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a b s t r a c t 

Recent studies have demonstrated that it is possible to decode and synthesize various aspects of acoustic speech 

directly from intracranial measurements of electrophysiological brain activity. In order to continue progressing 

toward the development of a practical speech neuroprosthesis for the individuals with speech impairments, better 

understanding and modeling of imagined speech processes are required. The present study uses intracranial brain 

recordings from participants that performed a speaking task with trials consisting of overt, mouthed, and imagined 

speech modes, representing various degrees of decreasing behavioral output. Speech activity detection models are 

constructed using spatial, spectral, and temporal brain activity features, and the features and model performances 

are characterized and compared across the three degrees of behavioral output. The results indicate the existence 

of a hierarchy in which the relevant channels for the lower behavioral output modes form nested subsets of 

the relevant channels from the higher behavioral output modes. This provides important insights for the elusive 

goal of developing more effective imagined speech decoding models with respect to the better-established overt 

speech decoding counterparts. 
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. Introduction 

Speech is the first and foremost means of human communication.

illions of people worldwide suffer from severe speech disorders due to

eurological diseases such as amyotrophic lateral sclerosis (ALS), brain

tem stroke, and severe paralysis. A speech neuroprosthesis that decodes

peech directly from neural signals could dramatically improve life for

hese individuals. Intracranial brain-computer interfaces (BCIs) using

lectrocorticography (ECoG) ( Angrick et al., 2019b; 2021; Herff et al.,

019; 2015; Moses et al., 2019; Soroush et al., 2021; Soroush and Sham-

ollahi, 2018; Sun et al., 2020 ) or stereotactic electroencephalography

sEEG) ( Angrick et al., 2021; Herff et al., 2020; Li et al., 2022; Petrosyan

t al., 2022; Soroush et al., 2021; Vadera et al., 2013 ) have demonstrated

uccess in decoding aspects of speech directly from brain activity. These

echniques have superior spatial resolution and bandwidth compared to

on-invasive scalp electroencephalography (EEG), and superior tempo-

al resolution compared with functional Magnetic Resonance Imaging

fMRI) ( Ball et al., 2009; Brumberg et al., 2016; Schalk and Leuthardt,

011 ). sEEG has recently gained wide clinical acceptance for epilepsy
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urgery planning as it has been found to lead to fewer surgical compli-

ations compared to ECoG ( Herff et al., 2020; Iida and Otsubo, 2017 ).

dditionally, while ECoG electrodes record localized activity of the cor-

ical surface, sEEG electrodes generally have a much broader spatial

istribution, providing access to brain regions including cortex, deeper

tructures, and both white and grey matter ( Li et al., 2021; Revell et al.,

021; Soroush et al., 2021; 2022 ). 

For those who have completely lost the ability to speak, the objective

s to synthesize acoustic speech directly from brain activity during imag-

ned speech. However, the lack of acoustic or behavioral output during

magined speech presents challenges in designing an effective decod-

ng model ( Angrick et al., 2021; Brumberg et al., 2016; Cooney et al.,

018; Perrone-Bertolotti et al., 2014 ). To cope with this limitation, it

s common to utilize behavioral output from overt speech or mouthed

peech (i.e., performing inaudible speaking articulations without vocal-

zation) as a surrogate to study associated brain activity ( Angrick et al.,

019a; 2019b; Herff et al., 2019; 2015; Ibayashi et al., 2018; Livezey

t al., 2019; Mugler et al., 2014; Ramsey et al., 2018 ) or to train de-
uary 2023 

ticle under the CC BY-NC-ND license 

https://doi.org/10.1016/j.neuroimage.2023.119913
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neuroimage
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2023.119913&domain=pdf
mailto:djkrusienski@vcu.edu
https://doi.org/10.1016/j.neuroimage.2023.119913
http://creativecommons.org/licenses/by-nc-nd/4.0/


P.Z. Soroush, C. Herff, S.K. Ries et al. NeuroImage 269 (2023) 119913 

Table 1 

Demographic information of participants and numbers of sEEG channels and number of unique trial sentences per- 

formed for each participant. The first and second columns list the gender and age of the participants, respectively. 

The third column reports the total number of channels recorded during the experiment. The fourth column reports the 

total number of electrodes excluded from the analysis due to noise or other anomalies, and the fifth column reports 

the 𝑝 -value of the acoustic contamination index ( Roussel et al., 2020 ). The last column lists the number of unique 

trial sentences performed. 

Participant Gender Age # Recorded # Excluded (artifacts) # Acoustic Contamination 𝑝 -value ( P ) # Trials 

P1 Male 25 90 0 0.34 50 

P2 Male 60 70 0 0.46 50 

P3 Male 32 80 0 0.18 50 

P4 Female 42 175 4 0.12 50 

P5 Male 21 232 7 0.76 50 

P6 Male 22 94 0 0.62 50 

P7 Male 31 108 3 0.50 50 
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oding models for imagined speech applications ( Angrick et al., 2021;

numanchipalli et al., 2019; Martin et al., 2014 ). 

Numerous prior studies have focused on establishing neural speech

ecoding model performance in various scenarios such as decoding

honemes and words ( Martin et al., 2016; Mugler et al., 2014; 2018 ),

rain-to-text ( Herff et al., 2015; Makin et al., 2020; Moses et al., 2019;

un et al., 2020; Willett et al., 2021 ), and direct speech synthesis from

rain activity ( Angrick et al., 2019b; 2021; Anumanchipalli et al., 2019;

erff et al., 2019 ). While several studies have compared brain activity

rom fMRI or Magnetoencephalography (MEG) across overt, mouthed,

nd imagined speech modes ( Hickok et al., 2003; Okada et al., 2018;

ian and Poeppel, 2013; Tian et al., 2016; Zhang et al., 2020 ), there

as yet to be a systematic comparison of the electrophysiological ac-

ivity across these speech modes in the context of speech decoding.

ather than employing sophisticated models that attempt to decode

igher-level representations of speech and potentially introduce other

onfounding factors for a comparative analysis of speech modes, a sim-

lified speech activity detection framework can be utilized to better fa-

ilitate this comparison based on a lower-level speech representation

 Kanas et al., 2014a; 2014b; Koct et al., 2019 ). Using causal brain activ-

ty features as inputs, speech activity detection models simply classify

he respective activity as occurring during intervals of speech or non-

peech intent, whether overt or imagined. Recent studies using sEEG

ave successfully elucidated the relative contributions of spectral fea-

ures from grey and white matter for speech activity detection ( Soroush

t al., 2021; 2022 ), classified phonetic features from activity located in

he superior temporal gyrus ( Meng et al., 2021 ), and provided a prelim-

nary demonstration of real-time synthesis of imagined speech activity

 Angrick et al., 2021 ). 

The present study utilizes sEEG recordings, spanning cortical and

ubcortical areas, to compare brain activity during overt, mouthed, and

magined speech with the objective of elucidating the efficacy of various

EEG features and speech surrogates for informing imagined-speech de-

oding models. Multiple speech activity detection decoding models are

eveloped and applied within and across overt, mouthed, and imagined

peech modes to reveal the similarities and differences in the relevant

patial, temporal, and spectral features among the models. The results

ndicate that relevant channels for speech decoding reside in both corti-

al and subcortical areas and appear to form a hierarchy in which the rel-

vant channels for the lower behavioral output modes form nested sub-

ets of the relevant channels from the higher behavioral output modes. 

. Methodology 

.1. Participants and electrode locations 

sEEG data were collected from 7 native English-speaking participants

eing monitored as part of treatment for intractable epilepsy at UCSD

ealth. The demographic information of the participants is provided

n Table 1 . The study design was approved by the Institutional Review
2 
oards of Virginia Commonwealth University and UCSD Health, and in-

ormed consent was obtained for experimentation with human subjects.

he locations of sEEG electrodes were determined solely based on the

articipants’ clinical needs. A subset of the implanted electrodes for each

articipant was determined to be in or adjacent to brain regions asso-

iated with speech and language processing. Figure 1 shows the depth

lectrode locations for the 7 participants, with sEEG electrode (channel)

ounts provided in Table 1 . Anatomical location of the channels, includ-

ng brain region and localization in white or grey matter, were identified

sing the FreeSurfer software package and MNE-Python ( Fischl, 2012;

ockhill et al., 2022 ). 

