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Recent studies have demonstrated that it is possible to decode and synthesize various aspects of acoustic speech
directly from intracranial measurements of electrophysiological brain activity. In order to continue progressing
toward the development of a practical speech neuroprosthesis for the individuals with speech impairments, better
understanding and modeling of imagined speech processes are required. The present study uses intracranial brain
recordings from participants that performed a speaking task with trials consisting of overt, mouthed, and imagined
speech modes, representing various degrees of decreasing behavioral output. Speech activity detection models are
constructed using spatial, spectral, and temporal brain activity features, and the features and model performances
are characterized and compared across the three degrees of behavioral output. The results indicate the existence
of a hierarchy in which the relevant channels for the lower behavioral output modes form nested subsets of
the relevant channels from the higher behavioral output modes. This provides important insights for the elusive
goal of developing more effective imagined speech decoding models with respect to the better-established overt
speech decoding counterparts.

1. Introduction

Speech is the first and foremost means of human communication.
Millions of people worldwide suffer from severe speech disorders due to
neurological diseases such as amyotrophic lateral sclerosis (ALS), brain
stem stroke, and severe paralysis. A speech neuroprosthesis that decodes
speech directly from neural signals could dramatically improve life for
these individuals. Intracranial brain-computer interfaces (BCIs) using
electrocorticography (ECoG) (Angrick et al., 2019b; 2021; Herff et al.,
2019; 2015; Moses et al., 2019; Soroush et al., 2021; Soroush and Sham-
sollahi, 2018; Sun et al., 2020) or stereotactic electroencephalography
(sEEG) (Angrick et al., 2021; Herff et al., 2020; Li et al., 2022; Petrosyan
etal., 2022; Soroush et al., 2021; Vadera et al., 2013) have demonstrated
success in decoding aspects of speech directly from brain activity. These
techniques have superior spatial resolution and bandwidth compared to
non-invasive scalp electroencephalography (EEG), and superior tempo-
ral resolution compared with functional Magnetic Resonance Imaging
(fMRI) (Ball et al., 2009; Brumberg et al., 2016; Schalk and Leuthardt,
2011). sEEG has recently gained wide clinical acceptance for epilepsy
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surgery planning as it has been found to lead to fewer surgical compli-
cations compared to ECoG (Herff et al., 2020; lida and Otsubo, 2017).
Additionally, while ECoG electrodes record localized activity of the cor-
tical surface, SEEG electrodes generally have a much broader spatial
distribution, providing access to brain regions including cortex, deeper
structures, and both white and grey matter (Li et al., 2021; Revell et al.,
2021; Soroush et al., 2021; 2022).

For those who have completely lost the ability to speak, the objective
is to synthesize acoustic speech directly from brain activity during imag-
ined speech. However, the lack of acoustic or behavioral output during
imagined speech presents challenges in designing an effective decod-
ing model (Angrick et al., 2021; Brumberg et al., 2016; Cooney et al.,
2018; Perrone-Bertolotti et al., 2014). To cope with this limitation, it
is common to utilize behavioral output from overt speech or mouthed
speech (i.e., performing inaudible speaking articulations without vocal-
ization) as a surrogate to study associated brain activity (Angrick et al.,
2019a; 2019b; Herff et al., 2019; 2015; Ibayashi et al., 2018; Livezey
et al., 2019; Mugler et al., 2014; Ramsey et al., 2018) or to train de-
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Table 1
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Demographic information of participants and numbers of sEEG channels and number of unique trial sentences per-
formed for each participant. The first and second columns list the gender and age of the participants, respectively.
The third column reports the total number of channels recorded during the experiment. The fourth column reports the
total number of electrodes excluded from the analysis due to noise or other anomalies, and the fifth column reports
the p-value of the acoustic contamination index (Roussel et al., 2020). The last column lists the number of unique

trial sentences performed.

Participant Gender Age # Recorded # Excluded (artifacts) # Acoustic Contamination p-value (P) # Trials
P1 Male 25 90 0 0.34 50
P2 Male 60 70 0 0.46 50
P3 Male 32 80 0 0.18 50
P4 Female 42 175 4 0.12 50
P5 Male 21 232 7 0.76 50
P6 Male 22 94 0 0.62 50
P7 Male 31 108 3 0.50 50

coding models for imagined speech applications (Angrick et al., 2021;
Anumanchipalli et al., 2019; Martin et al., 2014).

