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The post-Newtonian formalism plays an integral role in the models used to extract information
from gravitational wave data, but models that incorporate this formalism are inherently approxi-
mations. Disagreement between an approximate model and nature will produce mismodeling biases
in the parameters inferred from data, introducing systematic error. We here carry out a proof-of-

principle study of such systematic error by considering signals produced by quasi-circular, inspiraling
black hole binaries through an injection and recovery campaign. In particular, we study how un-
known, but calibrated, higher-order post-Newtonian corrections to the gravitational wave phase
impact systematic error in recovered parameters. As a first study, we produce injected data of
non-spinning binaries as detected by a current, second-generation network of ground-based observa-
tories and recover them with models of varying PN order in the phase. We find that the truncation
of higher order (>3.5) post-Newtonian corrections to the phase can produce significant systematic
error even at signal-to-noise ratios of current detector networks. We propose a method to miti-
gate systematic error by marginalizing over our ignorance in the waveform through the inclusion of
higher-order post-Newtonian coefficients as new model parameters. We show that this method can
reduce systematic error greatly at the cost of increasing statistical error.

I. INTRODUCTION

Gravitational waves emitted during the coalescence of
compact-object binaries offer a unique way to directly ob-
serve strong-gravity systems. Models of the signals pro-
duced by coalescence events, derived from general relativ-
ity or modified theories of gravity, are used to extract in-
formation about the astrophysical sources from the grav-
itational wave data. However, due to the complexity of
the theories and computational time constraints, these
models are necessarily approximations (either numerical,
analytical, or some hybrid of the two). Mismatch be-
tween an approximate model and nature will always re-
sult in biases in the parameters inferred from data. Such
bias is known as mismodeling systematic error.
In this study, we investigate mismodelling error in the

context of the post-Newtonian (PN) approximation to bi-
nary inspiral signals. While contemporary analyses use
more sophisticated models that include the merger and
ringdown phase of the signal, we use the simpler PN
inspiral regime to illustrate the effects of mismodeling
and how these effects can be mitigated. Similar con-
clusions will apply to the full inspiral-merger-ringdown
waveforms.
The approximate nature of waveform models means

that some amount of systematic error is unavoidable.
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This systematic error is tolerable so long as it is sig-
nificantly smaller than the statistical error caused by
the finite signal-to-noise ratio (SNR) of the observations.
Figure 1 shows a schematic diagram to illustrate why
this is the case. Both panels in the figure represent a
one-dimensional posterior probability distribution on a
hypothetical parameter obtained by analyzing some syn-
thetic noise-free data using some model. The locations
of the injected (true) and recovered values for that pa-
rameter are indicated, where the recovered value is taken
from the maximum posterior point. In this context, the
systematic error is given by the difference between the
recovered and injected values of the parameter. In data
with noise, the offset will be a combination of systematic
and statistical error. The statistical error is reflected by
the width of the posterior probability distribution, and
is due to the noise weighting in the likelihood.

In Case A, the systematic error is smaller than the
statistical error, and therefore, the injected parameter
is within the relevant credible interval of the recovered
parameter. In Case B, however, the systematic error is
dominant and the true value lies outside of the credible
interval.

One strives to create models that are accurate enough
such that the posterior probability distributions on ev-
ery parameter are reliable (i.e. they resemble Case A in
Fig. 1). However, statistical error scales inversely with
the SNR while the systematic error is independent of
the SNR. Therefore, as instruments are upgraded and
improved, the systematic error can become dominant.



2

δstat

δsys

Case A

δstat

δsys

Case B

FIG. 1. Schematic diagram to illustrate the relationship be-
tween systematic error δsys and statistical error δstat. The
gray curve in each panel depict a one-dimensional, inferred
posterior probability distribution on a hypothetical parame-
ter obtained by analyzing a synthetic noise-free data set and
recovering it with some model that has some amount of inher-
ent inaccuracy with respect to the true signal. The injected
(true) value of the parameter is indicated with a red line,
while the recovered value, taken in this case from the maxi-
mum posterior point, is indicated with a blue line. In Case A,
the systematic error is smaller than the statistical error and
the value of the injected parameter lies within the credible
intervals of the recovered best-fit value of the parameter. In
Case B, however, the systematic error is dominant and the
injected value lies outside of the credible interval.

As we progress in our capacity to observe gravitational
waves, understanding how mismodeling impacts param-
eter estimation becomes ever more important.

The importance of bias from mismodeling depends on
the accuracy of the models used, but the construction of
models is a complicated matter due to the intrinsic non-
linearity of the theory and the broad parameter space
of interest to us. On solar system scales, Newtonian
gravity is adequate for most calculations. However, in
the extreme environments that produce the gravitational
waves observable by ground-based detectors, Newtonian
gravity does not suffice. Instead, one must account for
post-Newtonian corrections to Newtonian gravity. These
corrections are derived through a formal expansion of
the field equations (Einstein’s or otherwise) in powers
of (v/c)2 [1], where v is the characteristic speed of the
system and c is the speed of light and gravity.

During the quasi-circular inspiral of compact objects,
a waveform based on the PN approximation has been
shown to be highly accurate when enough terms are

kept in the small-velocity expansion [2], but this is not
the case for sufficiently massive binaries. As the total
mass of the system increases, the merger and post-merger
parts of the coalescence signal become more dominant,
and the classic pre-merger inspiral PN expansion is no
longer sufficient. This fact has has led to the creation
of two classes of inspiral-merger-ringdown (IMR) mod-
els: effective-one-body (EOB) waveforms [3–6] and phe-
nomenological waveforms [7–10]. The phenomenological
framework defines the waveform as a piecewise function,
with one piece modeling the inspiral, one piece the late
inspiral and merger, and one piece the post-merger. The
inspiral piece is constructed from the classic 3.5PN order
approximation1, enhanced with 4, 4.5, 5 and 5.5PN terms
that are calibrated to a suite of EOB and numerical rel-
ativity simulations. The late inspiral and merger piece
and the post-merger piece are modeled in a similar way,
by fitting coefficients in an ansatz function to numerical
relativity simulations when needed. Both the EOB and
the phenomenological waveforms have been validated by
showing high matches against a set of numerical relativ-
ity simulations [11] and are used today for gravitational
wave parameter estimation by the LIGO/Virgo collabo-
ration [12–15].
The post-Newtonian approximation plays a critical

role in the creation of waveforms 2 either because it is
later resummed as it is in EOB waveforms or because it is
enhanced with fitting coefficients as it is in both the phe-
nomenological and EOB models. However, the inherent
approximation will necessarily introduce systematic un-
certainties, and therefore, systematic bias has been stud-
ied in depth over the last three decades [18–21].
Early studies of mismodeling relied mostly on the

