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Abstract
Let 𝐺 be a finitely generated group. We show that for
any finite symmetric generating set𝐴, the language con-
sisting of all geodesics in Cay(𝐺, 𝐴) with the contract-
ing property is a regular language. An immediate con-
sequence is that the existence of an infinite contracting
geodesic in a Cayley graph of a finitely generated group
implies the existence of a contracting element. In par-
ticular, torsion groups cannot contain an infinite con-
tracting geodesic. As an application, this implies that
any finitely generated group containing an infinite con-
tracting geodesic must be either virtually ℤ or acylindri-
cally hyperbolic.

MSC ( 2020 )
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1 INTRODUCTION

The study of Gromov hyperbolic groups has been so fruitful that extending tools from this setting
to more general classes of groups is a central theme in geometric group theory.
Among the fundamental tools is the study of the geodesic language in hyperbolic groups. A

classic result by Cannon [4] shows that for any finitely generated hyperbolic group 𝐺, the lan-
guage consisting of geodesic words in Cay(𝐺, 𝑆) is a regular language regardless of the chosen
generating set 𝑆. A regular language is simply a (typically infinite) set of words of low enough
complexity that it can be produced by a finite graph. The existence of such a language has beau-
tiful geometric, algebraic, analytical, and combinatorial consequences. For instance, a geometric
reflection of the existence of a regular language for geodesics in the group is the finiteness of
cone types in hyperbolic groups. This in turns implies the algebraic fact that the word problem is
solvable [7].
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The existence of a regular language also has the analytical/combinatorial consequence that the
growth function of the group is a linear recursive function. A beautiful, mind boggling example
was given by Cannon of a finitely presented group where the language of all geodesic words is
a regular language with respect to one generating set but not another. This is Example 4.4.2 in
[7], and the group is ℤ⋊ ℤ2 = ⟨𝑥, 𝑦, 𝑧 ∣ 𝑥2, 𝑧𝑦𝑧−1𝑦−1, 𝑦𝑥𝑧−1𝑥−1⟩. Therefore, the regularity of the
geodesic language in a finitely presented group 𝐺 is not an intrinsic property of the group and
is sensitive to the chosen generating set. As the example ℤ⋊ ℤ2 above shows, regularity of the
geodesic language is not independent of the presentation even in virtually abelian groups.
We show that in a finitely generated group 𝐺, if one restricts their attention to the language

consisting of all ‘hyperbolic-like’ geodesics, one gets a regular language for any generating set. The
condition on a geodesic𝛼 to be ‘hyperbolic-like’ is that for any subsegment 𝛽 ⊆ 𝛼, the projection to
𝛽 of any ball disjoint from 𝛽 has diameter bounded above by𝐷. A geodesic satisfying this condition
is called 𝐷-super-contracting.
A related well-studied ‘hyperbolic-like’ property is that of a contracting geodesic. A geodesic

𝛼 is said to be D-contracting if projections to 𝛼 of balls disjoint from it have diameter at most
𝐷. In the literature, the exact value of 𝐷 is seldom important. What is interesting is that such a
parameter exists and is independent of the length of the geodesic. This means that projections
onto such a geodesic are similar to projections in negatively curved geometry and different from
projections in flat geometry. While our notion of 𝐷-super-contracting is technically stronger than
𝐷-contracting, the difference is only in the parameterization and completely independent of the
length of the geodesic. In fact, we show the following.

Theorem 1.1. Every 𝐷-contracting geodesic in a proper geodesic metric space 𝑋 is 𝐷′-super-
contracting where 𝐷′ depends only on 𝐷. In fact, 𝐷′ may be taken to be 𝐷′ = 54𝐷 + 10. Since every
𝐷-super-contracting geodesic is 𝐷-contracting, an infinite geodesic is contracting if and only if it is
super contracting.

In light of the above theorem, the notions of super-contracting and contracting geodesics are
equivalent, up to changing the contraction’s parameter. Our main theorem is the following.

Theorem 1.2. Let 𝐺 be a finitely generated group, and let 𝐴 be any finite symmetric generating set.
Then the language 𝐿𝐷 consisting of all𝐷-super-contracting geodesic words in Cay(𝐺, 𝐴) is a regular
language for any 𝐷.

Since a finitely generated group𝐺 = ⟨𝐴⟩ is hyperbolic if and only if every geodesic in Cay(𝐺,𝐴)
is 𝐷-super-contracting for a uniform 𝐷 (see Remark 4.9), the above theorem recovers a classic
result by Cannon where he shows that for a hyperbolic group𝐺, and for a finitely generated set𝐴,
the language consisting of all geodesics in Cay(𝐺, 𝐴) is a regular language. Since the generating
function counting the number of words of length 𝑛 in a regular language is always rational, this
opens a host of combinatorial questions. For any finitely generated group, choice of generating
set, and parameter 𝐷, we can ask howmany geodesics of length 𝑛 are 𝐷-super-contracting. All of
these questions can be answered with a rational generating function. An immediate consequence
to Theorem 1.1 and Theorem 1.2 is the following.

Corollary 1.3. Let 𝐺 be a finitely generated group and let 𝐴 be a finite symmetric generating set for
𝐺. If Cay(𝐺, 𝐴) contains an infinite contracting geodesic, then 𝐺 contains a contracting isometry. In
particular, torsion groups do not contain infinite contracting geodesics.
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As an interesting application to the above theorem, we answer the following question posed by
Osin: Does the existence of an infinite contracting geodesic in a finitely generated group imply
that the group is acylindrically hyperbolic?
The previous theorem yields a positive answer to this question:

Corollary 1.4. Let 𝐺 be a finitely generated group with a generating set 𝐴 such that Cay(𝐺, 𝐴)
contains an infinite contracting geodesic, then 𝐺 must be acylindrically hyperbolic.

The paper is organized as follows. In Section 2, we introduce an a priori stronger notion of
a contracting geodesic that we call super-contracting and we set up the main tools needed for
the proof of the main two theorems. In Section 3, we prove Theorem 1.2. In Section 4, we prove
Theorem 1.1, Corollaries 1.3 and 1.4.

2 SUPER-CONTRACTING GEODESICS

Throughout this section, 𝑋 denotes a proper geodesic metric space. Also, if 𝛼 is a path in 𝑋, we
will generally use 𝛼 to denote the image of 𝛼 in the space 𝑋.

Definition 2.1 (projection). Let 𝐶 be a closed subset of 𝑋. We define the projection of a point 𝑥
onto 𝐶 to be

𝜋𝐶(𝑥) = {𝑝 ∈ 𝐶 ∣ 𝑑(𝑥, 𝑝) = min
𝑦∈𝐶

𝑑(𝑥, 𝑦)}.

In general, 𝜋𝐶(𝑥) may contain more than one point. For 𝐵 ⊂ 𝑋, we define the projection to be
𝜋𝐶(𝐵) = ∪𝑥∈𝐵𝜋𝐶(𝑥). We write 𝑑(𝑥, 𝐶) to denote the distance from 𝑥 to its projection points.

Definition 2.2 (contracting). Let 𝛼 be a continuous quasi-geodesic (possibly infinite). We say
that 𝛼 is 𝐷-contracting if for any closed metric ball 𝐵 disjoint from 𝛼, diam(𝜋𝛼(𝐵)) ⩽ 𝐷. We say it
is contracting if it is 𝐷-contracting for some 𝐷.

Definition 2.3 (super-contracting). Let 𝛼 be a continuous quasi-geodesic in 𝑋. We say that 𝛼 is
𝐷-super-contracting if every sub-segment of 𝛼 is 𝐷-contracting in the above sense. That is, if for
any subsegment 𝛾 ⊆ 𝛼 and any closed metric ball 𝐵 disjoint from 𝛾, diam(𝜋𝛾(𝐵)) ⩽ 𝐷. We say 𝛼 is
super-contracting if it is 𝐷-super-contracting for some 𝐷. It is immediate from the definition of a
𝐷-super-contracting quasi-geodesic 𝛼 that a subsegment of 𝛼 is itself 𝐷-super-contracting.

It is clear from the above definitions that if a geodesic is 𝐷-super-contracting, then it is 𝐷-
contracting. As mentioned in the table of contents, Section 4 is devoted to proving a converse of
the above statement. In other words, we prove that for any proper geodesic metric space 𝑋 and
for any 𝐷-contracting geodesic 𝛼 ⊆ 𝑋, there exists 𝐷′, depending only on 𝐷, such that 𝛼 is 𝐷′-
super-contracting. Also, note that projections on contracting/super-contracting quasi-geodesics
are coarsely well defined. More precisely, if 𝛼 is a 𝐷-contracting geodesic, then ∀𝑥 ∈ 𝑋 we must
have diam(𝜋𝛼(𝑥)) ⩽ 𝐷.
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Definition 2.4 (Quasi Isometric embedding). Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌) be metric spaces. For con-
stants 𝜆 ⩾ 1 and 𝜖 ⩾ 0, we say a map 𝑓 ∶ 𝑋 → 𝑌 is a (𝜆, 𝜖)–quasi-isometric embedding if, for all
points 𝑥1, 𝑥2 ∈ 𝑋

1

𝜆
𝑑𝑋(𝑥1, 𝑥2) − 𝜖 ⩽ 𝑑𝑌(𝑓(𝑥1), 𝑓(𝑥2)) ⩽ 𝜆 𝑑𝑋(𝑥1, 𝑥2) + 𝜖.

