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Abstract

Let G be a finitely generated group. We show that for
any finite symmetric generating set A, the language con-
sisting of all geodesics in Cay(G, A) with the contract-
ing property is a regular language. An immediate con-
sequence is that the existence of an infinite contracting
geodesic in a Cayley graph of a finitely generated group
implies the existence of a contracting element. In par-
ticular, torsion groups cannot contain an infinite con-
tracting geodesic. As an application, this implies that
any finitely generated group containing an infinite con-
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cally hyperbolic.
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1 | INTRODUCTION

The study of Gromov hyperbolic groups has been so fruitful that extending tools from this setting
to more general classes of groups is a central theme in geometric group theory.

Among the fundamental tools is the study of the geodesic language in hyperbolic groups. A
classic result by Cannon [4] shows that for any finitely generated hyperbolic group G, the lan-
guage consisting of geodesic words in Cay(G, S) is a regular language regardless of the chosen
generating set S. A regular language is simply a (typically infinite) set of words of low enough
complexity that it can be produced by a finite graph. The existence of such a language has beau-
tiful geometric, algebraic, analytical, and combinatorial consequences. For instance, a geometric
reflection of the existence of a regular language for geodesics in the group is the finiteness of
cone types in hyperbolic groups. This in turns implies the algebraic fact that the word problem is
solvable [7].
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The existence of a regular language also has the analytical/combinatorial consequence that the
growth function of the group is a linear recursive function. A beautiful, mind boggling example
was given by Cannon of a finitely presented group where the language of all geodesic words is
a regular language with respect to one generating set but not another. This is Example 4.4.2 in
[7], and the groupis Z X Z, = (x,y,z | x?,zyz 'y, yxz~1x~1). Therefore, the regularity of the
geodesic language in a finitely presented group G is not an intrinsic property of the group and
is sensitive to the chosen generating set. As the example Z X Z, above shows, regularity of the
geodesic language is not independent of the presentation even in virtually abelian groups.

We show that in a finitely generated group G, if one restricts their attention to the language
consisting of all ‘hyperbolic-like’ geodesics, one gets a regular language for any generating set. The
condition on a geodesic « to be ‘hyperbolic-like’ is that for any subsegment 8 C a, the projection to
B of any ball disjoint from f has diameter bounded above by D. A geodesic satisfying this condition
is called D-super-contracting.

A related well-studied ‘hyperbolic-like’ property is that of a contracting geodesic. A geodesic
a is said to be D-contracting if projections to a of balls disjoint from it have diameter at most
D. In the literature, the exact value of D is seldom important. What is interesting is that such a
parameter exists and is independent of the length of the geodesic. This means that projections
onto such a geodesic are similar to projections in negatively curved geometry and different from
projections in flat geometry. While our notion of D-super-contracting is technically stronger than
D-contracting, the difference is only in the parameterization and completely independent of the
length of the geodesic. In fact, we show the following.

Theorem 1.1. Every D-contracting geodesic in a proper geodesic metric space X is D'-super-
contracting where D' depends only on D. In fact, D' may be taken to be D’ = 54D + 10. Since every
D-super-contracting geodesic is D-contracting, an infinite geodesic is contracting if and only if it is
super contracting.

In light of the above theorem, the notions of super-contracting and contracting geodesics are
equivalent, up to changing the contraction’s parameter. Our main theorem is the following.

Theorem 1.2. Let G be a finitely generated group, and let A be any finite symmetric generating set.
Then the language Ly, consisting of all D-super-contracting geodesic words in Cay(G, A) is a regular
language for any D.

Since a finitely generated group G = (A) is hyperbolic if and only if every geodesic in Cay(G, A)
is D-super-contracting for a uniform D (see Remark 4.9), the above theorem recovers a classic
result by Cannon where he shows that for a hyperbolic group G, and for a finitely generated set A,
the language consisting of all geodesics in Cay(G, A) is a regular language. Since the generating
function counting the number of words of length n in a regular language is always rational, this
opens a host of combinatorial questions. For any finitely generated group, choice of generating
set, and parameter D, we can ask how many geodesics of length n are D-super-contracting. All of
these questions can be answered with a rational generating function. An immediate consequence
to Theorem 1.1 and Theorem 1.2 is the following.

Corollary 1.3. Let G be a finitely generated group and let A be a finite symmetric generating set for
G. If Cay(G, A) contains an infinite contracting geodesic, then G contains a contracting isometry. In
particular, torsion groups do not contain infinite contracting geodesics.
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As an interesting application to the above theorem, we answer the following question posed by
Osin: Does the existence of an infinite contracting geodesic in a finitely generated group imply
that the group is acylindrically hyperbolic?

The previous theorem yields a positive answer to this question:

Corollary 1.4. Let G be a finitely generated group with a generating set A such that Cay(G, A)
contains an infinite contracting geodesic, then G must be acylindrically hyperbolic.

The paper is organized as follows. In Section 2, we introduce an a priori stronger notion of
a contracting geodesic that we call super-contracting and we set up the main tools needed for
the proof of the main two theorems. In Section 3, we prove Theorem 1.2. In Section 4, we prove
Theorem 1.1, Corollaries 1.3 and 1.4.

2 | SUPER-CONTRACTING GEODESICS

Throughout this section, X denotes a proper geodesic metric space. Also, if a is a path in X, we
will generally use « to denote the image of « in the space X.