Fisher information, an approximation to the full likeli-
hood that is only accurate for sufficiently loud signals in
Gaussian noise [22]. Cutler and Vallisneri [18] developed
a Fisher information formalism to estimate mismodeling
bias and applied it to a 3.5PN inspiral signal recovered
with a 3PN inspiral model. Focusing on binary black
hole signals detected by LISA [23] with SNR of 1000,
they concluded that it is possible for systematic error to
dominate the statistical error by several orders of magni-
tude for intrinsic parameters like masses and spins. This
paper was preceded by the work of Canitrot [19], who
used match filtering techniques to show that recovering
a 2.5PN binary black hole signal detected by Virgo [13]
with a 2PN model can produce systematic error of order
∼ 1% in the chirp mass and order ∼ 50% in the symmet-
ric mass ratio.
Fisher studies, however, are not necessarily accurate

for low SNR events, like those detected by current

1 A term of order (v/c)2n relative to the leading-order term is
considered to be of nPN order.

2 One exception to this is the family of Numerical Relativity Sur-
rogate waveform models, constructed directly from catalogues of
numerical relativity waveforms [16, 17].
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ground-based detectors, and thus, a Bayesian approach
is preferred. To this end, recent studies have employed
injection and recovery campaigns: synthetic data (with
a set of known injection parameters) is generated using
some model, and then the data is analyzed with another
model. Through this approach, one can then determine
whether systematic bias is a concern by comparing the
injected parameters to the posterior probability distribu-
tions obtained.

Littenberg et al. performed such an analysis, inject-
ing numerical relativity waveforms and recovering with
EOB models [20]. Focusing on stellar-mass binary black
holes observed by advanced LIGO [12] and Virgo[13],
they found that at SNRs < 50 systematic error was
smaller than or comparable to statistical error for a wide
range of mass ratios. However, for SNRs > 100, as is
expected from 3G detectors, systematic error can domi-
nate. More recently, Pürrer and Haster also injected nu-
merical relativity waveforms and recovered with various
semi-analytic frequency-domain models [21]. Focusing on
3G events at SNRs ∈ [466, 2598] that spend much longer
in the 3G sensitivity band than those studied in [20], the
authors concluded that systematic error induced by these
semi-analytic models needs to be reduced by three orders
of magnitude.

In spite of all of this work in the study of systematic
errors, no work has yet been done to employ Bayesian
methods to assess the inaccuracies of the latest waveform
models with respect to our ignorance of (unknown) high-
order PN order terms in the era of current ground-based
detectors. This is a problem because evidence already ex-
ists from observations during the O3 LIGO/Virgo cam-
paign that systematic error may be influencing poste-
rior probability distributions [14, 15]. Indeed, for certain
O3 events, the LIGO/Virgo collaboration found some-
what different posterior probability distributions for var-
ious source parameters when analyzing the data with the
IMRPhenomXPHM [10] or SEOBNRv4PHM [6] models. The
analyses of GW191109 163120 with these two models
produced differences in the inferred spins and mass ra-
tios, analyses of GW191219 010717 produced differences
in the inferred inclination angle, total mass and distance,
analyses of GW200129 065458 produced differences in
the evidence for precession and the inferred mass ra-
tio, and analyses of GW200208 222617 produced a mul-
timodal mass posterior probability distribution with dif-
ferent waveforms preferring difference modes [15].

Given the above, in this paper we embark on a proof-

of-principle study to determine whether the unknown,
yet numerically-calibrated, PN terms in the IMRPhenomD
[7, 8] waveform model can systematically bias the ex-
traction of intrinsic source parameters (like the masses)
at SNRs consistent with current and near-future observa-
tions with LIGO/Virgo/KAGRA [24]. We focus on inspi-
raling black hole binaries of mass ratios that are detected
by a current-generation gravitational wave detector net-
work at SNRs of O(10). We consider an inspiral-only

IMRPhenomD model created by stopping the IMRPhenomD

waveform at the transition frequency between the inspiral
and intermediate regions of the waveform. We produce
injected data from this model and recover the injected
data using models inspired by the same model but trun-
cated at 5, 4.5, 4 or 3.5PN order in the inspiral phase.
Using standard Bayesian inference packages, we then ex-
plore the parameter space of interest to construct pos-
terior probability distributions. From these distributions
we can then estimate the statistical and systematic errors
in the inferred parameters.

Overall, we find that the truncation of the IMRPhenom

family even at 5PN order can lead to systematic bi-
ases larger than statistical uncertainties in the chirp
mass, mass ratio and individual masses already at the
SNRs expected in the fourth observing run of the
LIGO/Virgo/KAGRA detectors. Of course, this does
not necessarily imply that the IMRPhenomD family con-
tains these intrinsic errors, since the 4, 4.5, 5 and 5.5PN
terms are never set to zero in any of the IMRPhenomD

models used in the analysis of real astrophysical observa-
tions. Our results, however, do imply that fitting errors
in the 4, 4.5, 5, and 5.5PN coefficients as well as the ab-
sence of higher order, currently-unknown PN terms could
introduce systematic errors that are not currently being
accounted for. These fitting errors arise due to both the
finite and discrete nature of the numerical relativity sim-
ulation sets used in the fit, as well as possibly the choice
of the fitting functions.

In order to deal with these potential systematic un-
certainties, we propose a method to ameliorate them: to
include our ignorance of the missing terms directly in the
model and then to marginalize over them. More specif-
ically, we propose that uncertainties be included in the
waveform model as higher PN order parameters, with
physically uninformed (uniform) priors that encapsulate
the residual from the fits. We then propose to marginal-
ize over these systematic-uncertainty parameters simul-
taneously while exploring the astrophysically informative
parameter space. We show that the effect of the inclusion
of these new systematic parameters is to significantly re-
duce the bias (by pushing the peak of the posterior prob-
ability distribution back to the injected value), at the
cost of increasing the statistical error (by widening the
distribution).

The remainder of this paper is structured as follows:
in Sec. II we review the waveform models used in our
analyses, followed by Sec. III where we lay out the details
of the experimental design of our injection and recovery
campaign. The results of this campaign are presented in
Sec. IV. In Sec. V, we explore a way to account for our
ignorance of the true waveforms by marginalizing over
missing terms in our model. And in Sec. VI we provide
discussion on the results obtained in this study. In what
follows, we will work in geometric units where G = 1 = c.
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II. A TRUNCATED IMRPHENOMD MODEL

TO REPRESENT MISMODELING

In this section, we provide a summary of the
IMRPhenomD waveform approximant, which is a phe-
nomenological frequency domain waveform model for
spin-aligned black hole binaries [7, 8]. In doing so, we
generally follow the notation of [7, 8]. The frequency
domain strain is a complex function, expressed in polar
form as

h̃(f, θ) = A(f, θ)e−iφ(f,θ), (1)

where f is the frequency of the gravitational wave and
θ is a vector of waveform parameters. This approximant
includes only the dominant quadrupolar radiation mode.
The phenomenological modelling of the strain is broken
up into three regions: the inspiral at low frequencies, the
post-merger and ringdown at high frequencies, and an
intermediate region for the plunge and merger.
In this proof-of-principle study, we will make some sim-

plifications to render the problem tractable. First, we fo-
cus on the inspiral region alone, as this is where the PN
formalism is valid. This simplification limits our analysis
to relatively low (total) mass sources, such that the to-
tal SNR from the whole coalescence is dominated by the
inspiral region. Second, we focus only on the accuracy of
the phase of the inspiral frequency-domain strain φ(f, θ)
and leave the amplitude as is. We do so because the phase
of the gravitational wave signal provides the most con-
straining information for the inference of binary param-
eters. In order to minimize the effects of both amplitude
modulations and subdominant waveform harmonics, we
limit our study to quasi-circular binary inspirals, with
black hole spins aligned or anti-aligned with the orbital
angular momentum and with comparable mass ratios.
In spite of these approximations, the study we carry out
here will still allow conclusions that should apply gen-
erally to a large number of gravitational wave sources.