.2. Experimental design 

For the experiment, participants were presented with a sentence dis-

layed on a computer monitor and simultaneously narrated via com-

uter speakers. When visually prompted with an icon as shown in

ig. 2 a, the participant was instructed to speak the sentence audi-

ly while the acoustic speech and sEEG signals were simultaneously

ecorded. The participant was subsequently visually prompted with

cons indicating to inaudibly articulate speech (i.e., mouth) and imagine

peaking without articulating or vocalizing, respectively, for the same

entences. Herein, these three modes are referred to as overt, mouthed ,

nd imagined , respectively. Each icon prompt and participant response

uring the task is referred to as a single trial . 

The participant was asked to perform the associated task im-

ediately upon presentation of the icon within a 4-second inter-

al. This structure was repeated for 50 unique Harvard sentences,

hich are phonetically-balanced based on conversational English

 Rothauser, 1969 ). 

The three tasks were intentionally presented in a consistent sequence

ccording to degree of behavioral output (i.e., overt-mouthed-imagined)

ather than block randomized to better facilitate compliance from the

atients. It is believed that the behavioral output of the speaking trial

etter primes the participant for more reliably performing the subse-

uent mouthed and imagined trials. Moreover, randomizing the trials

ould require greater attentional resources and more likely lead to re-

ponse errors and oddball effects ( Bénar et al., 2007 ), particularly with

his patient group who are sometimes attentionally compromised due to

heir condition and the stress of the hospital environment. 

The stimuli were presented and synchronized with the sEEG record-

ngs using Presentationë software (Version 18.0, Neurobehavioral Sys-

ems, Inc., Berkeley, CA, https://www.neurobs.com ). The experimental

etup and trial sequence structure are depicted in Fig. 2 . 

.3. Data collection 

The sEEG electrodes (Ad-Tech Medical Instrument Corporation)

ere referenced to a pair of subdermal needle electrodes in the scalp

nd digitized at 1,024 Hz (Natus Quantum Amplifier, Natus Medical

https://www.neurobs.com
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Fig. 1. The combined sEEG depth electrode (channel) locations of the 7 participants from different perspectives using an averaged brain model. A, P, R, and L 

indicate Anterior, Posterior, Right, and Left sides of brain, respectively. 

Fig. 2. (a) sEEG and acoustic speech were simultaneously recorded as the participant performed the task as prompted by icons presented on a monitor. (b) Participants 

were presented with a sentence displayed on a monitor and simultaneously narrated through speakers. Participants were instructed to speak (overt), mouth, and 

imagine the sentence in sequence as cued by the respective icons. This was repeated for a bank of 50 sentences. 

3 
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nc.). The audio signal, recorded via an external microphone, was dig-

tized at 44,100 Hz. The data from the audible speech portions of the

ask were used to extract speech and non-speech segments from the audio

ecordings. 

.4. Labeling the audio files (Speech vs. Non-speech) 

The recorded speech from the overt mode was manually transcribed

sing the Wavesurfer software package ( Sjölander and Beskow, 2000 )

or a separate analysis, but was found useful to provide precise labeling

f the speech and non-speech segments for the present study. This was ac-

omplished by shifting a 10 ms non-overlapping frame across the audio

ecording to identify the onset and offset of the spoken sentence, with

he resulting timings from the transcription word boundaries being used

s the frame label. Each frame was identified as speech if at least half of

he frame length overlapped with a transcribed word, and as non-speech

therwise. For each 4-second interval encompassing the entire sentence

tterance, the entire duration between the first onset and last offset was

abeled as speech and the periods before and after these were labeled as

on-speech . The frame length was chosen to be 10 ms to better repre-

ent brain signals’ non-stationary nature and the fast changes of speech

ctivity for eventual closed-loop implementation. 

.5. Labeling the audio-less modes (Mouthed and Imagined) 

Due to non-existent speech audio for the mouthed and imagined

odes, the average onset timings and durations of the overt speech in-

ervals and the audio data from the corresponding overt mode were

sed to define respective surrogate speech and non-speech labels for the

outhed and imagined speech modes ( Pei et al., 2011b ). For each sen-

ence and mode, the onset and offset of speech activity were estimated

ased on the average onset and offset timings of the overt mode of the

orresponding participant, while the duration of speech interval was de-

ermined according to the respective overt audio. The start of each mode

rial (i.e., time 𝑡 0 ) to time 𝑡 1 was labeled as non-speech , from time 𝑡 1 to

 2 was labeled as speech , and time 𝑡 2 to the end of the trial was labeled

s non-speech . 

For each participant and sentence, the average latency between pre-

entation of the vocalization icon and the onset of actual vocalization

as computed ( 𝑡 𝑎 ). This average latency was used as the transition from

on-speech to speech ( 𝑡 1 = 𝑡 0 + 𝑡 𝑎 ). To set the transition from speech to

on-speech ( 𝑡 2 ), the duration of the corresponding sentence vocalization

 𝑡 𝑠 ) was used ( 𝑡 2 = 𝑡 1 + 𝑡 𝑠 ). The interval from 𝑡 2 to the end of the trial

as labeled as non-speech . 

.6. Data pre-processing 

All sEEG data were visually inspected for noisy or anomalous chan-

els for exclusion from the analysis, as reported in Table 1 . Addition-

lly, 25 sentence trials from Participant 1 were excluded due to a data

islabeling issue in the recording software. The number of trial sen-

ences for each participant is provided in Table 1 . The sEEG data were

lso analyzed for potential spatio-temporal correlations with the sound

roduced by the participants or present in the environment, and it was

erified that the recordings were not subject to acoustic contamination

 Roussel et al., 2020 ). The 𝑝 -value of the acoustic contamination in-

ex ( Roussel et al., 2020 ) are provided in Table 1 . The resulting raw

EEG channels for inclusion in the analysis were re-referenced using the

aplacian method ( Li et al., 2018; Mercier et al., 2017 ). 

.7. Feature extraction 

The narrow-band power of each sEEG channel was computed in four

onventional frequency bands: theta (4–8 Hz), alpha (8–12 Hz), beta

12–30 Hz), and broadband gamma (70–170 Hz). In a prior study per-

ormed with a subset of the present participants, these frequency bands
4 
xhibited better performance for speech activity detection compared to

he delta (0–3 Hz) and low-gamma (30–70 Hz) bands ( Soroush et al.,

021 ). The selected frequency bands have also been shown to be in-

ormative for other speech-related tasks ( Kanas et al., 2014a; Li et al.,

020; Proix et al., 2022 ). 

To extract the features, using the labeled 10-ms frames from the au-

io signals, the sEEG channels over a specified temporal window around

ach audio frame were zero-phase filtered over the respective frequency

ange using a sixth-order Butterworth filter. The window length was

hosen to be 210 ms (corresponding to 200 ms before the frame to the

nd of the frame), based on the expected duration of speech planning re-

ealed by intracranial recordings ( Brumberg et al., 2016 ). However, this

s insufficient for reliably estimating the energy of the lower frequency

ands as at least 3–4 cycles are needed to convey meaningful informa-

ion in a particular band. Hence, for theta, alpha, and beta bands, the

uration of four cycles of the lowest frequency of the band was used to

etermine the causal model’s window onset, and the window offset was

lways fixed at the 10-ms frame length. For example, for the 4–8 Hz

heta band, the window onset is 1 s (4 cycles × 0.25 s/cycle) before the

tart of the frame, giving a 1.01 s window length. 

An additional 118–122 Hz notch filter was applied to broadband

amma to suppress the second harmonic of the 60 Hz line noise. Finally,

he features were computed every 10 ms as the natural logarithm of the

ignal energy over 210 ms, representing 10 ms overlapping the audio

rame and 200 ms prior to the frame to emulate a causal design. Such

 causal design aims to decode activity related to speech production

ather than perception and can be implemented for real-time feedback

or future closed-loop applications. 

The features from each included channel were concatenated to form

he feature vector (# channels × 21 features × # frequency bands - rep-

esenting spatial, temporal, and spectral neural signal features, respec-

ively) for the decoding models. A diagram of the feature extraction

rocess is provided in Fig. 3 . 