Numerous prior studies have focused on establishing neural speech
decoding model performance in various scenarios such as decoding
phonemes and words (Martin et al., 2016; Mugler et al., 2014; 2018),
brain-to-text (Herff et al., 2015; Makin et al., 2020; Moses et al., 2019;
Sun et al., 2020; Willett et al., 2021), and direct speech synthesis from
brain activity (Angrick et al., 2019b; 2021; Anumanchipalli et al., 2019;
Herff et al., 2019). While several studies have compared brain activity
from fMRI or Magnetoencephalography (MEG) across overt, mouthed,
and imagined speech modes (Hickok et al., 2003; Okada et al., 2018;
Tian and Poeppel, 2013; Tian et al., 2016; Zhang et al., 2020), there
has yet to be a systematic comparison of the electrophysiological ac-
tivity across these speech modes in the context of speech decoding.
Rather than employing sophisticated models that attempt to decode
higher-level representations of speech and potentially introduce other
confounding factors for a comparative analysis of speech modes, a sim-
plified speech activity detection framework can be utilized to better fa-
cilitate this comparison based on a lower-level speech representation
(Kanas et al., 2014a; 2014b; Koct et al., 2019). Using causal brain activ-
ity features as inputs, speech activity detection models simply classify
the respective activity as occurring during intervals of speech or non-
speech intent, whether overt or imagined. Recent studies using sEEG
have successfully elucidated the relative contributions of spectral fea-
tures from grey and white matter for speech activity detection (Soroush
et al., 2021; 2022), classified phonetic features from activity located in
the superior temporal gyrus (Meng et al., 2021), and provided a prelim-
inary demonstration of real-time synthesis of imagined speech activity
(Angrick et al., 2021).

The present study utilizes SEEG recordings, spanning cortical and
subcortical areas, to compare brain activity during overt, mouthed, and
imagined speech with the objective of elucidating the efficacy of various
sEEG features and speech surrogates for informing imagined-speech de-
coding models. Multiple speech activity detection decoding models are
developed and applied within and across overt, mouthed, and imagined
speech modes to reveal the similarities and differences in the relevant
spatial, temporal, and spectral features among the models. The results
indicate that relevant channels for speech decoding reside in both corti-
cal and subcortical areas and appear to form a hierarchy in which the rel-
evant channels for the lower behavioral output modes form nested sub-
sets of the relevant channels from the higher behavioral output modes.

2. Methodology
2.1. Participants and electrode locations

sEEG data were collected from 7 native English-speaking participants
being monitored as part of treatment for intractable epilepsy at UCSD
Health. The demographic information of the participants is provided
in Table 1. The study design was approved by the Institutional Review

Boards of Virginia Commonwealth University and UCSD Health, and in-
formed consent was obtained for experimentation with human subjects.
The locations of sEEG electrodes were determined solely based on the
participants’ clinical needs. A subset of the implanted electrodes for each
participant was determined to be in or adjacent to brain regions asso-
ciated with speech and language processing. Figure 1 shows the depth
electrode locations for the 7 participants, with sEEG electrode (channel)
counts provided in Table 1. Anatomical location of the channels, includ-
ing brain region and localization in white or grey matter, were identified
using the FreeSurfer software package and MNE-Python (Fischl, 2012;
Rockhill et al., 2022).

2.2. Experimental design

For the experiment, participants were presented with a sentence dis-
played on a computer monitor and simultaneously narrated via com-
puter speakers. When visually prompted with an icon as shown in
Fig. 2a, the participant was instructed to speak the sentence audi-
bly while the acoustic speech and sEEG signals were simultaneously
recorded. The participant was subsequently visually prompted with
icons indicating to inaudibly articulate speech (i.e., mouth) and imagine
speaking without articulating or vocalizing, respectively, for the same
sentences. Herein, these three modes are referred to as overt, mouthed,
and imagined, respectively. Each icon prompt and participant response
during the task is referred to as a single trial.