The IMRPhenomD phase during the inspiral

φIns(f, θ) = φTF2(f, θ) + φphenom(f, θ) (2)

is a hybrid model. The first term in the above equa-
tion comes from the TaylorF2model, which derives from
the stationary phase approximation of the waveform con-
structed in a standard Taylor expansion within PN the-
ory [25]. This phase is known to 3.5PN order and it can
be expressed as

φTF2(f, θ) = 2πftc − ϕc − π/4

+ (πfM)−5/3
7

∑

i=0

φi(f, θ) , (3)

where the TaylorF2 series functions are

φi(f, θ) =
3

128η
(πfM)(i/3)ϕi , 0 ≤ i ≤ 7, (4)
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FIG. 2. Absolute values of series functions φi = φi(f,θ) of
the IMRPhenomD inspiral phase, as given in Eqs. (2-6), plotted

as a function of velocity v = (πMf)1/3 for the systems pre-
sented in Table I. Observe that the terms in the phase have
a hierarchy, with the lowest PN order terms larger than the
higher PN order terms.

and the PN coefficients ϕi are functions of the masses and
the magnitude of the spin angular momenta [8]. Above,
M = m1 + m2 is the total mass and η = m1m2/M

2 is
the symmetric mass ratio, determined by the component
massesm1 and m2 where by convention we assumem1 ≥
m2. The time tc and phase ϕc of coalescence are, for
the purpose of data analysis, just a reference time and
phase offset. Since the orbital velocity of the system is
v = (πMf)1/3, we see that φTF2(f, θ) is a Frobenius
series in powers of v, with a controlling factor that goes
as v−5. In a PN series of this type, a term proportional
to v2n ∝ f2n/3 relative to the controlling factor is said to
be of nPN order.

The second term in Eq. (2) contains phenomenolog-
ical corrections that are expected to enter at 4PN or-
der and above within PN theory. More specifically, the
IMRPhenomD model postulates the 5.5PN-accurate phe-
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nomenological corrections to the phase 3

φphenom(f, θ) =(πfM)−5/3
11
∑

i=8

φi(f, θ) , (5)

where the phenomenological series functions are

φi(f, θ) =
3π5/3

(i− 5)η
(Mf)i/3σi−7 , 8 ≤ i ≤ 11, (6)

The σi coefficients are unknown functions of the masses
and spin angular momenta. The IMRPhenomD model
makes use of an ansatz where the σi are represented as
bi-variate polynomials in η and (χPN − 1). Here, χPN

is a certain function of the dimensionless spins χ1 and
χ2, η and M . More precisely, the IMRPhenomD model
represents the σi coefficients via

σi =

2
∑

j=0

2
∑

k=0

λijk η
j (χPN − 1)

k
. (7)

The fitting coefficients λijk are determined by fitting the
waveform phase in the frequency domain to the phase of
the Fourier transform of a finite set of numerical rela-
tivity simulations and EOB waveforms [8]. The fits will
be susceptible to statistical fitting error, fitting error due
to the finite nature and finite accuracy of the numerical
relativity waveforms used to do the fits, and fitting error
due to the functional form of the ansatz from Eq. (7).
Nonetheless, in the IMRPhenomD model, one picks the
best-fit values for these λijk coefficients and disregards
these fitting uncertainties.
The phenomenological terms of the waveform phase

present a similar convergence behaviour to the TaylorF2
terms, as shown in Fig. 2. That is, the individual con-
tributions of the 4, 4.5, 5 and 5.5PN terms are smaller
than that of proceedings terms, presenting a PN hi-
erarchy up to the upper bound of the inspiral region,
which in the IMRPhenomD model is defined at vmax/c =
(.018π)1/3 ∼ 0.38. This suggests that we could consider
the phenomenological terms as behaving as higher PN
order terms, even though they formally do not need to.
In order to make this distinction clear, we will put quo-
tation marks around the PN order of phenomenological
terms, for example referring to the σ4 term as a “5.5PN”
term. We use this different notation to remind ourselves
that the σi coefficients in the phase are not derived di-
rectly from the underlying theory (GR), but rather, are
obtained from fitting, which in itself carries both system-
atic and statistical uncertainties.

3 Note that the controlling (leading) factors of the TaylorF2 and
phenomenological Frobenius series as defined above differ by a
factor of π−5/3/128. In principle, from the basics of PN theory,
the controlling factors should be the same, but we will not rescale
them here to stay close to historical conventions.

III. INJECTION AND RECOVERY CAMPAIGN

In this paper, we set out to understand how PN cor-
rections to the inspiral phase impact systematic error in
intrinsic parameters estimated from binary black hole in-
spirals. The systematic error present in a given signal
will, as detectors improve, eventually become dominant
over statistical error, as the latter scales inversely with
the SNR of the signal. We therefore ask the following
question: As a function of the PN order of the recovery
model and the SNR present in an inspiral signal, at what
point does the systematic error become larger than the
statistical error? In order to answer this question, we will
perform a synthetic injection and recovery campaign. In
this section, we present the details of the injection and
the recovery models.
Given an advanced LIGO/Virgo observation, one does

not know the exact waveform generated by Nature or
the exact binary parameters that produced the signal.
Therefore, the synthetic injected data will be created
with the full IMRPhenomD inspiral model, for a set of sys-
tems detailed in Table I. The recovery model will also be
the IMRPhenomD inspiral model, but truncated at a given
PN order (as listed in Table II), since we have seen that
the phenomenological terms represent PN corrections.
Our choice of the IMRPhenomD model will not affect

the conclusions of this work because both the injection
and recovery models are built from this base. There-
fore, our analysis will be subject to the same inherent
model inaccuracies in both the injection and the recov-
ery. In turn, this implies that our analysis will only be
sensitive to the systematic errors we are introducing our-
selves through truncation of the PN terms in the phe-
nomenological Fourier phase. A similar analysis could
be carried out with the updated IMRPhenomXASmodel[9],
or extended to include modifications to the merger and
ringdown, but we leave this for future work.
The details of the injection parameters that define