.8. Model training and evaluation 

All significance tests were performed using a Benjamini-Hochberg

orrected Wilcoxon signed-rank test ( Benjamini and Hochberg, 1995;

ilcoxon, 1992 ). The resulting 𝑝 -value ( p ), effect sizes ( r ), and sample

izes ( n ) are reported for each respective test ( Rosenthal et al., 1994 ).

hroughout the paper, n is either equal to 10 (when the values over the

0-fold cross-validation process were compared for two or more distri-

utions) or 50 (when the values over the 50 trials were compared for

wo or more distributions). 

.8.1. Logistic regression model 

All models are designed using logistic regression with L1 regulariza-

ion and are specific for each participant and mode. A proximal AdaGrad

ptimizer with SoftMax function was selected for training the model

 Duchi et al., 2011 ). This model was chosen over more complex ma-

hine learning and deep learning models because of the small size of

ata available (due to the differences between brain coverage of dif-

erent participants, data from individual participants is processed sepa-

ately), and that it has been shown to be effective for evaluating indi-

idual features and providing a convenient interpretation of the feature

ontributions ( Soroush et al., 2021 ). 

The performance of all models was obtained based on a 10-fold non-

huffled cross-validation analysis process, where each fold contained ap-

roximately one tenth of the data. For participants with 50 trials, the

rials were randomly arranged into ten folds with each fold containing

ve trials. For the participant with 25 trials, the trials were randomly

rranged into five folds with two trials and five folds with three trials.

uring the cross-validation process, each fold was used once as test data,

nd approximately one tenth of the remaining trials (2 and 4 trials in

articipants with 25 and 50 trials, respectively) were randomly selected

s validation data. Trials not selected for validation or testing were used
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Fig. 3. Extraction of theta, alpha, beta, and broadband gamma features from 200 ms prior to the audio frame to the frame’s offset, resulting in a feature space of # 

channels × 21 temporal lags × 4 frequency bands. The recorded speech is time-aligned with the sEEG and indicator of the speech / non-speech labeling is shown. The 

filtered bands are presented in different time scales, with the vertical bars indicating the 21 10-ms temporal frames for each band. 
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c  
s training data. To prevent training bias, the training data were nor-

alized to zero mean and unit variance, and the same normalization

arameters were applied to the validation and test data. The validation

ata were used to optimize the hyperparameters of the training models,

hile the test data were solely used to obtain the performance of the

rained models for each fold. 

Shuffling was not performed on any test or validation data. How-

ver, the training data were shuffled to better facilitate training of the

odel. While the feature extraction process was developed to emulate a

ausal design for the classification models, due to the overlap between

he neural features associated with consecutive audio frames (i.e., neural

eatures associated with each audio frame overlap with the previous and

ubsequent twenty audio frames), randomly assigning audio frames to

ifferent folds could potentially cause the train and test folds to contain

rials with overlapping neural features, resulting in a leak of information

rom test data to training data. Hence, for the cross-validation process,

nly the training data (partitioned from the independent validation and

est data) were shuffled. 

Due to the difference between the amount of data for each class

n some of the models, and to have consistency, the performance of

ll models was evaluated using balanced accuracy. For all models, the

alanced accuracy was evaluated as the average of the recalls of the

lasses, which ranges from 0 (i.e., worst possible performance) to 1 (i.e.,

est possible performance). To establish the chance-level classification,

 randomization test was performed where all labels were randomly

huffled and the 10-fold cross-validation process was repeated for 1000

eparate randomizations of the labels. 

.8.2. Single-channel models and channel selection 

Single-channel Within-Mode (WM) and Cross-Mode (CM) decoding

odels were created to compare the spatial, temporal, and spectral rep-

esentations of the speech-related activity at each channel with respect

o decoding performance within and across modes. For the WM models,

he decoding performance for each mode was evaluated using 10-fold

on-shuffled cross-validation models. Additionally, the feature weights

f the 10 decoding models (one per fold) were averaged to compare

he relative contribution of each feature to the models. These weights

an provide a convenient interpretation of individual feature contribu-
5 
ions based on the non-zero classifier weights and represent the spectral

nd temporal contributions to speech activity detection ( Soroush et al.,

021; 2022 ). 

The single-channel WM models were subsequently used to select

hannels with relatively superior performance in comparison with the

est of the channels. For each mode and fold in the cross-validation pro-

ess, the mean plus one standard deviation of the balanced accuracy of

ll channels was determined as the threshold for the fold to form a dis-

ribution of thresholds over the ten fold of the cross-validation process.

dditionally, for each channel, the distribution of balanced accuracies

ver the 10 folds of the cross-validation process was computed. 

Single-channel CM models were trained on the data from one mode

train mode) and respectively tested on the other two modes (test mode).

he hyperparameters of the decoding model were selected based on the

ingle-channel WM model of the train-mode. The purpose of these mod-

ls is to identify channels that exhibit similar relevant neural features

cross various modes versus channels that have dominant features that

re unique to specific modes. 

.8.3. Multi-channel models 

Multi-channel models were created and evaluated to explore the rel-

tive contributions of the spectro-temporal features of the channels in

 combined model, as well as to compare the relative performance of

hese more potent models. Using the features of all channels, for each

articipant and mode, multi-channel WM models were evaluated using

0-fold non-shuffled cross-validation process. Multi-channel CM models

ere also created for which a decoding model was trained on the entire

ata of the train-mode and tested on the entire data from a different test-

ode, herein labeled as (train mode)-to-(test mode). The hyperparam-

ters of the decoding model were selected based on the multi-channel

M model of the train-mode. 

. Results 

The three modes can be compared with respect to degree of behav-

oral output, with overt having the highest, mouthed having intermedi-

te, and imagined having no behavioral output. In the subsequent paired

omparisons, the mode in the pair having the higher behavioral output



P.Z. Soroush, C. Herff, S.K. Ries et al. NeuroImage 269 (2023) 119913 

w  

o

3

 

a  

e  

t  

d  

p  

f  

a  

a  

(  

t  

𝑛  

p  

i

3

 

c  

t  

t  

c  

a  

o  

t  

a  

i  

r

 

m  

𝑟  

H  

c  

5  

i  

n  

e  

h  

L  

e  

𝑛  

(  

(  

m  

i  

f  

𝑟  

a  

3  

n  

i

 

m  

s  

t  

s  

r

 

i  

l  

s  

v  

H  

o  

T  

t  

t  

2  

2

 

g  

i  

H  

p  

r  

r

 

p  

f  

i  

l  

b  

m

 

d  

c  

l  

l  

a  

F  

e  

l  

i  

t  

c  

l  

f  

a

3

 

p  

e  

g  

p  

i  

c  

t  

a  

T  

c  

c  

a  

f  

e  

m  

p  

l  

u  

c  

o

 

p  

t  

o  

C  

i  

o  
ill be denoted as the HBO mode and the mode with lower behavioral

utput will be denoted as the LBO mode . 

.1. Single-channel models 

Figure 4 illustrates violin plots of the distributions of averaged bal-

nced accuracy of the 10-fold cross-validation single-channel WM mod-

ls trained on the data from each participant and each mode. To compare

o chance-level performance, permutation tests were performed by ran-

omly shuffling the labels and performing the 10-fold cross-validation

rocess 1000 times. The black dots represent the channels that per-

ormed significantly above the thresholds ( 𝑝 < 0 . 01 , 𝑟 > 0 . 5 , 𝑛 = 10 )
nd were thus selected as mode-relevant channels. For all participants

nd modes, the thresholds were significantly above the chance-level

 𝑝 < 0 . 01 , 𝑟 > 0 . 8 , 𝑛 = 10 ). Additionally, over all participants, channels

hat performed significantly better than chance-level ( 𝑝 < 0 . 05 , 𝑟 > 0 . 5 ,
 = 10 ) in all three modes performed significantly better in overt com-

ared to mouthed and imagined modes, and in mouthed compared to

magined ( 𝑝 < 0 . 01 , 𝑟 > 0 . 5 , 𝑛 = 10 ). 

