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Abstract— Human gait is quite complex, especially when
considering the irregular and uncertain environments that
humans are able to walk in. While unperturbed gait in a
controlled environment is understood to a large degree, gait
in more unique environments, such as asymmetric compliant
terrain, is not understood to the same degree. In this study, we
build upon a neuromuscular gait model and extend it to allow
for walking on unilaterally compliant (soft) surfaces. This model
is then compared to and verified by experimental human data.
The model can successfully walk with step length trends similar
to human data. Additionally, the model shows similar behaviors
with respect to kinematics and muscle activity. We believe
this work contributes significantly to a better understanding of
the control of human gait and could lead to model-informed,
patient-specific rehabilitation strategies that can advance the
field of rehabilitation robotics, as well as the development of
bio-inspired controllers for bipedal robots that would be able
to traverse through dynamic and complaint terrains.

I. INTRODUCTION

Locomotion is nearly vital for human life, and the most
common mode of human locomotion is walking. The average
American takes about 5000 steps per day, equaling around
2.5 miles, but studies have shown individuals with active
jobs walk much more [1, 2]. As walking plays both an
important and frequent role in human life, understanding and
modeling the control of gait is of high importance. Gait in
a controlled environment with level, rigid ground, and no
external perturbations is alone quite complicated and does
not accurately simulate all the difficulties of traversing in
the real world. In order to develop effective rehabilitation
strategies for paretic gait and controllers for more capable
bipedal robots, we must seek to understand and model the
control of gait in a variety of environments.

Although the control of human gait is understood to a
degree, most of our knowledge on gait makes the assumption
of a rigid walking surface. While gait on compliant surfaces
has indeed been investigated, it has not been examined
to the same degree [3–5]. More specifically, understand-
ing and modeling the human response to unilateral low-
stiffness environments can offer a unique window into the
understanding of the control of human gait. This is due to
these environments directly affecting inter-leg coordination, a
process of utmost importance in human gait [6]. Moreover,
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it has been recently shown that walking in unilateral low-
stiffness environments evokes responses to the contralateral
leg that are mediated through supraspinal pathways [7–9].
While one-step unilateral low stiffness perturbations have
been adequately described by a previous model [10], steady
state gait in unilaterally compliant environments has not yet
been modeled to the level of accuracy needed to explain
human gait in those environments.

We believe that understanding and modeling gait in this
unusual environment could lead to advances in two main ap-
plication areas: rehabilitation of paretic gait and development
of controllers for bipedal robots. As pertains to rehabilitation,
interlimb coordination plays an important role in post-stroke
gait as patients are often left with hemiparesis, the weakening
of one side of the body [11, 12]. The asymmetric physical
difficulties from stroke frequently make it difficult for the
legs to properly work together and keep an individual bal-
anced and upright. The ability to accurately model human
gait on unilaterally soft terrain would be extremely beneficial
to rehabilitation in this area, possibly allowing for patient-
specific rehabilitation and treatment. This is supported by our
recent work, which revealed that repeated unilateral stiffness
perturbations lead to lasting aftereffects once the perturba-
tions have ceased [13]. The main functional aftereffect shown
in our study, overall step length increase, is supported by
muscle activity data and appears to be quite useful for stroke
rehabilitation.

Additionally, the development and control of bipedal
robots would greatly benefit from a proper understanding and
the capability to accurately model gait on unilaterally soft
surfaces. As the goal for bipedal robots is to be robust enough
to travel across all terrains, understanding and modeling gait
in this unique circumstance is valuable. Currently, bipedal
robots are being equipped to detect different terrains and their
stiffness values with onboard sensors [14–16]. While slow
gait across moderate stiffness terrains is possible, significant
progress still needs to be made to allow for smooth and
efficient gait across soft terrains [17]. Furthermore, to the
best of our knowledge, unilaterally soft environments have
yet to be explored in bipeds. Having a comprehensive three-
dimensional gait model capable of accurately simulating
walking on this terrain would be greatly beneficial for this
field of work.

