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Abstract

With the rapid proliferation of connected vehicle technologies, large-scale telematics data enable a high-

resolution inference of road network’s safety conditions and driver behavior. Although many researchers have

investigated how to define meaningful safety surrogates and crash predictors from telematics, no comprehen-

sive study analyzes the driver behavior derived from large-scale telematics data and relates them to crash

data and the road networks in metropolitan cities. This study extracts driver behavior indices (e.g., speed,

speed variation, hard braking rate, and hard acceleration rate) from large-scale telematics data, collected

from 4,000 vehicles in New York City five boroughs. These indices are compared to collision frequencies and

collision rates at the street level. Moderate correlations were found between the safety surrogate measures

and collision rates, summarized as follows: (i) When normalizing crash frequencies with traffic volume,

using a traffic AADT model, safety-critical regions almost remain the same. (ii) The correlation magnitude

of hard braking and hard acceleration varies by road types: hard braking clusters are more indicative of

higher collision rates on highways, whereas hard acceleration is a stronger hazard indicator on non-highway

urban roads. (iii) Locations with higher travel times coincide with locations of high crash incidence on

non-highway roads. (iv) However, speeding on highways is indicative of collision risks. After establishing

the spatial correlation between the driver behavior indices and crash data, two prototype safety metrics are

proposed: speed corridor maps and hard braking and hard acceleration hot-spots. Overall, this paper shows

that data-driven network screening enabled by connected vehicle technology has great potential to advance

our understanding of road safety assessment.
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1. Introduction1

Road infrastructure in metropolitan cities has dynamically developed to meet the needs of growing2

traffic and mobility. However, a substantial increase in traffic has resulted in a growing number of accidents3

and fatalities (Rodrigue, 2017). Therefore, city planners and policy makers have endeavored to monitor4

unsafe areas for motor vehicles, pedestrians and bikers. According to the U.S. Department of Transportation5

Federal Highway Administration (2016), the first step in the roadway safety management program is network6

screening, which mostly cuts down the list of hot-spots to a manageable list. Planners select a performance7

measure for analyzing the safety performance of each site. The most common safety performance measure is8

historical collision data. Improvement interventions are classically implemented at locations that historically9

had a relatively high frequency of collisions. However, existing collision databases are prone to have errors,10

omissions (Stipancic et al., 2018b) and underreporting (Kockelman & Kweon, 2002). Moreover, collision11

data are relatively of small sample sizes (Lord, 2006). Therefore, city planners are shifting towards adopting12

larger objective performance data when making improvements to road design and signalization. Mobile13

sensing has expanded to many application domains, such as intelligent transportation systems that offer14

major implications to the traffic engineering community (Amin et al., 2019). Traffic sensing infrastructure15

evolved from the use of fixed radars and manual collection to the use of inductive loop detectors, video16

cameras and on-board diagnostic devices mounted on the vehicles. New technologies have made the data17

collection task simpler and cost efficient (Eren et al., 2012).18

Telematics sensors are currently being installed in many vehicle fleets, enabling, through their real-19

time and wide coverage, data-assisted traffic management and safety assessement. they include important20

vehicle-centric data, collected from extra sensor modules (e.g., On-Board Diagnostics (OBD-II)), able to21

obtain engine speed, Time-to-Collision (TTC), hard braking and acceleration events, in addition to GPS22

data. The data are then uploaded to storage servers (?) via continuous cellular connection (Rémy et al.,23

2012) or delayed Wi-Fi connection (Ramamoorthy et al., 2014). Several driver behavior indices can be24

derived from the OBD-collected data and have been used in the literature as safety surrogates. But to the25

best of the authors’ knowledge, there has been no comprehensive study of driver behavior analytics and their26

spatial relationship with crashes, based on large-scale telematics data, crash data, and complex urban road27

network. Cai et al. (2020) studied the correlations between high-incidence locations for aberrant driving28

behaviors and locations of road traffic accidents based on vehicle OBD data. However only selected arterials29

and avenues from a mountainous city are considered. Also, the driving behavior data is recorded as a string,30
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for instance a hard acceleration event is reported as “Rapid acceleration” instead of a g-value. Yannis et al.31

(2016) propose monitoring driver traffic and safety behavior through OBD data, by focusing on the causality32

between harsh driving and probability of an accident, rather than on the spatial relationship between the33

two variables. Similarly, Ellison et al. (2015) introduce driver behavior profiles as an approach for evaluating34

driver behavior as a function of the risk of the casualty crash. The data is collected using GPS devices,35

which are prone to excessive noise.36

For a performance measure to serve as a safety surrogate, it should be correlated with the outcome:37

collision frequency and collision rate in our context (Tarko et al., 2009). The main focus of this work is to38

understand the existence or absence of spatial correlation between the proposed safety surrogate measures39

and crashes, and not on inferring the causality between the two. Thus, this research work examines the40

direction and magnitude of the spatial correlation between driver behavior indices (speed, speed variation,41

hard braking rate, and hard acceleration rate), and collision data (i.e., absolute collision counts, and collision42

rate normalized with respect to traffic volume). The driver behavior indices are derived from real-world big43

telematics data, for the 2015-2016-year period, collected from in-vehicle sensing devices, mounted on 4,50044

city-owned vehicles, in the New York City area. The vehicles are managed by the New York City Department45

of Citywide Administrative Services (NYC DCAS). Only the light-duty vehicles were considered in this study,46

to better represent the normal public driving population. A map-matching engine developed by the authors47

in Alrassy et al. (2019) was used to match the telematics data to the road segments. This study validates48

that the telematics data represent the general population traffic patterns, by comparing the OBD-II speeds49

with spot speeds radar data.50

This work contributes to the existing literature from four angles: methodology, data quality, application,51

and findings. The behavioral big data are unique in terms of the road network type (New York city dense52

road network) and road network wide coverage (analysis carried across the entire city). Unlike the current53

research work, which mostly relies on GPS data to estimate speed, hard acceleration and hard deceleration54

parameters are recorded directly from the CAN bus through the OBD-II connection. To the best of the55

authors’ knowledge, no comprehensive study analyzes the differences of driver behavior indices as safety56

surrogate measures both on highways and in dense urban network. Few studies focus on understanding the57

spatial relationship between harsh driving and collisions, but rather focus on the causality between the two58

variables. This paper highlights several key findings: (i) When normalizing crash frequencies at intersections59

with exposure, hot regions almost remain the same. (ii) The correlation magnitude of hard braking and60

acceleration varies by road type: hard braking is more indicative of collision rates on highways than hard61
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acceleration, whereas hard acceleration is a stronger safety indicator than hard braking in dense urban62

roads. (iii) The correlation direction of speed changes also by road type. Longer travel times (i.e., lower63

mean speed values) may be linked to crashes in dense urban roads. However, high speeding on highways is64

more indicative of collision risks.65

The remainder of this paper is structured as follows: Section 2 provides an overview of the network66

screening methods and correlation studies of safety surrogate measures with observed crash data. Section 367

describes the data and processing methods, as well as extraction of driver behavior indices, and presents68

two safety metrics derived from the safety surrogate measures. Section 4 presents the correlation results.69