If, in addition, there exists a constant 𝐶 ⩾ 0 such that every point in 𝑌 lies in the 𝐶-neighborhood
of the image of 𝑓, then 𝑓 is called a (𝜆, 𝜖)-quasi-isometry. When such a map exists, 𝑋 and 𝑌 are
said to be quasi-isometric.

Definition 2.5 (Quasi-geodesics). A (𝜆, 𝜖)-quasi-geodesic is a (𝜆, 𝜖)-quasi-isometric embedding
𝛾 ∶ [𝑎, 𝑏] → 𝑋. A quasi-geodesic is a (𝜆, 𝜖)-quasi-geodesic for some 𝜆 ⩾ 1, and 𝜖 ⩾ 0.

Definition 2.6 (Morse). A quasi-geodesic 𝛾 in a proper geodesic metric space is called 𝑁-Morse,
where 𝑁 is a function 𝑁 ∶ [1,∞) × [0,∞) → [0,∞), if for any (𝜆, 𝜖)-quasi-geodesic 𝜎 with end-
points on 𝛾, we have 𝜎 ⊆𝑁(𝜆,𝜖)(𝛾). The function 𝑁(𝜆, 𝜖) is called aMorse gauge.

The following is Lemma 3.3 in [8].

Lemma 2.7 (Contracting implies Morse). For any proper geodesic metric space 𝑋, and for each
𝐷 ⩾ 0, there exists an𝑁, depending only on 𝐷 such that every 𝐷-contracting geodesic is𝑁-Morse. In
particular, every 𝐷-super-contracting geodesic is𝑁-Morse.

Lemma 2.8. Let𝑀 be aMorse gauge and let 𝛼 be an𝑀-Morse geodesic in Cay(𝐺, 𝐴) starting at the
identity. If 𝛾 is any geodesic in the Cay(𝐺, 𝐴) starting at the identity and ending 1 apart from 𝛼, then
𝛾 is𝑁-Morse where𝑁 depends only on𝑀. Also,𝑁 ⩾ 𝑀.

Proof. The proof of this lemma follows easily from Lemma 2.1 in [6]. □

The following is Lemma 2.7 in [6]. It basically states that if you have two 𝑁-Morse geodesics
with the same origin that end close to each other, then they have to be roughly uniformly close.

Lemma 2.9. If 𝛼1, 𝛼2 ∶ [0, 𝐴] → 𝑋 are𝑁-Morse geodesics with 𝛼1(0) = 𝛼2(0) and 𝑑(𝛼1(𝑠), 𝛼2) ⩽ 𝐾
for some 𝑠 ∈ [0, 𝐴] and some 𝐾 > 0, then 𝑑(𝛼1(𝑡), 𝛼2(𝑡)) ⩽ 8𝑁(3, 0) for all 𝑡 < 𝑠 − 𝐾 − 4𝑁(3, 0).

Lemma 2.10. If 𝛼 is a 𝐷-super-contracting geodesic in Cay(𝐺, 𝐴) and 𝛽 is another geodesic with
the same starting point as 𝛼 and ending at most 1 apart from where 𝛼 ends, then there is a constant
𝐶 ⩾ 1 only depending on 𝐷 such that 𝑑(𝛼(𝑡), 𝛽(𝑡)) ⩽ 𝐶 for all 𝑡 < |𝛼| − 1 − 𝐶

2
.

Proof. A 𝐷-super-contracting geodesic is 𝐷-contracting and therefore 𝑀-Morse by Lemma 2.7.
Combining this with Lemmas 2.8 and 2.9, we get the following. If 𝛼 is any 𝐷-super-contracting
geodesic in Cay(𝐺, 𝐴) starting at the identity, then 𝛼 has to be𝑀-Morse where𝑀 depends only on
𝐷. By Lemma 2.8, if 𝛽 is any other geodesic in Cay(𝐺, 𝐴), starting at the identity and ending 1 apart
from where 𝛼 ends, then 𝛽 has to be 𝑁-Morse where 𝑁 depends only on𝑀 which depends only
on 𝐷. Now Lemma 2.9 gives us that 𝑑(𝛼(𝑡), 𝛽(𝑡)) ⩽ 8𝑁(3, 0) for all 𝑡 < |𝛼| − 1 − 4𝑁(3, 0). Thus,
the conclusion follows by taking 𝐶 = 8𝑁(3, 0). □
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The following lemma relates projection onto a subsegment of a super-contracting geodesic to
projection onto the full geodesic. It shows that if the projection onto the full geodesic is on one
side of the subsegment, then projection onto the subsegment cannot jump too far toward the other
side.

Lemma2.11 (bounded jumps). Let 𝛾 ∶ [𝑎, 𝑏] → 𝑋 be a𝐷-super-contracting geodesic. Let 𝑐 ∈ [𝑎, 𝑏].
Denote by 𝛼 and 𝛽 the subsegments of 𝛾 from 𝛾(𝑎) to 𝛾(𝑐) and from 𝛾(𝑐) to 𝛾(𝑏), respectively. For any
𝑥 ∈ 𝑋, if 𝜋𝛾(𝑥) ∩ 𝛼 ≠ ∅, then every 𝛾(𝑞) ∈ 𝜋𝛽(𝑥) satisfies 𝑑(𝛾(𝑐), 𝛾(𝑞)) ⩽ 𝐷.

Proof. Let 𝑥 ∈ 𝑋 be such that there exists a point 𝛾(𝑝) ∈ 𝜋𝛾(𝑥) ∩ 𝛼 ≠ ∅. Since 𝛾 is continuous, the
map 𝑓(𝑡) = 𝑑(𝑥, 𝛾(𝑡)) is a continuous real-valued function. Let 𝛾(𝑞) be in 𝜋𝛽(𝑥) and let 𝛾(𝑞′) be
the point in 𝛼 closest to 𝛾(𝑐) satisfying 𝑑(𝑥, 𝛾(𝑞′)) = 𝑑(𝑥, 𝛾(𝑞)). That is, let 𝑞′ = sup{𝑠 ⩽ 𝑐 ∣ 𝑓(𝑠) =
𝑓(𝑞)}. Such a point exists by the intermediate value theorem applied to the inequality 𝑓(𝑝) ⩽
𝑓(𝑞) ⩽ 𝑓(𝑐). Taking the supremum guarantees that no point between 𝛾(𝑞′) and 𝛾(𝑐) is closer to 𝑥
than 𝛾(𝑞′) is. Thus, 𝛾(𝑞) and 𝛾(𝑞′) are both in the projection of 𝑥 onto 𝛾|[𝑞′,𝑞]. Since 𝛾 is 𝐷-super-
contracting, 𝑑(𝛾(𝑞′), 𝛾(𝑞)) ⩽ 𝐷. Therefore, 𝑑(𝛾(𝑐), 𝛾(𝑞)) ⩽ 𝐷. □

3 SUPER-CONTRACTING LANGUAGE IS A REGULAR LANGUAGE
IN ANY FINITELY GENERATED GROUP

Definition 3.1 (A language over a finite alphabet). Let𝐴 be a finite set and𝐴⋆ be the freemonoid
over 𝐴. We call an element 𝑤 ∈ 𝐴⋆ a word in 𝐴. If 𝑤 ∈ 𝐴⋆ and 𝑤 = 𝑎1⋯𝑎𝑛 where each 𝑎𝑖 ∈ 𝐴,
then we call 𝑎1, … , 𝑎𝑛 the letters of the word 𝑤. A language over 𝐴 is a set of words in 𝐴⋆. The
word length of 𝑤 ∈ 𝐴⋆ is the number of letters of 𝐴 in the word 𝑤. We denote the word length of
𝑤 by |𝑤|.
The alphabets for the languageswewill beworkingwithwill be finite generating sets for groups.

Definition 3.2. Let 𝐺 be a finitely generated group and let 𝐴 be a finite, symmetric generating
set for 𝐺. The Cayley graph of 𝐺 with respect to 𝐴, Cay(𝐺,𝐴), is the graph whose vertices are the
elements of𝐺 and g , ℎ ∈ 𝐺 are joined by an edge if g−1ℎ ∈ 𝐴. If g−1ℎ ∈ 𝐴, then we label the edge
connecting g and ℎ by g−1ℎ. The Cayley graph Cay(𝐺,𝐴) is a metric space by declaring each edge
to have length 1.