the systems we study are the following. Our analysis
will focus only on the inspiral regime, and therefore, al-
though we consider two separate binary configurations,
we choose a total mass of 20M⊙ for both. This guar-
antees that the SNR is dominated by the inspiral part
of coalescence. One injected configuration will have two
bodies of equal mass, while the other will have one body
that is three times more massive than the other. In both
cases, we choose to set the spin to zero. The SNR scales
inversely with the luminosity distance DL of the binary,
so for each configuration, we choose injected luminosity
distances to obtain the SNRs listed in Table I. We do so
to roughly fix the statistical error (which predominantly
scales as 1/SNR) across injected configurations. We se-
lect SNRs to encompass the sensitivities of our current
(second-generation, 2G) detectors, as well as that of near
future detectors. Other details of the system parameters
used in the injections can be found in Table I.
The SNR and the results of our parameter estimation

studies will depend on the spectral noise density of the
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TABLE I. Properties of injected binary system configurations.
Here, mi is the mass of the i-th black hole and DL is the lu-
minosity distance between Earth and the source that ensures
the listed SNR as measured by a current detector network.
In addition to the parameters listed in the table below, we
set the aligned dimensionless spins χ1,2 = 0, the inclination
angle ι = 0.4 rad, the polarization angle ψ = 2.659 rad, the
right ascension ra = 1.375 rad, the declination dec = −1.2108
rad, the coalescence phase φc = 1.3 rad, and the geocentric
coalescence time tc = 1126259642.413 sec for each injection.

m1 (M⊙) m2 (M⊙) DL(Mpc) SNR

Equal Mass 10 10 629.853 20

10 10 314.926 40

10 10 157.463 80

Unequal Mass 15 5 534.780 20

15 5 267.390 40

15 5 133.695 80

TABLE II. Injection and recovery models used in our analy-
ses. The coefficients σi are the phenomenological coefficients
contained in Eq. 5.

Label Coefficients set to zero

Injection model: “5.5PN” none

Recovery models: “5.5PN” none

“5PN” σ4 = 0

“4.5PN” σ3 = σ4 = 0

“4PN” σ2 = σ3 = σ4 = 0

3.5PN σ1 = σ2 = σ3 = σ4 = 0

detectors assumed to have measured the synthetic in-
jected signals. To represent a current detector network,
we focus on a set of ground-based detectors, comprised
of LIGO Hanford [12], LIGO Livingston [12], and Virgo
[13]. In particular, we use analytic approximations for
the design sensitivities of advanced LIGO and advanced
Virgo [26], which should approximately correspond to
that of the fourth-observing run.

To perform the parameter estimation analyses, we use
the Bayesian inference library BILBY [27, 28]. This li-
brary obtains its waveform approximants from the LAL-
Simulation [29] package and provides access to several
Bayesian inference packages, including dynesty [30], the
nesting sampling package that we use for this project. In
each parameter estimation study, we vary over all model
parameters of the IMRPhenomD model except for the di-
mensionless spins, namely chirp mass, M, mass ratio
q, luminosity distance DL, right ascension ra, declina-
tion dec, inclination angle ι, polarization angle ψ, co-
alescence phase φc, and coalescence time tc. All anal-
yses are performed using 1024 live points for each of
the three duplicate analyses done for each model vari-
ant. Otherwise, our analyses settings (both sampling
configuration, and prior choices) match those from re-

cent LIGO/Virgo/KAGRA publications [14, 15, 31, 32].
After exploring the 9-dimensional likelihood surface, we
will present a subset of corner plots (to avoid crowding
the presentation), focusing only on some astrophysically
relevant parameters.
With these details in hand, we perform parameter esti-

mation analyses on each injection configuration with each
recovery model, leaving us with 30 analyses to complete.
When injecting the data and exploring the likelihood sur-
face, we set an upper bound on the frequency at the end
of the inspiral region (Mfmax = 0.018) to isolate the im-
pact of modifying the inspiral model. For the binaries
considered here with a total mass of M = 20M⊙, this
corresponds to a frequency of fmax = 182.7Hz.
The truncation of the frequency range used is applied

only to the evaluation of the likelihood itself without any
additional termination conditions applied to the under-
lying waveforms used, this in order to avoid parameter
biases introduced by such unphysical sharp waveform fea-
tures as explored in [33, 34]. We will comment later on
how our results are impacted by a different choice of max-
imum frequency.

IV. SYSTEMATIC AND STATISTICAL

UNCERTAINTIES THROUGH BAYESIAN

PARAMETER ESTIMATION

In this section, we present the results of the Bayesian
parameter estimation analyses laid out in Sec. III. In
particular, we will focus on the systematic errors intro-
duced into the chirp mass M = η3/5M and the mass
ratio q = m2/m1 < 1 due to truncation of the inspiral
IMRPhenomD model. As we will see, strong correlations
with the reference time tc will also force us to include this
parameter in the partial corner plots we present to ex-
plain our results. We emphasize again that even though
we present corner plots for only a subset of the param-
eters of the IMRPhenomD model, we do vary over all the
parameters of the model (except the spins), as discussed
in the previous section.
Let us first consider the unequal mass injected signal

with SNR = 80. The left panel of Fig. 3 presents the
partial corner plot obtained from our Bayesian parame-
ter estimation analyses, using each of the recoverymodels
detailed in Table II. The figure depicts one-dimensional
marginalized posterior probability distributions and the
90% credible region contours of the marginalized two-
dimensional posterior distribution. While our focus is on
M and q, we also include the reference (geocentric) coa-
lescence time tc, because its correlation with mass param-
eters helps to explain the results. Observe that the poste-
rior probability distributions obtained using the “5.5PN”
model are centered on the injected values, indicated with
black vertical lines. This is as expected because the re-
covery model is identical to the one used to produce the
signal injection. Therefore, there is no systematic error
introduced by the model and any small bias present is due
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FIG. 3. Partial corner plot produced after a Bayesian parameter estimation study, using each of the recovery models detailed
in Table II to infer parameters from the unequal mass (left) and equal mass (right), SNR 80, injected signals, described in
Table I. The corner plots show the marginalized one-dimensional posterior probability distributions and the 90% credible region
contours of the two-dimensional posterior probability distributions on chirp mass M, mass ratio q, and (geocentric) reference
time tc. The injected “true” values are shown as black dots and vertical lines. Observe that the bias is very small for the
“5.5PN” model in both cases, because the the recovery model is the same as the injection model. The bias is also suppressed
for the “5PN” model in the unequal mass case where the removed “5.5PN” is very small. However, in the equal mass case
where the “5.5PN” term has a larger contribution, the bias from the “5PN” model is significant. The bias of the “4.5PN”
model is very large in both cases, because of the alternating structure of the phenomenological coefficients. The bias becomes
smaller again, but is still not negligible, for the 3.5 and “4PN” models. This suggests that the phenomenological coefficients
of the IMRPhenomD model are important for parameter estimation and their inaccurate determination could lead to systematic
bias.

to sampling error. Observe also that the “5PN” model
preforms similarly well, this behavior can be explained
from Fig. 2. For the unequal mass injection, the mag-
nitude of the “5.5PN” term is significantly smaller than
that of any other term. Therefore, the systematic error
introduced by removing this term from the model is neg-
ligible and again the small bias is dominated by sampling
error.