Section 5 discusses the results and future research directions. Finally, conclusions are provided in Sections 6.70

2. Literature Review71

Johnsson et al. (2018) list the requirements for an “ideal” surrogate safety measure (SSM): An SSM72

should reflect collision and injury risks in different settings, should have robust validity through measuring73

the correlation magnitude for instance, and should be reliable and replicable to produce an accurate result74

irrespective of the setting. A regression analysis has been the most common approach to study the validity of75

SSM (Zheng et al., 2014). However, Davis et al. (2011) outline the SSM-crash relationship as a probabilistic76

model that computes the probability of a crash given a set of non-crash events. Zheng et al. (2014) state77

the need for more sophisticated approaches, such as extreme value theory (EVT) for road safety analysis78

because of its power to identify the likelihood of extreme events from a short period of observations and that79

is the intent of SSMs. Machine learning techniques have also been used for network screening and collision80

prediction tools. Moosavi et al. (2019) implemented a deep neural network model using traffic events data81

(congestion, lane-blocked, accident), weather data (visibility, temperature, rain, snow), and point-of-interest82

annotation tags (roundabout, bump, traffic signal, etc.). Yuan et al. (2018) used a convolutional long short-83

term memory neural network model (LSTM) to predict crash frequency using traffic volume, road condition,84

rainfall, temperature, and satellite images.85

Multiple studies have attempted to identify possible driver behavior surrogate safety measures for network86

screening. TTC is defined by Hayward in Hayward (1972) as the time needed for two vehicles to collide87

with each other when they keep the same speed and the same travel path. El-Basyouny and Sayed (2013)88

develop a two-phase model. The first model of the two-phase model predicts conflicts using a log-normal89

model with the aid of traffic volume, road type and geometry features as covariates. The TTC is used to90

define a traffic conflict, and two trained observers were stationed at intersections to observe traffic conflicts.91
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The second model uses the predicted conflicts to compute a Negative Binomial safety performance function.92

This model might not be scalable given that labor work is needed to observe conflicts, although computer93

vision techniques can automate some of this work. Mi et al. (2020) mention that TTC is inappropriate94

for intersection safety assessment since the characteristics of vehicle movements at intersections, such as95

frequent acceleration and non-lane-based vehicle movements, are not considered. Thus, they propose instead96

a modified TTC (MTTC) value, calculated from the video record, and derived from the relative speed and97

acceleration of the interacting vehicles.98

PET is another safety surrogate measure developed in the literature. The post-encroachment time is99

calculated as the time between the instance when the first vehicle leaves the path of the second and the100

instance when the second reaches the path of the first (Johnsson et al., 2018). Zheng et al. (2014) found,101

using an extreme value modeling approach, a correlation between post-encroachment time measures from102

4189 lane change maneuvers recorded at 29 directional freeway segments, and crash data collected over four103

years.104

Agerholm & Lahrmann (2012) built a predictive model to identify hazardous road locations based on105

GPS jerk data (the time derivative of acceleration data). However, they mention that large-scale studies are106

needed to test the reliability of the jerk-based model, as other parameters (speed prior to jerks, deceleration107

start and end time) need to be identifiable to avoid erroneous results. Tageldin et al. (2015) use an automated108

video-based analysis technique to detect jerk rates, in order to measure traffic conflicts as indicators of safety.109

Tageldin and Sayed (2016) suggest that evasive action-based indicators, which represent variations in the110

spatio-temporal gait parameters (i.e., step length, step frequency and walk ratio), are possible indicators of111

pedestrian conflicts.112

Speed is an essential safety surrogate measure in the road safety analysis. It is generally believed that113

an increase in speed threatens road safety (Rolison et al., 2018). Though, it can also be argued that driving114

at high speed reduces the length of time exposure and thus the likelihood of a crash (Pei et al., 2012).115

Inconsistent findings were reported in the literature. Some researches show that there is a negative or116

insignificant relationship between speed and crashes (Quddus, 2013; Stipancic et al., 2017), while others117

suggest a positive relationship (Taylor et al., 2000). In the work of Stipancic et al. (2017), congestion118

index, average speed, and the coefficient of variation of speed, were compared with crash data collected over119

an 11-year period in Quebec City. Driver behavior indices were derived from smartphone GPS data. The120

correlations with crash frequencies were found to be weak to moderate. The congestion index was shown to121

be positively correlated with crash frequency. Higher congestion levels were related to crashes with major122
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injuries, whereas low congestion levels were related to crashes with minor injuries. The average speed was123

found to be negatively correlated with crash frequency. However the coefficient of variation of speed was124

positively correlated. On the other side, Quddus et al. (2013) used a random-effects Negative Binomial and125

a mixed-effects spatial model to explore the effects of speeds on minor-injured and major-injured collisions126

using segment-based traffic, road geometry, and accident data from 266 road segments including 13 different127

motorways in London. Both models indicated a negative, yet statistically insignificant, relationship between128

average speed and collisions. The results of Quddus et al. (2013) suggest that average speeds are not129

correlated with accident rates when controlling for other factors affecting accidents such as traffic volume130

and road geometry. Wang et.al (2009) conducted a precise congestion measurement in the M25 London131

orbital motorway and concluded that traffic congestion had little or no impact on the frequency of road132

accidents, but was negatively correlated to collision severity. Martin (2002) claimed based on observations133

made on 2000 km of French interurban motorways over two years, that light traffic was a safety problem in134

terms of frequency and severity of accidents. Wang et al. (2018) studied this relationship on urban arterials135

using taxi-based high-frequency GPS data and concluded that higher average speeds were associated with136

higher crash frequencies, but the sample size was formed only of eight arterials in downtown Shanghai. Urban137

roads in Canada were studied by Gargoum & El-Basyouny (2016) to explore their speed-safety relationship.138