Definition 3.3 (Left actions on Cayley graphs). Let 𝐺 be a finitely generated group and let 𝐴
be a finite symmetric generating set. The group 𝐺 admits a natural left action on Cay(𝐺,𝐴) by
isometries as follows. Let g ∈ 𝐺 and 𝑥 ∈ Cay(𝐺,𝐴). If 𝑥 is a vertex, then it is also a group element,
so we can define g ⋅ 𝑥 = g𝑥 where g𝑥 is simply the product of g and 𝑥 in 𝐺. If 𝑥 is a point on an
edge connecting two vertices 𝑣1 and 𝑣2 at distance 𝑡 ∈ [0, 1] from 𝑣1, let us denote it 𝑥 = (𝑣1, 𝑡, 𝑣2).
We define the group action on such a point to be g ⋅ 𝑥 = (g𝑣1, 𝑡, g𝑣2). For a subset 𝐵 ⊆ Cay(𝐺,𝐴),
we define g ⋅ 𝐵 ∶= {g ⋅ 𝑥 |𝑥 ∈ 𝐵}. For a continuous path 𝜎 ∶ [𝑎, 𝑏] → Cay(𝐺,𝐴), we define a new
path g ⋅ 𝜎 ∶ [𝑎, 𝑏] → Cay(𝐺,𝐴) by (g ⋅ 𝜎)(𝑡) = g ⋅ 𝜎(𝑡). We will sometimes abuse notation and use
g ⋅ 𝜎 to denote the image of the map g ⋅ 𝜎.

When the group 𝐺 is generated by the finite set 𝐴, every path in Cay(𝐺,𝐴) produces a word in
𝐴⋆ by concatenating the labels of the edges in the order they appear along the path. Conversely,
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everyword in𝐴⋆ produces a path inCay(𝐺,𝐴) by starting at the identity 𝑒 and traversing the edges
in Cay(𝐺,𝐴) labeled by the letters of the word appearing from left to right. We will be particularly
concerned with words in 𝐴⋆ that correspond with geodesic paths in Cay(𝐺,𝐴).

Definition 3.4. For a word 𝑤 ∈ 𝐴⋆, let 𝑤 denote the element of 𝐺 obtained by viewing 𝑤 as an
element of𝐺. A word𝑤 ∈ 𝐴⋆ is geodesic in Cay(𝐺,𝐴) if the path in Cay(𝐺,𝐴) from 𝑒 to𝑤 labeled
by the letters of 𝑤 is a geodesic in Cay(𝐺,𝐴). This is equivalent to saying that |𝑤| is minimal
among all words that represent 𝑤. Further, for a word 𝑤 ∈ 𝐴⋆, we define |𝑤|𝐺 to be the minimal
word length among all possible words 𝑢 ∈ 𝐴⋆ with 𝑢 = 𝑤. In notation, we have

|𝑤|𝐺 ∶= min{|𝑢| for all 𝑢 ∈ 𝐴⋆such that 𝑢 = 𝑤}.
Definition 3.5. A finite state automaton (FSA) over an alphabet𝐴 is a finite graphwhose edges are
directed and labeled by elements of𝐴; the vertices of the graph are divided into two sets— ‘accept’
and ‘reject’— and there is a distinguished vertex 𝑠0 called the initial vertex. The accepted language
of the automaton is the set of words which occur as labels on a directed edge path beginning at 𝑠0
and ending at an accept vertex. Those vertices are often called the states of the automaton.

Definition 3.6 (Regular languages). Let 𝐴 be a finite set and 𝐴∗ be the set of all words with
letters in 𝐴. Recall that a language over 𝐴 is a subset 𝐿 ⊂ 𝐴∗. A language over 𝐴 is regular if it is
the accepted language of some finite state automaton over 𝐴.

Definition 3.7. Let 𝑢 ∈ 𝐴⋆ be a geodesic word in the Cay(𝐺,𝐴). We define the 𝐷-super-
contracting cone of 𝑢, denoted by Cone𝐷(𝑢), to be all 𝑤 ∈ 𝐴⋆ so that the concatenation 𝑢𝑤 is
a 𝐷-super-contracting geodesic in Cay(𝐺, 𝐴). If 𝑢 and 𝑣 have the same 𝐷-super-contracting cone,
we will say that 𝑢 and 𝑣 have the same cone type.

Example 3.8. In the free group on two letters 𝐹2 = ⟨𝑎, 𝑏⟩, if we take 𝐷 = 1, the 𝐷-super-
contracting cone of 𝑎 is all geodesic words in the group that do not start with 𝑎−1 whereas in
ℤ⊕ ℤ = ⟨𝑎, 𝑏|[𝑎, 𝑏]⟩, if𝐷 = 1, the𝐷-super-contracting cone of 𝑎 is empty. If we take 𝐷 = 2, then
in the free group example, the𝐷-super-contracting cone of 𝑎 will still be all geodesic words in the
group that do not start with 𝑎−1 whereas in the ℤ⊕ ℤ example the 𝐷-super-contracting cone of
𝑎 is now the set {𝑎, 𝑏, 𝑏−1}.

Definition 3.9. Given an element 𝑢 in 𝐴⋆ representing a geodesic in Cay(𝐺, 𝐴), let 𝑢 be the
unique group element represented by the word 𝑢. Given 𝑘 ∈ ℕ, we define the 𝑘-tail of 𝑢 to be all
elements ℎ ∈ 𝐺 with |ℎ|𝐺 ⩽ 𝑘 such that |𝑢ℎ|𝐺 < |𝑢|𝐺 . We denote the 𝑘-tail of 𝑢 by 𝑇𝑘(𝑢).
The 𝑘-tail of a geodesic word 𝑢 is all group elements in a ball of radius 𝑘 of the identity that

move 𝑢 closer to the identity in the Cayley graph.

Definition 3.10. Given 𝑢 ∈ 𝐴⋆ representing a geodesic in the Cay(𝐺, 𝐴),𝑚 ∈ ℕ, and 𝐷 ⩾ 0, we
define the 𝑚-local 𝐷-contracting type of 𝑢 to be all words 𝑤 ∈ 𝐴⋆ with |𝑤| ⩽ 𝑚 such that the
concatenation 𝑢𝑤 is a 𝐷-super-contracting geodesic in Cay(𝐺, 𝐴). We will denote the𝑚-local 𝐷-
contracting type of a geodesic word 𝑢 by Cone𝐷𝑚(𝑢).
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F IGURE 1 Possible projections of 𝑦 to the geodesic 𝑢𝑤𝑎 where 𝑢𝑤𝑎 is 𝐷-super-contracting and
|𝑤| ⩾ 3𝐷 + 1

The following lemma is a slight modification of the Lemma 2.11. It will be used in the proof of
Theorem 3.13.

Lemma 3.11. Let 𝐺 be a group with a finite symmetric generating set 𝐴. Let 𝑢 and 𝑤 be words
in 𝐴 and 𝑎 ∈ 𝐴. Suppose that 𝑢𝑤𝑎 is a geodesic word such that |𝑤| ⩾ 3𝐷 + 1 and 𝑢𝑤 is 𝐷-super-
contracting. For any vertex 𝑦 ∈Cay(𝐺, 𝐴), if 𝜋𝑢𝑤𝑎(𝑦) ∩ 𝑢 ≠ ∅, then 𝑑(𝑢, 𝑝) ⩽ 𝐷 for any 𝑝 ∈ 𝜋𝑤𝑎(𝑦).

Proof. Let𝑋 =Cay(𝐺, 𝐴), note that since𝑋 is a graph, for any geodesic word 𝑣 in𝑋 and any vertex
𝑥 ∈ 𝑋, we have 𝑑(𝑥, 𝜋𝑣(𝑥)) ∈ ℕ ∪ {0}. In other words, there exists at least one vertex 𝑥′ ∈ 𝑣 such
that 𝑑(𝑥, 𝑥′) = 𝑑(𝑥, 𝜋𝑣(𝑥)). That is to say, as 𝑋 is a graph, no projection of 𝑥 to 𝑣 can lie on an
interior of an edge in 𝑣.

Claim 3.12. Let 𝑢𝑤𝑎 and 𝑦 be as in the statement of the lemma, we have the following.

(1) All projections of 𝑦 to 𝑢𝑤𝑎 live on the subsegment 𝑢𝑤. That is, 𝜋𝑢𝑤𝑎(𝑦) = 𝜋𝑢𝑤(𝑦).
(2) All projections of 𝑦 to 𝑤𝑎 live on the subsegment 𝑤. That is, 𝜋𝑤𝑎(𝑦) = 𝜋𝑤(𝑦).