The participant was asked to perform the associated task im-
mediately upon presentation of the icon within a 4-second inter-
val. This structure was repeated for 50 unique Harvard sentences,
which are phonetically-balanced based on conversational English
(Rothauser, 1969).

The three tasks were intentionally presented in a consistent sequence
according to degree of behavioral output (i.e., overt-mouthed-imagined)
rather than block randomized to better facilitate compliance from the
patients. It is believed that the behavioral output of the speaking trial
better primes the participant for more reliably performing the subse-
quent mouthed and imagined trials. Moreover, randomizing the trials
would require greater attentional resources and more likely lead to re-
sponse errors and oddball effects (Bénar et al., 2007), particularly with
this patient group who are sometimes attentionally compromised due to
their condition and the stress of the hospital environment.

The stimuli were presented and synchronized with the sEEG record-
ings using Presentationé software (Version 18.0, Neurobehavioral Sys-
tems, Inc., Berkeley, CA, https://www.neurobs.com). The experimental
setup and trial sequence structure are depicted in Fig. 2.

2.3. Data collection
The sEEG electrodes (Ad-Tech Medical Instrument Corporation)

were referenced to a pair of subdermal needle electrodes in the scalp
and digitized at 1,024 Hz (Natus Quantum Amplifier, Natus Medical
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Fig. 1. The combined sEEG depth electrode (channel) locations of the 7 participants from different perspectives using an averaged brain model. A, P, R, and L
indicate Anterior, Posterior, Right, and Left sides of brain, respectively.
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(a) Experimental setup. (b) Trial sequence structure.

Fig. 2. (a) sEEG and acoustic speech were simultaneously recorded as the participant performed the task as prompted by icons presented on a monitor. (b) Participants
were presented with a sentence displayed on a monitor and simultaneously narrated through speakers. Participants were instructed to speak (overt), mouth, and
imagine the sentence in sequence as cued by the respective icons. This was repeated for a bank of 50 sentences.



P.Z. Soroush, C. Herff, S.K. Ries et al.

Inc.). The audio signal, recorded via an external microphone, was dig-
itized at 44,100 Hz. The data from the audible speech portions of the
task were used to extract speech and non-speech segments from the audio
recordings.

2.4. Labeling the audio files (Speech vs. Non-speech)

The recorded speech from the overt mode was manually transcribed
using the Wavesurfer software package (Sjolander and Beskow, 2000)
for a separate analysis, but was found useful to provide precise labeling
of the speech and non-speech segments for the present study. This was ac-
complished by shifting a 10 ms non-overlapping frame across the audio
recording to identify the onset and offset of the spoken sentence, with
the resulting timings from the transcription word boundaries being used
as the frame label. Each frame was identified as speech if at least half of
the frame length overlapped with a transcribed word, and as non-speech
otherwise. For each 4-second interval encompassing the entire sentence
utterance, the entire duration between the first onset and last offset was
labeled as speech and the periods before and after these were labeled as
non-speech. The frame length was chosen to be 10 ms to better repre-
sent brain signals’ non-stationary nature and the fast changes of speech
activity for eventual closed-loop implementation.

2.5. Labeling the audio-less modes (Mouthed and Imagined)

Due to non-existent speech audio for the mouthed and imagined
modes, the average onset timings and durations of the overt speech in-
tervals and the audio data from the corresponding overt mode were
used to define respective surrogate speech and non-speech labels for the
mouthed and imagined speech modes (Pei et al., 2011b). For each sen-
tence and mode, the onset and offset of speech activity were estimated
based on the average onset and offset timings of the overt mode of the
corresponding participant, while the duration of speech interval was de-
termined according to the respective overt audio. The start of each mode
trial (i.e., time #() to time 7; was labeled as non-speech, from time ¢, to
t, was labeled as speech, and time #, to the end of the trial was labeled
as non-speech.

For each participant and sentence, the average latency between pre-
sentation of the vocalization icon and the onset of actual vocalization
was computed (7,). This average latency was used as the transition from
non-speech to speech (t; =ty +1,). To set the transition from speech to
non-speech (1,), the duration of the corresponding sentence vocalization
(t,) was used (t, = 1; +1,). The interval from ¢, to the end of the trial
was labeled as non-speech.