.1.1. Spatial characterization 

Figure 5 shows the individualized averaged balanced accuracy of the

ross-validated single-channel WM models on the data from a represen-

ative participant (Participant 1) for all three modes. This is equivalent

o an expansion of the violin plots from Participant 1 in Fig. 4 . Since

hance-level was a subset of and nearly identical to chance-level for

ll modes in Fig. 4 , the average of the three modes for each channel

ver the 10 folds of cross-validation is used for reference. Fig. 5 shows

hat channels along each shaft, if relevant for the mode and significantly

bove the chance-level ( 𝑝 < 0 . 05 , 𝑟 > 0 . 5 , 𝑛 = 10 ), generally follow a sim-

lar trend across the modes, indicating similar activity across these brain

egions. 

By comparing each mode pair, channels were observed with perfor-

ance significantly better than chance-level in both modes ( 𝑝 < 0 . 05 ,
 > 0 . 5 , 𝑛 = 10 ), while having a significantly better performance in the

BO mode than the LBO mode ( 𝑝 < 0 . 05 , 𝑟 > 0 . 5 , 𝑛 = 10 ). For instance,

hannels in the superior temporal gyrus of both hemispheres (channels

–10 on the blue shaft and 8–10 on the light red shaft) show roughly sim-

lar above-chance performance for both mouthed and imagined, and sig-

ificantly better performance for overt ( 𝑝 < 0 . 05 , 𝑟 > 0 . 5 , 𝑛 = 10 ). How-

ver, there were also brain regions where single-channel models ex-

ibited significantly better performance in the HBO mode than in the

BO mode ( 𝑝 < 0 . 05 , 𝑟 > 0 . 5 , 𝑛 = 10 ), while showing no significant differ-

nce from chance-level performance in the LBO mode ( 𝑝 > 0 . 05 , 𝑟 < 0 . 1 ,
 = 10 ). This is observed for regions in the left middle temporal gyrus

channels 9 and 10 on the cyan shaft) and left inferior temporal gyrus

channels 4, 5, 9, and 10 on the light green shaft), where single-channel

odels performed significantly better for overt than mouthed or imag-

ned ( 𝑝 < 0 . 05 , 𝑟 > 0 . 7 , 𝑛 = 10 ), while showing no significant difference

rom chance-level performance for mouthed and imagined ( 𝑝 > 0 . 05 ,
 < 0 . 1 , 𝑛 = 10 ). Despite a few channels exhibiting slightly higher aver-

ge performances for imagined than overt and mouthed (i.e., channels

, 4, and 5 on the red shaft), these are not statistically significant and

o channels exhibited significantly better performance in mouthed or

magined than overt. 

The averaged balanced accuracy values of the single-channel WM

odels, normalized for each participant over all three modes, are shown

patially in Fig. 6 a. It is observed that most selected channels are clus-

ered in groups of two or more adjacent channels along the same shaft,

uggesting these channel groups each reside in a common functional

egion. 

The overt panel of Fig. 6 a shows that relevant channels are predom-

nantly located around the border between the parietal and temporal

obes, including the middle frontal gyrus, superior temporal gyrus and

ulcus, and Sylvian parieto-temporal regions. Additionally, some rele-

ant channels were localized to regions adjacent to the auditory cortex.
6 
owever, these channels were also selected in one or both of mouthed

r imagined, which did not involve auditory feedback or perception.

his is consistent with previous studies showing activation in the audi-

ory cortices during imagined speech or imagined hearing, regardless of

he presence of an auditory stimulus ( Martin et al., 2016; Orpella et al.,

022; Pei et al., 2011b; Rampinini et al., 2017; Tian and Poeppel, 2010;

012; Zhang et al., 2020 ). 

The imagined panel of Fig. 6 a also indicates that there are brain re-

ions, such as parts of the left frontal lobe, with channels relevant to

magined that also exhibited activity relevant to overt and mouthed.

owever, these channels generally exhibited lower performance com-

ared to the top performing channels of each of these modes. A similar

esult is observed between overt and mouthed when comparing brain

egions, such as the right frontal lobe across modes. 

In contrast, it can be seen that numerous relevant channels for overt,

rimarily located in the right and left temporal lobes, were not selected

or mouthed or imagined. This is also observed between mouthed and

magined. However, there are several channels located in the right and

eft temporal lobes, such as channels in the superior temporal gyrus of

oth hemispheres of Participant 1, that perform well in two or more

odes. 

To characterize the neural activity with respect to relative laminar

epth, the radial distance between the closest selected channel to the

enter of the MNI brain model ( Evans et al., 1993 ) and the furthest se-

ected channel from the center was divided into ten uniformly-spaced

evels, forming spherical shells. For each level, the average of the bal-

nced accuracies of the channels located in that level was calculated.

ig. 6 b shows the accuracy and number of electrodes corresponding to

ach relative depth level and mode. For each mode, the average chance-

evel classification, which were equivalent to chance-levels of Fig. 4 , are

ndicated with magenta dashed lines. The overt results in Fig. 6 show

hat the best performing channels are comparatively few and near the

ortical surface. However, there are a greater number of channels se-

ected at multiple intermediate depths that also exhibit reasonable per-

ormance. These observations are also generally consistent for mouthed

nd imagined. 

.1.2. Comparison across modes 

The results from the single-channel models for the WM and CM

aradigms were used to assess and spatially visualize the shared rel-

vance of channels across modes. Channels were organized in three

roups according to shared relevance for the nested behavioral out-

ut hierarchy of (1) overt, (2) overt-mouthed, and (3) overt-mouthed-

magined. The channels uniquely relevant to overt were identified by

orresponding single-channel models performing significantly above

he chance-level for the overt WM paradigm and not significantly

bove chance-level for either overt-to-mouthed or overt-to-imagined.

he channels relevant to both overt and mouthed were identified by

orresponding single-channel models performing significantly above

hance-level for both the overt and mouthed WM paradigms, both overt

nd mouthed CM paradigms, but not significantly above chance-level

or either overt-to-imagined or mouthed-to-imagined. The channels rel-

vant to all three modes were identified by corresponding single-channel

odels performing significantly above the chance-level for all three WM

aradigms and all combinations of CM paradigms. Channels were se-

ected based on the respective performance differences in the groups

sing a threshold of 𝑝 < 0 . 05 . It should be noted that this grouping pro-

ess resulted in every channel selected in Fig. 4 being assigned to exactly

ne group. 

Fig. 7 a shows the brain regions of the three channel groups across all

articipants on an average brain model. The green channels are relevant

o all three modes, whereas the orange channels are relevant to only

vert and mouthed, and the blue channels are relevant to only overt.

hannels selected in the overt group show relatively higher performance

n the overt panel of Fig. 6 a. These channels reside in a wide range

f cortical and sub-cortical brain regions, including the superior and
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iddle temporal gyrus and superior frontal gyrus, which is in line with

revious studies ( Arya et al., 2019; Kohler et al., 2021; Leuthardt et al.,

011; Martin et al., 2014; 2016; Okada et al., 2018; Orpella et al., 2022;

ei et al., 2011a; Zhang et al., 2020 ). 

Channels selected in the overt-mouthed group show relatively higher

erformance in the mouthed panel of Fig. 6 a. Fewer channels were se-

ected in this group in comparison with the other two groups, which

ould be due to the narrow coverage of the motor cortices for these par-

icipants. The brain regions exhibiting relevant activity for this group

ncluded motor cortex and adjacent, right superior frontal gyrus, and

ight and left inferior temporal gyrus, which is in line with previous stud-

es ( Okada et al., 2018; Pulvermüller et al., 2006; Zhang et al., 2020 ).

hannels selected in the overt-mouthed-imagined group show relatively

igher performance in the imagined panel of Fig. 6 a and are predomi-

antly located on or near the Broca’s area (e.g., left inferior and middle

rontal gyrus) and the auditory cortices (e.g., middle and inferior tem-

oral gyrus and sulcus and Sylvian parieto-temporal region), which is

n line with previous studies ( Geva et al., 2011; Kohler et al., 2021;

euthardt et al., 2011; Martin et al., 2016; Okada et al., 2018; Orpella

t al., 2022; Pei et al., 2011a; 2011b; Zhang et al., 2020 ). 