The 3.5PN, “4PN” and “4.5” models, however, show
a different behavior in the left panel of Fig. 3. Both the
3.5PN and “4PN” models produce a slight bias from the
injected values in the mass parameters, with very similar
posterior probability distributions. On the other hand,
the posterior probability distributions obtained with the
“4.5PN” model indicate a large bias with negligible sup-
port at the injected values. At first glance, these re-
sults are surprising, because one would näıvely expect
the “4.5PN” model to be more accurate, and thus pro-
duce a smaller bias, than the 3.5 and “4PN” models.
However, some of the phenomenological coefficients have
alternating signs: while the “4PN”, “5PN” and “5.5PN”
terms are all positive on the relevant range of parameters,
the“4.5PN” term is negative (Fig 2 plots absolute values)

but of similar magnitude to the “4PN” term. This means
that the “4.5PN” term approximately cancels the “4PN”
term, and so truncating the model at this order produces
a less accurate model. Once this term is removed to pro-
duce the “4PN” model we are able to more accurately
recover the mass parameters.

This alternating behavior of the series is not just a
feature of the phenomenological coefficients but also a
known feature of the classic PN expansion. Indeed, it
has been known for a while that parameter estimation
with a 2.5PN model is less accurate than with a 2PN
model, even though the former is formally more accurate
[35]. This is precisely because of the alternating struc-
ture of the series. In the case of the IMRPhenomD model,
however, the higher than 3.5PN order coefficients are all
phenomenological, so it is not clear that this alternating
sequence should continue, or that the magnitude of the
terms in all of parameter space have been accurately de-
termined through fitting. This can only be determined by
either calculating the higher PN order term, or re-doing
the fits with a denser set of numerical relativity simula-
tions and quantify the statistical uncertainty of the fits.

The similarity between the one-dimensional posterior
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probability distributions in the left panel of Fig. 3 found
using the 3.5PN and “4PN” models can be explained by
studying the Fourier phase model of Eqs. (2)-(5). The
total phase includes the term 2πftc, which has the same
linear dependence on frequency as the “4PN” term when
accounting for the control factor of the PN expansion.
The presence of this term compensates for the removal
of the “4PN” term and allows the 3.5PN model to recover
similar mass parameters at the cost of biasing tc. We see
this in the left panel of Fig. 3: while the posteriors in
the mass parameters coincide, the posteriors on tc show
a large bias between the two models.

The same qualitative conclusions hold for other mass
ratios, although for equal-mass injections one can en-
counter boundary effects from the prior, as shown in the
right panel of Fig. 3. The right panel is analogous to
the left panel of Fig. 3, but for the equal-mass binary
with the same SNR. The posterior probability distribu-
tions for M, for example, are very similar to that of the
unequal mass case. However, because there is not such a
large difference between the “5.5PN” and “5PN” terms,
as shown in Fig. 2, we see that the systematic bias in M
grows with the “5PN” and “4.5PN” models, and then
decreases for the 3.5PN and “4PN” models.

The right panel of Fig. 3 also shows that the posterior
probability distribution for q is affected by the boundary
of the q prior (at q = 1), and thus it provides less infor-
mation about systematic bias. This boundary is largely
artificial, as it is set by the convention of m1 ≥ m2, but
nonetheless, it reduces the accessible parameter space.
While, for the unequal-mass binary, a mismatch between
the full and truncated IMRPhenomD waveforms could be
“corrected” by introducing a bias that either increases
or decreases the mass ratio around the true value, the
equal-mass case is only provided with freedom in one di-
rection.

Let us now study how the above conclusions are af-
fected by the SNR of the signal. Figure 4 illustrates the
impact of the SNR on the relationship between system-
atic and statistical error, focusing on only three recover-
ies, all with the “4PN” model but each with a signal of
different SNR. As expected, at the lower SNRs, the in-
jected values are contained within the credible contours
of the recovered posterior probability distribution. How-
ever, at the highest SNR, this is no longer the case and
the posterior probability distributions have less support
at the injected values. Clearly then, as the SNR of the
observed signals increases, models that were once accu-
rate enough to recover parameters reliably are no longer
sufficient, as anticipated.

Let us now collect all of our results and study how
the systematic and statistical uncertainties behave with
SNR for different recovery models, as shown in Fig. 5.
To do so, we take the statistical error δstatθ on a given
parameter θ to be half of the 90% credible interval on
the one-dimensional marginalized posterior probability
distribution on that parameter. We then take the bias
in the recovered parameter to be ∆θ = |θrec − θinj|,

Recovery Model:
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0.41
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q

FIG. 4. Partial corner plot produced using the “4PN” recov-
ery model detailed in Table II to estimate parameters from
each of the unequal mass injected signals described in Table I.
We depict the marginalized one-dimensional posterior prob-
ability distributions and 90% credible region contours of the
two-dimensional posterior probability distributions on chirp
mass M and mass ratio q. The injection values are indicated
in black. Observe that, as expected, as the SNR increases, the
width of the posterior probability distribution shrinks, reduc-
ing the support of the posterior on the injected values. This
figure indicates clearly that models once thought to be accu-
rate enough at small SNR can rapidly become insufficiently
accurate at higher SNRs.

where θinj is the injected value and the recovered value
θrec is determined by the maximum of the full nine-
dimensional posterior probability distribution 4. Figure 5
shows log10(∆θ/δstatθ) as a function of SNR of the injec-
tion, for each recovery model and for both the unequal
mass (left) and equal mass (right) systems, with θ = M
(top) and θ = q (bottom). In the case of the equal mass
configuration, we use a one-sided credible interval as the
statistical error when producing plots in the right pan-
els of Fig. 5 because the injected value q = 1 is at the
boundary of the allowed range.

4 It is essential that the set of recovered parameters θrec is taken
from the maximum of the full N-dimensional posterior probabil-
ity distribution (where N is the number of parameters varied in
the Bayesian analysis) rather than the maximum of marginalized
one- or two-dimensional posterior probability distributions such
as those depicted in Fig 3. While we have verified that the peaks
depicted in the corner plots in this paper correspond closely to
the peaks of the full posterior probability distribution, this need
not always be the case. Especially in the case of highly correlated
parameters, it is possible that the maximum of a marginalized
posterior probability distribution does not line up with the max-
imum of the full posterior probability distribution.
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FIG. 5. Ratio of bias to statistical error in the chirp mass (top) and mass ratio (bottom) for various recovery models (Table II)
and injected parameter (Table I), including the unequal mass cases (right) and the equal mass cases (left). The black dots
indicate the configurations of the parameter estimation analyses we performed, which we join through a nearest-neighbour
linear interpolation. When the recovery model matches the injection model (i.e. in the “5.5PN” case), the bias is due entirely
to sampling, and it is thus distinguished by plotting it with dashed lines. Observe that for the 3.5PN, “4PN,” and “4.5PN”
recovery models in the unequal mass case and 3.5PN, “4PN,” “4.5PN,” and “5PN” recovery models in the equal mass case,
where the bias is dominated by systematic error, the bias grows with SNR relative to the statistical error. Observe that
this trend is violated for the mass ratio in the equal-mass case due to prior boundary effects. Observe also that systematic
bias grows as “PN” terms are removed, until the “4.5PN” term is removed. Most significantly, note the instances where
log10(∆θ/δstatθ) > 0. In these cases the recovery model was not accurate enough to reliably recover the injection parameters.