In this paper, we build upon an existing neuromuscular
gait model [18] and expand its functionality to describe
walking in a unilaterally soft environment. The resulting
model was validated by comparing its generated functional,
kinematic, and muscle activity data to real experimental



Fig. 1. Neuromuscular gait model successfully traversing across unilaterally
soft ground. Sand patches are simply used to illustrate the difference in
stiffness between the ground and the left and right feet. While only a brief
portion is shown, the model remained upright and walked in a straight line
for 50 seconds in this condition. On average this amounted to 50 steps
with each leg. Joints and contact points can be seen in blue and green,
respectively. All 11 muscles can be seen on each leg, with the four that are
analyzed in this paper in a darker shade of red.

human data collected in a similar environment. We show
that the proposed model can explain quite accurately the
human data at both a kinematic and muscle activation level in
this unique walking environment. This proper understanding
and accurate modeling of human gait in this environment
will directly allow for better control of bipedal robots in
comparable terrains. Additionally, since this asymmetrically
soft environment has been suggested to be useful for the
rehabilitation of paretic gait, the ability to accurately describe
with this model the human response at both a kinematic
and neuromuscular level could allow for advances in model-
informed, patient-specific rehabilitation strategies in the fu-
ture.

II. METHODS

A. Overview

In this study, we built upon the neuromuscular gait model
developed by Song and Geyer [18], enabling it to describe
the complex condition of walking on unilateral low-stiffness
ground. The data produced by this model is compared to
human data collected in the same environment, consequently
validating the model in this particular scenario.

B. Model Description

The three-dimensional neuromuscular human gait model,
developed by Song and Geyer, is used in this study [18]
(see Fig. 1). This model is comprised of 7 total segments:
the trunk, as well as left and right thighs, shanks, and feet.
These segments take on inertial and geometric properties that
are estimated from human data. Also, these segments are
manipulated with 22 Hill-type muscle-tendon units, 11 for
each leg [19]. All of the segments are connected by revolute
joints. These joints are 2 degrees of freedom (DoF) at the
hips and 1 DoF at the knees and ankles. This model interacts
with the environment through 4 contact points on each foot.
These contact points represent the medial ball, lateral ball,
medial heel, and lateral heel of each foot [18].

This gait model is controlled through two main layers: the
supraspinal layer and the spinal layer. First, the supraspinal
layer makes big-picture decisions, such as calculating desired
foot placement at heel strike, setting a desired target trunk
angle to be maintained throughout an entire walking trial,
and setting a desired maximum height the foot should be
lifted off the ground during swing phase to avoid toe drag.
Additionally, the supraspinal layer decides when a leg should
transition from stance phase to swing phase, ending the
double support phase of gait. The spinal layer then takes
the information from the supraspinal layer and executes 10
reflex modules, 5 for the stance phase and 5 for swing phase.
These 10 modules are (from heel strike to heel strike): realize
leg at heel strike, prevent knee over-extension, balance the
trunk, compensate for swing leg torques, plantarflex the ankle
during push-off, swing the hip forward to begin the swing
phase, flex the knee to avoid toe drag, hold the knee in this
flexed state, stop the leg from swinging once the target foot
placement location is approaching, and hold the leg over
this location until heel strike occurs [18]. Evaluating these
10 reflex modules results in the stimulation of the 22 muscle-
tendon units which then activate to generate motion in the
model.

At a more general level, the model is calibrated for
different environments using 82 control parameters. These
parameters act as gains that modulate how the above modules
and processes are completed. These parameters will be
discussed in more detail below as they were used to extend
and calibrate the model to the two environments in this study
(rigid and unilaterally compliant). For more details on the
model, see previous works [18, 20, 21].

C. Model Calibration and Initialization

For this study, the neuromuscular gait model is calibrated
for and walks in two different environments: rigid and
unilaterally compliant. For the rigid condition, the stiffness of
the interaction between both feet and the ground is 1 MN/m,
which represents walking on a hard surface such as concrete.
For the unilaterally compliant condition, the stiffness of the
interaction between the model’s left foot and the ground is
45 kN/m, which is considered to be similar to walking on
a soft yoga mat. This was chosen to best fit the Variable
Stiffness Treadmill (VST), the main tool used for the human
experiment, discussed below. The interaction with the right
foot and the ground for this condition remains rigid (stiffness
of 1 MN/m). For both conditions, the model was given a
desired forward walking speed of 120 cm/s.

