algorithm fairness testing. This dataset was
BostonHousingValue fromHarrison andRubinfeld (1978), whichwas corrected for a fewminor errors and
augmentedwith census tract-level coordinates (Pace andGilley 1997; accessible from the statlib index). The
dataset consists of 506 cases and 14 variables, one of which is the target variable ‘Median value of owner-

Table 3.The 25 social-environmental predictors (n 534,= block groupswith rescue requests)a.

Category Variable Min Max Mean StD

Target Rescue requests per 1000 households 0.17 250.00 5.57 13.83
Land cover (percent of block group area) %Agricultural land area 0 0.88 0.06 0.14

%Wetland area 0 0.50 0.04 0.08
%Water area 0 0.68 0.01 0.04
%Herbaceous, forested, and shrub area 0 0.57 0.07 0.12
%Developed land area 0.02 1 0.82 0.25

Environment Road length per block group area (m/m2) 0.001 0.09 0.02 0.01
%Road length inflood zone 0 1 0.24 0.29
Mean elevation (10meters) 1.03 65.07 20.06 10.67
%Area in Flood zone 0 1 0.32 0.32

Other socioeconomic characteristics %Renter occupied housing 0 1 0.41 0.30
%Civilian labor force 0.26 0.95 0.67 0.10
%Households with income< $40,000 0 1 0.36 0.22
%With no college degree 0.05 1 0.71 0.24
Total rooms in housing units per household 3.52 10.59 6.34 1.30
%Over 16, no vehicle to commute towork 0 0.84 0.21 0.12
%With no health insurance 0 0.67 0.22 0.14

Access to digital devices and Internet servicesb %Households with no computer or device 0 0.74 0.13 0.13
%Households with no Internet 0 0.77 0.19 0.16
%Households with cellular data plan 0 1 0.53 0.16
%Households with smartphone 0.18 1 0.74 0.15

CDCSocial Vulnerability Indexb SVI Theme 1 Socioeconomic Status 0 1 0.51 0.29
SVI Theme 2Household comp.&Disability 0.005 0.999 0.49 0.29
SVI Theme 3Minority Status& Language 0 0.999 0.55 0.27
SVI Theme 4Housing andTransportation 0 1 0.50 0.30
SVI 0 0.999 0.51 0.29

a Percentage values are listed as proportions.
b Also used as sensitive attributes in discretized form.
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occupied homes in $1000’s’ (MEDV ), and the remaining 13 variables are used as predictors. Among them are B
and LSTAT . B is the value of Bk1000 0.63 ,2( )- where Bk is the proportion of black people, and LSTAT is
percent of the populationwith ‘lower status’ (adults without some high school education and proportion ofmale
workers classified as laborers).We considered B and LSTAT as sensitive attributes, because housing values are
likely unfair on the basis of race and socioeconomic status. The remaining variables are related to environment
and infrastructure. For the B variable, we split the set at B 360,= with values above 360 being the privileged
group, as they reflect zero to low proportion of black people per census tract. For LSTAT weused the dataset
mean (LSTAT 12.65= ) as the split, with the values below themean being the privileged group.

4. Analysismethods

4.1. RandomForest Regression and variable selection
Weused the ranger package in R for variable selection andRandomForestmodelfitting (Breiman 2001;Wright
andZiegler 2017). RandomForest is a supervisedMLmethod that createsmany decision trees (i.e., an ensemble
or a forest)with their individual predictions being used in a voting scheme tomakefinal predictions (Esri 2022).
A random subset of the training data and a random subset of explanatory variables are used in each tree and then
the votes from all decision trees are considered. This way the overfitting associatedwith individual decision trees
is addressed. Themean square error andR2 are obtained from the out-of-bag data (data excluded in the training
step) to evaluate themodel performance.