This figure can be read and interpreted as follows. The
bias for a given parameter and recovery model is identical
to the statistical error when log10(∆θ/δstatθ) = 0. When
log10(∆θ/δstatθ) < 0, the injected value of the parameter
falls within the confidence intervals of the recovered pos-
terior probability distribution, which one interprets as a
sign of trust in the inferred point-estimate value. How-
ever, when log10(∆θ/δstatθ) > 0, the injected parameter
is outside of the recovered confidence intervals. When
this is the case, one interprets that the recovery models
is not accurate enough to reliably recover the injection
parameters.

Figure 5 allows us to make several observations. When
the recovery model matches the injection model, as is the
case for the “5.5PN” recovery model, there is no mis-
modeling error and ∆θ is entirely produced due to sam-
pling error. We include the recoveries done with this
model in our results to demonstrate the bias that can
be expected even in the absence of systematic error (but
we represent it with dashed lines to emphasize its differ-

ence from the recoveries done with the other models). As
shown in the figure, the sampling error of the “5.5PN”
model is comparable to the systematic error of the “5PN”
model in the unequal mass case, because, as stated be-
fore, the “5.5PN” term in this case is very small. In
the equal-mass case, however, the systematic error of the
“5PN” model is much larger than the sampling error,
and grows with SNR. Indeed, the ratio of the system-
atic error to the statistical error tends to grow with SNR
for all recovery models, except for those referring to the
mass ratio in the equal mass case (due to prior boundary
effects). Another trend we observe is that, as expected
from Fig. 3, systematic bias grows as “PN” terms are re-
moved, until the “4.5PN” term is removed, which leads
to the most systematic error for the reasons explained
earlier. Additionally, because of correlations with the
tc term, which as explained before enters at an effective
4PN order, the 3.5PN and “4PN” recovery models pro-
duce similar biases.

To verify that the biases seen here are in fact due to
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the truncation of the higher PN corrections in our re-
covery models, we preformed a set of analyses where we
lowered the maximum frequency of our injected signal
from Mfmax = 0.018 to Mfmax = 0.01. We focused on
our SNR=80 unequal mass injection and preformed two
analyses with a lowered maximum frequency: one where
all injection parameters are kept the same, resulting in
an SNR < 80 signal of shorter duration, and one where
the luminosity distance DL is rescaled to maintain an
SNR of 80 while leaving all other parameters unchanged.
We found that, in lowering the maximum frequency, the
contribution to the signal from the higher order terms is
reduced, as expected. Moreover, the biases in inferred
parameters become significantly smaller for the shorter
signal, indicating that the biases in our original analyses
are a result of the truncated PN approximation. How-
ever, we also find that the width of posterior probabil-
ity distributions increases for the shorter signals, conse-
quently increasing the statistical error. This increase is
seen in both the analyses whereDL is left unchanged and
where it is rescaled to maintain an SNR of 80. The rea-
son for this is that statistical error scales inversely with
SNR only approximately; in reality, the likelihood sur-
face can have multiple valleys and peaks, none of which
need to be perfectly Gaussian (as assumed when deriving
the 1/SNR scaling of the statistical error with a Fisher
analysis). The structure of the likelihood, in turn, de-
pends on the duration of the signal, since shorter signals
will allow for stronger correlations and more structure.
The biases introduced during the inspiral by truncat-

ing PN corrections to the phase do, of course, depend
on the total mass M of the injected signal. If the power
spectral density were flat, then the biases would be to-
tal mass insensitive because the inspiral frequency cutoff
fmax ∝ 1/M and so vmax = (0.018π)(1/3) is indepen-
dent of total mass. The power spectral density, however,
is very much not flat, and it rises at lower frequencies.
This implies that higher total mass signals spend less of
their inspiral in band, until eventually, at a sufficiently
high total mass, only the merger and ringdown are ob-
served. Shorter in-band inspirals will lead to a less accu-
rate posterior recovery and larger correlations with other
parameters, as the signal will contain less information.
This is why in our analysis we selected a total mass of
M = 20M⊙ for all injections, so as to ensure that the
SNR of the observed signal would be dominated by the
inspiral, allowing us to disregard the merger and ring-
down.
A useful way to quantify the disagreement between two

waveforms h1 and h2 is the mismatch

MM(h1, h2) = max
tc,φc

[

1−
(h1|h2)

√

(h1|h1)(h2|h2)

]

, (8)

where the inner product is defined as

(h1|h2) = 4Re

∫ ∞

0

h̃∗1h̃2
Sn(f)

df, (9)

with Sn(f) the noise power spectral density of the de-
tector and the asterisks denoting complex conjugation.
The mismatch takes values between zero and unity, with
MM = 0 corresponding to perfect agreement between h1
and h2 up to time and phase offsets (see [36] for a useful
discussion on computing mismatch for quasi-circular and
eccentric waveform models). Even with perfect waveform
models the expected value of the mismatch between in-
jected and recovered waveforms is non-zero due to noise.
For signals in stationary, Gaussian noise, the expected
mismatch is E[MM ] = (D − 1)/(2 SNR2), where D are
the number of parameters that describe the waveform
model [37]. Note that this statistical error in the match
scales inversely with the square of the signal-to-noise ra-
tio, so as detectors become more sensitive, the statisti-
cal error drops very rapidly, potentially exposing various
sources of systematic error from waveform mis-modeling.
Bias in inferred parameters is produced as a result of
disagreement between the injection and recovery models.
We can therefore use mismatch as a tool to predict the
relative magnitude of the bias a given recovery model
will cause and in doing so analytically corroborate the
Bayesian results presented in this section.
We compute the mismatch between our injected sig-

nal h“5.5PN”(θinj) and our recovery models injected with
with our injection parameters hx(θinj), x = {3.5PN,
“4PN”,“4.5PN”,“5PN”}. When x = “5.5PN”, the mis-
match is identically zero. We expect that the relative
sizes of these mismatches should correlate to the relative
sizes of the biases in recovered parameters produced by
these models.
We consider θinj as given by the unequal and equal

mass injections at SNR = 80 detailed Tab. I. In Fig.
6, we plot MM [h“5.5PN”(θinj), hx(θinj)]. Indeed, we see
that the relative magnitudes of the mismatches closely
correspond to the relative magnitudes of the biases in
mass ratio and chirp mass depicted in Fig 3. Notably, we
see that the the “5PN” recovery model in the unequal
mass case most closely matches the injected signal, while
the largest mismatch in both cases is produced by the
“4.5PN” model. Biases in the reference time are not
captured by the mismatch because it is maximized over
this parameter. Through this analysis, we illustrate the
connection between bias in the recovered parameters and
mismatch between the injection and recovery models and
we lend additional credence to the conclusions drawn in
this paper.