Before proving the above claims,we showhow they imply the statement of the lemma.Note that
by the assumption of the lemma, there exists a point 𝑝𝑦 ∈ 𝜋𝑢𝑤𝑎(𝑦) ∩ 𝑢. As 𝑢𝑤 is a subsegment of
𝑢𝑤𝑎, we have𝑝𝑦 ∈ 𝜋𝑢𝑤(𝑦) ∩ 𝑢. Since𝑢𝑤 is𝐷-super-contracting, using Lemma2.11, all projections
of 𝑦 to𝑤must be within𝐷 of 𝑢. That is to say, for every 𝑝 ∈ 𝜋𝑤(𝑦), we have 𝑑(𝑝, 𝑢) ⩽ 𝐷. However,
using part (2) of Claim 3.12, we have 𝜋𝑤𝑎(𝑦) = 𝜋𝑤(𝑦) which finishes the proof.
Proof of (1): Let 𝑝𝑦 ∈ 𝜋𝑢𝑤𝑎(𝑦) ∩ 𝑢 and let 𝑑 = 𝑑(𝑦, 𝑝𝑦) = 𝑑(𝑦, 𝜋𝑢𝑤𝑎(𝑦)). In order to prove the

claim, it suffices to show that 𝑑(𝑦, 𝑢𝑤𝑎) > 𝑑. Suppose not, that is, suppose 𝑑(𝑦, 𝑢𝑤𝑎) ⩽ 𝑑. As
𝑑 = 𝑑(𝑦, 𝜋𝑢𝑤𝑎(𝑦)), we have 𝑑(𝑦, 𝑢𝑤𝑎) = 𝑑. See Figure 1. Note that 𝑑 ⩽ 𝑑(𝑦, 𝑢𝑤) ⩽ 𝑑 + 1. How-
ever, 𝑑(𝑦, 𝑢𝑤) ≠ 𝑑 as this would imply diam(𝜋𝑢𝑤(𝑦)) ⩾ 3𝐷 + 1 contradicting the assumption that
𝑢𝑤 is 𝐷-super-contracting. Hence, we have 𝑑(𝑦, 𝑢𝑤) = 𝑑 + 1. Now, note that since 𝑢𝑤 is a sub-
segment of 𝑢𝑤𝑎, the point 𝑝𝑦 must also live in 𝜋𝑢𝑤(𝑦). Let 𝑝′𝑦 be the unique point in 𝜋𝑢𝑤(𝑦)
so that 𝑑(𝑒, 𝑝′𝑦) = max𝑝∈𝜋𝑢𝑤(𝑦)𝑑(𝑒, 𝑝). We claim that 𝑝′𝑦 lives on the 𝑤 subsegment of 𝑢𝑤. Sup-
pose not. That is, suppose 𝑝′𝑦 ∈ 𝑢𝑤 and 𝑝′𝑦 ∉ 𝑤. This implies that 𝑑(𝑦, 𝑝

′
𝑦) = 𝑑(𝑦, 𝜋𝑢𝑤(𝑦)) ⩾ 𝑑

and thus every point in 𝑤 is at least 𝑑 + 1 away from 𝑦. Consequently, we have 𝑢𝑤 ∈ 𝜋𝑤(𝑦)
contradicting Lemma 2.11 since |𝑤| ⩾ 3𝐷 + 1. Hence, we have 𝑝′𝑦 ∈ 𝑤. Let 𝑞 be the unique ver-
tex on 𝑢𝑤 so that 𝑑(𝑒, 𝑞) = 𝑑(𝑒, 𝑝′𝑦) + 1. Note that since 𝑢𝑤 is 𝐷-super-contracting, we have
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𝑑(𝑞, 𝑝𝑦) ⩽ 𝑑(𝑞, 𝑝
′
𝑦) + 𝑑(𝑝

′
𝑦, 𝑝𝑦) ⩽ 1 + 𝐷. Furthermore, by our choice of 𝑞, we have 𝑑(𝑦, 𝑞) = 𝑑 + 1

and 𝑑(𝑦, 𝑞′) ⩾ 𝑑 + 1 for any vertex 𝑞′ on the geodesic 𝑢𝑤 with 𝑑(𝑒, 𝑞′) ⩾ 𝑑(𝑒, 𝑞). Now, let 𝛼 =
[𝑞, 𝑢𝑤]𝑢𝑤 denote the subsegment of 𝑢𝑤 starting at the vertex 𝑞 and ending at the vertex 𝑢𝑤.
The points 𝑞, 𝑢𝑤 both live in 𝜋𝛼(𝑦) as 𝑑(𝑦, 𝑞) = 𝑑(𝑦, 𝑢𝑤) = 𝑑 + 1 where 𝑑(𝑦, 𝑧) ⩾ 𝑑 + 1 for any
vertex 𝑧 ∈ 𝛼. On the other hand, 𝑑(𝑞, 𝑢) = 1 + 𝑑(𝑝′𝑦, 𝑢) ⩽ 1 + 𝑑(𝑝

′
𝑦, 𝑝𝑦) ⩽ 1 + 𝐷. This yields that

𝑑(𝑞, 𝑢𝑤) = 𝑑(𝑢, 𝑢𝑤) − 𝑑(𝑞, 𝑢) ⩾ (3𝐷 + 1) − (𝐷 + 1) = 2𝐷, which contradicts the fact that 𝑢𝑤 is
𝐷-super-contracting. Therefore, the projection of 𝑦 to 𝑢𝑤𝑎 is contained entirely in the subseg-
ment 𝑢𝑤. Hence 𝜋𝑢𝑤(𝑦) = 𝜋𝑢𝑤𝑎(𝑦).
Proof of (2): Let 𝑝𝑦 ∈ 𝜋𝑢𝑤𝑎(𝑦) ∩ 𝑢 and let 𝑑 = 𝑑(𝑦, 𝑝𝑦) = 𝑑(𝑦, 𝜋𝑢𝑤𝑎(𝑦)). Using part (1), we

have 𝑑(𝑦, 𝑢𝑤𝑎) > 𝑑. Note that if 𝜋𝑢𝑤𝑎(𝑦) ∩ 𝑤 ≠ ∅, then we are done as if 𝑧 ∈ 𝜋𝑢𝑤𝑎(𝑦) ∩ 𝑤, then
𝑑(𝑦, 𝑧) = 𝑑 while 𝑑(𝑦, 𝑢𝑤𝑎) > 𝑑. Hence 𝜋𝑤(𝑦) = 𝜋𝑤𝑎(𝑦).
Otherwise, if 𝜋𝑢𝑤𝑎(𝑦) ∩ 𝑤 = ∅, then all projections of 𝑦 to 𝑢𝑤𝑎 live in the 𝑢 subsegment of

𝑢𝑤𝑎. In particular, since 𝑢𝑤 is a subword of 𝑢𝑤𝑎, all projections of 𝑦 to 𝑢𝑤 live on the 𝑢 sub-
segment of 𝑢𝑤. Let 𝑝′′ be the point with 𝑑(𝑢, 𝑝′′) = max𝑝∈𝜋𝑤(𝑦)𝑑(𝑢, 𝑝). Note that by Lemma 2.11,
every projection of 𝑦 to 𝑤 is at most 𝐷 away from 𝑢, and since |𝑤| ⩾ 3𝐷 + 1, we have 𝑝′′ ≠ 𝑢𝑤.
Let 𝑞′′ be the point on 𝑤 with 𝑑(𝑢, 𝑞′′) = 𝑑(𝑢, 𝑝′′) + 1. By Lemma 2.11, since 𝑢𝑤 is 𝐷-super-
contracting, we have 𝑑(𝑢, 𝑝′′) ⩽ 𝐷 and hence 𝑑(𝑢, 𝑞′′) ⩽ 𝐷 + 1. Note that by our choice of 𝑝′′ if we
let 𝑑′ = 𝑑(𝑦, 𝑝′′) = 𝑑(𝑦, 𝜋𝑤(𝑦)), then 𝑑(𝑦, 𝑞′′) = 𝑑′ + 1. In order to finish the proof of this claim,
we need to show that 𝑑(𝑦, 𝑢𝑤𝑎) ≠ 𝑑′. Suppose for the sake of contradiction that 𝑑(𝑦, 𝑢𝑤𝑎) = 𝑑′,
this implies that 𝑑(𝑦, 𝑢𝑤) is either 𝑑′ or 𝑑′ + 1. However, it cannot be 𝑑′ as this would contra-
dict the assumption that 𝑢𝑤 is 𝐷-super-contracting. Thus 𝑑(𝑦, 𝑢𝑤) = 𝑑′ + 1. But that implies
that both 𝑞′′ and 𝑢𝑤 live on the projection of 𝑦 to the subsegment of 𝑢𝑤 connecting 𝑞′′ to
𝑢𝑤 given by 𝛽 = [𝑞′′, 𝑢𝑤]𝑢𝑤. This contradicts the assumption that 𝑢𝑤 is 𝐷-super-contracting as
diam(𝜋𝛽(𝑦)) = 𝑑(𝑢𝑤, 𝑞′′) = 𝑑(𝑢𝑤, 𝑢) − 𝑑(𝑢, 𝑞′′) ⩾ (3𝐷 + 1) − (𝐷 + 1) = 2𝐷. □