The brain regions associated with all three groups span grey and

hite matter in both brain hemispheres. This is in line with recent stud-

es that have reported speech-related activity in both hemispheres and

oth deeper and superficial brain areas during both overt and imagined

 Alexandrou et al., 2017; Cogan et al., 2014; Geva et al., 2011; Kohler

t al., 2021; Orpella et al., 2022; Soroush et al., 2021; Tourville et al.,

008 ). 

It should be noted that channels in the overt group may also con-

ain neural features shared with the other modes, but these features

re relatively less dominant than those unique to overt, as the models

rained on overt do not perform significantly above the chance-level on

he mouthed or imagined data. This also applies to the overt-mouthed

roup, which may have neural features common in all three modes that

re likewise relatively less dominant than those unique to overt and

outhed. Moreover, no channels were identified that were uniquely

elevant to imagined, compared to mouthed or overt, or uniquely rel-

vant to both imagined and mouthed, compared to overt. Thus the in-

erse nested hierarchy of (1) imagined, (2) imagined-mouthed, and (3)

magined-mouthed-overt was not observed. This is in line with prior

ork that did not identify any brain regions that were significantly more

ctive for imagined compared to mouthed modes ( Okada et al., 2018 ).

his HBO-LBO hierarchy was also consistent when grouping channels

ccording to their relevance for only mouthed and imagined modes,

urther confirming the nested behavioral output hierarchy of (1) overt,

2) overt-mouthed, and (3) overt-mouthed-imagined. 

Figure 7 b shows a Venn diagram of the nested hierarchical chan-

el groups from Fig. 7 a, with relative areas proportional to the number

f channels in each group, indicated by the numeric values. To sum-

arize, all 119 significant channels are relevant to overt, a subset of

0 are relevant to mouthed, and a nested subset of 78 are relevant to

magined. Figure 7 c shows the average performance of WM paradigm

f these channel groups, in a mutually-exclusive fashion (i.e., the col-

red channels comprise the respective groups, not the nested subsets).

or each mutually-exclusive grouping, the results are compared across

he three modes indicated by the legend using 10-fold non-shuffled

ross-validation process for each respective mode. While channels in all

roups performed significantly above chance-level ( 𝑝 < 0 . 0001 , 𝑟 > 0 . 8 ,
 = 10 ), the channels in overt group performed significantly better in

he overt mode than channels in overt or the other two groups in any of

he three modes ( 𝑝 < 0 . 01 , 𝑟 > 0 . 7 , 𝑛 = 10 ). No significant difference was

bserved between the performance of the channels in the overt group in

outhed and imagined modes ( 𝑝 > 0 . 05 , 𝑟 < 0 . 2 , 𝑛 = 10 ). No significant

ifference was observed between the performance of the channels in the

vert-mouthed group in overt and mouthed modes ( 𝑝 > 0 . 05 , 𝑟 < 0 . 1 , 𝑛 =
0 ). The performance of the channels in the overt-mouthed group in both

vert and mouthed modes was significantly better than the same chan-
7 
els in the imagined mode, the channels in the overt group in mouthed

nd imagined modes, and the channels in the overt-mouthed-imagined

roup in overt, mouthed, and imagined modes ( 𝑝 < 0 . 05 , 0 . 8 > 𝑟 > 0 . 3 ,
 = 10 ). Lastly, no significant difference was observed between the per-

ormance of the channels in the overt-mouthed-imagined group in overt,

outhed, and imagined modes ( 𝑝 > 0 . 05 , 𝑟 < 0 . 1 , 𝑛 = 10 ), but each indi-

idually was significantly larger than the channels in the overt group in

outhed and imagined modes and the channels of the overt-mouthed

roup in the imagined mode ( 𝑝 < 0 . 05 , 0 . 6 > 𝑟 > 0 . 3 , 𝑛 = 10 ). 
To compare the relevance of channels within and across different

odes, performance of each selected channel from Fig. 7 a was com-

ared across HBO-LBO mode pairs (i.e., overt-mouthed, overt-imagined,

nd mouthed-imagined). For each mode-pair and group, all channels se-

ected in at least one mode in the pair based on the respective single-

hannel WM models were analyzed. Figure 8 shows a scatter plot of the

ode-pair performance of each channel across all participants. Channels

re marked according to mode-pair and colorized by nesting grouping.

s a visualization aid, bivariate Gaussian distributions were fit to the

hannels of each nested group. The 90% probability contours of the re-

pective distributions are shown as ellipses in Fig. 8 . Chance-level clas-

ification, which were a subset of and nearly identical to the chance dis-

ributions in Fig. 4 , are depicted by the magenta dashed lines for HBO

nd LBO modes, respectively. The average of 10-fold cross-validation

erformance of the individual channels was generated for each group

nd the Pearson correlation coefficient was calculated for the perfor-

ance of each channel in the mode pairs. While a significantly positive

orrelation ( 𝑟 = 0 . 71 and 𝑝 < 0 . 0001 ) was observed between the LBO and

BO axes of overt-mouthed-imagined group, no significant correlation

as observed between the LBO and HBO axes of the other two groups

 𝑝 > 0 . 05 ). 

.1.3. Spectro-temporal characterization 

Figure 9 illustrates the absolute value of normalized feature weights

f the single-channel WM models for each mode, averaged over the se-

ected channels of the channel groups from Fig. 7 a. While these weights

o not directly represent the spectro-temporal cognitive patterns asso-

iated with the decoding models, they do convey the relative contri-

utions of spectro-temporal features to the models. As expected from

revious studies, features temporally closer to the frame being decoded

ave a greater contribution to the models ( Soroush et al., 2021; 2022 ). A

trikingly similar pattern is observed between the weights of the overt-

outhed-imagined group across the three modes. Such similarities are

lso observed for the overt-mouthed group in the overt and mouthed

odes. While, as expected, broadband gamma was a prominent feature,

t was observed that the lower frequency bands also provide important

ontributions to the models. This also supports previous studies that

ave shown alpha band to be promising for distinguishing movement

rom rest ( Li et al., 2021 ) and speech from non-speech ( Soroush et al.,

021; 2022 ). 

.2. Multi-channel models: Within-mode and cross-mode 

Fig. 10 shows the averaged balanced accuracy in the multi-channel

M and CM models across participants. To indicate the significance of

he classification results, permutation tests were performed by randomly

huffling the labels and performing the 10-fold cross-validation process

000 times. Since the chance-level distributions were nearly identical

or all models, a single distribution of all random permutation results of

ll models was generated, with a mean indicated by the magenta dashed

ine. The table in Fig. 10 indicates the significance level of comparison

ests between the mode pairs for the multi-channel WM and CM models.

All multi-channel WM and CM models performed significantly bet-

er than chance-level ( 𝑝 < 0 . 05 , 𝑟 > 0 . 5 , 𝑛 = 10 and 50 for WM and

M models, respectively), except for the overt-to-mouthed and overt-

o-imagined models of Participant 3. Overt-to-overt models performed

ignificantly better than all other models ( 𝑝 < 0 . 0001 , 𝑟 > 0 . 7 , 𝑛 = 10
1 
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Fig. 4. Distributions of classification performance (aver- 

aged balanced accuracy over 10-fold non-shuffled cross- 

validation models) of decoding models for all channels 

in the single-channel WM models for each participant 

and mode. The chance distributions obtained by randomly 

permuting the class labels are shown for each speech 

mode, with the magenta dashed line indicating the aver- 

age chance-level classification results over all participants, 

modes, and channels. The black dots represent the selected 

channels for each group. The dashed line within each vi- 

olin indicate the median and the dotted lines indicate the 

first (Q1) and third (Q3) quartiles. 