V. MARGINALIZING OVER UNCERTAINTIES

The most striking aspect of the results presented in the
previous section is the magnitude of the systematic error
that we found. As we discussed in that section, we con-
sidered relatively low total mass systems (for which the
total SNR from the whole coalescence is dominated by
the inspiral region) and we truncated higher PN-like cor-
rections that we have shown to be appropriately small.
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FIG. 6. Mismatch, as defined in Eq. 8, between the in-
jected signal h“5.5PN′′ = h“5.5PN′′ (θinj) and signals produced
by injecting the recovery models with the injection parame-
ters hx = hx(θinj) We consider the SNR = 80 unequal and
equal mass injection detailed in Table I. Observe that the rel-
ative magnitudes of the mismatch values are comparable to
the relative magnitudes of the biases in chirp mass and mass
ratio depicted in the corner plots in Fig. 3

Despite this, the posterior distributions obtained indicate
significant biases in the recovered mass parameters, of-
ten with very little support at the injected values. These
biases in chirp mass and mass ratio will translate to simi-
larly large biases in the inferred component masses. Most
notably, these biases occur even at SNRs expected in the
next observing runs with current detectors, and will cer-
tainly become more significant at higher SNRs with for
third-generation detectors. Of course, systematic bias is
not necessarily going to be this large with IMRPhenomD-
type models where one never sets the terms in the phe-
nomenological phase to zero. However, the phase is in-
deed truncated at “5.5PN” order and the phenomeno-
logical coefficients do contain systematic fitting errors
(due to the reasons discussed in Sec. II). In this section,
therefore, we search for, propose and develop a method
to ameliorate systematic uncertainties due to unknown
higher PN order terms.
Previous attempts at mitigating waveform inaccuracies

have shown great promise, but are often limited in scope
and applicability [38–42]. Such attempts either only ac-
count for and correct model uncertainties in a subset of
the full parameter space covered by the full analyses, or
provide diagnostics without suggested improvements for
the full parameter space. A method which is capable
of both full coverage and general directive corrections is
yet to emerge, but an important first step is presented
in [43] basing the model for the waveform corrections
around the noise-dependent indistinguishability between
the waveform models under comparison.
Our proposed method will differ from these previous

attempts because our philosophy will be to “parameterize
our ignorance and then marginalize over it.” In essence,
what we propose is that, for any waveform that contains
systematic inaccuracies, one should do the following:

(i) introduce a model for these inaccuracies, character-
ized by a set of parameters λ,

(ii) explore the likelihood by varying over all parame-
ters (θ ∪ λ),

(iii) marginalize over λ to produce reduced corner plots
that range over θ only.

The expected end result will be to ameliorate the system-
atic uncertainty at the cost of broadening the posterior
probability distributions and thus increasing the statisti-
cal error.

A key element in this method is to properly model our
ignorance. For the case considered in this study, our ig-
norance is entirely encapsulated by unknown higher PN
order terms. For the IMRPhenomDmodel, this means inac-
curacies (a) in the “4PN” to “5.5PN” order terms of the
phenomenological phase (due to fitting inaccuracies), and
(b) inaccuracies in the higher than “5.5PN” order terms
(due to truncation). One way to address (a) is to promote
the λijk constants as new parameters of the IMRPhenomD

model, with priors taken to be the posterior probability
distributions of the λijk fits (as opposed to simply pick-

ing numbers for these λijk, which would correspond to

delta-function priors). This method is similar in spirit
to how the equation-of-state sensitivity of approximately
universal relations [44, 45] is taken into account when ex-
tracting the mass and radius of neutron stars from binary
inspirals [46, 47].

Let us now focus on how to address inaccuracies due to
truncation (case (b) above). The best way to model this
ignorance is to use our analytic knowledge of the terms
that are being ignored. For example, if we have a model
that is accurate to 5.5PN order, then the next term in
the series will scale as [1/η(Mf)−5/3]σ̄5(Mf)4, where the
term in square brackets is the controlling factor of the
phenomenological approximation. Technically, the 6PN
term could also scale as [1/η(Mf)−5/3]σ̄5(Mf)4 logMf
(due to certain tail terms that arise in the PN approx-
imation); however, the log-correction is mild and simi-
lar enough to the non-log term that, for the purpose of
marginalizing over our ignorance, either model will suf-
fice. One could of course include not just the 6PN term,
but also the 6.5PN term simultaneously, and maybe also
higher PN order terms. How many terms one must keep
will depend on the accuracy of the base model and the
SNR of the signal.

An important question now presents itself: how does
one set the priors on these new nuisance parameters σ̄i?
One option would be to use completely uninformative
(i.e. flat) priors with infinite (or very large) boundaries,
but this is not smart. If one were to do this, then
some region of the prior would allow sufficiently large
values of σ̄i, which would render the ignorance term
[1/η(Mf)−5/3]σ̄5(Mf)4 much larger than terms at lower
(and known) PN order. In fact, for sufficiently large σ̄i,
the ignorance term would dominate over the rest of the
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known PN series, rendering the entire approximation in-
valid. A better choice of prior is to use our analytic
knowledge of the structure of our ignorance. Even though
we do not know the σ̄i precisely, we do know that they
are functions of the system parameters θ and we know
the values of σi at lower (known) PN orders. We can then
infer the range that σ̄i can have based on these lower PN
terms, and use this as the boundary of a flat prior. Such
a methodology was recently used successfully to study
tests of general relativity with the LVK implementation
of the parameterized post-Einsteinian model [48].

SNR: 80

Model PN Order:

''5.5PN''

''4.5PN''

''4.5PN'' + IG

''4.5PN'' + S��

7��� ���� ���� ��� 

0!"#

$%&'

0.40

0.45

(M))

q

*+,- ./12 0.40 0.45

3

FIG. 7. Partial corner plot using the “5.5PN” and “4.5PN” re-
covery models, as well as the enhanced model with a “4.5PN”
order base and the two priors (IG and SWU). All partial cor-
ner plots are marginalized over the parameters not shown in
the figure. In particular, the enhanced “4.5PN” model are
marginalized over the higher PN order terms introduced. The
upper left and lower right panels contain the one-dimensional
PDFs for chirp mass M and mass ratio q, respectively, and
the lower left panel depicts the 90% credible region contours,
with the injection values are indicated in black. Observe that
the enhanced models remove the systematic bias introduced
by the plain “4.5PN” model, at the cost of enlarging the width
of the posterior probability distribution when the range of σ̄3,4

is assumed unknown (the SWU prior).