D. Model Optimization

The model is programmed in MATLAB (Mathworks,
Inc.) using Simulink SimMechanics and the ode15s solver
function. Optimization of the 82 control parameters de-
scribed above was completed using the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) method [22]. A
population size of 64 (the number of trials in each gener-
ation) was evaluated over 100 generations, resulting in a
total of about 6400 trials per optimization run. Each trial



was 20 seconds long unless the model fell over, in which
case the trial was stopped early. A standard deviation of
0.05 to 0.4 was used to describe the search window for each
parameter. Additionally, when appropriate, upper and lower
bounds were used for individual parameters to prevent mean-
ingless solutions from being found. With an 82-dimensional
parameter space, initial conditions are extremely important,
as falling into undesirable local minima may easily occur.
Because of this, initial guesses for each parameter were
chosen very carefully based on experience and the related
literature. If the optimizer found a working solution for the
desired environment, that “best solution” was often used as
the initial condition for follow-up optimization runs.

For the condition of rigid ground for both legs, 82 control
parameters were used. Seven of these parameters are used
to adjust foot placement control, 4 are for transitions from
stance to swing and swing to stance phases, 40 are for stance
reflex modules, and 31 are for swing reflex modules. For
the unilaterally soft condition, 83 control parameters were
used. An additional parameter was added, allowing the model
to control left and right step lengths more independently.
This was done in response to the human data, which will
be discussed below. For more information on these control
parameters, see previous works and the accompanying model
MATLAB code [18, 23].

The cost function used for this optimizer is comprised of
three tiers. Once a certain condition is met, the cost function
switches to a lower tier resulting in a lower cost function
value (J). More specifically, the cost function initially at-
tempts to keep the model upright for the entire 20-second
trial. If this is achieved, the cost function then aims to have
the model converge to steady walking in the final six steps
of the trial. If this is accomplished, the final tier of the cost
function attempts to match the desired velocity, minimize
energy usage, and match step length trends from human data
for the last four steps with each leg. This cost function is
very similar to the cost function found in Song & Geyer’s
study, with a few modifications and additions [18]. The cost
can be seen explicitly and is explained in more detail below:

J =



2c0 − xf , if fall

c0 + dS , if non-steady walking

a

n∑
i=1

|vtgt − vi|

+ CE + 10c0se

, if steady walking

(1)

where |b| is the Euclidean norm of b, c0 = 1000 is a constant
parameter, xf is the distance walked before falling, dS is a
numeric representation of steadiness in the last six steps of
the trial (discussed more below), a = 0.0025 is a constant
parameter, i is the time step counter, n is the total number
of time steps, vtgt is the two-dimensional desired velocity
of [1.2, 0]T (in the horizontal plane), vi is the instantaneous
center of mass velocity at each time step i, CE is the energy
expended (discussed more below), and se is the step length
error (discussed more below).

Steadiness in the final six steps is calculated using the
summed differences of the three-dimensional Cartesian po-
sitions of the hip and knee joints relative to the ankle at
heel strike. For example, on the third to last left heel strike,
the position of the left hip is found with respect to the left
ankle. This is repeated for the last two left steps as well,
then the average of these three positions is found. The hip
coordinates for each of the last three steps is then subtracted
from the average, the absolute value is taken, and then all
three are summed together and the Euclidean norm is taken.
This process is also duplicated for the left knee, right hip,
and right knee. The results of all four processes are then
summed to obtain a single value that estimates steadiness.
This can be seen explicitly below:

dS = dL + dR (2)

where

dL =
∑3

j=1

∣∣xh/a
L,j − x̄

h/a
L

∣∣+∑3
j=1

∣∣xk/a
L,j − x̄

k/a
L

∣∣
dR =

∑3
j=1

∣∣xh/a
R,j − x̄

h/a
R

∣∣+∑3
j=1

∣∣xk/a
R,j − x̄

k/a
R

∣∣ (3)

where j represents the step counter that takes into account the
last three steps with each leg, xh/a is the three-dimensional
Cartesian coordinates of the hip with respect to the ankle,
xk/a is the three-dimensional Cartesian coordinates of the
knee with respect to the ankle, x̄ is the average three-
dimensional Cartesian coordinates of the hip and knee with
respect to the ankle, and L and R denote the left and right
legs respectively. If dS is below a certain value, the model’s
walking is denoted as “steady,” and the third tier of the cost
function is evaluated.