Fig. 5. Averaged balanced accuracy of single-channel WM decoding models for all channels for a representative participant (Participant 1). Channels are grouped by 

shaft, with 1 representing the deepest channel and 10 representing the most superficial channel. The blue, red, and green horizontal dashed lines show the selection 

thresholds for each mode, averaged across respective folds. The magenta dashed line represents the chance-level classification results of each channel, averaged over 

the 10 folds of the cross-validation process. The color-coded bars below each shaft plot correspond to the colored electrodes in the caudal and ventral views of both 

hemispheres and frontal views of left and right hemispheres at the bottom of the figure. A, P, R, and L indicate Anterior, Posterior, Right, and Left sides of brain, 

respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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nd 𝑛 2 = 10 or 50), which may be attributed to the more precise la-

eling of the overt trials. Models trained on mouthed performed sig-

ificantly better than all other models ( 𝑝 < 0 . 05 , 𝑟 > 0 . 5 , 𝑛 1 = 10 or 50

nd 𝑛 2 = 10 or 50) on both mouthed (mouthed-to-mouthed models) and

vert (mouthed-to-overt models). However, no significant difference

as observed between the performance of mouthed-to-mouthed and

outhed-to-overt models ( 𝑝 > 0 . 05 , 𝑟 < 0 . 1 , 𝑛 = 10 , 10, and 50, respec-

ively). Overt-to-mouthed models performed significantly better than

vert-to-imagined models ( 𝑝 < 0 . 001 , 𝑟 > 0 . 8 , 𝑛 = 50 ). 
The performance of the mouthed-to-imagined models was only sig-

ificantly better than the overt-to-imagined models ( 𝑝 < 0 . 01 , 𝑟 > 0 . 6 ,
 = 50 ), and the performances of both of these two models were signifi-

antly worse than all other multi-channel WM and CM models ( 𝑝 < 0 . 05 ,
 > 0 . 5 , 𝑛 1 = 50 and 𝑛 2 = 10 or 50). While no significant difference was

bserved between the performances of the imagined-to-overt, imagined-

o-mouthed, and overt-to-mouthed models ( 𝑝 > 0 . 05 , 𝑟 < 0 . 1 , 𝑛 = 50 ), the
8 
erformances of all of these three models were significantly worse than

magined-to-imagined models ( 𝑝 < 0 . 05 , 𝑟 > 0 . 6 , 𝑛 1 = 50 and 𝑛 2 = 10 ). 
Mouthed-to-overt and imagined-to-overt models performed signif-

cantly better than the overt-to-mouthed and overt-to-imagined mod-

ls, respectively ( 𝑝 < 0 . 01 , 𝑟 > 0 . 5 , 𝑛 = 50 ). Imagined-to-mouthed mod-

ls performed significantly better than the mouthed-to-imagined models

 𝑝 < 0 . 05 , 𝑟 > 0 . 5 , 𝑛 = 50 ). 
It should be noted that, for each participant and mode, the chan-

els selected as capturing relevant neural features in Section 3.1 pro-

ided the largest contributions to the multi-channel models. The model

eights were examined for each participant and mode, and it was ob-

erved that the channels selected in overt, overt and overt-mouthed, and

vert-mouthed-imagined groups in Section 3.1.2 , respectively, exhibited

he largest contributions to the multi-channel models. In contrast, the

ther channels yielded minor or no contributions to the models (i.e.,

odel weights near or equal to zero). For reference, without additional
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Fig. 6. (a) Channels from the single-channel WM analysis having averaged balanced accuracy significantly above chance-level for all participants on an averaged 

brain model ( 𝑝 < 0 . 05 , 𝑟 > 0 . 5 , 𝑛 = 10 ). The electrodes are colorized based on the averaged balanced accuracy values, which were normalized to 0–1 for each participant 

over all three modes. A, P, R, and L indicate Anterior, Posterior, Right, and Left sides of brain, respectively. (b) Average balanced accuracy across participants and 

number of selected channels of the single-channel WM decoding models, grouped by relative electrode depth. Selected channels are grouped into ten uniform depth 

levels based on the center of the Montreal Neurological Institute (MNI) average brain model ( Evans et al., 1993 ) from the deepest (D) to the most superficial (S) 

along the respective electrode shafts. The error bars indicate the 95% confidence intervals of balanced accuracy over channels. For each mode, the magenta dashed 

line indicates the average chance-level classification. 
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odel optimization, the performances of the overt-to-overt models are

omparable to a prior speech activity detection study using ECoG, where

he models for a single participant ranged from 95.3–98.8% in detection

ccuracy ( Kanas et al., 2014a ). 

.3. Speech activity detection proportions 

Figure 11 a shows the distributions of proportions of speech ac-

ivity detection during each trial for each of multi-channel WM and
9 
M models, compared to the actual proportion of speech based on the

rue or approximated labels over all participants. The mean of the de-

ected speech proportions for all multi-channel WM models was signif-

cantly larger than the mean of the speech proportions based on the

ctual labels ( 𝑝 < 0 . 001 , 𝑟 > 0 . 7 , 𝑛 = 50 ). For the WM models, the propor-

ions of detected speech for overt-to-overt was significantly smaller than

oth mouthed-to-mouthed and imagined-to-imagined ( 𝑝 < 0 . 05 , 𝑟 > 0 . 4 ,
 = 50 ); however, no significant difference was found between mouthed-

o-mouthed and imagined-to-imagined ( 𝑝 > 0 . 05 , 𝑟 < 0 . 1 , 𝑛 = 50 ). 
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Fig. 7. Representations of the hierarchical channel nesting. (a) Channels for all participants on an averaged brain model, color-coded by mode relevance. A, P, R, 

and L indicate Anterior, Posterior, Right, and Left sides of brain, respectively. Overt-mouthed-imagined represents the subset of selected channels with common neural 

activity across all three modes. Overt-mouthed represents the mutually exclusive subset of channels with neural processes only relevant to overt and mouthed but not 

imagined. Overt represents the mutually exclusive subset of channels with neural processes only relevant to overt. Channels not satisfying the relevance criteria for 

any mode are shown as smaller grey points. (b) Venn diagram representing nested hierarchical mode groupings including the number of channels identified in each 

group, selected from more than 800 channels across all participants. (c) Average balanced accuracy across participants of the single-channel WM decoding models in 

hierarchical mode groupings. For each grouping, the results are compared across the three modes indicated by the legend using 10-fold non-shuffled cross-validation 

process for each respective mode. The error bars indicate the 95% confidence intervals. The magenta dashed line indicates average chance-level classification, which 

were a subset of and nearly identical to chance-level of Fig. 4 . 

Fig. 8. Scatter plot of the mode-pair performance of each 

selected channel of each group from Fig. 7 a across all par- 

ticipants. Channels are marked according to mode-pair and 

colorized by nesting grouping. As a visualization aid, bi- 

variate Gaussian distributions were fit to the channels of 

each nested group, and the 90% probability contours are 

shown as ellipses. Each sample represents the averaged 

balanced accuracy over the 10-fold cross-validation of two 

modes of one channel, with the horizontal axis indicating 

HBO mode and the vertical axis indicating the LBO mode. 

The magenta dashed lines indicate the average chance- 

level classification for HBO and LBO modes, respectively. 

10 
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Fig. 9. Average of absolute value of normalized decoding model weights across 10-folds of the channel groups from Fig. 7 a. Zero on the horizontal axis indicates 

the start of the audio frame. 
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Figure 11 b and c show the histograms of the distributions of all

ulti-channel WM models’ speech-onset and speech-offset, respectively.

he black vertical lines shown on the histograms indicate the actual

peech-onset and speech-offset of the overt mode, and the blue, green,

nd red, triangles mark the means of the overt-to-overt, mouthed-to-

outhed, and imagined-to-imagined models’ detection distributions, re-

pectively. For all WM models, the detected speech windows ended sig-

ificantly later than when the actual or estimated speech ended ( 𝑝 <

 . 0001 , 𝑟 > 0 . 7 , 𝑛 = 50 ), while for all mouthed-to-mouthed and imagined-

o-imagined WM models, the detected speech windows started signifi-

antly earlier than when the actual or estimated speech started ( 𝑝 < 0 . 01 ,
 > 0 . 6 , 𝑛 = 50 ). For all overt-to-overt WM models, the detected speech

indows started significantly later than the detected speech windows of

outhed-to-mouthed and imagined-to-imagined WM models ( 𝑝 < 0 . 01 ,
 > 0 . 6 , 𝑛 = 50 ), while no significant difference was observed between

hese window starts and when the actual speech started ( 𝑝 > 0 . 05 , 𝑟 <
 . 1 , 𝑛 = 50 ). 