We adopted themodeling steps recommended inAltmann et al (2010) tofit RandomForest with relevant
features. First, RandomForest isfit with all 25 potential predictors (table 3), and corrected impurity importance
for each predictor is estimated (Nembrini et al 2018). The impurity importance can be used to rank predictors
usingGini coefficients, and it reflects the number of times a predictor variable is responsible for a split
(individual decisionwithin a tree) and the impact of that split per the number of trees. Corrected impurity
importance ismodified to be compatible with further statistical testing for importance significance.

Then, permutation importance as in Altmann et al (2010) is computed by permuting the response vector
(target variable) several times and producing a vector of importance values for each predictor across all
permutations, fromwhich p-values are retrieved. Predictors with significant p-values are then retained in amore
parsimoniousmodel.We used 100 permutations, as a larger number of permutations did not change the order
of returned p-values. Finally, the RandomForestmodel with a traditional impuritymeasure and significant
predictors selected in the previous stepwas used formodel explanations and fairness evaluations.

4.2.Model diagnostics
4.2.1. Dataset level exploration
To address RQ1,which is to explain the predictors’ influence onmodel predictions, we employed a dataset-level
exploration.We utilized Partial Dependence (PD) plots that show the expected values ofmodel predictions as a
function of a selected explanatory variable while holding other variables constant (Goldstein et al 2015). They are
derived by averagingmany (or possibly all) instances of ceteris-paribus (CP) profiles, which are plots that show
the change of a predicted value induced by a change of a single explanatory variable for a single observation
(Biecek 2018).

4.2.2. Regression fairness
To address RQ2,which is to examinewhether the RandomForestmodel exhibits bias, we utilized the fairness
criteria of independence, separation, and sufficiency, adapted for regression by Steinberg et al (2020) and
implemented in the R package fairmodels (Wiśniewski and Biecek 2022).

Referring to definitions in section 2, for the regression case we denote Y as the continuous dependent
variable (ground truth) and S as the continuous predicted values (in place of binary Y and predicted class Ŷ ).To
define a continuousmeasure of the degree towhich the fairness criteria are satisfied, Steinberg et al (2020)
transforms them as ratios:

ratio

ratio

ratio

,

,

ind
P S A

P S A

sep
P S Y A

P S Y A

suff
P Y S A

P Y S A

1

0

, 1

, 0

, 1

, 0

( ∣ )
( ∣ )
( ∣ )
( ∣ )
( ∣ )
( ∣ )

=

=

=

=
=

=
=

=
=

Themodel that satisfies a given criterionwill have its ratio close to 1. Steinberg et al (2020) then transforms
each ratio using Bayes’Theorem so that they can be estimated using the density ratios. The density ratios are
obtained in expectation, by approximating them as an empirical average over the data with the outputs of the
probabilistic classifiers a s ,( ∣ )r a y s, ,( ∣ )r and a y .( ∣ )r Using a s ,( ∣ )r ratioind is determined by howmuchmore
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predictive S is of A, over the base rate distribution of A.The separation ratio uses a y s,( ∣ )r and a y( ∣ )r tofind
the additional predictive power that the joint distribution of Y and S has in predicting A over themarginal
distribution of Y . Similarly, sufficiency ratio is derived from a y s,( ∣ )r and a s( ∣ )r to showhowmuchmore
predictive the joint distribution of Y and S is of A over themarginal distribution of S.

5. Results

5.1. Spatial patterns of rescue requests, vulnerability, and digital access
Wemapped the spatial patterns of key variables to provide exploratory analysis of their real-world
representation and aid the analysis ofmodel fairness (figure 2).

Figure 2(a) depicts themean flood depth per block group duringHurricaneHarvey. Theseflood depths were
measured byUSGS using the high-watermarksmethod andwere tabulated from raster data into block groups
by the authors using theArcGIS Zonal Statistics tool (FEMA2018; Esri 2021). Inmost cases the pattern offlood
depth coincides with the location ofmajor rivers andwater bodies in the study area (figure 3). On the contrary,
the pattern of social vulnerability represented by SVI (figure 2(b)) is scattered across the urbanHarris County
(the city ofHouston, TX) and the neighboring suburban counties.