With all of this in mind, let us now consider a par-
ticular example. Let us focus on the “4.5PN” recov-
ery model, because the analyses of the previous section
demonstrated that this model leads to the largest sys-
tematic biases relative to statistical error for both the
equal and unequal mass injections. Let us then enhance
this “4.5PN” recovery model with two ignorance terms,
one at “5PN” order (controlled by a new parameter σ̄3)
and one at “5.5PN” order (controlled by a new parame-
ter σ̄4). For the priors on σ̄3 and σ̄4, let us consider two
cases:

• Informed Gaussian (IG): We collect samples
on q produced during the recovery done with the
“5.5PN” model. We then substitute these q sam-
ples into the σ3(q) and σ4(q) functions (defined in
the IMRPhenomD model through the fitted polyno-
mial ansatz) to produce two-dimensional distribu-
tions in (σ3, σ4). We use these distributions to fit
a two-dimensional correlated Gaussian, and we use
these Gaussian distributions as the priors on σ̄3 and
σ̄4.

• Super Wide Uniform (SWU): With the prior
bounds on q ∈ [1/8, 1], we infer upper and lower

prior boundaries on σ̄3 and σ̄4 via σ̄
max/min
3,4 =

σ3,4(qmax/min). With this in hand, we then assign
uniform and uncorrelated priors inside that range.

While the IG prior is fully informed by the knowledge of
the higher PN order terms, the SWU is much more re-
laxed. The way we have constructed the SWU prior does
use knowledge of the higher PN order terms, but this is
only a matter of convenience here. We could have, in-
stead, used a completely agnostic approach by requiring
that each σ̄i term be smaller than the one preceding it.
Such an assumption is applicable when considering in-
spirals, which can be modeled as PN series. We already
demonstrated in Fig. 2 that the terms in the phenomeno-
logical part of the IMRPhenomD phase obey this require-
ment well. Therefore, the SWU prior ends up producing
a prior that is very similar to what one would find with
the agnostic approach just described.

With this enhanced recovery model defined, we then
carry out a Bayesian parameter estimation analysis for
the unequal mass signal injection at SNR=80, the re-
sults of which are summarized in the partial corner plot
of Fig. 7. The upper left and lower right panels rep-
resent the one-dimensional marginalized posterior prob-
ability distributions on M and q respectively and the
lower left panel depicts the 90% credible region contours
of the marginalized two-dimensional posterior probability
distributions. Let us compare the posterior probability
distributions from the analyses done with the “5.5PN”
recovery model, the standard “4.5PN” recovery model,
and the enhanced “4.5PN” recovery model with the IG
and SWU priors described above. Observe that the en-
hanced recovery model removes the systematic bias of
the “4.5 PN” model. Observe also that the use of the IG
prior preserves the width of the posterior probability dis-
tribution, while the SWU increases this width, therefore
increasing the amount of statistical uncertainty. This is
as expected because the IG prior uses knowledge of the
higher PN order terms that is not truly accessible, while
the SWU prior models this ignorance at the cost of a
wider posterior probability distribution. This analysis
provides a proof of principle that the method proposed
to marginalize over our ignorance in our models can pro-
duce much more accurate recovered parameters at the
cost of more statistical error.
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VI. DISCUSSION

In this paper, we have presented an injection and re-
covery campaign performed to understand how system-
atic error is impacted by PN corrections to the phase of
the gravitational waves emitted in the quasi-circular in-
spiral portion of black hole binary coalescence. We have
considered injected data of equal and unequal mass, non-
spinning black hole binaries for a selection of SNRs and
recovered with models truncated at different PN orders
in the IMRPhenomD phase. We have shown that even trun-
cation at “5PN” order can lead to systematic error that
dominates over statistical error at SNRs expected in the
next observing runs of current detectors. This does not
necessarily indicate that the IMRPhenomDmodel contains
these errors, because the fits that produced the higher PN
order terms of this model were done assuming the model
would never be truncated at a given PN order. However,
our results demonstrate the importance of these higher
order corrections for accurate parameter estimation.
An important reminder that arises as a consequence

of our work is that both the IMRPhenom and the EOB
waveformmodels used in gravitational wave data analysis
to date carry uncertainties even in the inspiral phase due
to fits of certain (unknown high PN order) parameters.
These fits are not perfect and carry both statistical error
(due to the finite size of the “data” the models are fit to)
and systematic error (due to the finite accuracy of the
“data”). To date, these errors are not accounted for in
parameter estimation, and could, in principle, affect pa-
rameter inferences for sufficiently high SNR events. Our
work suggests that this systematic error need not only be
relevant to observations with third-generation detectors,
but they could already influence parameter inferences in
the next observing runs with current detectors.
In an initial attempt to tackle this issue, we here pro-

pose a method to ameliorate the impact of systematic un-
certainties in parameter estimation. Our proposal relies
on the idea of creating a model to characterize our igno-
rance in the waveform and then to marginalize over it. In
the inspiral phase, this can be done by promoting the fit-
ting coefficients of IMRPhenom and EOB models to new
waveforms parameters (with priors set by the posterior
probability distributions obtained in the fit) and by in-
troducing higher PN order terms that capture terms not
included in the waveform model. We have shown that
this method can all but remove the systematic error in-

troduced by truncating the inspiral phase at a fixed PN
order, at the cost of widening the posterior probability
distribution, and thus, increasing the statistical uncer-
tainties.

The work presented here opens several opportunities
for further work. One such opportunity would be to in-
vestigate the inclusion of the fitting parameters of IM-
RPhenom and EOB models in parameter estimation, as
described above. This would probably require re-doing
the fits to numerical relativity simulations to account for
(i) a larger set of such simulations and (ii) the finite accu-
racy of the simulations (with error estimates taken from
the simulations themselves). Once these fits are re-done,
the posterior probability distributions on the fitting pa-
rameters could be modeled through a multi-dimensional
Gaussian or a kernel density estimator to prescribe priors
for the fitting parameters in future parameter estimation
studies. Another opportunity for future work would be to
consider the impact of different (higher PN order) phe-
nomenological functions when fitting against numerical
relativity simulations in the inspiral. Ideally, the degree
of the polynomial to be fitted would be determined by
the information content of the numerical relativity sig-
nal, and the inherent numerical error in the simulations.
The promising results of our proposed method to ame-
liorate systematic error presented here suggests that our
ignorance of higher PN order terms (which will always
exist, at any given finite PN order) is likely to not hinder
future parameter inferences and the potential of gravita-
tional waves to learn about astrophysics and fundamental
physics.
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[4] A. Bohé et al., Phys. Rev. D 95, 044028 (2017),
arXiv:1611.03703 [gr-qc].

[5] A. Nagar et al., Phys. Rev. D 98, 104052 (2018),
arXiv:1806.01772 [gr-qc].

[6] S. Ossokine et al., Phys. Rev. D 102, 044055 (2020),
arXiv:2004.09442 [gr-qc].

[7] S. Husa, S. Khan, M. Hannam, M. Pürrer,
F. Ohme, X. Jiménez Forteza, and
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