The authors reported that a 1% increase in average speed was associated with a 0.018% increase in collision139

frequency.140

Another safety surrogate addressed in the literature is speed variation. Speed variations are used to141

represent the inconsistency of vehicle speed along a segment (Wang et al., 2018). Most of the related studies142

in the literature converge to an idea that speed variations are positively correlated with crash occurrence.143

However, this conclusion is based to a great extent on research on rural roads and freeways (Wang et al.,144

2018). Boonsiripant et al. (2011) derived the speed variation from on-board vehicle speed sensor data in145

Atlanta metropolitan area, and found no significant relationship with the crash frequency under likely free-146

flow conditions. Pei et al. (2012) evaluated the relationship between speed and crash risk using disaggregated147

crash and speed data collected from 112 road segments in Hong Kong, and stated that there was no evidence148

in their Bayesian crash model that the standard deviation of speed was significantly associated with the149

likelihood of crash occurrence or crash severity. Wang et al. (2018) analyzed speed variation data derived150

from taxi-based GPS data on eight urban arterials and found that speed variation was significantly positively151

associated with crash frequencies. Oh et al. (2001) have looked at the speed variation parameter from real-152

time traffic data instead of the speed quantity itself when estimating the likelihood of an accident and proved153
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that reducing speed variation increased safety and reduced the accident likelihood.154

Deceleration and acceleration-based indicators have been investigated to act as safety surrogate measures155

of collisions. Hard braking and acceleration are measures of how fast the speed of a vehicle changes (N. Al-156

gerholm, 2012). Most of the related research work focus on the hard braking and acceleration correlation157

with collision risk from the driver’s perspective. In other words, researchers examined whether the drivers158

that are involved in aggressive maneuvers also have the highest crash records (Bagdadi, 2013; Johnson159

& Trivedi, 2011; Laureshyn et al., 2009). A few studies examined the spatial correlation between the two160

quantities and whether the road intersections with the most dangerous maneuvers are associated with higher161

crash rates. Jun. et al. (2007) found that the frequency of hard deceleration events was strongly related162

to the crash involvement rate of individual drivers location-wise, but it was not clear if both quantities163

incorporated traffic volume or not. Stipancic et al. (2018a) explained in an empirical study, based on GPS-164

enabled mobile devices, that locations with more hard braking and hard acceleration counts also tended to165

have more collisions. Li et al. (2021) utilize critical bus driving events extracted from GPS trajectory data166

as pedestrian and bicycle surrogate safety measures for bus stops. Correlations were then examined using167

Spearman’s rank correlation coefficient. The study concludes that bus stops with more hard acceleration168

events are expected to have more pedestrian and bicycle crashes.169

This study attempts to address several shortcomings that are apparent in the existing literature: when170

studying the spatial correlation between hard braking and acceleration and crash frequencies, normaliza-171

tion by traffic volume is taken into account since the latter is a confounding variable that influences both172

quantities. Also, as mentioned earlier, driver behavior data (maximum speed, hard braking, and hard173

acceleration) are extracted directly from the vehicle’s CAN bus, instead of being calculated from GPS mea-174

surements that can be noisy. Moreover, highway and non-highway roads are considered separately as both175

the driving conditions and settings change, whereas many previous studies considered highways only or176

individual neighborhoods, corridors or links only. Lastly, there has been no similar comprehensive study of177

driver behavior analytics based on large-scale telematics data, crash data, and road network.178

3. Methodology179

The work of this paper can be divided into three steps: pre-processing, processing and post-processing,180

as shown in Figure 1. In the pre-processing step, the telematics data are assigned to the road segments181

using the map matching engine. Then, the OBD-II speeds are compared to spot speeds radar data for182

validation. In the processing step, driver behavior indices are extracted and grouped by road segments.183
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Then, the direction and magnitude of the relationship between the derived indices (speed, speed variation,184

hard braking rate, and hard acceleration rate), and collision data (absolute collision counts and collision185

rate, normalized with respect to traffic volume) are studied. In the post-processing step, two safety metrics186

derived from the safety surrogate measures are presented.187

Extraction of driver 
behavior indices

Statistical Dependence Analysis

Crash Frequency
& Crash rate Safety Metrics 

Generation

Data collection

Sample validation

Map matching

Preprocessing Processing Post-processing

Figure 1: Flowchart explaining the methodology for generating safety metrics

3.1. New York City Fleet Raw Data Structure188

The driver behavior data consist of 1.5 years of raw GPS trajectories sampled from GPS devices over the189

2015-2016 period, installed on 4,500 distinct vehicles which are classified as ”light utility” within the NYC190

fleet database, and generally would be considered to be cars or SUVs. Trucks, trash collection vehicles, or191

other heavy vehicles, which would not be representative of traffic at large, were disregarded to be as close as192

possible to the driving population. The fleet-based driver behavior data comprise OBD data, GPS trajectory,193

and acceleration data. A raw GPS trajectory is a sequence of N noisy data points P = (pi|i = 1, . . . , N) in194

a chronological order. A time interval between two consecutive points does not exceed a certain threshold195

∆t, which is the sampling rate. The regular sampling rate of the NYC fleet data considered in this study is196

30 seconds. Each data point pi has the following parameters: 1) longitude, latitude and altitude values, 2)197

timestamp, 3) the number of visible satellites, 4) maximum speed from OBD-II communication, and 5) hard198

braking and hard acceleration data from the OBD-II port. The OBD-II speed data point vmax represents199

a maximum speed value between the previous data point and the current data point (typically within the200

last 30 second time interval). The illustration of the GPS trajectory data structure is shown in Figure 2.201

In addition, hard braking and hard acceleration events are also logged in the database. These events are202

logged in addition to the regular 30-second interval maximum speed samples.203

Smith et al. 2003 analyzed the last-second braking response of drivers based on experimental data204

collected from test track studies in car-following situations, and found that the 50-percentile average decel-205
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Figure 2: Illustration of GPS trajectory raw data structure.