2.6. Data pre-processing

All sEEG data were visually inspected for noisy or anomalous chan-
nels for exclusion from the analysis, as reported in Table 1. Addition-
ally, 25 sentence trials from Participant 1 were excluded due to a data
mislabeling issue in the recording software. The number of trial sen-
tences for each participant is provided in Table 1. The sEEG data were
also analyzed for potential spatio-temporal correlations with the sound
produced by the participants or present in the environment, and it was
verified that the recordings were not subject to acoustic contamination
(Roussel et al., 2020). The p-value of the acoustic contamination in-
dex (Roussel et al., 2020) are provided in Table 1. The resulting raw
sEEG channels for inclusion in the analysis were re-referenced using the
Laplacian method (Li et al., 2018; Mercier et al., 2017).

2.7. Feature extraction

The narrow-band power of each SEEG channel was computed in four
conventional frequency bands: theta (4-8 Hz), alpha (8-12 Hz), beta
(12-30 Hz), and broadband gamma (70-170 Hz). In a prior study per-
formed with a subset of the present participants, these frequency bands

Neurolmage 269 (2023) 119913

exhibited better performance for speech activity detection compared to
the delta (0-3 Hz) and low-gamma (30-70 Hz) bands (Soroush et al.,
2021). The selected frequency bands have also been shown to be in-
formative for other speech-related tasks (Kanas et al., 2014a; Li et al.,
2020; Proix et al., 2022).

To extract the features, using the labeled 10-ms frames from the au-
dio signals, the sEEG channels over a specified temporal window around
each audio frame were zero-phase filtered over the respective frequency
range using a sixth-order Butterworth filter. The window length was
chosen to be 210 ms (corresponding to 200 ms before the frame to the
end of the frame), based on the expected duration of speech planning re-
vealed by intracranial recordings (Brumberg et al., 2016). However, this
is insufficient for reliably estimating the energy of the lower frequency
bands as at least 3-4 cycles are needed to convey meaningful informa-
tion in a particular band. Hence, for theta, alpha, and beta bands, the
duration of four cycles of the lowest frequency of the band was used to
determine the causal model’s window onset, and the window offset was
always fixed at the 10-ms frame length. For example, for the 4-8 Hz
theta band, the window onset is 1 s (4 cycles x 0.25 s/cycle) before the
start of the frame, giving a 1.01 s window length.

An additional 118-122 Hz notch filter was applied to broadband
gamma to suppress the second harmonic of the 60 Hz line noise. Finally,
the features were computed every 10 ms as the natural logarithm of the
signal energy over 210 ms, representing 10 ms overlapping the audio
frame and 200 ms prior to the frame to emulate a causal design. Such
a causal design aims to decode activity related to speech production
rather than perception and can be implemented for real-time feedback
for future closed-loop applications.

The features from each included channel were concatenated to form
the feature vector (# channels x 21 features x # frequency bands - rep-
resenting spatial, temporal, and spectral neural signal features, respec-
tively) for the decoding models. A diagram of the feature extraction
process is provided in Fig. 3.

2.8. Model training and evaluation

All significance tests were performed using a Benjamini-Hochberg
corrected Wilcoxon signed-rank test (Benjamini and Hochberg, 1995;
Wilcoxon, 1992). The resulting p-value (p), effect sizes (r), and sample
sizes (n) are reported for each respective test (Rosenthal et al., 1994).
Throughout the paper, n is either equal to 10 (when the values over the
10-fold cross-validation process were compared for two or more distri-
butions) or 50 (when the values over the 50 trials were compared for
two or more distributions).

2.8.1. Logistic regression model

All models are designed using logistic regression with L1 regulariza-
tion and are specific for each participant and mode. A proximal AdaGrad
optimizer with SoftMax function was selected for training the model
(Duchi et al., 2011). This model was chosen over more complex ma-
chine learning and deep learning models because of the small size of
data available (due to the differences between brain coverage of dif-
ferent participants, data from individual participants is processed sepa-
rately), and that it has been shown to be effective for evaluating indi-
vidual features and providing a convenient interpretation of the feature
contributions (Soroush et al., 2021).