Energetic cost is calculated by first finding the area under
the activation vs. time curve for each muscle. This value
is then multiplied by the maximum force each muscle is
capable of producing. All muscles are summed together and
this value is divided by the mass of the model times the total
distance the model traveled. This can be seen below:

CE =

∑22
k=1 Fmax,k

∫ tf
0

Ak dt

m xf
(4)

where k represents each of the 22 muscles in the model,
Fmax,k is the max force of each muscle, tf is the total time
of the trial, Ak is the muscle activation (from 0 to 1), m is
the mass of the model, and xf is the total distance traveled.

The step length deviations le and re for the left and right
legs respectively are simply the squared difference between
desired step length and actual step length for the last four
steps with each leg. Desired step lengths for left and right
legs are equal for rigid ground and different for unilaterally
soft terrain (to mimic human data, see below). Those step
length deviations are then added to obtain the total step
length error:

se = le + re (5)

where
le =

∑4
m=1(LSL − cL)

2

re =
∑4

m=1(RSL − cR)
2 (6)



Fig. 2. Subject walking on the VST equipped with electromyographic
(EMG) sensors and reflective markers for motion capture. The body weight
harness can be partially seen around the subject’s torso.

Fig. 3. VST simulating a unilateral low stiffness environment. The left belt
(blue) is set to 45 kN/m and the right belt (red) is set to rigid (1 MN/m).
As the left leg steps on the compliant belt, the belt deflects vertically due
to its reduced stiffness.

where m represents the step counter for the final four steps
with each leg, LSL is the left step length of the model, RSL

is the right step length of the model, and cL, cR are the
desired step lengths respectively. For rigid, they were set to
cL = cR = 0.62, while for unilaterally compliant, they were
set to cL = 0.63 and cR = 0.68. These values were selected
based on trends seen in the human data discussed below.

E. Human Experiment

The human experiment was performed on the Variable
Stiffness Treadmill (VST), which is our unique, split-belt
robotic treadmill (see Fig. 2) [13]. The VST has the capa-
bility of reducing the vertical stiffness of the left belt, while
the right belt remains rigid (see Fig. 3). This can simulate
interesting environments, such as walking with one foot on
sand, and the other on concrete. For more information on the
VST, see our previous works [24, 25].

Eight healthy subjects participated in this study [13].
Mirroring the experiment with the model, this experiment
had two main sections: walking on rigid and walking on
unilaterally compliant surfaces. In the rigid phase, subjects
walked for 100 gait cycles with both sides of the treadmill set
to rigid (i.e. normal treadmill walking). This rigid stiffness is
estimated to be 1 MN/m on the VST. During the unilaterally
compliant section of the experiment, subjects walked for 400
gait cycles with the left side of the treadmill set to 45 kN/m
and the right side of the treadmill still set to rigid. The
unilaterally compliant phase is much longer, as subjects take
longer to acclimate themselves in this unusual environment.

The goal of this study is to observe the steady-state gait that
is produced in each of these environments. In other words,
we are not interested in the transient effects that may occur
as the subjects adapt to walking on each surface. Therefore,
this study will only focus on the steady-state gait that is
achieved at the end of each of the two sections. Particularly,
only the last 30 gait cycles of each phase will be considered.
Note that the value of 30 gait cycles was chosen to isolate
data that has converged to a steady state while maintaining
enough data points to draw conclusions.

During this experiment, subjects were equipped with 22
reflective markers used for motion capture. Additionally,
subjects wore four electromyographic (EMG) sensors on
each leg to measure the muscle activity of their tibialis
anterior (TA), gastrocnemius (GA), vastus medialis (VA),
and biceps femoris (BF). While each subject wore a support
harness when walking on the VST, this harness was not
offloading any of the subject’s weight. The harness was only
for safety precautions and no subject was forced to rely on
it during any trials (see Fig. 2). Each subject selected their
own walking speed from the options of 80, 85, and 90 cm/s
which is deemed comfortable for walking on the VST. Note
that these walking speeds are slower than the walking speed
of the model. This is due to the model being taller than all
human subjects. More details about the experiment and the
data pre-processing can be found in our previous study [13].