Let 𝐺 be a group with a finite symmetric generating set 𝐴. The goal of this section is to show
that the languages 𝐿𝐷 consisting of all 𝐷-super-contracting geodesics are all regular languages
regardless of the chosen generating set𝐴. Before doing so, we will state an important key theorem
that will provide us with the states needed for our FSA, we will refer to this theorem by ‘the cone
types theorem’. The theorem states that in order to determine 𝐷-super-contracting cone type of a
geodesic word 𝑢, you need only to understand the local geometry around the vertex 𝑢. To be more
precise, it says that there exist a uniform𝑚, depending only on 𝐷, such that the𝑚-neighborhood
around a vertex 𝑢 encodes the information needed to determine what elements are in Cone𝐷(𝑢).
This will imply that we have only finitely many cone types because there are only finitely many
types of𝑚-neighborhoods in Cay(𝐺, 𝐴).

Theorem 3.13. For a given constant 𝐷 ⩾ 0, there exists an integer 𝑚, depending only on 𝐷, such
that if 𝑢, 𝑣 are two geodesic words in Cay(𝐺, 𝐴) with 𝑇𝑚(𝑢) = 𝑇𝑚(𝑣) and Cone𝐷𝑚(𝑢) = Cone𝐷𝑚(𝑣),
then Cone𝐷(𝑢) = Cone𝐷(𝑣). In particular, there are only finitely many such cones.

We will prove this theorem, but for now, let us show how it implies our first main theorem
about the existence of a regular language for all 𝐷-super-contracting geodesics:

Theorem 3.14. Let 𝐺 be a group and 𝐴 any finite symmetric generating set. Let 𝐿𝐷 be the lan-
guage of words in the alphabet𝐴which, when interpreted as paths in the Cayley graph, are𝐷-super-
contracting geodesics. Then for any fixed 𝐷, the language 𝐿𝐷 is a regular language.
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Proof. Consider the finite graph Γ whose vertices are the 𝐷-contracting cone types of 𝐺 and
which has a directed edge labeled 𝑎 ∈ 𝐴 ∪ 𝐴−1 connecting the 𝐷-super-contracting cone type
of a geodesic word 𝑢 to the 𝐷-super-contracting cone type of 𝑢𝑎 if and only if 𝑎 belongs to the
𝐷-super-contracting cone of 𝑢. Otherwise the edge labeled 𝑎 goes to the unique fail state. All
non-empty 𝐷-super-contracting cone types are accept states. The initial state is the cone type
of the empty word. The previous theorem shows that there are finitely many vertices, and the
𝐷-super-contracting cone type was defined precisely to pick out those continuations that are
both geodesic and𝐷-super-contracting. Also, observe that if Cone𝐷(𝑢) = Cone𝐷(𝑣), then we have
Cone𝐷(𝑢𝑎) = Cone𝐷(𝑣𝑎) for any 𝑎 ∈ 𝐴. To see this, first, note that since Cone𝐷(𝑢) = Cone𝐷(𝑣),
the word 𝑢𝑎 is a𝐷-super-contracting geodesic if and only if 𝑣𝑎 is. Further, for anyword𝑤, if we let
𝑤′ = 𝑎𝑤, we have𝑤′ ∈ Cone𝐷(𝑢) if and only if𝑤′ ∈ Cone𝐷(𝑣). This implies that 𝑢𝑤′ = 𝑢𝑎𝑤 is a
𝐷-super-contracting geodesic if and only if 𝑣𝑤′ = 𝑣𝑎𝑤 is. Therefore, Cone𝐷(𝑢𝑎) = Cone𝐷(𝑣𝑎)
whenever Cone𝐷(𝑢) = Cone𝐷(𝑣). This shows that it is not possible for a single vertex of the
directed graph Γ to have two distinct outgoing edges labeled with the same letter 𝑎 ∈ 𝐴. Such
a finite state automaton is called deterministic. □

Now we prove Theorem 3.13:

Proof. Fix a super-contracting constant 𝐷. Using Lemma 2.10, there exists a constant 𝐶, which
depends only on 𝐷, such that for any 𝐷-super-contracting geodesic 𝛼, if 𝛽 is a geodesic starting at
the same point as 𝛼 and ending at most 1 away from 𝛼, then 𝑑(𝛼(𝑡), 𝛽(𝑡)) ⩽ 𝐶 for all 𝑡 < |𝛼| − 1 −
𝐶

2
.
We want to show that there exists some 𝑚 large enough so that if two geodesic words

𝑢, 𝑣 ∈Cay(𝐺, 𝐴) satisfy 𝑇𝑚(𝑢) = 𝑇𝑚(𝑣) and Cone𝐷𝑚(𝑢) = Cone𝐷𝑚(𝑣), then Cone
𝐷(𝑢) = Cone𝐷(𝑣).

Recall that for a word 𝑤 in 𝐴⋆, the number of letters appearing in 𝑤 is denoted by |𝑤| while the
length of the group element 𝑤 is denoted by |𝑤|𝐺 .
Let 𝑢, 𝑣 be the unique group elements represented by 𝑢 and 𝑣, respectively. Note that since 𝑢, 𝑣

are assumed to be geodesic words, wemust have |𝑢|𝐺 = |𝑢| and |𝑣|𝐺 = |𝑣|. Choose𝑚 > max{𝐶 +
1, 3𝐷 + 1}.
We proceed by induction on the length of the words in the cone. Since 𝑢 and 𝑣 satisfy 𝑇𝑚(𝑢) =

𝑇𝑚(𝑣) and Cone𝐷𝑚(𝑢) = Cone𝐷𝑚(𝑣), if 𝑤 ∈ 𝐴
⋆ with |𝑤| ⩽ 𝑚, then 𝑤 ∈ Cone𝐷(𝑢) if and only if

𝑤 ∈ Cone𝐷(𝑣). This covers the base cases. For the induction step, let 𝑤 ∈ Cone𝐷(𝑢) ∩ Cone𝐷(𝑣)
and consider 𝑤𝑎 for 𝑎 ∈ 𝐴. We want to show that 𝑤𝑎 ∈ Cone𝐷(𝑢) if and only if 𝑤𝑎 ∈ Cone𝐷(𝑣).
Suppose for contradiction that𝑤𝑎 ∈ Cone𝐷(𝑣) but𝑤𝑎 ∉ Cone𝐷(𝑢). The cones agree for words

of length at most 𝑚, so |𝑤𝑎| ⩾ 𝑚 + 1. Since 𝑤𝑎 ∉ Cone𝐷(𝑢), then by definition, either the word
𝑢𝑤𝑎 is not a geodesic word or 𝑢𝑤𝑎 is a geodesic word that is not 𝐷-super-contracting.
First we show that 𝑢𝑤𝑎 must be a geodesic word. We remark that this part of the proof closely

follows a proof in the cone types section of [3]. If 𝑢𝑤𝑎 is not a geodesic word, then theremust exist
some geodesic word 𝓁 of length strictly less than |𝑢| + |𝑤| + 1 such that 𝓁 = 𝑢𝑤𝑎. Write 𝓁 as a
product 𝓁1𝓁2 such that |𝓁1| = |𝑢| − 1 = |𝑢|𝐺 − 1 and |𝓁2| ⩽ |𝑤| + 1. Note that as 𝑤 ∈ Cone𝐷(𝑢),
the word 𝑢𝑤 is 𝐷-super-contracting and since 𝑢𝑤 and 𝓁 end 1 apart from each other, Lemma 2.10
gives us that 𝑑(𝓁1, 𝑢) < 𝐶 + 1. Define 𝑧 ∶= 𝑢−1𝓁1, hence, the group element 𝑧 = 𝑢−1𝓁1 satisfies
|𝑧|𝐺 ⩽ 𝐶 + 1 ⩽ 𝑚 and |𝑢𝑧|𝐺 < |𝑢|𝐺 which implies that 𝑧 ∈ 𝑇𝑚(𝑢). Recall that 𝑇𝑚(𝑢) = 𝑇𝑚(𝑣) by
assumption, so 𝑧 ∈ 𝑇𝑚(𝑣) and |𝑣𝑧|𝐺 < |𝑣|𝐺 . Let 𝛼 be any geodesic word connecting the identity
to the group element 𝑣𝑧, so |𝛼| < |𝑣|𝐺 . Now consider the concatenation of the geodesic 𝛼 with the
edge path labeled 𝓁2. On one hand, you get 𝛼𝓁2 = 𝑣𝑧𝓁2 = 𝑣𝑢−1𝓁1𝓁2 = 𝑣𝑢−1𝑢𝑤𝑎 = 𝑣𝑤𝑎. There-
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fore, the edge path 𝛼𝓁2 ends at the same vertex as the geodesic word 𝑣𝑤𝑎. Consequently, since
𝑣𝑤𝑎 is a geodesic, we have |𝛼𝓁2| ⩾ |𝑣| + |𝑤| + 1. But on the other hand, if we concatenate the
geodesic word 𝛼 with the edge path labeled 𝓁2 we get |𝛼𝓁2| ⩽ |𝛼| + |𝓁2| < |𝑣| + |𝑤| + 1 which is
a contradiction. Therefore, 𝑢𝑤𝑎 must be a geodesic word (Figure 2).
Now we consider the other possibility, that is, if 𝑢𝑤𝑎 is a geodesic word that is not 𝐷-super-