Definition 2.1 (projection). Let C be a closed subset of X. We define the projection of a point x
onto C to be

rc(x)={peC|d(x,p)= ryneig d(x, )}

In general, 7-(x) may contain more than one point. For B C X, we define the projection to be
o(B) = U, cpmo(x). We write d(x, C) to denote the distance from x to its projection points.

Definition 2.2 (contracting). Let o be a continuous quasi-geodesic (possibly infinite). We say
that « is D-contracting if for any closed metric ball B disjoint from «, diam(z,(B)) < D. We say it
is contracting if it is D-contracting for some D.

Definition 2.3 (super-contracting). Let a be a continuous quasi-geodesic in X. We say that « is
D-super-contracting if every sub-segment of « is D-contracting in the above sense. That is, if for
any subsegment y C « and any closed metric ball B disjoint from y, diam(7, (B)) < D. We say « is
super-contracting if it is D-super-contracting for some D. It is immediate from the definition of a
D-super-contracting quasi-geodesic « that a subsegment of « is itself D-super-contracting.

It is clear from the above definitions that if a geodesic is D-super-contracting, then it is D-
contracting. As mentioned in the table of contents, Section 4 is devoted to proving a converse of
the above statement. In other words, we prove that for any proper geodesic metric space X and
for any D-contracting geodesic a C X, there exists D’, depending only on D, such that «a is D’-
super-contracting. Also, note that projections on contracting/super-contracting quasi-geodesics
are coarsely well defined. More precisely, if  is a D-contracting geodesic, then Vx € X we must
have diam(x,(x)) < D.
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Definition 2.4 (Quasi Isometric embedding). Let (X, dy) and (Y, dy) be metric spaces. For con-
stants 1 > 1 and € > 0, we say amap f : X — Y is a (4, €)-quasi-isometric embedding if, for all
points x;,x, € X

T (01,3) = € < dy (), (6,)) < Ay (3,3 + .

If, in addition, there exists a constant C > 0 such that every point in Y lies in the C-neighborhood
of the image of f, then f is called a (4, €)-quasi-isometry. When such a map exists, X and Y are
said to be quasi-isometric.

Definition 2.5 (Quasi-geodesics). A (4, €)-quasi-geodesic is a (4, €)-quasi-isometric embedding
y : [a,b] — X. A quasi-geodesic is a (4, €)-quasi-geodesic for some 4 > 1, and € > 0.

Definition 2.6 (Morse). A quasi-geodesic y in a proper geodesic metric space is called N-Morse,
where N is a function N : [1, o0) X [0, 0) — [0, 00), if for any (4, €)-quasi-geodesic o with end-
points on y, we have ¢ C WV, N1e)(¥)- The function N(4, €) is called a Morse gauge.

The following is Lemma 3.3 in [8].

Lemma 2.7 (Contracting implies Morse). For any proper geodesic metric space X, and for each
D > 0, there exists an N, depending only on D such that every D-contracting geodesic is N-Morse. In
particular, every D-super-contracting geodesic is N-Morse.

Lemma 2.8. Let M be a Morse gauge and let o be an M-Morse geodesic in Cay(G, A) starting at the
identity. If y is any geodesic in the Cay(G, A) starting at the identity and ending 1 apart from o, then
y is N-Morse where N depends only on M. Also, N > M.

Proof. The proof of this lemma follows easily from Lemma 2.1 in [6]. O

The following is Lemma 2.7 in [6]. It basically states that if you have two N-Morse geodesics
with the same origin that end close to each other, then they have to be roughly uniformly close.

Lemma2.9. Ifa,,, : [0, A] — X are N-Morse geodesics with ot;(0) = a,(0) and d(a,(s), ay) < K
forsome s € [0, A] and some K > 0, then d(a;(t), a,(t)) < 8N(3,0) forallt < s — K —4N(3,0).

Lemma 2.10. If a is a D-super-contracting geodesic in Cay(G, A) and {3 is another geodesic with
the same starting point as a and ending at most 1 apart from where o ends, then there is a constant
C > 1 only depending on D such that d(a(t), f(t)) < C forallt < |a| — 1 — %

Proof. A D-super-contracting geodesic is D-contracting and therefore M-Morse by Lemma 2.7.
Combining this with Lemmas 2.8 and 2.9, we get the following. If « is any D-super-contracting
geodesic in Cay(G, A) starting at the identity, then o has to be M-Morse where M depends only on
D. By Lemma 2.8, if § is any other geodesic in Cay(G, A), starting at the identity and ending 1 apart
from where a ends, then 8 has to be N-Morse where N depends only on M which depends only
on D. Now Lemma 2.9 gives us that d(a(t), 5(t)) < 8N(3,0) for all t < || — 1 — 4N(3,0). Thus,
the conclusion follows by taking C = 8N(3,0). O
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The following lemma relates projection onto a subsegment of a super-contracting geodesic to
projection onto the full geodesic. It shows that if the projection onto the full geodesic is on one
side of the subsegment, then projection onto the subsegment cannot jump too far toward the other
side.

Lemma2.11 (bounded jumps). Lety : [a,b] — X be a D-super-contracting geodesic. Letc € [a, b].
Denote by a and f3 the subsegments of y from y(a) to y(c) and from y(c) to y(b), respectively. For any
xeX,if ﬂy(x) Na # @, then every y(q) € ﬂﬁ(x) satisfies d(y(c),v(q)) < D.