In terms of the individual SVI themes, the socioeconomic theme (figure 2(c)) appears very similar to the
overall SVI (figure 2(b)), whereas the household composition and disability theme (figure 2(d)) showsmany
more vulnerable block groups located farther from the urban core, potentially due tomany families caring for
children and older or disabled adults, settling farther from the urban areas. Theminority status and language

Figure 2. Study area, its physical (a) and social (b) vulnerability and sensitive attributes by block group: (c) SVI Theme 1
Socioeconomic Status, (d) SVI Theme 2Household composition&Disability, (e) SVI Theme 3Minority Status& Language, (f) SVI
Theme 4Housing andTransportation, (g)%households with no computer or device, (h)%households with no Internet, (i)%
households with cellular data plan (reversed), (j)%householdswith smartphone (reversed). Darker shade is higher vulnerability.
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barrier theme points tomost of the vulnerable populations concentratedwithinHarris County (figure 2(e)).
Finally, the housing type and transportation theme shows an evenly scattered pattern across the study area
(figure 2(f)).

As for the digital access variables (figures 2(g)–(j)), lack of access to cellular data plan is overall higher than
the values of the other three variables (figure 2(i)). No cellular data connectionmay become a barrier for social
media access during amajor disaster when othermeans of communication go offline. Other digital disparities,
like lack of access to Internet, computer, or a device, and specifically a smartphone, are less pronounced. The
patterns of the four variables are similar, withminor differences in intensity.We note that the patterns of digital
access resemble the pattern of SVI Theme 2Household composition and disability (figure 2(d)), which could
suggest a lesser adoption of technology by vulnerable age and disability groups.

Figure 3 shows the spatial pattern of the target variable, which is combined socialmedia and volunteer-
collected rescue requests per 1,000 households in each block group. Despitemost of the study area has been
flooded, we found rescue requests through socialmedia in only 534 out of 3,017 block groups.

Themap shows that rescue requests weremostly fromHarris Countywith high concentration in its central
part (figure 3). Adjacent counties to the north ofHarris County (Liberty,Montgomery, andWaller) received
high level offlooding butwith few socialmedia rescue requests (figure 3). Overall, we do not observe a striking
mismatch between the rescue request locations (figure 3) and social vulnerability or access to digital technology
(figurex 2(b)–(g)).We found thatmany of the rescue locationswere from socially vulnerable block groupswith
limited access to smartphones or internet. This is likely due tomany of the requests being posted on behalf of
elderly or disabled familymembers. However, we also found thatmany socially vulnerable block groups had
very few or no rescue requests.We conducted furthermodeling and fairnessmeasurement to test whether this
mismatchwill lead toAI bias, when predicting rescue request rates.

5.2. Random forestmodel of rescue requests
The results of the RandomForestmodel fittingwere as follows. First, themodel with all 25 variables (table 3)was
fit and p-values as ameasure of variable importance were estimatedwith 100 permutations, resulting in amodel
with 70.28MSE (mean squared error) and 0.11 out-of-bag R2.Next, themodel wasfit with the seven variables
that had p-value< 0.05 (table 4). This led to an improvement inmodel performancewith 64.47MSE and 0.19
out-of-bag R2. Table 4 lists the predictor variables in the order fromhighest to lowest importance, alongwith
their importance scores and numbers of block groups excluded from the test set due to their corresponding
values being out of the training set’s range. The values in the Importance column are the sumof theGini
coefficients from all the trees for each variable listed.