For all multi-channel CM models, except the overt-to-mouthed and

vert-to-imagined models, the mean of the detected speech proportions

as significantly larger than the mean of the speech proportions based

n the actual or estimated labels ( 𝑝 < 0 . 001 , 𝑟 > 0 . 7 , 𝑛 = 50 ). For the

vert-to-imagined models, the mean of the detected speech proportions

as significantly lower than the mean of the speech proportions based

n the estimated labels ( 𝑝 < 0 . 001 , 𝑟 > 0 . 7 , 𝑛 = 50 ). This can be related

o the relatively lower performance of these two models as depicted in

ig. 10 . No significant difference was observed between the mean of

he detected speech proportions of overt-to-mouthed models and the

ean of the speech proportions based on the estimated labels ( 𝑝 > 0 . 05 ,
 < 0 . 1 , 𝑛 = 50 ). 

. Discussion 

This study used sEEG data collected during overt, mouthed, and

magined speaking conditions to identify common neural features and

elationships across these conditions using a speech activity detection

aradigm. The relevant features were found to occur near speech-onset,
11 
cross all frequency bands examined as shown in Fig. 9 , which is in line

ith previous studies ( Soroush et al., 2021; 2022 ) which analyzed data

rom a subset of the participants from the present study. 

.1. Nested behavioral hierarchy: Single channel models 

Recent studies in neurolinguistics have offered evidence for the ex-

stence of a nested hierarchy in the brain activity associated with dif-

erent speech modes, formed from highest behavioral output to lowest

ehavioral output ( Cooney et al., 2018; Hickok et al., 2003; Li et al.,

020; MacKay, 1992; Oppenheim and Dell, 2010; Perrone-Bertolotti

t al., 2014; Zhang et al., 2020 ). Facial micromovements during imag-

ned speech, commonly assumed to be a byproduct of short-circuited

otor signals, induced activity in language-associated brain areas (e.g.,

roca’s and Wernicke’s areas) during both overt and imagined speech,

nd similar motor-to-sensory transformation (starting from frontal and

ontinuing to parietal and temporal lobes) in both overt and imagined

peech are among the evidence supporting this hypothesis ( Bookheimer

t al., 1995; Hickok et al., 2003; Huang et al., 2002; Orpella et al.,

022; Palmer et al., 2001; Perrone-Bertolotti et al., 2014; Tian and

oeppel, 2013; Tian et al., 2016; Zhang et al., 2020 ). It has also been

osited that hierarchical forward predictions, generated by motor com-

ands for comparison of auditory output and its consequences, occur

uring speech production tasks with and without audible output (i.e.,

vert, mouthed, and imagined) ( Heinks-Maldonado et al., 2006; Hickok

t al., 2011; Okada et al., 2018; Pickering and Garrod, 2013 ). More-

ver, the presence of articulatory and acoustic information in motor

nd auditory cortices, respectively, during imagined (no motor or au-

itory output), mouthed (no auditory output), and overt modes fur-

her supports this hypothesis ( Zhang et al., 2020 ). In an fMRI study of

wenty-four participants silently articulating (i.e., mouthing) or imag-

ning to speak a sequence, greater activations were observed in pre-

otor cortex, insula, and auditory cortex during mouthed compared to

magined speech, suggesting forward predictions arise from additional

evels of the perceptual/motor hierarchy that are involved in monitor-

ng the intended speech output ( Okada et al., 2018 ). It is hypothesized
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Fig. 10. Box plot of the average balanced accuracy of the multi-channel WM 

and CM models across participants and corresponding table of significance levels 

between performances of the mode pairs. Blue boxes represent the WM models. 

Red boxes represent both train-test combinations of the CM models for overt 

and mouthed. Green and orange boxes represent the CM models for the combi- 

nations of overt/imagined and mouthed/imagined, respectively. The horizontal 

line within each box shows the median, while the extents of the boxes repre- 

sent the first (Q1) and third (Q3) quartiles. The whiskers extend from the box to 

1.5 times the inter-quartile range (IQR). Each dot represents a data point from 

an individual participant that lies between the two 1.5IQRs and the outliers 

are indicated with diamonds. The chance distribution represents chance-level 

classification performance of all models based on a random permutation of the 

class labels, with the magenta dashed line indicating the average chance-level 

classification over all participants and models. - , ∗ , ∗ ∗ , ∗ ∗ ∗ , and ∗ ∗ ∗ ∗ indicate a 

significance level of 𝑝 > 0 . 05 , 𝑝 < 0 . 05 , 𝑝 < 0 . 01 , 𝑝 < 0 . 001 , and 𝑝 < 0 . 0001 , re- 

spectively. 
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hat imagined speech is an abbreviation of overt speech, suggesting that

ognitive processes relevant to imagined speech are also involved dur-

ng overt speech, whereas overt speech involves additional processes

eyond imagined speech - likely associated with articulatory planning,

rticulation, sound production, and possibly aspects of perceptual feed-

ack. 

The present study provides evidence that channels relevant to differ-

nt speech modes generally form nested hierarchical subsets from high-

st behavioral output to lowest behavioral output. Specifically, chan-

els relevant to imagined were found to be a subset of those relevant

n mouthed, while those relevant for mouthed were a subset of those

elevant for overt. The subset of relevant channels for mouthed and

vert that is mutually exclusive with imagined likely represents activity

elated to direct control of the speech articulators modulated in both
12 
odes. The channels exclusive to overt are presumed to be related

o brain activities present exclusively for overt, including perceptual

eedback, articulatory planning, articulatory motor executions, and/or

ound production. The perceptual feedback likely represents both di-

ect and indirect perceptual activity, e.g., forward prediction ( Heinks-

aldonado et al., 2006; Hickok et al., 2011; Pickering and Garrod,

013 ). The subset of channels relevant for all modes is hypothesized to

epresent the common substrate of activity for general speech planning

nd production. 

When examining individual channels across modes, as shown in

ig. 7 , the nested nature of channels within the mode hierarchy is appar-

nt. The majority of relevant channels were shared amongst the three

odes, while only about ten percent were unique to overt and mouthed

ut not imagined. The channel subset relevant to imagined speech was

ound to reside in bilateral frontal and temporal regions, which is con-

istent with prior ECoG and fMRI studies indicating that overt, mouthed,

nd imagined speech produce neural activity in both right and left cor-

ical hemispheres ( Okada et al., 2018; Pei et al., 2011a ). Furthermore,

hese activations occurred at various bilateral depths as indicated in

ig. 6 b. This is consistent with previous studies showing neural fea-

ures from both grey and white matter contributing to decoding models

 Angrick et al., 2021; Kohler et al., 2021; Li et al., 2021; Okada et al.,

018; Soroush et al., 2021; 2022 ), further demonstrating the relevance

f deeper structures and white matter for speech decoding. 

Roughly a fourth of the relevant channels were unique to overt,

hich predominantly resided in more superficial temporal regions, de-

pite pre-screening channels for auditory feedback. Notwithstanding the

bsence of auditory feedback, neural activations in or around the audi-

ory cortex were observed for mouthed and imagined. This is consis-

ent with prior studies using overt and imagined speech and has been

ypothesized to be related to inner speech rehearsal or forward predic-

ions of intended speech and its consequences ( Brumberg et al., 2016;

ooney et al., 2018; Hickok et al., 2011; Leuthardt et al., 2012; Li et al.,

020; Okada et al., 2018; Palmer et al., 2001; Pei et al., 2011a; 2011b;

ickering and Garrod, 2013; Price, 2012; Zhang et al., 2020 ). 

Figures 7 c and 9 further support the nested behavioral hierarchy

y comparing the model performances and respective neural feature

eights of the nested channel groups across modes. The overt-mouthed-

magined group exhibits highly consistent performance across the three

odes, while performance is degraded for the other groupings when

valuated on the LBO modes. While the relevant spectro-temporal fea-

ures of the overt-mouthed-imagined group are quite similar across all

hree modes, the features of the overt-mouthed group for the overt and

outhed are also similar and noticeably different from imagined. Fur-

hermore, differences between the feature of the overt group are ob-

erved between overt and the two LBO modes. 