Proof. Let x € X be such that there exists a point y(p) € 7, (x) N a # @. Since y is continuous, the
map f(t) = d(x,y(t)) is a continuous real-valued function. Let y(q) be in ﬂ,@(x) and let y(q') be
the point in ¢ closest to y(c) satisfying d(x, y(q")) = d(x,y(q)). Thatis, let ¢’ = sup{s < ¢ | f(s) =
f(@)}. Such a point exists by the intermediate value theorem applied to the inequality f(p) <
f(@) < f(c). Taking the supremum guarantees that no point between y(q’) and y(c) is closer to x
than y(q’) is. Thus, y(q) and y(q") are both in the projection of x onto Ylig' q)- Since y is D-super-
contracting, d(y(q"), y(q)) < D. Therefore, d(y(c),y(q)) < D. O

3 | SUPER-CONTRACTING LANGUAGE IS A REGULAR LANGUAGE
IN ANY FINITELY GENERATED GROUP

Definition 3.1 (A language over a finite alphabet). Let A be a finite set and A* be the free monoid
over A. We call an element w € A* aword in A. If w € A* and w = a, --- a,, where each q; € A,
then we call a, ..., a, the letters of the word w. A language over A is a set of words in A*. The
word length of w € A* is the number of letters of A in the word w. We denote the word length of
w by |w|.

The alphabets for the languages we will be working with will be finite generating sets for groups.

Definition 3.2. Let G be a finitely generated group and let A be a finite, symmetric generating
set for G. The Cayley graph of G with respect to A, Cay(G, A), is the graph whose vertices are the
elements of G and g, h € G are joined by an edge if g~'h € A.If g~'h € A, then we label the edge
connecting g and h by g~'h. The Cayley graph Cay(G, A) is a metric space by declaring each edge
to have length 1.

Definition 3.3 (Left actions on Cayley graphs). Let G be a finitely generated group and let A
be a finite symmetric generating set. The group G admits a natural left action on Cay(G, A) by
isometries as follows. Let g € G and x € Cay(G, A). If x is a vertex, then it is also a group element,
so we can define g - x = gx where gx is simply the product of g and x in G. If x is a point on an
edge connecting two vertices v, and v, atdistance ¢t € [0, 1] from v;, let us denote it x = (vy, £, v,).
We define the group action on such a point to be g - x = (gvy, t, gv,). For a subset B C Cay(G, A),
we define g - B := {g - x |x € B}. For a continuous path ¢ : [a,b] — Cay(G, A), we define a new
pathg-o : [a,b] —» Cay(G, A) by (g - o)(t) = g - o(t). We will sometimes abuse notation and use
g - 0 to denote the image of the map ¢ - o.

When the group G is generated by the finite set A, every path in Cay(G, A) produces a word in
A* by concatenating the labels of the edges in the order they appear along the path. Conversely,
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everyword in A* produces a path in Cay(G, A) by starting at the identity e and traversing the edges
in Cay(G, A) labeled by the letters of the word appearing from left to right. We will be particularly
concerned with words in A* that correspond with geodesic paths in Cay(G, A).

Definition 3.4. For a word w € A*, let w denote the element of G obtained by viewing w as an
element of G. A word w € A* is geodesic in Cay(G, A) if the path in Cay(G, A) from e to w labeled
by the letters of w is a geodesic in Cay(G, A). This is equivalent to saying that |w| is minimal
among all words that represent w. Further, for a word w € A*, we define |w|; to be the minimal
word length among all possible words u € A* with u = w. In notation, we have

|w|; := min{|u| for all u € A*such that u = w}.

Definition 3.5. A finite state automaton (FSA) over an alphabet A is a finite graph whose edges are
directed and labeled by elements of A; the vertices of the graph are divided into two sets — ‘accept’
and ‘reject’ — and there is a distinguished vertex s, called the initial vertex. The accepted language
of the automaton is the set of words which occur as labels on a directed edge path beginning at s,
and ending at an accept vertex. Those vertices are often called the states of the automaton.

Definition 3.6 (Regular languages). Let A be a finite set and A* be the set of all words with
letters in A. Recall that a language over A is a subset L C A*. A language over A is regular if it is
the accepted language of some finite state automaton over A.

Definition 3.7. Let u € A* be a geodesic word in the Cay(G,A). We define the D-super-
contracting cone of u, denoted by ConeP(u), to be all w € A* so that the concatenation uw is
a D-super-contracting geodesic in Cay(G, A). If u and v have the same D-super-contracting cone,
we will say that u and v have the same cone type.

Example 3.8. In the free group on two letters F, = (a,b), if we take D =1, the D-super-
contracting cone of a is all geodesic words in the group that do not start with a~! whereas in
Z @ Z ={a,b|[a,b]),if D = 1, the D-super-contracting cone of a is empty. If we take D = 2, then
in the free group example, the D-super-contracting cone of a will still be all geodesic words in the
group that do not start with a~! whereas in the Z @ Z example the D-super-contracting cone of
a is now the set {a, b, b™1}.

Definition 3.9. Given an element u in A* representing a geodesic in Cay(G, A), let u be the
unique group element represented by the word u. Given k € N, we define the k-tail of u to be all
elements h € G with |h|; < k such that |uh|; < |u|;. We denote the k-tail of u by T} ().