contracting. Denote this geodesic by 𝛽1, its geodesic subsegments labeled 𝑤𝑎, 𝑢 by 𝜎1, 𝜎′1, respec-
tively. Similarly, denote the geodesic 𝑣𝑤𝑎 by 𝛽2, its geodesic subsegments labeled𝑤𝑎, 𝑣 by 𝜎2, 𝜎′2,
respectively. Note that if we let g ∶= 𝑣𝑢−1, then we have 𝜎2 = g ⋅ 𝜎1. So the assumption is that 𝛽1
is not a 𝐷-super-contracting geodesic but 𝛽2 is. This implies the existence of a subsegment 𝛾 of 𝛽1
that is not𝐷-contracting. In other words, there exists a ball 𝐵 disjoint from 𝛾, points 𝑥, 𝑦 ∈ 𝐵, and
projection points 𝑝𝑥 ∈ 𝜋𝛾(𝑥), 𝑝𝑦 ∈ 𝜋𝛾(𝑦) such that 𝑑(𝑝𝑥, 𝑝𝑦) > 𝐷.
Note that since the geodesic 𝑢𝑤 is assumed to be 𝐷-super-contracting, then at least one of the

points 𝑝𝑥 and 𝑝𝑦 , say 𝑝𝑥, is on the edge labeled 𝑎 at the end of the geodesic 𝛽1. Moreover, we have
𝑝𝑥 ∈ 𝜋𝜎1(𝑥) (Figure 3).
The first thing to observe is that, since g is an isometry taking 𝜎1 to 𝜎2, g ⋅ 𝑝𝑥 ∈ 𝜋𝜎2(g ⋅ 𝑥)which

is at the edge labeled 𝑎 at the end of 𝜎2.
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Nowwe consider the two different possibilities for projections of 𝑦 to the subsegment 𝛾 of 𝛽1. If
all projections of 𝑦 on the 𝛾-subsegment of 𝛽1 are on 𝜎1, then by our assumption, ∃𝑝𝑦 ∈ 𝜋𝜎1∩𝛾(𝑦)
with 𝑑(𝑝𝑥, 𝑝𝑦) > 𝐷. Let 𝛾′ denote the subsegment of 𝛾 which connects 𝑝𝑥 to 𝑝𝑦 . Note that since
the ball 𝐵 containing 𝑥, 𝑦 is disjoint from 𝛾, it must also be disjoint from 𝛾′. By definition of 𝛾′,
we have 𝛾′ ⊆ 𝜎1 and since g is an isometry taking 𝜎1 to 𝜎2, it must take 𝛾′ ⊆ 𝜎1 to g ⋅ 𝛾′ ⊆ 𝜎2.
Furthermore, since 𝑝𝑥 ∈ 𝜋𝛾′(𝑥), 𝑝𝑦 ∈ 𝜋𝛾′(𝑦), we have

g ⋅ 𝑝𝑥 ∈ 𝜋g⋅𝛾′ (g ⋅ 𝑥), g ⋅ 𝑝𝑦 ∈ 𝜋g⋅𝛾′ (g ⋅ 𝑦),

g ⋅ 𝐵 ∩ g ⋅ 𝛾′ = ∅, and𝑑(g ⋅ 𝑝𝑥, g ⋅ 𝑝𝑦) = 𝑑(𝑝𝑥, 𝑝𝑦) > 𝐷,

which contradicts the assumption that 𝛽2 is 𝐷-super-contracting. The other possibility is that
some projection of 𝑦 on the 𝛾-subsegment of 𝛽1 meets 𝜎′1. In other words, assume there exists
a point 𝑝 ∈ 𝜋𝛾(𝑦) ∩ 𝜎′1. If that is the case, then by removing 𝜎

′
1
from 𝛽1, using Lemma 3.11, we get

a point 𝑝𝑦 ∈ 𝜋𝜎1(𝑦) which is at most 𝐷 away from 𝑢. This implies 𝑑(𝑝𝑥, 𝑝𝑦) ⩾ (|𝜎1| − 1) − 𝐷 =
|𝑤| − 𝐷 ⩾ 𝑚 − 𝐷 > 𝐷. Since 𝜎1 ⊆ 𝛾, and 𝐵 ∩ 𝛾 = ∅, we have 𝐵 ∩ 𝜎1 = ∅. Again, as g is an isome-
try with g ⋅ 𝜎1 = 𝜎2, we have

g ⋅ 𝑝𝑥 ∈ 𝜋𝜎2(g ⋅ 𝑥), g ⋅ 𝑝𝑦 ∈ 𝜋𝜎2(g ⋅ 𝑦),

g ⋅ 𝐵 ∩ g ⋅ 𝜎1 = g ⋅ 𝐵 ∩ 𝜎2 = ∅, and 𝑑(g ⋅ 𝑝𝑥, g ⋅ 𝑝𝑦) = 𝑑(𝑝𝑥, 𝑝𝑦) > 𝐷.

Hence, there exists a ball 𝐵′ = g ⋅ 𝐵 disjoint from 𝜎2 = g ⋅ 𝜎1 containing two points g ⋅ 𝑥, g ⋅ 𝑦
whose projections to 𝜎2 include points g ⋅ 𝑝𝑥, g ⋅ 𝑝𝑦 with 𝑑(g ⋅ 𝑝𝑥, g ⋅ 𝑝𝑦) > 𝐷. This contradicts
the assumption that 𝛽2 is 𝐷−super-contracting. □

Definition 3.15 (acylindrical action). The action of a group 𝐺 on a metric space 𝑋 is called
acylindrical if for every 𝜖 > 0, there exist 𝑅, 𝑁 > 0 such that for every two points 𝑥, 𝑦 ∈ 𝑋 with
𝑑(𝑥, 𝑦) > 𝑅, there are at most 𝑁 elements g ∈ 𝐺 satisfying:

𝑑(𝑥, g𝑥) < 𝜖 and 𝑑(𝑦, g𝑦) < 𝜖.

Definition 3.16. A group 𝐺 is said to be acylindrically hyperbolic if it admits a non-elementary
acylindrical action on a hyperbolic space.

As a consequence of the above theorem, we will show that any finitely generated group which
contains an infinite super-contracting geodesic must be acylindrically hyperbolic answering a
question posed by Osin, but first, we state an easy corollary of Theorems H and I in [1]:

Corollary 3.17. Let 𝐺 be a finitely generated group which is not virtually cyclic, and let 𝐴 be a
generating set for 𝐺. If 𝐺 contains an element g with a contracting axis in Cay(𝐺, 𝐴), then 𝐺 must be
acylindrically hyperbolic.

Now we show how Theorem 3.14 along with the previous corollary imply the following:

Corollary 3.18. Let 𝐺 be a finitely generated group which is not virtually cyclic, and let 𝐴 be a
generating set for𝐺. If Cay(𝐺, 𝐴) contains an infinite super-contracting geodesic, then itmust contain
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a contracting isometry and hence 𝐺 must be acylindrically hyperbolic. In particular, 𝐺 cannot be a
torsion group.