The performance of all models was obtained based on a 10-fold non-
shuffled cross-validation analysis process, where each fold contained ap-
proximately one tenth of the data. For participants with 50 trials, the
trials were randomly arranged into ten folds with each fold containing
five trials. For the participant with 25 trials, the trials were randomly
arranged into five folds with two trials and five folds with three trials.
During the cross-validation process, each fold was used once as test data,
and approximately one tenth of the remaining trials (2 and 4 trials in
participants with 25 and 50 trials, respectively) were randomly selected
as validation data. Trials not selected for validation or testing were used
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Fig. 3. Extraction of theta, alpha, beta, and broadband gamma features from 200 ms prior to the audio frame to the frame’s offset, resulting in a feature space of #
channels x 21 temporal lags x 4 frequency bands. The recorded speech is time-aligned with the sEEG and indicator of the speech/non-speech labeling is shown. The
filtered bands are presented in different time scales, with the vertical bars indicating the 21 10-ms temporal frames for each band.

as training data. To prevent training bias, the training data were nor-
malized to zero mean and unit variance, and the same normalization
parameters were applied to the validation and test data. The validation
data were used to optimize the hyperparameters of the training models,
while the test data were solely used to obtain the performance of the
trained models for each fold.

Shuffling was not performed on any test or validation data. How-
ever, the training data were shuffled to better facilitate training of the
model. While the feature extraction process was developed to emulate a
causal design for the classification models, due to the overlap between
the neural features associated with consecutive audio frames (i.e., neural
features associated with each audio frame overlap with the previous and
subsequent twenty audio frames), randomly assigning audio frames to
different folds could potentially cause the train and test folds to contain
trials with overlapping neural features, resulting in a leak of information
from test data to training data. Hence, for the cross-validation process,
only the training data (partitioned from the independent validation and
test data) were shuffled.

Due to the difference between the amount of data for each class
in some of the models, and to have consistency, the performance of
all models was evaluated using balanced accuracy. For all models, the
balanced accuracy was evaluated as the average of the recalls of the
classes, which ranges from O (i.e., worst possible performance) to 1 (i.e.,
best possible performance). To establish the chance-level classification,
a randomization test was performed where all labels were randomly
shuffled and the 10-fold cross-validation process was repeated for 1000
separate randomizations of the labels.

2.8.2. Single-channel models and channel selection

Single-channel Within-Mode (WM) and Cross-Mode (CM) decoding
models were created to compare the spatial, temporal, and spectral rep-
resentations of the speech-related activity at each channel with respect
to decoding performance within and across modes. For the WM models,
the decoding performance for each mode was evaluated using 10-fold
non-shuffled cross-validation models. Additionally, the feature weights
of the 10 decoding models (one per fold) were averaged to compare
the relative contribution of each feature to the models. These weights
can provide a convenient interpretation of individual feature contribu-

tions based on the non-zero classifier weights and represent the spectral
and temporal contributions to speech activity detection (Soroush et al.,
2021; 2022).

The single-channel WM models were subsequently used to select
channels with relatively superior performance in comparison with the
rest of the channels. For each mode and fold in the cross-validation pro-
cess, the mean plus one standard deviation of the balanced accuracy of
all channels was determined as the threshold for the fold to form a dis-
tribution of thresholds over the ten fold of the cross-validation process.
Additionally, for each channel, the distribution of balanced accuracies
over the 10 folds of the cross-validation process was computed.

Single-channel CM models were trained on the data from one mode
(train mode) and respectively tested on the other two modes (test mode).
The hyperparameters of the decoding model were selected based on the
single-channel WM model of the train-mode. The purpose of these mod-
els is to identify channels that exhibit similar relevant neural features
across various modes versus channels that have dominant features that
are unique to specific modes.

2.8.3. Multi-channel models

Multi-channel models were created and evaluated to explore the rel-
ative contributions of the spectro-temporal features of the channels in
a combined model, as well as to compare the relative performance of
these more potent models. Using the features of all channels, for each
participant and mode, multi-channel WM models were evaluated using
10-fold non-shuffled cross-validation process. Multi-channel CM models
were also created for which a decoding model was trained on the entire
data of the train-mode and tested on the entire data from a different test-
mode, herein labeled as (train mode)-to-(test mode). The hyperparam-
eters of the decoding model were selected based on the multi-channel
WM model of the train-mode.