The k-tail of a geodesic word u is all group elements in a ball of radius k of the identity that
move u closer to the identity in the Cayley graph.

Definition 3.10. Given u € A* representing a geodesic in the Cay(G, A), m € N, and D > 0, we
define the m-local D-contracting type of u to be all words w € A* with |w| < m such that the
concatenation uw is a D-super-contracting geodesic in Cay(G, A). We will denote the m-local D-
contracting type of a geodesic word u by Coneﬁ (u).
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FIGURE 1 Possible projections of y to the geodesic uwa where uwa is D-super-contracting and
lw|>3D+1

The following lemma is a slight modification of the Lemma 2.11. It will be used in the proof of
Theorem 3.13.

Lemma 3.11. Let G be a group with a finite symmetric generating set A. Let u and w be words
in A and a € A. Suppose that uwa is a geodesic word such that |w| > 3D + 1 and uw is D-super-
contracting. For any vertexy €Cay(G, A), if ,,,,,(¥) N u # @, then d(u, p) < D forany p € 7,,(y).

Proof. Let X =Cay(G, A), note that since X is a graph, for any geodesic word v in X and any vertex
x € X, we have d(x, 7,(x)) € N U {0}. In other words, there exists at least one vertex x’ € v such
that d(x, x") = d(x, m,(x)). That is to say, as X is a graph, no projection of x to v can lie on an
interior of an edge in v.

Claim 3.12. Let uwa and y be as in the statement of the lemma, we have the following.

(1) All projections of y to uwa live on the subsegment uw. That is, 7,,,,,(¥) = 7,,(¥).
(2) All projections of y to wa live on the subsegment w. That is, 7, (¥) = 7, (¥).

Before proving the above claims, we show how they imply the statement of the lemma. Note that
by the assumption of the lemma, there exists a point p,, € 7,,,,,(¥) N u. As uw is a subsegment of
uwa, we have p,, € 7,,,,(y) N u. Since uw is D-super-contracting, using Lemma 2.11, all projections
of y to w must be within D of u. That is to say, for every p € 7,,(y), we have d(p, u) < D. However,
using part (2) of Claim 3.12, we have 7 ,,(y) = 7,,(y) which finishes the proof.

Proof of (1): Let p, € m,,,,,(¥) Nu and let d = d(y, p,) = d(y, 7,,,4(¥))- In order to prove the

claim, it suffices to show that d(y,uwa) > d. Suppose not, that is, suppose d(y,Wa) <d. As
d =d(y, 7,,,(3), we have d(y,uwa) = d. See Figure 1. Note that d < d(y,uw) < d + 1. How-
ever, d(y, uw) # d as this would imply diam(z,,,,(¥)) > 3D + 1 contradicting the assumption that
uw is D-super-contracting. Hence, we have d(y, uw) = d + 1. Now, note that since uw is a sub-
segment of uwa, the point p, must also live in 7,,,,(y). Let p; be the unique point in 7,,,(y)
so that d(e, p; ) = max,c, «yd(e, p). We claim that p; lives on the w subsegment of uw. Sup-
pose not. That is, suppose p; € uw and p; ¢ w. This implies that d(y,p;) =dy,m,,») >d
and thus every point in w is at least d + 1 away from y. Consequently, we have uw € 7, (y)
contradicting Lemma 2.11 since |w| > 3D + 1. Hence, we have p; € w. Let g be the unique ver-

tex on uw so that d(e,q) = d(e, p;) + 1. Note that since uw is D-super-contracting, we have
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d(g, p,) < d(q,p;) + d(p)’),py) < 1+ D. Furthermore, by our choice of ¢, we have d(y,q) = d + 1
and d(y,q") > d + 1 for any vertex ¢’ on the geodesic uw with d(e,q") > d(e, q). Now, let a =
[g,uw],,, denote the subsegment of uw starting at the vertex g and ending at the vertex uw.
The points g, uw both live in 7, (y) as d(y,q) = d(y,uw) = d + 1 where d(y,z) > d + 1 for any
vertex z € a. On the other hand, d(gq,u) =1 + d(p;,ﬁ) <1+ d(p;, py) <1+ D. This yields that
d(gq,uw) = d(u,uw) — d(q,u) > 3D + 1) — (D + 1) = 2D, which contradicts the fact that uw is
D-super-contracting. Therefore, the projection of y to uwa is contained entirely in the subseg-
ment uw. Hence 7,,,() = 7,,,)-

Proof of (2): Let p, € m,,,,(y) Nu and let d = d(y, p,) = d(y, 7,,4(¥)). Using part (1), we
have d(y,uwa) > d. Note that if 7,,,,(y) N w # @, then we are done as if z € 7,,,,,(¥) N w, then
d(y,z) = d while d(y, uwa) > d. Hence 7 ,,(y) = 7,,(»).