Proof. Let 𝛾 be an infinite 𝐷-super-contracting geodesic. Using Theorem 3.14, there exists a finite
state automaton 𝑀 that accepts every initial subsegment of 𝛾. Denote its accepted language by
𝐿𝐷 . Note that since 𝛾 is an infinite 𝐷-super-contracting geodesic, the language 𝐿𝐷 must be infi-
nite. Choose a large enough initial subsegment 𝑤 of 𝛾 whose length is larger than the number
of states in 𝑀. This implies the existence of a state that 𝑤 passes twice. In other words, 𝑤 has
an initial subsegment of the form 𝑢𝑣 such that 𝑢𝑣𝑛 ∈ 𝐿𝐷 for all 𝑛 ∈ ℕ (this is a standard argu-
ment in formal languages which is often referred to as the pumping lemma). Since subsegments
of 𝐷-super-contracting geodesics are themselves 𝐷-super-contracting, the subsegment 𝑣𝑛 of 𝑢𝑣𝑛
is 𝐷-super-contracting. Hence, 𝑣 is an element whose axis is super-contracting, and therefore,
using the previous corollary, the group 𝐺 must be acylindrically hyperbolic. □

3.1 CONTRACTING IS ALSO SUPER-CONTRACTING

Throughout this section, let 𝑋 denote a proper geodesic metric space. The goal of this section is
to prove the following.

Theorem 4.1. Every 𝐷-contracting geodesic in a proper geodesic metric space 𝑋 is 𝐷′-super-
contracting where 𝐷′ depends only on 𝐷. In fact, 𝐷′ may be taken to be 𝐷′ = 54𝐷 + 10. Since every
𝐷-super-contracting geodesic is 𝐷-contracting, an infinite geodesic is contracting if and only if it is
super contracting.

To show this, we will use an additional hyperbolicity property, slimness, which we show in
Lemma 4.4 holds for contracting geodesics.

Definition 4.2. A geodesic 𝛼 is 𝛿-slim if for any 𝑥 ∈ 𝑋, 𝑝 ∈ 𝜋𝛼(𝑥), and geodesic 𝛽 from 𝑥 to a
point on 𝛼, we have 𝑑(𝑝, 𝛽) ⩽ 𝛿.

Contracting geodesics are known to also be slim in the setting of CAT(0) spaces. This property
also holds in the generality of proper geodesic metric spaces, but the proof has to be adjusted
slightly to accomodate the greater generality. In their proof that contracting implies slim, Bestvina
and Fujiwara use the assumption that projection onto geodesics is coarsely distance decreasing
[2]. This does not always hold for projections in a proper geodesic metric space, but it does hold
for projections onto contracting geodesics, as we show in the following proposition.

Proposition 4.3. Let 𝛼 be a𝐷-contracting geodesic. For any points 𝑥1, 𝑥2 ∈ 𝑋 and projection points
𝑝1 ∈ 𝜋𝛼(𝑥1), 𝑝2 ∈ 𝜋𝛼(𝑥2),

𝑑(𝑝1, 𝑝2) ⩽ 𝑑(𝑥1, 𝑥2) + 4𝐷.

Proof. First we consider the case of two points 𝑥 and 𝑦 connected by a geodesic [𝑥, 𝑦] such that
𝑑(𝑤, 𝛼) > 𝐷 for all 𝑤 ∈ [𝑥, 𝑦]. Subdivide [𝑥, 𝑦] into 𝑛 = ⌈𝑑(𝑥,𝑦)

𝐷
⌉ subsegments [𝑧𝑖, 𝑧𝑖+1] of length

⩽ 𝐷 with 𝑧0 = 𝑥 and 𝑧𝑛 = 𝑦. So 𝑛𝐷 ⩽ 𝑑(𝑥, 𝑦) + 𝐷. Let 𝑧′
0
∈ 𝜋𝛼(𝑥) and 𝑧′𝑛 ∈ 𝜋𝛼(𝑦) be any pair of
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projection points. Pick 𝑧′
𝑖
∈ 𝜋𝛼(𝑧𝑖) for the rest. Since 𝛼 is 𝐷-contracting, 𝑑(𝑧′𝑖 , 𝑧

′
𝑖+1
) ⩽ 𝐷 for all 𝑖.

Then

𝑑(𝑧′0, 𝑧
′
𝑛) ⩽

𝑛−1∑
𝑖=0

𝑑(𝑧′
𝑖
, 𝑧′
𝑖+1
) ⩽ 𝑛𝐷 ⩽ 𝑑(𝑥, 𝑦) + 𝐷.

Now for the general case, fix any geodesic [𝑥1, 𝑥2]. Let 𝑦1 ∈ [𝑥1, 𝑥2] be the point closest to 𝑥1
satisfying 𝑑(𝑦1, 𝛼) ⩽ 𝐷 and 𝑦2 the analogous point closest to 𝑥2. If no such points exist, we are in
the previous case and already done. Pick any two projection points 𝑞𝑖 ∈ 𝜋𝛼(𝑦𝑖). By the triangle
inequality, 𝑑(𝑞1, 𝑞2) ⩽ 𝑑(𝑦1, 𝑦2) + 2𝐷. The segments [𝑥𝑖, 𝑦𝑖] are at distance greater than 𝐷 from 𝛼.
Therefore we can apply the result of the previous paragraph to get

𝑑(𝑝1, 𝑝2) ⩽ 𝑑(𝑝1, 𝑞1) + 𝑑(𝑞1, 𝑞2) + 𝑑(𝑞2, 𝑝2)

⩽ 𝑑(𝑥1, 𝑦1) + 𝐷 + 𝑑(𝑦1, 𝑦2) + 2𝐷 + 𝑑(𝑦2, 𝑥2) + 𝐷

= 𝑑(𝑥1, 𝑥2) + 4𝐷. □

Lemma 4.4. Let 𝛼 be a 𝐷-contracting geodesic in a proper geodesic metric space. Then 𝛼 is also
𝛿-slim where 𝛿 depends only on 𝐷.

Proof. Proposition 4.3 shows that projections onto 𝐷-contracting geodesics satisfy the distance
decreasing axiom of [2] with 𝐶 = 4𝐷. The proof of slimness is then the same as in Lemmas 3.5
and 3.6 of [2]. From this proof, 𝛿 = 7𝐷 + 1 suffices. □

Remark 4.5. Let 𝛼 be a𝐷-contracting (and thus 𝛿-slim by lemma 4.4) geodesic. Let 𝑥 be any point
in𝑋 and𝑝 ∈ 𝜋𝛼(𝑥). If𝑝𝑡 is a point on𝛼 at distance 𝑡 away from𝑝, and 𝑧 is a point in some geodesic
connecting 𝑥 to 𝑝𝑡 with 𝑑(𝑝, 𝑧) ⩽ 𝛿, then 𝑑(𝑥, 𝑝𝑡) = 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑝𝑡) ⩾ (𝑑(𝑥, 𝑝) − 𝛿) + (𝑡 − 𝛿).
Therefore, we have

𝑑(𝑥, 𝑝𝑡) ⩾ 𝑑(𝑥, 𝑝) + 𝑡 − 2𝛿.

The following lemma looks very similar to Lemma 2.11. The main difference is that here we
only assume 𝛾 is 𝐷-contracting, whereas Lemma 2.11 assumes that 𝛾 is 𝐷-super-contracting.

Lemma 4.6. Let 𝛾 ∶ [𝑎, 𝑏] → 𝑋 be a 𝐷-contracting geodesic and 𝜎 any subsegment of 𝛾. Let 𝛿 =
7𝐷 + 1. Supposewe have a point𝑥 and a projection point 𝑞 ∈ 𝜋𝛾(𝑥) so that 𝑞 ∉ 𝜎. If𝑢 is the endpoint
of 𝜎 closest to 𝑞, then for any 𝑝 ∈ 𝜋𝜎(𝑥), 𝑑(𝑝, 𝑢) ⩽ 2𝛿.

Proof. By Lemma 4.4, 𝛾 is 𝛿-slim. Let 𝑝 ∈ 𝜋𝜎(𝑥). The point 𝑢 is between 𝑞 and 𝑝 on a geodesic,
so 𝑑(𝑞, 𝑝) = 𝑑(𝑝, 𝑢) + 𝑑(𝑢, 𝑞), and 𝑑(𝑥, 𝑝) ⩽ 𝑑(𝑥, 𝑢) because 𝑝 is in the projection of 𝑥 onto 𝜎. By
the triangle inequality, 𝑑(𝑥, 𝑢) ⩽ 𝑑(𝑢, 𝑞) + 𝑑(𝑥, 𝑞). Starting from the inequality in Remark 4.5 with
𝑡 = 𝑑(𝑝, 𝑞), we have

𝑑(𝑥, 𝑞) + 𝑑(𝑞, 𝑝) ⩽ 𝑑(𝑥, 𝑝) + 2𝛿

𝑑(𝑥, 𝑞) + 𝑑(𝑝, 𝑢) + 𝑑(𝑢, 𝑞) ⩽ 𝑑(𝑥, 𝑢) + 2𝛿
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𝑑(𝑥, 𝑞) + 𝑑(𝑝, 𝑢) + 𝑑(𝑢, 𝑞) ⩽ 𝑑(𝑢, 𝑞) + 𝑑(𝑥, 𝑞) + 2𝛿

𝑑(𝑝, 𝑢) ⩽ 2𝛿. □

We are now ready to prove that subsegments of a contracting geodesic are also contracting. Our
proof is essentially the same as that of Lemma 3.2 in [2]. We include it only to verify that is still
valid assuming only that 𝑋 is a proper geodesic metric space, using Proposition 4.3 in place of
their distance decreasing axiom.