3. Results

The three modes can be compared with respect to degree of behav-
ioral output, with overt having the highest, mouthed having intermedi-
ate, and imagined having no behavioral output. In the subsequent paired
comparisons, the mode in the pair having the higher behavioral output
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will be denoted as the HBO mode and the mode with lower behavioral
output will be denoted as the LBO mode.

3.1. Single-channel models

Figure 4 illustrates violin plots of the distributions of averaged bal-
anced accuracy of the 10-fold cross-validation single-channel WM mod-
els trained on the data from each participant and each mode. To compare
to chance-level performance, permutation tests were performed by ran-
domly shuffling the labels and performing the 10-fold cross-validation
process 1000 times. The black dots represent the channels that per-
formed significantly above the thresholds (p < 0.01, r > 0.5, n=10)
and were thus selected as mode-relevant channels. For all participants
and modes, the thresholds were significantly above the chance-level
(p <0.01, r > 0.8, n = 10). Additionally, over all participants, channels
that performed significantly better than chance-level (p < 0.05, r > 0.5,
n = 10) in all three modes performed significantly better in overt com-
pared to mouthed and imagined modes, and in mouthed compared to
imagined (p < 0.01, r > 0.5, n = 10).

3.1.1. Spatial characterization

Figure 5 shows the individualized averaged balanced accuracy of the
cross-validated single-channel WM models on the data from a represen-
tative participant (Participant 1) for all three modes. This is equivalent
to an expansion of the violin plots from Participant 1 in Fig. 4. Since
chance-level was a subset of and nearly identical to chance-level for
all modes in Fig. 4, the average of the three modes for each channel
over the 10 folds of cross-validation is used for reference. Fig. 5 shows
that channels along each shaft, if relevant for the mode and significantly
above the chance-level (p < 0.05, r > 0.5, n = 10), generally follow a sim-
ilar trend across the modes, indicating similar activity across these brain
regions.

By comparing each mode pair, channels were observed with perfor-
mance significantly better than chance-level in both modes (p < 0.05,
r> 0.5, n = 10), while having a significantly better performance in the
HBO mode than the LBO mode (p < 0.05, r > 0.5, n = 10). For instance,
channels in the superior temporal gyrus of both hemispheres (channels
5-10 on the blue shaft and 8-10 on the light red shaft) show roughly sim-
ilar above-chance performance for both mouthed and imagined, and sig-
nificantly better performance for overt (p < 0.05, r > 0.5, n = 10). How-
ever, there were also brain regions where single-channel models ex-
hibited significantly better performance in the HBO mode than in the
LBO mode (p < 0.05, r > 0.5, n = 10), while showing no significant differ-
ence from chance-level performance in the LBO mode (p > 0.05, r < 0.1,
n = 10). This is observed for regions in the left middle temporal gyrus
(channels 9 and 10 on the cyan shaft) and left inferior temporal gyrus
(channels 4, 5, 9, and 10 on the light green shaft), where single-channel
models performed significantly better for overt than mouthed or imag-
ined (p < 0.05, r > 0.7, n = 10), while showing no significant difference
from chance-level performance for mouthed and imagined (p > 0.05,
r < 0.1, n = 10). Despite a few channels exhibiting slightly higher aver-
age performances for imagined than overt and mouthed (i.e., channels
3, 4, and 5 on the red shaft), these are not statistically significant and
no channels exhibited significantly better performance in mouthed or
imagined than overt.

The averaged balanced accuracy values of the single-channel WM
models, normalized for each participant over all three modes, are shown
spatially in Fig. 6a. It is observed that most selected channels are clus-
tered in groups of two or more adjacent channels along the same shaft,
suggesting these channel groups each reside in a common functional
region.

The overt panel of Fig. 6a shows that relevant channels are predom-
inantly located around the border between the parietal and temporal
lobes, including the middle frontal gyrus, superior temporal gyrus and
sulcus, and Sylvian parieto-temporal regions. Additionally, some rele-
vant channels were localized to regions adjacent to the auditory cortex.
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However, these channels were also selected in one or both of mouthed
or imagined, which did not involve auditory feedback or perception.
This is consistent with previous studies showing activation in the audi-
tory cortices during imagined speech or imagined hearing, regardless of
the presence of an auditory stimulus (Martin et al., 2016; Orpella et al.,
2022; Pei et al., 2011b; Rampinini et al., 2017; Tian and Poeppel, 2010;
2012; Zhang et al., 2020).