Otherwise, if 7,,,,(y) N w = @, then all projections of y to uwa live in the u subsegment of
uwa. In particular, since uw is a subword of uwa, all projections of y to uw live on the u sub-
segment of uw. Let p”’ be the point with d(u, p”) = max,, (,yd(u, p). Note that by Lemma 2.11,
every projection of y to w is at most D away from u, and since |w| > 3D + 1, we have p” # uw.
Let ¢” be the point on w with d(u,q"”) = d(u, p’’) + 1. By Lemma 2.11, since uw is D-super-
contracting, we have d(u, p”’) < D and hence d(u, ¢"") < D + 1. Note that by our choice of p”’ if we
letd’ =d(y, p") = d(y, 7,()), then d(y,q"") = d’ + 1. In order to finish the proof of this claim,
we need to show that d(y, uwa) # d’. Suppose for the sake of contradiction that d(y, uwa) = d’,
this implies that d(y, uw) is either d’ or d’ + 1. However, it cannot be d’ as this would contra-
dict the assumption that uw is D-super-contracting. Thus d(y,uw) = d’ + 1. But that implies
that both ¢” and uw live on the projection of y to the subsegment of uw connecting q” to
uw given by g = [¢"",uw],,,,- This contradicts the assumption that uw is D-super-contracting as
diam(7g(y)) = d(uw, q") = d(uw,u) — d(u,q"”) > (3D +1) — (D + 1) = 2D. O

Let G be a group with a finite symmetric generating set A. The goal of this section is to show
that the languages L, consisting of all D-super-contracting geodesics are all regular languages
regardless of the chosen generating set A. Before doing so, we will state an important key theorem
that will provide us with the states needed for our FSA, we will refer to this theorem by ‘the cone
types theorem’. The theorem states that in order to determine D-super-contracting cone type of a
geodesic word u, you need only to understand the local geometry around the vertex u. To be more
precise, it says that there exist a uniform m, depending only on D, such that the m-neighborhood
around a vertex u encodes the information needed to determine what elements are in Cone” (u).
This will imply that we have only finitely many cone types because there are only finitely many
types of m-neighborhoods in Cay(G, A).

Theorem 3.13. For a given constant D > 0, there exists an integer m, depending only on D, such
that if u, v are two geodesic words in Cay(G, A) with T,,(u) = T,,(v) and Coneﬁ(u) = Conefq(v),
then ConeP (u) = ConeP(v). In particular, there are only finitely many such cones.

We will prove this theorem, but for now, let us show how it implies our first main theorem
about the existence of a regular language for all D-super-contracting geodesics:

Theorem 3.14. Let G be a group and A any finite symmetric generating set. Let Ly, be the lan-
guage of words in the alphabet A which, when interpreted as paths in the Cayley graph, are D-super-
contracting geodesics. Then for any fixed D, the language Ly, is a regular language.
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Proof. Consider the finite graph I' whose vertices are the D-contracting cone types of G and
which has a directed edge labeled a € A U A~! connecting the D-super-contracting cone type
of a geodesic word u to the D-super-contracting cone type of ua if and only if a belongs to the
D-super-contracting cone of u. Otherwise the edge labeled a goes to the unique fail state. All
non-empty D-super-contracting cone types are accept states. The initial state is the cone type
of the empty word. The previous theorem shows that there are finitely many vertices, and the
D-super-contracting cone type was defined precisely to pick out those continuations that are
both geodesic and D-super-contracting. Also, observe that if Cone”(u) = Cone” (v), then we have
ConeP(ua) = ConeP(va) for any a € A. To see this, first, note that since Cone”(u) = Cone”(v),
the word ua is a D-super-contracting geodesic if and only if va is. Further, for any word w, if we let
w’ = aw, we have w’ € Cone”(u) if and only if w’ € ConeP(v). This implies that uw’ = uaw is a
D-super-contracting geodesic if and only if vw’ = vaw is. Therefore, Cone”(ua) = ConeP(va)
whenever Cone”(u) = Cone”(v). This shows that it is not possible for a single vertex of the
directed graph I' to have two distinct outgoing edges labeled with the same letter a € A. Such
a finite state automaton is called deterministic. O

Now we prove Theorem 3.13:

Proof. Fix a super-contracting constant D. Using Lemma 2.10, there exists a constant C, which
depends only on D, such that for any D-super-contracting geodesic «, if 8 is a geodesic starting at

the same point as « and ending at most 1 away from «, then d(a(t), (t)) < Cforallt < |a] — 1 —
C

X
We want to show that there exists some m large enough so that if two geodesic words

u,v €Cay(G, A) satisfy T,,(u) = T,,(v) and Cone? (u) = Cone? (v), then Cone®(u) = Cone®(v).
Recall that for a word w in A*, the number of letters appearing in w is denoted by |w| while the
length of the group element w is denoted by |w|;.

Let u, v be the unique group elements represented by u and v, respectively. Note that since u, v
are assumed to be geodesic words, we must have |u|; = |u| and |v|s = |v|. Choose m > max{C +
1,3D + 1}.

We proceed by induction on the length of the words in the cone. Since u and v satisty T,,(u) =
T,,(v) and Cone? (1) = Cone? (v), if w € A* with |w| < m, then w € Cone”(u) if and only if
w € ConeP(v). This covers the base cases. For the induction step, let w € Cone®(u) N ConeP (v)
and consider wa for a € A. We want to show that wa € Cone”(u) if and only if wa € Cone”(v).

Suppose for contradiction that wa € Cone” (v) but wa & Cone®(u). The cones agree for words
of length at most m, so [wa| > m + 1. Since wa & Cone® (u), then by definition, either the word
uwa is not a geodesic word or uwa is a geodesic word that is not D-super-contracting.