III. RESULTS

The goal of this study is to show that the proposed
neuromuscular (NMS) gait model can accurately simulate
human walking in a unilaterally soft environment. This will
be validated at a functional, kinematic, and muscular level in
order to prove that the model is an adequate representation
of human motor control during walking in this environment.

One important objective of the model is reaching steady-
state walking as human subjects did. Although the model
was optimized for a 20-second trial, when tasked with a 50-
second trial, the model succeeded in converging to a steady
state solution, proving its ability to continue past the bounds
it was optimized for (see Fig. 4). This is seen as the step
lengths remain steady for the 30 steps plotted in Fig. 4.

Regarding model validation, it must be noted that what is
important when validating the responses of the model against
the human experimental data is not the absolute values,
but the trends found when comparing data from unilaterally
compliant and rigid environments. This is analyzed in the
next subsections. Additionally, for all results, the unilaterally
compliant environment will be compared to the rigid envi-
ronment. In other words, stating an “increased activation”
for a particular muscle is describing a higher activation for
that muscle in the unilaterally compliant scenario than that
in the rigid scenario.

A. Functional Outcomes

At the simplest level, the model simulates human walk-
ing accurately. First, this complex 3D gait model is able
to stay upright and achieve consistent, steady locomotion.



Fig. 4. Step length data for human subjects (left) and the NMS model
(right) in both rigid and left side compliant environments. Step length was
measured as the distance between ankles at left or right heel strike. Human
data is the last 30 steps averaged between all eight subjects. Model data is
simply the last 30 steps for a single trial for each environment. Unfiltered
data is seen for both the model and the human in the lighter lines. Darker
lines represent smoothed data using 2nd degree polynomial local regression.

Additionally, as seen in Fig. 4, the model displays similar
step length trends in the unilaterally compliant scenario as
compared to the rigid scenario. While step length was part of
the cost function, it is still notable that the model successfully
traverses this challenging environment with the prescribed
“human” trend of asymmetric increased step length. Compar-
ing the human and model numerically, the human data shows
a 1.97% increase in left step length and a 3.55% increase in
right step length, while the model shows a 3.79% increase in
left step length and a 12.02% increase in the right step length.
Again, while numerically these increases are not equivalent,
the correct trend can be seen in the model when compared
to human data: an increase in left step length, and a larger
increase in right step length.

B. Kinematics

Regarding kinematics, the model simulates the human data
well, following most of the trends seen. Note that only the
hip and knee flexion-extension angles throughout the gait
cycle will be examined. The ankle joint will not be discussed
since the model’s ankle kinematics have a poor correlation
to human data on rigid ground. This is one of the major
shortcomings of this model [18]. Also, note that we are
defining a gait cycle from left heel strike to the following
left heel strike. All data is normalized in this fashion.

As shown in Fig. 5, for the left hip, little to no separation
is seen in the human data between the rigid and compliant
cases. This pattern is emulated in the model fairly well. For
the right hip, however, delayed flexion can be seen in the
human data during right swing. The model shows a very
similar response. This delayed flexion contributes toward the
large increase in step length on the right side. Waiting longer
in the gait cycle to swing the hip forward allows the distance
between ankles to increase prior to heel strike.

Similarly, as shown in Fig. 5, the left knee in the human
data displays both increased flexion in early left stance and
delayed and increased flexion in left swing. Both of these

features are clearly simulated in the model. For the right
knee, the model matches the delayed and slight increase
in flexion during right swing as seen in the human data.
Increased flexion during swing can also help contribute to
producing a larger step length. Increased knee flexion reduces
the moment of inertia of the leg, allowing it to be swung
farther forward with reduced effort [26]. In summary, the
model was able to predict changes in kinematics when
comparing the rigid and unilaterally compliant conditions,
which agree with changes observed in human data.

C. Muscle Activity

For understanding human motor control in the studied
environments, it is important that the model generated muscle
activations that resemble those seen in human data. It was
seen that the model mimics human muscle activity trends and
timing well in this unique environment (see Fig. 5). While
a few of the muscles observed do not match entirely, this
was expected. A similar level of correspondence can be seen
in previous works for other simpler environments [18, 21].
Additionally, multiple muscle activation signals saturate to a
maximum activation level. This will be further addressed in
future studies.