Figure 3: A sample of one day’s recorded data points from the NYC vehicle fleet.

eration values range from 0.17g to 0.27g in the ”hard braking” conditions as the speed increases from 3 to206

20 meters per second. We use in this study a threshold value of 0.18 g to define a hard braking or a hard207

acceleration event as values below 0.18 g are not logged in the database. Figure 3 shows the spatial coverage208

of a one day sample of recorded data points from the NYC vehicle fleet.209

3.2. Map Matching210

The raw GPS trajectories are noisy and do not fall on the road network segments where they actually211

traveled. The team has built a core data processing engine, detailed in Alrassy et al. (2019). The outcome212

of the map-matching algorithm, shown in Figure 4, is a sequence of projected points ci (i = 1, . . . , N)213

on the road segments of the digital map that represent a reconstructed path that a driver has taken in a214

chronological order, given the N noisy data points P = (pi|i = 1, . . . , N). The candidate point ci of data215

point pi is projected on the road segment ei using Equation 1 below:216

ci = arg min dist(pi, ci), ∀ci ∈ ei. (1)
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Figure 4: Reconstructed path from a GPS trajectory generated by the map-matching engine

Figure 5: Average and Maximum speed profiles for a given segment

The core engine uses the LION geographic base map of New York City streets (NYC Department of City217

Planning, 2020) as the digital map, adopted by the New York City Department of Transportation for218

mapping collision data.219

Between two intermediate GPS points (pi−1, pi), the sampled vehicle OBD-II speed vmax,i, associated

with a data point (pi), is assigned to the set of intermediate segments forming the actual path P (ci−1, ci)

from (ci−1, ci). The intermediate path P (ci−1, ci) is computed using the Dijkstra algorithm described in

(Dreyfus, 1969). A travel speed parameter between each pair of GPS points (pi−1, pi) is also determined as

the distance traveled P (ci−1, ci) divided by the sampling time interval ∆t as shown in Equation 2 below :

vtravel speed =
P (ci−1, ci)

∆t
. (2)

Analytical methods, described in Section 3 of this paper, are performed to compute the statistics of the220

driver behavior indices, and to locate specific clusters within road segments of high rates of hard braking,221
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Vehicle Model, Year, Classification
FORD F350,         2011, HEAVY DUTY
FORD ESCAPE,   2013, LIGHT DUTY

••••• ••••• •••••
TOYOTA CAMRY,2013, LIGHT DUTY

Figure 6: Fleet classification by model provided by the New York City Department of Citywide Administrative
Services DCAS
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Figure 7: Speed Radar Guns Locations

hard acceleration as well as to generate speed profiles.222

3.3. Validation of the Sample Telematics Data with Spot-Speed Radar Data223

The research team recognizes the challenge of demonstrating that the fleet under study is a representative224

sample of the actual driving population in New York City. For that reason, two measures were taken. First,225

as mentioned earlier, the team has only included the sedans that are classified as “light duty” vehicles by226

the NYC DCAS. Also, spot-speeds data collected using radar speed guns that measure the speed of moving227

vehicles, were compared with the telematics maximum speed profiles by time buckets. Two-sample T-test228

for mean comparison, and F-Test for equality of two variances were conducted to compare city-vehicles229

maximum speed histograms and spot-speeds histograms at a significance level of α = 0.001. Spot-speed230

data are collected in 1 to 2-hour random time intervals at 770 locations across New York City, as shown in231

Figure 7 over the 2005-2018 period.232

Figure 8 reports some examples of matching speed histograms at different locations along with the T-test,233

F-test p-values and time period. Table 1 summarizes the validation results. Overall, 39% of the city fleet234

speed histograms match the spot-speed histograms. At 34% of the locations, T-test and F-test have rejected235

the hypothesis that both speed profiles have the same mean but the difference in speed is less than 5 mph.236
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Speed Difference Percent of locations (%)

Same mean and variance 39
Difference in mean < 5mph 34
Difference in mean > 5mph 27

Table 1: Validation of the Telematics data with Spot-Speeds Radar Data

Figure 8: Validation of city maximum speed profile with spot-speed profile

As shown in Figure 9, the majority of these locations have city drivers’ average maximum speed lower than237

the average spot-speeds. This could be due to the fact that spot-speed data are collected before some street238

improvements were done as revealed in Figure 10, compared to the telematics city data collected in 2015 and239

2016. Some street improvements involve lane reduction, adding parking lanes, which may result in lower240

speed values. We also noticed that some of the locations, where telematics vehicles speeds are higher than241

spot-speeds (Figure 11), belong to the parallel service road locations, where the map matching problem is242

challenging. In other words, the map matching engine assigns these large speed values to the parallel service243

road instead of the main priority road.244
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Figure 9: Difference in speed between city fleet and spot-speed radar data

Figure 10: Street improvement on Parkside Ave in Brooklyn using Google Maps view

Figure 11: Data from the priority road falsely mapped to the service road on Ocean Parkaway in Brooklyn

3.4. Extraction of The Driver Behavior Indices245

In this paper, we aggregate the proposed driver behavior indices for each road segment based on the246

1.5-year large GPS vehicle fleet telematics data. The driver behavior indices are estimated per road segment.247

It is noteworthy that some of the important driver behavior indices considered in this study are normalized248

by the appropriate quantities (e.g., hard braking data are normalized by the total count of vehicles that249
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traveled over the corresponding road segment.)250

3.4.1. Maximum Speed251

Speed has widely been believed to be a safety surrogate of crash risk, especially on highways. The

maximum speed Vmax,i for each road segment ei is calculated as the average of all sampled vehicle OBD-II

maximum speeds
∑Nc

j=1 Vmax,ij , matched by the map matching engine to that specific segment, divided by

the total counts Nc:

Vmax,i =

∑Nc

j=1 Vmax,ij

Nc
. (3)

The above calculation results in the maximum speed profile shown in Figure 15 for the entire NYC road252

network.253

3.4.2. Mean Speed254

We define the mean speed value as the average of all travel speeds mapped to a given segment. As255

previously mentioned, the travel speed between each pair of GPS points (pi−1, pi) is determined as the256

distance traveled P (ci−1, ci), divided by the sampling time interval ∆t, as shown in Equation 2. The mean257

speed Vmean,i is indicative of travel time as it includes the stop and go activity on a traffic signal. It is258

calculated for each road segment ei as the average of all travel speeds
∑Nc

j=1 Vtravel,ij , matched by the map259

matching engine to that specific segment divided by the total counts Nc:260

Vmean,i =

∑Nc

j=1 Vtravel,ij

Nc
. (4)