Five out of the seven significant predictors were features of the physical environment, such as percent of
roads inflood zone, percent offlood zone area,mean elevation, and percent of forested andwetland areas. Only
two selected features were related to the social environment, and theywere percent of renter occupied housing

Figure 3.Combined socialmedia and volunteer rescue requests per 1,000 households.
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units and percent of households with no computer or device. Overall, the selected variables are reasonable
predictors of rescue needs. The predicted values of rescue requests produced by thefinalmodel aremapped in
figure 4.

5.3. Rescue requestmodel explorations
To better understand the pattern of individual variables’ contributions to themodel predictions, we conducted
dataset-level explorations using the partial dependence (PD) plots (figure 5). These plots show that the
contributions of the predictors are notmonotonically increasing or decreasing. For example, as the percent of
herbaceous and forested area increases, the predicted rescue request rate increases until it reaches the level of
40%where the rate of predictions’ growthflattens. This shows that herbaceous cover of the block group
contributes to the rescue request rate, likely due to the lack of roads and inability to passflooded forested areas,
whichwould leave people stranded.

We observe a similar but less steep upward growth in predicted rescue ratewith respect to the percent of
flood zone areawhere a notable peak exists when it reaches 100%. Percent of road length inflood zone behaves
similarly to the percent offlood zone area, but in a step-like pattern, with the lower predicted rescue rates
occuringwhen the road length inflood zone is under 50%. The variable percent of wetland cover produces a
similar step-like prediction pattern, butwith a steep increase that occurs at the 20%–25%ofwetland area.
Overall, all three variables showhowflood-prone the area is, and two of them suggest a threshold effect. That is,
when a block group hasmore than 50%of roads inflood zone ormore than 20%wetland cover, it will result in a
much higher rescue request rate. On the contrary,mean elevation has a negative relationshipwithflood hazard
(percent offlood zone area and percent of road length inflood zone), and its impact on the predicted rescue rate

Figure 4.Predicted rescue request values (per 1,000 households), excluding 137 out of 3,017 cases forwhich predictors’ valueswere
out-of-range of the training data.

Table 4.Random forest variable importance and number of predictors’ cases out of
range.

Variable Importance <Min >Max

%of renter occupied housing 6,987.5 0 0
%of roads inflood zone 6,298.8 0 0
%offlood zone area 5,292.3 0 0
%ofwetland area 3,715.5 0 37
%of herbaceous, forested, and shrub area 5,139.7 0 29
Mean Elevation 5,288.4 5 70
%of households with no computer or device 4,863.4 0 3
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ismost pronounced at elevations lower than 180meters.While higher values of the features related toflood
hazard and environmental vulnerability producehigher rescue request predictions, the housing and digital
access variables show an unexpected pattern of contribution. On one hand, the block groupswith the lowest
percent of renter occupied units get the highest predicted rescue rates, pointing to a potential social disparity due
to home ownership. On the other hand, we found that higher rates of socialmedia rescue requests are predicted
for the block groupswith less access to technology (percent of households with no computer or device). The PD
plots (figure 5) demonstrate that complex patterns of variable contributions toMLmodels can be observed and
analyzed. These patternsmay have implications for understanding the real rescue request needs during a
hazardous event.

5.4. Rescue requestmodel fairnessmeasurements
As stated before, we assigned the groupwith SVI and its four themes in the lowest 0.25 quantile as privileged (the
least vulnerable in the study area). Similarly, based on the four digital connectivity variables the groupwithin the
0.25 quantile highest access is privileged. The bounds of the privileged groups in each sensitive attribute, and the
calculated independence, separation, and sufficiency ratios are shown in table 5. In sum,we found no unfairness in
the predictionmodel based on social vulnerability characteristics or digital access variables, therefore our
hypothesis that themodel is unfair is not accepted.

However, we note a slight deviation from complete fairness in the sufficiency value for the SVI Theme 4
Housing andTransportation variable (table 5). This implies a slightly uneven distribution of error between the
two groups, or that Y and S are better at predicting A than just S (i.e., S is less sufficient). However, the
sufficiency ratio is still close to 1, and there is no discernable difference in the pattern of predictions between the
groups (figure 6(a)). A related attribute, percent of renter-occupied housing, is a predictor in the finalmodel and
shows a notable difference in predicted rescue rate between its low andhigh values in the PDprofile (figure 5).