First we show that uwa must be a geodesic word. We remark that this part of the proof closely
follows a proof in the cone types section of [3]. If uwa is not a geodesic word, then there must exist
some geodesic word ¢ of length strictly less than |u| + |w| + 1 such that ¢ = uwa. Write ¢ as a
product 7,7, such that |#,| = |u| — 1 = |u|; — 1 and |#,| < |w| + 1. Note that as w € ConeP(u),
the word uw is D-super-contracting and since uw and ¢ end 1 apart from each other, Lemma 2.10
gives us that d(?l,ﬁ) < C + 1. Define z := u~1#,, hence, the group element z = u~1#, satisfies
|z|g £ C+ 1< mand |uz|; < |u|g which implies that z € T,,,(u). Recall that T,,,(u) = T,,(v) by
assumption, so z € T,,,(v) and |vz|; < [v]g. Let a be any geodesic word connecting the identity
to the group element vz, so |a| < |v];. Now consider the concatenation of the geodesic a with the
edge path labeled #,. On one hand, you get a7, = vz¢, = vu-'¢,¢, = vu~'uwa = dwa. There-
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FIGURE 2 Geodesic cone is determined locally
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FIGURE 3 Contracting cone is determined locally

fore, the edge path aZ, ends at the same vertex as the geodesic word vwa. Consequently, since
vwa is a geodesic, we have |aZ,| > |v] + |[w]| + 1. But on the other hand, if we concatenate the
geodesic word a with the edge path labeled ¢, we get |a?,| < |a| + |£,| < |v| + |w| + 1 which is
a contradiction. Therefore, uwa must be a geodesic word (Figure 2).

Now we consider the other possibility, that is, if uwa is a geodesic word that is not D-super-
contracting. Denote this geodesic by ,, its geodesic subsegments labeled wa, u by o4, o;, respec-
tively. Similarly, denote the geodesic vwa by f3,, its geodesic subsegments labeled wa, v by 0, o”,

respectively. Note that if we let g := vu~1, then we have o, = ¢ - 7,. So the assumption is that 3,
is not a D-super-contracting geodesic but 3, is. This implies the existence of a subsegment y of §;
that is not D-contracting. In other words, there exists a ball B disjoint from y, points x,y € B, and
projection points p, € 7,(x), p, € 7, (y) such that d(p,, p,) > D.

Note that since the geodesic uw is assumed to be D-super-contracting, then at least one of the
points p, and p,, say p,, is on the edge labeled a at the end of the geodesic ;. Moreover, we have
Px € Ty, (x) (Figure 3).

The first thing to observe is that, since g is an isometry taking o, to 05, g - p € 7, (g - x) which
is at the edge labeled a at the end of o,.
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Now we consider the two different possibilities for projections of y to the subsegment y of 5,. If
all projections of y on the y-subsegment of 8, are on oy, then by our assumption, 3p, € ﬂglny(y)
with d(p,, py) > D. Let y' denote the subsegment of y which connects p, to py- Note that since
the ball B containing x, y is disjoint from y, it must also be disjoint from y’. By definition of y’,
we have y’ C o, and since g is an isometry taking o, to o,, it must take y’ C o; to g -y’ C 0,.
Furthermore, since p, € 7,/(x), p, € 7,/(y), we have

9 Px €My y(g-%), g-py Emyp(g-y),
9-Bng-y' =0 andd(g- py,g- p,) = d(ps. p,) > D,

which contradicts the assumption that 8, is D-super-contracting. The other possibility is that
some projection of y on the y-subsegment of §; meets 01. In other words, assume there exists
apointp € w,(y) N cr;. If that is the case, then by removing 01 from B, using Lemma 3.11, we get
a point p, € 7, (¥) which is at most D away from u. This implies d(p,, py) 2 (ol -1 —-D =
lw|—D >m—D > D.Sinceo; Cy,and BNy = @, we have BN o, = . Again, as g is an isome-
try with ¢ - 0, = 0,, we have

g - Dy € 7[02(9 : X), g 'py € 7[:72(9 J’),
g-Bng-o,=¢g-Bno, =0, andd(g- py,9-p,) = d(py,p,) > D.

Hence, there exists a ball B’ = g - B disjoint from o, = ¢ - 0; containing two points g - x, g -y
whose projections to ¢, include points g - p, g - p, with d(g - py, g - py) > D. This contradicts
the assumption that 5, is D—super-contracting. O
Definition 3.15 (acylindrical action). The action of a group G on a metric space X is called
acylindrical if for every € > 0, there exist R, N > 0 such that for every two points x,y € X with
d(x,y) > R, there are at most N elements ¢g € G satisfying:

d(x,gx) <e and d(y,gy) <e.

Definition 3.16. A group G is said to be acylindrically hyperbolic if it admits a non-elementary
acylindrical action on a hyperbolic space.

As a consequence of the above theorem, we will show that any finitely generated group which
contains an infinite super-contracting geodesic must be acylindrically hyperbolic answering a
question posed by Osin, but first, we state an easy corollary of Theorems H and I in [1]:

Corollary 3.17. Let G be a finitely generated group which is not virtually cyclic, and let A be a
generating set for G. If G contains an element g with a contracting axis in Cay(G, A), then G must be
acylindrically hyperbolic.

Now we show how Theorem 3.14 along with the previous corollary imply the following:

Corollary 3.18. Let G be a finitely generated group which is not virtually cyclic, and let A be a
generating set for G. If Cay(G, A) contains an infinite super-contracting geodesic, then it must contain
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a contracting isometry and hence G must be acylindrically hyperbolic. In particular, G cannot be a
torsion group.