This hierarchy, with respect to relative decoding performance of rel-

vant channels between mode pairs, is also observed from Fig. 8 . Nearly

ll channels yield an above-chance performance for each mode in the

airs, except for a select group of channels in the lower portion of the

lot that perform well for overt but not the other modes. This indi-

ates that nearly all channels with above-chance performance in the LBO

ode also performed above chance-level in the HBO mode, while the

nverse does not hold. The majority of channels in the overt-mouthed-

magined group and the mouthed-imagined pair of the overt group are

lustered within the same range on the LBO and HBO axes (i.e., 0.5-

.65), suggesting that these channels roughly yield comparable perfor-

ance for both modes. However, the majority of the overt-mouthed and

vert-imagined pairs of the overt group reside toward the right side of

he plot, with the HBO axis (overt mode) having noticeably larger val-

es, showing that these channels have a more dominant and potentially

nique neural activity during overt compared to the other two modes.

his relationship is also apparent in the overt group of Fig. 7 c. A weaker

ut similar trend is observed among the overt-mouthed group, with ma-

ority of values in the same range on the LBO and HBO axes (i.e., 0.5-

.65) and some located toward the bottom right of the plot, with the
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Fig. 11. (a) Average proportions of decoded speech vs. actual/surrogate speech labels for all participants and modes for all multi-channel WM and CM models. 

The bold-shaded boxes represent the speech proportions based on the actual/surrogate labels. For reference, the colors of lighter-shaded boxes are coordinated with 

colors of the actual/surrogate labels of the respective test modes. Refer to Fig. 10 for a description of the box plot properties. (b) Histograms of speech-onset detection 

timings of all multi-channel WM models. The black, vertical line indicates speech-onset based on actual labels of overt mode. (c) Histograms of speech-offset detection 

timings of all multi-channel WM models. The black, vertical line indicates speech-offset based on actual labels of overt mode. The blue, green, and red, triangles 

in (b) and (c) mark the mean of overt-to-overt, mouthed-to-mouthed, and imagined-to-imagined distributions, respectively. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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BO axis (overt or mouthed) having noticeably larger values than the

BO axis (imagined). This is also apparent in overt-mouthed group of

ig. 7 c. 

.2. Further evidence: Multi-channel models 

These findings are relevant for understanding why multi-channel de-

oding models successfully trained and tested using overt speech tend to

e poor at generalizing to imagined speech, as shown in Fig. 10 . This fig-

re also shows that there is a consistent decrease in performance when

raining on an HBO mode and testing on an LBO mode compared to

he inverse, and this decrease is more pronounced for larger differences

n the behavioral output hierarchy. It is also observed that the imag-

ned models perform consistently well across modes, while the overt-

o-imagined performs poorest amongst the combinations. This further

uggests that the relevant channels for the imagined models also capture

peech processes present for mouthed and overt, whereas the other rele-

ant channels from overt (likely associated with articulation and aspects

f perceptual feedback) do not extend to imagined. When interpreting

hese results, it is important to note that although the relevant LBO chan-

els are available when training the HBO models, they do not appear to

e selected or weighted in a way to generalize to the LBO modes. This

s presumed due to the neural activity unique to the HBO modes (e.g.,

otor and auditory) having more prominent contributions to the HBO

odels, and hence having comparatively larger model weights, while

he LBO-relevant channels are weighted near or equal to zero as a result

f the L1 regularization. 

While the present results offer strong evidence for the nested be-

avioral output hierarchy, other studies suggest this may be an over-

implification and imagined speech can be more than just an abbrevia-

ion of overt speech processes ( Cooney et al., 2018; Geva et al., 2011;

i et al., 2020; MacKay, 1992; Oppenheim and Dell, 2010; Perrone-
 a  

13 
ertolotti et al., 2014; Scott et al., 2013; Zhang et al., 2020 ). These

rior studies indicate that imagined speech may involve different lin-

uistic processes than those relative to overt speech or may contain

nique neural processes (e.g., inhibitory activity) that are not involved

n overt speech such as more prominent activity in the middle frontal

yrus, left and right temporal gyrus, left supramarginal gyrus, left supe-

ior frontal gyrus, and in various regions of white matter ( Cooney et al.,

018; Geva et al., 2011; Li et al., 2020; Okada et al., 2018; Perrone-

ertolotti et al., 2014; Proix et al., 2022; Rampinini et al., 2017; Shuster

nd Lemieux, 2005; Zhang et al., 2020 ). In an fMRI study where partici-

ants performed overt, mouthed, and imagined trials of sixteen Chinese

yllables, increasing monotonically from LBO to HBO modes, similar ac-

ivity patterns were observed across the three speech modes in different

rain regions, including superior temporal gyrus, angular gyrus, and in-

erior frontal gyrus. While these results indicated substantial overlap in

egions activated during the three speech modes, activation unique to

ne or two modes was also observed in distinct regions ( Zhang et al.,

020 ). Nevertheless, other studies have proposed that imagined speech

ay be an abbreviation of overt and mouthed speech processes, but fur-

her investigation is required to verify the precise mechanisms at the lin-

uistic and motor levels ( Okada et al., 2018; Oppenheim and Dell, 2010;

errone-Bertolotti et al., 2014 ). The present study is limited by the na-

ure and availability of sEEG recordings from a relatively low number of

articipants with sparse and inconsistent electrode coverage. While this

overage is not designed or ideal for speech decoding, it does provide

mportant insights regarding previously unexplored neural features for

his purpose. 

Because this study was designed to specifically investigate speech

odes, it is possible that the results may be influenced by neural pro-

esses that are not unique to speech production such as participant en-

agement or type of behavioral task. For example, it is conceivable that

 similar nested hierarchy could be revealed for overt, mouthed, and
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magined whistling. A separate experimental design is required to test

his hypothesis. 

.3. Speech activity detection proportions 

While the use of the speech activity detection model provides a very

oarse labeling for the actual and surrogate speech, it yielded statis-

ically above-chance performing models across modes, thus providing

 solid and simplified basis for exploring and comparing the models

nd relevant features. Figure 11 a shows that the proportions of detected

peech tend to be overestimated when training using the surrogate la-

els. This is likely due to the inherent variability when applying surro-

ate labels. In contrast, the proportion of detected speech is underes-

imated when training on the actual (overt) labels and testing on the

urrogate labels, and this effect is more pronounced for decreasing be-

avioral output. The detected proportions are strikingly consistent when

raining on imagined and testing across other modes. This further sug-

ests the existence of a nested behavioral output hierarchy. 

It was observed that the detected windows generally lead the actual

peech-onset and lag the speech-offset ( Fig. 11 b and c), resulting in a

igher false positive rate than false negative rate. This is again likely

ue to the inherent variability of the surrogate labels, but nevertheless

ay be desirable in practical application where the primary goal is to

eliably detect the intention to speak. 

. Conclusion 

The main objective of this study was to elucidate neural features as-

ociated with imagined speech to inform the development of imagined-

peech neuroprostheses. This was achieved by comparing neural fea-

ures and associated speech activity detection decoding model perfor-

ance across three speech modes with varying degrees of behavioral

utput. The results suggest that the relevant channels can be orga-

ized in a nested hierarchy according to the degree of behavioral out-

ut, with the overt mode encompassing all relevant channels across

odes, the relevant channels from the mouthed mode being a sub-

et of overt, and the relevant channels from the imagined mode be-

ng a subset of mouthed. This nested hierarchy suggests that there

ay be a common neural substrate of related speech production pro-

esses that progressively extends with increasing behavioral output.

hese findings also provide important insights toward the design and

evelopment of imagined speech decoding models based on available

vert speech data. Additionally, through the acquisition of sEEG, rel-

vant neural activity across modes was found beyond the cortex, bi-

aterally at various depths, in both grey and white matter. This pro-

ides further evidence that deeper structures are relevant and may be

eneficial in the development of improved speech decoding models.

hese findings also show that, with proper consideration and treatment,

ecordings of overt speech can serve as viable surrogates for generating

magined-speech decoding models. Given the limitations of sEEG record-

ngs in terms of coverage and patient accessibility, additional work is

eeded to further characterize and understand the neural activity re-

ationships across speaking modes. While the speech activity detection

odel provides a simplified framework for comparison, it is envisioned

hat these findings can be extended to more sophisticated imagined

peech decoding schemes to reveal more nuance to the features and

elationships. 
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