5.5. Alternative dataset fairnessmeasurement: Boston housing data
Weapplied the samemodeling and fairness testing approach to awell-studiedBostonhousingdataset to compare
the fairness ratioswith the rescuemodel.We tested variable significance using the permutation importance
measure on theBostondata and found that none of the variables needed to be excluded, thus, the entire dataset
was used. FittingRandomForest on theBostonhousing datawith all 13 predictors resulted in out-of-bagMSE
of 10.06 and 0.88 out-of-bagR2. Fairness ratios for the protected attribute B were 11.45 (independence),

Figure 5.Partial dependence plots (in the order of variable importance from left to right). Y-axes represent average rescue rate
predictions, andX-axes are values of each predictor.
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1.28 (separation), and 1.09 (sufficiency), which are above the fairness threshold of 1.25. For LSTAT the results were
evenmore striking,with ratio 889, 292.7,ind = ratio 1, 769.66,sep = and ratio 9.62suff = (figure 6(b)).

Tomitigate themodel bias, we removed the sensitive attributes B (represents the proportion of black
people) and LSTAT (represents th populationwith lower status) from the set ofmodel predictors. As a result,
RandomForest performance decreased slightly (MSE 14.16; R2 0.83), but unfairness persisted, with only a slight
improvement in fairness ratios. For the protected attribute B, the independence ratio was 9.87, separation—1.07,
and 1.00 sufficiency. For LSTAT , the independence ratio became 112,024, separation reduced to 2.13, and
sufficiency to 1.00. Themodel remains unfair, and further fairnessmitigation beyond removing the sensitive
attributes from training data is needed. By contrast, the rescuemodel appears fair.

6.Discussion

This study aimed to examine if bias exists inAI algorithmsused indisastermanagement, specifically socialmedia
rescuemodels. TheRandomForest rescuemodel and its explorations provide useful information onphysical and
social vulnerabilities that put residents at risk at getting stranded due toflooding, thus needing urgent assistance.
This studydemonstrates how themodel can be evaluated for algorithmbias using the three criteria—
independence, separation, and sufficiency, which is a novel contribution to the disaster riskmanagement literature.

Wedid notfind that the rescuemodel violates independence, separation, or sufficiency for any of the nine
sensitive attributes tested.However, somedata biasesmaybe difficult to evaluate due to the demographic features
being inferred from theflood victims’ locations, rather thandirectly based on their identity. Similarly, the data
may be incomplete ormissing,which poses a limitation, despite thatwemade the best possible effort tofind every
socialmedia or volunteer-collected rescue request fromHoustonMSA. Further research, such as approximating
rescueneeds from indirect indicators,maybe conducted to identify howmanypeople neededbut could not reach
rescue volunteers because of the potential barriers to doing so.We adopt Steinberg et al (2020)density ratio
implementation to calculate the three fairnessmetrics independence, separation, and sufficiency for our regression
task. Experiments usingother implementations of these threemetricsmay lead to varying results.

Figure 6.Predictions plotted against ground truth of (a) rescue rates (red dots belong to privileged group, and blue to protected group
according to SVI Theme 4Housing andTransportation) and (b) housing prices fromBoston dataset, demonstrating an unfairmodel
(privileged cases have higher housing prices than non-privileged).

Table 5.Algorithm fairnessmetrics per binary sensitive feature.