The above calculation results in the mean speed profile shown in Figure 16 for the entire NYC road261

network.262

3.4.3. Speed Variation263

The literature summarized in Section 2, in general, focuses on understanding the direction of the rela-

tionship between speed variations and collision risks. Speed variations could be a better indicative candidate

for safety than the speed magnitude itself, although this statement is biased to studies on freeways. We

chose the standard deviation of the sampled maximum speeds on a given road segment ei, as a measure of

speed variation:

SVi =

√∑Nc

j=1(Vmax,ij − Vmax,i)

Nc − 1
, (5)
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where Vmax,ij is the sampled vehicle OBD-II maximum speed and Vmax,i is the average maximum speed264

determined in Equation 3. Figure 17 clearly shows the speed variations as high on arterials and major roads265

where vehicles are more likely to change speeds.266

3.4.4. Fleet Traffic Flow267

Traffic volume has been considered as an indicator of crash risk since a higher traffic volume means a

higher exposure and therefore a higher chance for a crash. We estimate the fleet traffic flow TVfleet,i across

the entire NYC road network based on the sum of speed counts Nc that have fallen on each road segment

ei as follows:

TVfleet,i = Nc (6)

Figure 18 shows how the telematics sample data are distributed by the map matching engine across the268

entire road network.269

3.4.5. Free Flow Condition270

We define the free flow condition FFCi parameter as the ratio of mean speed Vmean,i defined in Equation 4

and the speed limit SPLi for each segment ei. This represents a measure of the level of congestion on the

streets. But since the speed limit is 25 mph on non-highway New York City local streets, the free flow

condition profile is similar to the mean speed profile.

FFCi =
Vmean,i

SPLi
(7)

3.4.6. Hard Braking and Hard Acceleration Rate271

The last driver behavior measure that were examined in this study are the rate of hard braking HBRi272

and hard acceleration HARi on a given road segment ei. 10,121,892 hard braking events with a g-value273

density distribution shown in Figure 12, were collected over the 1.5-year 2015-2016 period. Also, 9,369,525274

hard acceleration events were registered and distributed as shown in Figure 13. We count the number of275

sampled hard braking and acceleration events HBi and HAi, respectively, map the event counts HBi and276

HAi to the corresponding road segment ei. Then, the event counts HBi and HAi are divided by the fleet277

traffic flow TVfleet,i, in an effort to normalize them with the road segment ei’s traffic volume. Figures 19278

and 20 plot, respectively, the hard braking and hard acceleration spatial distributions. Figures 21 and 22279

plot, respectively, the spatial profiles of the hard braking and hard acceleration rates, in order to remove280

the confounding variables effect defined in Frank (2000), when correlating with collision data.281
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The safety surrogate measures are evaluated at 115,289 road segments. Correlation strength between282

the derived indices are provided in Figure 14.283

HBRi =
HBi

TVfleet,i
(8)

HARi =
HAi

TVfleet,i
(9)
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Figure 12: g-value density distribution of hard
braking events over the 1.5-year 2015-2016 pe-
riod
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Figure 13: g-value density distribution of hard
acceleration events over the 1.5-year 2015-2016
period
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Figure 14: Correlation strength between the derived driver behavior indices
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Figure 15: OBD-II Max speed map Vmax,i in
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Figure 16: Mean speed map Vmean,i in mph
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Figure 17: Speed variation SVi in mph
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Figure 18: Fleet traffic volume TVfleet,i

17



TelematicsData
HA

0
1 - 50
51 - 300
301 - 7222

Figure 19: Hard acceleration counts HAi
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Figure 20: Hard braking counts HBi
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Figure 21: Hard acceleration rate HARi
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Figure 22: Hard braking rate HBRi

3.5. Crash Data284

In this study, we used the New York City Police Department Motor vehicle collisions data, in order to285

determine its correlation with the proposed safety surrogate measures. The data set is publicly available286

on the NYC Open Data portal in New York Police Department (2019). A collision is recorded when at287
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least one person is injured or killed, or when there is at least $1,000 worth of damage. The collision288

data considered in this study are collected over a longer period (2012-2019), compared to telematics data289

collected from 2015 to 2016 since collisions do not occur frequently and need a wider time range in order290

to have a granular classification of streets. The authors are aware of changes in driving conditions and291

driving behavior throughout the time of day and throughout the years with road design changes, however,292

preliminary correlation analysis between the crash data of the two periods (2012-2019 and 2015-2016) shows293

a strong correlation with a correlation coefficient of 0.78.294

3.5.1. Crash Frequency295

In total, 1,360,911 collisions with known latitude and longitude coordinates were considered, of which296

276,316 were with injuries. One observation to note is that the spatial distribution of the injury collision297

map (Figure 25) looks similar to the spatial distribution of the total crash map ( injuries and non-injuries),298

shown in (Figure 24). The total crash data was used in this study for correlating with safety surrogate299

measures since the injury collisions data are sparse. Crash events that happened on road intersections are300

jointed to the inbound road segments, proportionally to their respective traffic volume. The crash data301

are mapped to the nearest road segment using the spatial join feature in the ArcMap ESRI software (CA:302

Environmental Systems Research Institute). In this study, the correlation between the telematics data and303

crashes is carried at the segment level to maintain accuracy of the telematics data. The illustration of the304

crash data structure is shown in Figure 23. Each crash record has the following information: 1) timestamp,305

2) the number of fatalities, 3) the number of injuries, 4) the number of injured pedestrians, 5) the number306

of injured cyclists, 6) contributing factor, 7) latitude, and 8) longitude.307

Figure 23: Crash data structure

19



TelematicsData
Crash_Freq

0

1 - 10

11 - 30

31 - 592
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York City
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Figure 25: Injury Crash frequency map in New
York City