While the model’s activation timing appears to be accurate
in the left TA, the model does not match the magnitude trends
seen in the human data very well. This appears to be due
to an overall lack of activation variance in the rigid trial for
the model. For the right TA, an increased activation can be
seen soon after right toe-off and after right heel strike in the
human data. This can also be seen in the model. While the
model doesn’t show a decreased activation during mid-swing
of the right leg, it does show a decreased activation soon after
the initial left heel strike, as seen in the human data. The left
GA of the model successfully simulates the major feature
seen in this muscle in the human data: an increased and
delayed peak during late stance of the right leg. Additionally,
the model correctly shows the increased activity in late left
swing (90% to 100%). This increased activation prior to
left toe-off most likely causes a greater push-off force and
contributes to the increased step length seen in the left leg.
The right GA of the model shows increased activation before
right toe-off, as is also seen in the human data. The model
does not, however, show a higher peak after left toe-off. This
is due to the muscle on the model being saturated at 100%.
Again, this increased activation prior to right toe-off likely
helps produce an increased step length. Similarly, the left
VA of the model does not show higher activation in early left
stance. Again, the model data becomes saturated at that point.
The model does however increase the muscle activity earlier
in the gait cycle for the left VA, mimicking the human data.
The same trend is seen with the right VA. Due to saturation,
the model cannot display a higher peak around 50% to 60%,
but it does show an earlier increase, therefore increasing the
overall work done by the right VA during early right stance,
just as the human data shows. This increased activation seen
in the left and right VA could be a response to an increased
step length. With the heel strike occurring farther forward,



Fig. 5. Kinematic and muscle activity data from human subjects (left) and the proposed NMS model (right) in two environments: rigid (blue) and
unilaterally compliant (orange). Hip and knee kinematic data are shown in the first two rows. Muscle activity data is shown in the last four rows, and it
is displayed in percent activation, normalized with respect to a maximum activation value. For the human data, the last 30 gait cycles of the rigid and
unilaterally compliant phases for a representative subject were averaged and plotted. For the model data, the last 30 steps were averaged for a single trial
in each environment. Standard deviations can be seen in shaded areas. Note that standard deviation areas are in every plot, even though some are too small
to clearly see. Gait cycles are sectioned from left heel strike (LHS) to left heel strike, so this occurs at 0 and 100%. In this order, right toe-off (RTO),
right heel strike (RHS), and left toe-off (LTO) are shown on average for each environment for the human and model data as vertical dashed lines.

the knee is more susceptible to buckling, and the VA may
activate more to keep the knee stable. For the left BF, very
similar trends are seen in the model and human data during
late left swing and early left stance. Both the model and
human data show an increased activation and nearly zero
activation for the rest of the gait cycle. Likewise, for the
right BF, the same results are seen. The model successfully
mimics the major feature of the human data: an increased
activation around right heel strike. Again both the human
and the model show nearly zero activation otherwise. In
summary, the proposed model succeeds in capturing not only
the profiles of human muscle activations but also the changes
in these activations observed when comparing the unilaterally
compliant environment to the rigid environment.

IV. CONCLUSIONS

This study presents a neuromuscular gait model that has
been adapted to accurately simulate human locomotion on
unilaterally compliant terrain. Through the comparison with

experimental human data, this model is validated, as both
human and model data show many of the same trends
when walking on unilaterally soft ground as compared to
rigid. Therefore, the adapted model can describe functional,
kinematic, and muscle activation changes seen in similar
experiments with humans. This is an important contribution
to modeling and characterizing human gait motor control in
complex environments, which can lead to advances in two
main fields. First, we believe this model could be quite useful
for stroke rehabilitation, as unilateral stiffness perturbations
have shown promise to correct common issues found in
hemiplegic gait. Being able to accurately model the human
response to those perturbations could lead to patient-specific
treatments. The next step in developing this model for further
use in rehabilitation is to check the model’s accuracy in
different environments. Second, the knowledge gained from
this model could lead to the development of bio-inspired
controllers for bipedal robots, giving them the ability to
traverse through dynamic and complaint terrains.
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