Proof. Lety be an infinite D-super-contracting geodesic. Using Theorem 3.14, there exists a finite
state automaton M that accepts every initial subsegment of y. Denote its accepted language by
L. Note that since y is an infinite D-super-contracting geodesic, the language L, must be infi-
nite. Choose a large enough initial subsegment w of y whose length is larger than the number
of states in M. This implies the existence of a state that w passes twice. In other words, w has
an initial subsegment of the form uv such that uv" € Lj, for all n € N (this is a standard argu-
ment in formal languages which is often referred to as the pumping lemma). Since subsegments
of D-super-contracting geodesics are themselves D-super-contracting, the subsegment v" of uv”
is D-super-contracting. Hence, U is an element whose axis is super-contracting, and therefore,
using the previous corollary, the group G must be acylindrically hyperbolic. O

3.1 | CONTRACTING IS ALSO SUPER-CONTRACTING

Throughout this section, let X denote a proper geodesic metric space. The goal of this section is
to prove the following.

Theorem 4.1. Every D-contracting geodesic in a proper geodesic metric space X is D'-super-
contracting where D' depends only on D. In fact, D' may be taken to be D' = 54D + 10. Since every
D-super-contracting geodesic is D-contracting, an infinite geodesic is contracting if and only if it is
super contracting.

To show this, we will use an additional hyperbolicity property, slimness, which we show in
Lemma 4.4 holds for contracting geodesics.

Definition 4.2. A geodesic « is §-slim if for any x € X, p € 7 (x), and geodesic § from x to a
point on o, we have d(p, §) < 8.

Contracting geodesics are known to also be slim in the setting of CAT(0) spaces. This property
also holds in the generality of proper geodesic metric spaces, but the proof has to be adjusted
slightly to accomodate the greater generality. In their proof that contracting implies slim, Bestvina
and Fujiwara use the assumption that projection onto geodesics is coarsely distance decreasing
[2]. This does not always hold for projections in a proper geodesic metric space, but it does hold
for projections onto contracting geodesics, as we show in the following proposition.

Proposition 4.3. Let a be a D-contracting geodesic. For any points x,, X, € X and projection points
P1 € mo(x1), Py € T (x5),

d(p;, py) < d(x,x,) +4D.
Proof. First we consider the case of two points x and y connected by a geodesic [x, y] such that

d(w, ) > D for all w € [x,y]. Subdivide [x, y] into n = [@] subsegments [z;, z;, ;] of length
< D with z, = x and z, = y. So nD < d(x,y) + D. Let z| € m,(x) and z), € 7,(y) be any pair of
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projection points. Pick z{ € 7, (z;) for the rest. Since « is D-contracting, d(zl.’ ,z; +1) < D for all i.
Then

n—1

d(zp,2)) < Z d(z],z., ) <nD < d(x,y) +D.
i=0

Now for the general case, fix any geodesic [x;, X,]. Let y; € [x;,x,] be the point closest to x;
satisfying d(y;, @) < D and y, the analogous point closest to X,. If no such points exist, we are in
the previous case and already done. Pick any two projection points g; € 7,(y;). By the triangle
inequality, d(q;, q,) < d(¥;,¥,) + 2D. The segments [x;, y;] are at distance greater than D from «.
Therefore we can apply the result of the previous paragraph to get

d(py, py) < d(p;,qy) +d(qy,q2) +d(qy, pa)
<d(x,y1)+ D +d(y,,y,) +2D + d(y,,x,) + D

Lemma 4.4. Let a be a D-contracting geodesic in a proper geodesic metric space. Then a is also
&-slim where & depends only on D.

Proof. Proposition 4.3 shows that projections onto D-contracting geodesics satisfy the distance
decreasing axiom of [2] with C = 4D. The proof of slimness is then the same as in Lemmas 3.5
and 3.6 of [2]. From this proof, § = 7D + 1 suffices. O

Remark 4.5. Let a be a D-contracting (and thus d-slim by lemma 4.4) geodesic. Let x be any point
inX and p € 7, (x).If p, is a point on « at distance t away from p, and z is a point in some geodesic
connecting x to p; with d(p,z) < 8, then d(x, p;) = d(x,z) + d(z, p;) = (d(x, p) — &) + (t = ).
Therefore, we have

d(x,p,) = d(x,p) +t —28.

The following lemma looks very similar to Lemma 2.11. The main difference is that here we
only assume y is D-contracting, whereas Lemma 2.11 assumes that y is D-super-contracting.

Lemma 4.6. Lety : [a,b] - X be a D-contracting geodesic and o any subsegment of y. Let § =
7D + 1. Suppose we have a point x and a projection point q € 7, (x)so thatq & o. Ifuis the endpoint
of o closest to g, then for any p € 7 (x), d(p,u) < 26.

Proof. By Lemma 4.4, y is §-slim. Let p € 7,(x). The point u is between g and p on a geodesic,
so d(q, p) = d(p,u) + d(u, q), and d(x, p) < d(x,u) because p is in the projection of x onto o. By
the triangle inequality, d(x, u) < d(u, q) + d(x, q). Starting from the inequality in Remark 4.5 with
t =d(p,q), we have

d(x,q) +d(q,p) <d(x,p)+26
d(x,q) +d(p,u) + d(u,q) < d(x,u) + 28
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FIGURE 4 Case?2of Lemma 4.7

d(x,q) +d(p,u) +d(u,q) < d(u,q) + d(x,q) + 25

d(p,u) < 26. O

‘We are now ready to prove that subsegments of a contracting geodesic are also contracting. Our
proof is essentially the same as that of Lemma 3.2 in [2]. We include it only to verify that is still
valid assuming only that X is a proper geodesic metric space, using Proposition 4.3 in place of
their distance decreasing axiom.