3.5.2. Crash Rate308

In order to remove the confounding effect of traffic volume when studying correlations, it is necessary309

to normalize the crash frequency map with traffic exposure. Exposure on highways is determined using the310

fleet traffic volume, whereas exposure on local streets is determined using a traffic regression model. The311

traffic regression model was developed by Datakind DataKind (2017). Figure 26 displays the result of the312

model. The reason why the fleet traffic volume is not used to normalize crash frequencies is that some of313

the locations might be biased to city facilities and may fail to represent the public driving population. The314

model estimates the average annual daily vehicular volume. Assuming proximate streets behave the same,315

the model uses traffic count data on selected streets and propagates these count values to the neighboring316

streets. When there are no count data available, a Random Forest regression model, explained in Liaw317

et al. (2002), predicts the traffic volume of a street given a set of predefined features. Figure 27 shows the318

calculated crash rate in percentage across New York City. The correlation coefficient between crash rate319

and crash frequencies is significantly high (ρ = 0.94), indicating that when normalizing crash frequencies320

with respect to traffic volume, crash hotspots stay the same as shown in Figure 27.321

20



Figure 26: Average Annual Daily Traffic Map
in New York City developed by DataKind

Figure 27: Calculated crash rate map (unit:
count per AADT)

3.6. Statistical Dependence322

In order to examine if high-collision locations have high harsh driving indices, the rank correlations

between the predefined driver behavior indices and crash data are estimated using the Spearman’s rank

correlation coefficient (Myers et al., 2013). The coefficient ranges from -1 to 1. The negative value means

a negative relationship; and the positive value means a positive relationship, whereas a zero value is an

indication of randomness. The Spearman’s rank correlation coefficient for two variables ~x1 and ~x2, each of

size n is defined as follows:

ρs = 1−
6×

∑N
i=1(r1,i − r2,i)

2

n(n2 − 1)
(10)

Where r1,i is the rank of the segment ei based on ~x1’s value, r2,i is the rank of segment ei based on ~x2’s323

value, and n is the size of vectors ~x1 and ~x2 (i.e, n is the total number of road segments). In this study,324

~x1 represents one of the predefined driver behavior indices; and ~x2 is either the collision data or collision325

frequency variable.326

3.7. Safety Metrics Generation Using Safety Surrogate Measures327

The presence of safety surrogate measures derived from the telematics data, as large-scale objective328

performance measures, provides better and broader insights into roads safety. Safety surrogate measures329

can help develop corridors with similar characteristics and performance. The following subsection discusses330

the methodology used in this study to build a safety corridor map for New York City, based on the maximum331
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speed value, as well as hard braking and hard acceleration hot-spots generation, which may indicate the332

presence of an unsafe design defects.333

3.7.1. Spatial Partitioning Based on Snake Similarities334

We adopt the existing methodology of snake algorithms explained in Saeedmanesh & Geroliminis (2016)335

to partition a road network into homogeneous corridors that have the same characteristics and behavior.336

We define a corridor as a cluster of segments that have: 1) geometric similarity between the streets, 2)337

connectivity within the corridor, i.e., the vehicle can travel from one segment to the other, and 3) low338

variance of maximum speed, derived from the OBD-II port of the vehicles. In order to achieve the three339

objectives, we start with grouping road segments that have similar geometric features as well as having340

spatial connectivity. We used the street name (st-name) encoded in the digital map as an indication of341

geometric similarity and the directionality information (node-from,node-to) to test for spatial connectivity.342

Figure 28 shows the resulting process in dividing the large road network into smaller arterials in Brooklyn.343

Each arterial is displayed with different color.344

Figure 28: The resulting process in dividing the large road network into smaller arterials

Then, an iterative process is applied. A snake starts at each arterial and expands by adding to it the

segments that belong to the same arterial and have a similar maximum speed value. We define a similar

22



segment to the existing segments in a snake, every segment with a difference between its maximum speed

and the average maximum speed value of the current snake less than 5 mph (a typical buffer used in Forbes

(2012) to round speed data in order to determine speed limits on roads). For instance, a road segment ej is

added to snake Si,k of arterial i if :

|Vmax(ej)− V̄max(Si,k−ej )| < 5 mph, (11)

where V̄max(Si,k) is the average maximum speed value of snake Si,k including the speed value of road345

segment ej and V̄max(Si,k−ej ) is the average maximum speed value of snake Si,k without including road346

segment ej . In the event where road segment ej is not added to the snake Si,k, a new snake Si,k+1 is347

initiated. The process is repeated until all segments within an arterial belongs to one of the snakes.348

3.7.2. Dynamic Clustering of Hard Braking and Hard Acceleration Events349

Hard braking and hard acceleration events are aggregated to a specific road segment on the digital map.350

Two road segments might have the exact counts of hard baking and hard acceleration events recorded, but351

these events might be: 1) clustered in a specific location on the segment (indicating the possibility of the352

presence of a pothole or a street design defect) or 2) uniformly distributed along the length of the segment.353

Therefore, it is of great benefit for city planners to locate hard braking and acceleration hot-spots. The354

geo-location and the direction of travel for the sampled hard braking and hard acceleration data on a given355

segment are identified by the map matching engine. We present below a dynamic clustering algorithm that356

relies on the Gaussian mixture models explained in Reynolds (2009). This algorithm detects the number357

and locations of hard braking and acceleration clusters on a segment.358

Assume we have the hard braking events B = (bi|i = 1, . . . , Nb) distributed on a given road segment359

as shown in Figure 29. Given that each road segment has two nodes: VFrom and VTo, we define the360

scalar parameter di as the distance from VFrom to hard braking event bi. Then, we determine if the set361

d = (di|i = 1, . . . , Nb) fits a uniform distribution using the Kolmogorov–Smirnov goodness of fit test (K-S362

test) (Massey Jr, 1951). If this is the case (i.e., K-S test p-value > 0.05), then the hard braking events are363

considered randomly dispersed along a segment. If not, the events are clustered in specific locations along364

the segment. In order to find the number and center of the clusters, we model the distribution of di as a365

weighted sum of K Gaussian components p(di) =
∑K
j=1 πjN (µk, σk). We fit three models with K ∈ [1, 2, 3].366

Each component is a Gaussian density defined in Equation 12 with θk = {µk, σk}. µk is the cluster’s center367

and σk indicates the precision. The number of clusters K on a segment is chosen from the model with the368
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lowest Bayesian information criteria (BIC) defined in Burnham & Anderson (2004).369
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Figure 29: Hard braking events on a road segment

p(di|θk) =
1

(2π)
1/2|σk|1/2

e−
1
2 (di−µk)Tσ−1

k (di−µk) (12)