Lemma 4.7. Let 𝛾 be a𝐷-contracting geodesic. There is a constant𝐷′, depending only on𝐷, so that
any subsegment 𝜎 of 𝛾 is 𝐷′-contracting. Consequently, 𝛾 is 𝐷′-super-contracting.

Proof. Let 𝛿 = 𝛿(𝐷) be the slimness constant from Lemma 4.4. Let 𝑢 and 𝑣 be the endpoints of 𝜎.
In other words, 𝜎 = [𝑢, 𝑣] where [𝑢, 𝑣] denotes the the geodesic subsegment of 𝛾 connecting 𝑢 to
𝑣. Let 𝑎, 𝑏 be the first and last points of 𝛾, respectively.
We claim that 𝐷′ = 26𝐷 + 4𝛿 + 6 does the job. We may assume that length(𝜎) > 𝐷′ as other-

wise, there would be nothing to prove. Let 𝐵 be a ball centered at a point 𝑧 and disjoint from our
subsegment 𝜎. Fromherewe divide the proof into two cases. The constant𝐷′ is sufficient for both.
Case 1. 𝜋𝛾(𝑧) ∩ 𝜎 ≠ ∅. In this case, the ball 𝐵 is also disjoint from 𝛾, so we know that the diam-

eter of 𝜋𝛾(𝐵) is at most 𝐷. Let 𝐼 = [𝑠1, 𝑠2] denote the smallest interval containing all of the points
in 𝜋𝛾(𝐵). The length of 𝐼 is bounded above by 𝐷. We will argue that every point in 𝜋𝜎(𝐵) is within
a distance 2𝛿 of 𝐼 ∩ 𝜎.
If 𝑥 ∈ 𝐵 has projection 𝜋𝛾(𝑥) ∩ 𝜎 ≠ ∅, then 𝜋𝜎(𝑥) = 𝜋𝛾(𝑥) ∩ 𝜎. In particular, 𝜋𝜎(𝑥) ⊂ 𝐼. Sup-

pose instead 𝜋𝛾(𝑥) contains a point 𝑞 ∉ 𝜎. For concreteness, suppose 𝑢 is the endpoint of 𝜎 near-
est to 𝑞 (otherwise apply the same argument with 𝑣 instead of 𝑢). Then 𝑢 ∈ 𝐼 and 𝑑(𝑢, 𝑝) ⩽ 2𝛿
for any 𝑝 ∈ 𝜋𝜎(𝑥) by Lemma 4.6. So everything in 𝜋𝜎(𝐵) is within 2𝛿 of 𝐼, an interval of length at
most 𝐷. Therefore, the diameter of 𝜋𝜎(𝐵) is at most 𝐷 + 4𝛿 for Case 1 (Figure 4).
Case 2. 𝜋𝛾(𝑧) ∩ 𝜎 = ∅. Note that in this case it is possible that 𝐵 intersects 𝛾. Every point

𝑝𝑧 ∈ 𝜋𝛾(𝑧)must belong to precisely one of [𝑎, 𝑢), (𝑣, 𝑏]. In other words, since 𝛾 is𝐷-contracting, it
is not possible to have two points 𝑝𝑧, 𝑝′𝑧 ∈ 𝜋𝛾(𝑧) with 𝑝𝑧 ∈ [𝑎, 𝑢) and 𝑝

′
𝑧 ∈ (𝑣, 𝑏]. Without loss of

generality, suppose that every 𝑝𝑧 ∈ [𝑎, 𝑢). We want to show, for all 𝑥 ∈ 𝐵 and 𝑝𝑥 ∈ 𝜋𝜎(𝑥), that
𝑑(𝑝𝑥, 𝑢) ⩽ 13𝐷 + 2𝛿 + 3. This would imply 𝑑(𝑝𝑥, 𝑝𝑦) ⩽ 26𝐷 + 4𝛿 + 6 = 𝐷′ for all 𝑥, 𝑦 ∈ 𝐵 and
𝑝𝑥, 𝑝𝑦 ∈ 𝜋𝜎(𝑥), 𝜋𝜎(𝑦), respectively.
To show the above, assume for the sake of contradiction that there exists 𝑥 ∈ 𝐵 so that 𝜋𝜎(𝑥)

contains a point further than 13𝐷 + 2𝛿 + 3 from 𝑢. Note that no projection point of 𝑥 to 𝛾 can
be on [𝑎, 𝑢) because Lemma 4.6 would imply 𝑑(𝜋𝜎(𝑥), 𝑢) ⩽ 2𝛿. So there is also at least one point
𝑝𝑥 ∈ 𝜋𝛾(𝑥) with 𝑑(𝑝𝑥, 𝑢) > 13𝐷 + 2𝛿 + 3. Fix [𝑧, 𝑥] to be some geodesic connecting 𝑧 to 𝑥. By
subdividing [𝑧, 𝑥] into intervals of length at most one, and using Proposition 4.3, we can find a
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point 𝑦 ∈ [𝑧, 𝑥] such that the set 𝜋𝛾(𝑦) is contained in the 1 + 4𝐷 neighborhood of 𝑢. Let 𝐵′ be the
closed ball centered at 𝑦 with radius 𝑟 = 𝑑(𝑦, 𝛾) − 1 and since 𝛾 is 𝐷-contracting, the set 𝜋𝛾(𝐵′)
has diameter ⩽ 𝐷. Note that

𝑑(𝑦, 𝑢) ⩾ 𝑑(𝑧, 𝑢) − 𝑑(𝑧, 𝑦) = 𝑑(𝑧, 𝑢) − 𝑑(𝑧, 𝑥) + 𝑑(𝑦, 𝑥) ⩾ 𝑑(𝑦, 𝑥).

Now, since the set 𝜋𝛾(𝑦) is contained in the 1 + 4𝐷 neighborhood of 𝑢, we have

𝑑(𝑦, 𝑥) ⩽ 𝑑(𝑦, 𝑢) ⩽ 𝑑(𝑦, 𝛾) + 4𝐷 + 1 = 𝑟 + 4𝐷 + 2

Therefore, by the previous inequality, the ball 𝐵′ must contain a point 𝑤 with 𝑑(𝑤, 𝑥) ⩽ 4𝐷 + 2.
Now note that for any 𝑝𝑦 ∈ 𝜋𝛾(𝑦) and 𝑝𝑤 ∈ 𝜋𝛾(𝑤), we have

𝑑(𝑝𝑦, 𝑝𝑥) ⩽ 𝑑(𝑝𝑦, 𝑝𝑤) + 𝑑(𝑝𝑤, 𝑝𝑥) ⩽ 𝐷 + ((4𝐷 + 2) + 4𝐷) = 9𝐷 + 2.

On the other hand, we have 𝑑(𝑢, 𝑝𝑦) ⩽ 1 + 4𝐷, which gives that 𝑑(𝑢, 𝑝𝑥) ⩽ 𝑑(𝑢, 𝑝𝑦) + 𝑑(𝑝𝑦, 𝑝𝑥) ⩽
(1 + 4𝐷) + (9𝐷 + 2) = 13𝐷 + 3, this is a contradiction since 𝑑(𝑢, 𝑝𝑥) > 13𝐷 + 2𝛿 + 3. □

In light of Theorem 4.1, we can apply Corollary 3.18 to show the following.

Corollary 4.8. Let 𝐺 be a finitely generated group which is not virtually cyclic, and let 𝐴 be a gen-
erating set for 𝐺. If Cay(𝐺, 𝐴) contains an infinite contracting geodesic, then 𝐺 must be acylindri-
cally hyperbolic.

Remark 4.9. In the introduction, we stated that a geodesic metric space is hyperbolic if and only
if there exists a constant 𝐷 such that every geodesic is 𝐷-super-contracting. The forward direc-
tion is a standard fact about hyperbolic spaces. For example, the argument given in Theorem
2.14 of [5] proving that for a CAT(0) space 𝑋 every 𝛿-slim geodesic is 𝐷-contracting (and hence
𝐷′-super-contracting) still works when the CAT(0) space 𝑋 is replaced by a hyperbolic space.
Conversely, if every geodesic is 𝐷-super-contracting, then by Lemma 2.7, there exists an𝑀 such
that every geodesic is𝑀-Morse. Now, Lemma 2.2 of [6] states that if two edges of a triangle in a
geodesicmetric space are𝑀-Morse, then the triangle is 4𝑀(3, 0)−thin. This implies that the space
is 4𝑀(3, 0)-hyperbolic. □
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