Sensitive attribute PrivilegedMin PrivilegedMax ratioind ratiosep ratiosuff

SVI 0.0003 0.265a 1.002 1.002 1.001
SVI Theme 1 0.003 0.255a 1.006 1.006 1.002
SVI Theme 2 0.005 0.238a 1.002 1.002 1.021
SVI Theme 3 0 0.324a 1.001 1.001 1.002
SVI Theme 4 0 0.245a 1.002 1.004 1.116
%No computer or device 0 0.028a 1.001 1.001 1.003
%No Internet 0 0.055a 1.002 1.002 1.0003
%With cellular data plan 0.647a 0.902 1.005 1.005 1.0007
%With smartphone 0.857a 1 1.006 1.005 1.001

a Dataset’s 0.25 quantile.
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MLandAI are often employed to overcome limitations ofmultivariate statistics, for example, its required
assumptions for linearmodels. It should be noted that the fairness criteria used in this study are applicable to
evaluate fairness of the linearmodels, because linearmodels can also be unfair. In fact,modern AI fairness
literature has drawnmany ideas from the fairness criteria developed for linearmodels in the 1960s and 1970s,
primarily in thefields of education testing and psychometrics (Barocas et al 2019). Despite that, the urgency and
necessity to consider fairness of AImodels arises from its rising popularity and availability, its ability to capture
complex interactions frombig data (whereas linear statistics assume no collinearity), and difficulty of explaining
its internal structure (Barocas et al 2019).

An additional research need arises at the intersection of fair AI and geospatial AI. AI fairness usually
considers an individual as the subject of AI decisions, whereas in geo-AI the subject is an areal unit inwhich a
group of peoplemay be residents, or owners of the property, or have some other relation.While we demonstrate
an application of regression fairnessmetrics to two geospatial datasets, this aspect is largely unexplored inAI
fairness literature. For example,more research is needed on hownotions of group and individual fairness
translate from traditional to spatial applications, where an individual (a single data instance) represents a group
of people, and a group of cases is a group of groups.

7. Conclusion

The objective of this studywas to analyze if potential biases exist towards protected groups in a RandomForest
regression of socialmedia rescue requests fromHurricaneHarvey. Nine sensitive attributes tabulated at the
census block group level were considered, including the Social Vulnerability Index (SVI), its four sub-indices,
and rates of access to any computer or device, a smartphone, Internet, and cellular data plan, as they are
considered as likely barriers to access rescue through socialmedia.

The study addresses two related research questions. To answer RQ1, seven variables were found to be
significant predictors of the rescue request rates. In the order of importance, theywere percent of renter
occupied housing units, percent of roads inflood zone, percent offlood zone area, percent of wetland cover,
percent of herbaceous, forested and shrub cover,mean elevation, and percent of households with no computer
or device. In general, more rescue requests are expected in the block groupswith higher physical or
environmental vulnerability. On the other hand, higher home ownership rates (lower percent of renter occupied
housing) and lower rate of access to a computer or device per household are associatedwith higher rescue needs.
The Partial Dependence plots shownon-linear relationships, which help further explain the complex
relationships between rescue request rates and the seven predictor variables.

Regarding RQ2,we found that themodel learnt from the socialmedia rescue data satisfied the three fairness
criteria—independence, separation, and sufficiency ratios—for all of the nine sensitive attributes, whichwere
social vulnerability and digital access variables. Our hypothesis that higher social vulnerability and lower digital
access are associatedwith lower predicted socialmedia rescue rates, which leads to unfair predictions based on
these characteristics, is rejected. All three ratios for all assessed sensitive attributes are close to 1.0, indicating that
themodel is fair.We found one small deviation fromperfect fairness, as reflected by the sufficiency ratio, for the
variable of SVI Theme 4Housing andTransportation vulnerability.

Our study of the rescueAImodel contributes new insights on the physical and social vulnerabilities that put
residents at risk of getting stranded due toflooding, and thus needing urgent assistance.Moreover, by providing
an explanation of the RandomForestmodel and evaluating its fairness, we demonstrate how the same
methodology of fairness evaluation could be applied in future AImodeling in disaster research and help reduce
allocation or quality-of-service harms that could deepen social and geographical disparities.
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