4. Results370

4.1. Statistical Dependence371

Previous studies have separated roads according to their functional types. Jun. et al. (2007) found large372

behavioral differences between driver-groups from their activities on highways, and on local roadways. Thus,373

the statistical analysis was conducted by classifying roads into two categories: highway and non-highway374

local roads. We define road segments that are not accessible to pedestrians as highway. The information375

about pedestrians’ accessibility to roads is encoded in the digital map. Figure 30 categorises the road376

segments: roads classified as highway (14,240 road segments) are colored in red, whereas the roads classified377

as non-highway are colored in green (101,049 road segments).378
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New York City

Driver Behavior Indices
Crash rate Crash frequency

Highway Non-Highway Highway Non-Highway

Maximum speed (Vmax) 0.19 -0.18 0.21 -0.04

Mean speed (Vmean) 0.21 -0.18 0.23 -0.02

Free flow condition (FFC) -0.07 -0.17 -0.09 -0.02

Speed variation(SV ) 0.11 -0.23 0.12 -0.14

Hard acceleration rate (HAR) 0.09 0.38 0.06 0.25

Hard braking rate (HBR) 0.14 0.33 0.12 0.2

Table 2: Spearman’s rho correlation of safety surrogate measures with crash rate and crash frequency in New
York City

Manhattan driver behavior indices
Crash rate Crash frequency

Highway Non-Highway Highway Non-Highway

Maximum speed (Vmax) 0.2 -0.13 0.24 0.02

Mean speed (Vmean) 0.22 -0.14 0.25 0.02

Free flow condition (FFC) 0.04 -0.15 0.06 -0.1

Speed variation (SV ) 0.12 -0.15 0.13 -0.05

Hard acceleration rate (HAR) 0.17 0.56 0.14 0.5

Hard braking rate (HBR) 0.19 0.51 0.17 0.45

Table 3: Spearman’s rho correlation of safety surrogate measures with crash rate and crash frequency in
Manhattan

Figure 30: Red roads are classified as highways whereas green roads are classified as non-highway

The Spearman’s rank correlations between the predefined driver behavior indices and crash data are esti-379

mated for both highway and non-highway roads for the entire New York City road network and summarized380

in Table 2. Tables 3 - 7 display the correlations bucketed by borough. All correlation values reported were381

statistically significant (p-value < 0.05) except when p-value is reported explicitly.382

Overall, as shown in Table 2, speeding on highways is found to be correlated with crash rate and crash383
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Brooklyn driver behavior indices
Crash rate Crash frequency

Highway Non-Highway Highway Non-Highway

Maximum speed (Vmax) 0.04(p-value=0.028 ) -0.21 0.07 0.01(p-value=0.017 )

Mean speed (Vmean) 0.06 -0.2 0.09 0.04

Free flow condition (FFC) -0.11 -0.18 -0.14 0.05

Speed variation (SV ) 0.11 -0.28 0.14 -0.15

Hard acceleration rate (HAR) 0.26 0.48 0.23 0.3

Hard braking rate (HBR) 0.26 0.45 0.24 0.27

Table 4: Spearman’s rho correlation of safety surrogate measures with crash rate and crash frequency in
Brooklyn

Queens driver behavior indices
Crash rate Crash frequency

Highway Non-Highway Highway Non-Highway

Maximum speed (Vmax) 0.23 -0.13 0.24 0.04

Mean speed (Vmean) 0.24 -0.12 0.26 0.05

Free flow condition (FFC) -0.16 -0.11 -0.17 0.06

Speed variation(SV ) 0.15 -0.26 0.16 -0.17

Hard acceleration rate (HAR) 0.02(p-value=0.22 ) 0.29 -0.005 0.16

Hard braking rate (HBR) 0.09 0.27 0.07 0.13

Table 5: Spearman’s rho correlation of safety surrogate measures with crash rate and crash frequency in
Queens

The Bronx driver behavior indices
Crash rate Crash frequency

Highway Non-Highway Highway Non-Highway

Maximum speed (Vmax) 0.16 -0.2 0.18 -0.02

Mean speed (Vmean) 0.17 -0.19 0.19 -0.03

Free flow condition (FFC) -0.05 -0.19 -0.08 -0.03

Speed variation(SV ) 0.09 -0.27 0.09 -0.16

Hard acceleration rate (HAR) 0.11 0.45 0.08 0.35

Hard braking rate (HBR) 0.16 0.44 0.13 0.33

Table 6: Spearman’s rho correlation of safety surrogate measures with crash rate and crash frequency in The
Bronx

Staten Island driver behavior indices
Crash rate Crash frequency

Highway Non-Highway Highway Non-Highway

Maximum speed (Vmax) 0.35 0.13 0.38 0.31

Mean speed (Vmean) 0.35 0.13 0.38 0.31

Free flow condition (FFC) 0.07(p-value=0.06 ) 0.14 0.04 (p-value=0.256 ) 0.29

Speed variation (SV ) 0.009 (p-value=0.8 ) -0.12 0.07 (p-value=0.08 ) -0.15

Hard acceleration rate (HAR) -0.02 (p-value=0.62 ) 0.12 -0.05 (p-value=0.166 ) -0.025

Hard braking rate (HBR) -0.01 (p-value=0.71 ) 0.11 -0.03 (p-value=0.41 ) -0.05

Table 7: Spearman’s rho correlation of safety surrogate measures with crash rate and crash frequency in Staten
Island
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frequency (ρsVmean,crash rate > 0.2, ρsVmax,crash frequency > 0.2, ρsVmean,crash frequency > 0.2). Whereas lower384

maximum speed values and lower mean speed values (i.e. higher travel times), are found to have low to385

moderate negative correlations with crash rates (ρsVmax,crash rate = −0.18, ρsVmean,crash rate = −0.18 and386

ρsFFC,crash rate = −0.17) on non-highway roads. Speed variations are found to be negatively correlated with387

crash rates on urban roads (ρsSV,crash rate = −0.23). This is expected as higher speed variations on urban388

roads are located on those with higher mean speeds.389

Hard braking and hard accelerations had moderate positive correlations with crash rates and crash390

frequencies on non-highway roads (ρsHAR,crash rate = 0.38 and ρsHBR,crash rate = 0.33, ρsHAR,crash frequency =391