Lemma 4.7. Lety be a D-contracting geodesic. There is a constant D', depending only on D, so that
any subsegment o of y is D’-contracting. Consequently, y is D’-super-contracting.

Proof. Let & = §(D) be the slimness constant from Lemma 4.4. Let u and v be the endpoints of o.
In other words, o = [u, v] where [u, v] denotes the the geodesic subsegment of y connecting u to
v. Let a, b be the first and last points of y, respectively.

We claim that D’ = 26D + 45 + 6 does the job. We may assume that length(c) > D’ as other-
wise, there would be nothing to prove. Let B be a ball centered at a point z and disjoint from our
subsegment o. From here we divide the proof into two cases. The constant D’ is sufficient for both.

Casel. 7T},(Z) N o # @. In this case, the ball B is also disjoint from y, so we know that the diam-
eter of 7, (B) is at most D. Let I = [sy, s,] denote the smallest interval containing all of the points
in n'y(B). The length of I is bounded above by D. We will argue that every point in 7 (B) is within
a distance 26 of I N 0.

If x € B has projection 7, (x) N o # @, then 7 (x) = 7, (x) N o. In particular, 7,(x) C I. Sup-
pose instead 7, (x) contains a point g ¢ o. For concreteness, suppose u is the endpoint of o near-
est to g (otherwise apply the same argument with v instead of u). Then u € I and d(u, p) < 26
for any p € 7 (x) by Lemma 4.6. So everything in 7,(B) is within 28 of I, an interval of length at
most D. Therefore, the diameter of 77, (B) is at most D + 45 for Case 1 (Figure 4).

Case 2. ,(z) N o = (. Note that in this case it is possible that B intersects y. Every point
p; € m,(z) must belong to precisely one of [a, u), (v, b]. In other words, since y is D-contracting, it
is not possible to have two points p,, p, € 7,(z) with p, € [a,u) and p., € (v, b]. Without loss of
generality, suppose that every p, € [a,u). We want to show, for all x € B and p, € 7 (x), that
d(py,u) < 13D + 26 + 3. This would imply d(p,, p,) < 26D +45 + 6 = D' for all x,y € B and
Px> Py € m5(x), m5(y), respectively.

To show the above, assume for the sake of contradiction that there exists x € B so that 7 (x)
contains a point further than 13D + 25 + 3 from u. Note that no projection point of x to y can
be on [a, u) because Lemma 4.6 would imply d(7,(x), u) < 26. So there is also at least one point
Py € m,(x) with d(p,,u) > 13D + 26 + 3. Fix [z, x] to be some geodesic connecting z to x. By
subdividing [z, x] into intervals of length at most one, and using Proposition 4.3, we can find a
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pointy € [z, x] such that the set ny(y) is contained in the 1 + 4D neighborhood of u. Let B’ be the
closed ball centered at y with radius r = d(y,y) — 1 and since y is D-contracting, the set 7r;,(B’ )
has diameter < D. Note that

d(y,u) > d(z,u) —d(z,y) = d(z,u) — d(z,x) + d(y, x) > d(y, x).
Now, since the set ﬂy(y) is contained in the 1 + 4D neighborhood of u, we have
dy,x) <dy,u) <dy,y)+4D+1=r+4D +2

Therefore, by the previous inequality, the ball B’ must contain a point w with d(w, x) < 4D + 2.
Now note that for any p, € 7,(y) and p,, € 7, (w), we have

d(py, py) < d(py, py) + d(py, px) <D+ ((4D +2) +4D) = 9D + 2.

On the other hand, we have d(u, p,) < 1 + 4D, which gives that d(u, p,) < d(u, p,) + d(py, p,) <
(1 +4D) + (9D + 2) = 13D + 3, this is a contradiction since d(u, p,.) > 13D + 26 + 3. O

In light of Theorem 4.1, we can apply Corollary 3.18 to show the following.

Corollary 4.8. Let G be a finitely generated group which is not virtually cyclic, and let A be a gen-
erating set for G. If Cay(G, A) contains an infinite contracting geodesic, then G must be acylindri-
cally hyperbolic.

Remark 4.9. In the introduction, we stated that a geodesic metric space is hyperbolic if and only
if there exists a constant D such that every geodesic is D-super-contracting. The forward direc-
tion is a standard fact about hyperbolic spaces. For example, the argument given in Theorem
2.14 of [5] proving that for a CAT(0) space X every §-slim geodesic is D-contracting (and hence
D'-super-contracting) still works when the CAT(0) space X is replaced by a hyperbolic space.
Conversely, if every geodesic is D-super-contracting, then by Lemma 2.7, there exists an M such
that every geodesic is M-Morse. Now, Lemma 2.2 of [6] states that if two edges of a triangle in a
geodesic metric space are M-Morse, then the triangle is 4M (3, 0)—thin. This implies that the space
is 4M (3, 0)-hyperbolic. O
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