0.25, and ρsHBR,crash frequency = 0.2). It is noteworthy that overall, on highways, hard braking is more392

indicative of crashes than hard acceleration. On the other hand, on non-highway local roads, the correlation393

strength of hard acceleration rates with crash rates is stronger than for deceleration rates.394

When bucketing road segments by borough, correlation trends remain consistent in general. However,395

as shown in Table 3, Manhattan borough exhibits stronger correlations between hard acceleration, hard396

deceleration and crash rates and crash frequencies (ρsHAR,crash rate = 0.56 and ρsHBR,crash rate = 0.51,397

ρsHAR,crash frequency = 0.5, and ρsHBR,crash frequency = 0.45).398

Also, as shown in Table 7, Staten island non-highway road segments do not have the same speed-crash399

direction of relationship as the other boroughs. Staten island non-highway road segments with higher mean400

speed and maximum speed values have higher crash rates and crash frequencies (ρsVmax,crash frequency = 0.31,401

ρsVmean,crash frequency = 0.31 on non-highway roads). This finding reveals that Staten island roads labeled as402

non-highway have indeed different characteristics than the rest of New York City.403

4.2. Safety Metrics Generation404

Now that the derived indices are proved to be effective safety surrogate measures, given their correlation405

with collision data, safety metrics are generated. Speed is an important design input for city planners406

and policy makers’ projects. These projects are often carried out at the corridor level since it would be407

unrealistically granular to carry them out at the segment level. Figures 31 and 32 show, respectively, the408

maximum speed profile by segment and the maximum speed safety corridors for the off-peak hours 10:00409

A.M–16:00 P.M in New York City, using the methodology described in Section 3.7.1. Moreover, Figure 33410

shows a map of hard braking and acceleration hot-spots generated using the steps described in Section 3.7.2.411
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Figure 31: Maximum speed profile by segment
for the off-peak hours 10:00 A.M–16:00 P.M in
New York City in mph
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Figure 32: Maximum speed corridors map for
the off-peak hours 10:00 A.M–16:00 P.M in New
York City in mph

28



Uniformly dispersed

Figure 33: Hard braking clusters

5. Discussion412

The results in Section 4 indicate that urban streets that have longer travel times generally present higher413

safety risk. This result supports the hypotheses found in Quddus (2013); Stipancic et al. (2017). On the other414

hand, the finding that speeding on highways is more safety critical is also consistent with the conclusions415

in Taylor et al. (2000); Martin (2002); Wang et al. (2018); Gargoum & El-Basyouny (2016). This study416

confirms that separating roads according to their functional types is essential and a pre-requisite, before417

conducting a statistical analysis between SSMs and crashes.418

In regard to the relationships between HBRs, HARs and collisions, the findings in this study represent419

a notable contribution to the existing literature, that is deficient on understanding the spatial relationship420

between harsh driving and collisions, but rather focuses on the causality between the two variables. On421

highways, hard braking correlates stronger with crashes than hard acceleration. This is consistent with the422

fact that hard braking is more indicative of an aggressive driver than hard acceleration, since accelerating423

on highways is normal as drivers tend to pick up speed. On the other hand, part of the hard braking and424

hard acceleration on non-highway roads and residential streets are due to the “stop and go” activity that425

results from congestion, traffic lights and stop signs, as well as driver maneuvers (parking entrance/exit).426

Looking at the network scale in Figures 21 - 22, one can clearly see that higher rates of hard braking and427
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hard accelerations occur also in low traffic residential areas. The driver gains speed on these empty streets,428

causing the accelerometer to capture a hard braking/acceleration event when approaching an intersection,429

but that intersection will have low collision rates given the small chance of a driver being exposed to another430

car.431

Associating non-spatial driver behavior data (speed, hard braking and hard acceleration) with the cor-432

rect streets of a road network, and then computing safety metrics on top, such as speed safety corridors or433

harsh driving clusters, represents a substantial improvement to the strategies of road planners, who often434

make design interventions based on standards many of which have not been evaluated for their impact on435

safety (Administration, 2011). To the best of the authors’ knowledge, there has been no similar compre-436

hensive study of driver behavior in an urban metropolitan city with a complex road network. The results437

of this paper present a substantial contribution to the existing literature that is deficient on this topic,438

when considering metropolitan cities and dense urban environments. Future work will focus on developing439

a network screening model that incorporates the SSMs to be used for safety classification of streets and440

intersections.441

6. Conclusion442

This study examines driver behavior indices derived directly from the vehicle’s on-board diagnostic port443

as promising safety surrogate measures for the entire road network. Methods for assigning the telematics data444

to the road network, sample validation and extracting the SSMs are presented. The statistical relationship445

between speed indices, hard braking and hard acceleration rates and collision frequency and rate (normalized446

with traffic volume) was determined using Spearman’s rank correlation method. Highway and non-highway447

roads are considered separately. Two road safety metrics were then derived, as an example usage of the448

driver behavior indices for safety assessment: speed corridor maps based on spatial partitioning and snake449

similarities, and hard braking and hard acceleration hotspots based on Gaussian mixture dynamic clustering.450

This study considers the city-scale, whereas many previous studies considered individual corridors or451

links. It also presents a substantial addition to the literature as the driver behavior correlations with452

crashes are studied both on highways and on local roads. It also concludes that the hypotheses that hold453

on highways does not hold in dense and complex metropolitan cities. Hard braking is more indicative of454

collision rates on highways than hard acceleration, whereas hard acceleration is found to be a stronger safety455

indicator than hard braking on dense urban roads. The correlation direction of speed varies also by road456

type. Longer travel times are linked to crashes in dense urban roads. However, speeding on highways is457
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more indicative of collision risks. Future work will focus on building a crash prediction model that will458

incorporate the driver behavior indices in conjunction with other factors such as road geometry, pedestrian459

exposure and the left-turn and right-turn activity on an intersection.460

Integrating vehicular data with map data make generating data-enabled safety metrics and planning461

possible. It provides an invaluable insight into road safety and driver behavior, compared to sparse and462

manually collected crash data. Moreover, the specific designs of the interventions, while obviously well463

intentioned, are typically not supported by large objective performance data that accounts for all variables464

specific to the location. The potential now exists to radically alter this paradigm by using driver behavior465

data collected over the entire road network, to both gain insights to locations of anomalous behaviors as466

well as to quantitatively evaluate the before and after behavior performance of street improvement projects467

(SIPs).468
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