The imagined panel of Fig. 6a also indicates that there are brain re-
gions, such as parts of the left frontal lobe, with channels relevant to
imagined that also exhibited activity relevant to overt and mouthed.
However, these channels generally exhibited lower performance com-
pared to the top performing channels of each of these modes. A similar
result is observed between overt and mouthed when comparing brain
regions, such as the right frontal lobe across modes.

In contrast, it can be seen that numerous relevant channels for overt,
primarily located in the right and left temporal lobes, were not selected
for mouthed or imagined. This is also observed between mouthed and
imagined. However, there are several channels located in the right and
left temporal lobes, such as channels in the superior temporal gyrus of
both hemispheres of Participant 1, that perform well in two or more
modes.

To characterize the neural activity with respect to relative laminar
depth, the radial distance between the closest selected channel to the
center of the MNI brain model (Evans et al., 1993) and the furthest se-
lected channel from the center was divided into ten uniformly-spaced
levels, forming spherical shells. For each level, the average of the bal-
anced accuracies of the channels located in that level was calculated.
Fig. 6b shows the accuracy and number of electrodes corresponding to
each relative depth level and mode. For each mode, the average chance-
level classification, which were equivalent to chance-levels of Fig. 4, are
indicated with magenta dashed lines. The overt results in Fig. 6 show
that the best performing channels are comparatively few and near the
cortical surface. However, there are a greater number of channels se-
lected at multiple intermediate depths that also exhibit reasonable per-
formance. These observations are also generally consistent for mouthed
and imagined.

3.1.2. Comparison across modes

The results from the single-channel models for the WM and CM
paradigms were used to assess and spatially visualize the shared rel-
evance of channels across modes. Channels were organized in three
groups according to shared relevance for the nested behavioral out-
put hierarchy of (1) overt, (2) overt-mouthed, and (3) overt-mouthed-
imagined. The channels uniquely relevant to overt were identified by
corresponding single-channel models performing significantly above
the chance-level for the overt WM paradigm and not significantly
above chance-level for either overt-to-mouthed or overt-to-imagined.
The channels relevant to both overt and mouthed were identified by
corresponding single-channel models performing significantly above
chance-level for both the overt and mouthed WM paradigms, both overt
and mouthed CM paradigms, but not significantly above chance-level
for either overt-to-imagined or mouthed-to-imagined. The channels rel-
evant to all three modes were identified by corresponding single-channel
models performing significantly above the chance-level for all three WM
paradigms and all combinations of CM paradigms. Channels were se-
lected based on the respective performance differences in the groups
using a threshold of p < 0.05. It should be noted that this grouping pro-
cess resulted in every channel selected in Fig. 4 being assigned to exactly
one group.

Fig. 7a shows the brain regions of the three channel groups across all
participants on an average brain model. The green channels are relevant
to all three modes, whereas the orange channels are relevant to only
overt and mouthed, and the blue channels are relevant to only overt.
Channels selected in the overt group show relatively higher performance
in the overt panel of Fig. 6a. These channels reside in a wide range
of cortical and sub-cortical brain regions, including the superior and
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middle temporal gyrus and superior frontal gyrus, which is in line with
previous studies (Arya et al., 2019; Kohler et al., 2021; Leuthardt et al.,
2011; Martin et al., 2014; 2016; Okada et al., 2018; Orpella et al., 2022;
Pei et al., 2011a; Zhang et al., 2020).

Channels selected in the overt-mouthed group show relatively higher
performance in the mouthed panel of Fig. 6a. Fewer channels were se-
lected in this group in comparison with the other two groups, which
could be due to the narrow coverage of the motor cortices for these par-
ticipants. The brain regions exhibiting relevant activity for this group
included motor cortex and adjacent, right superior frontal gyrus, and
right and left inferior temporal gyrus, which is in line with previous stud-
ies (Okada et al., 2018; Pulvermiiller et al., 2006; Zhang et al., 2020).
Channels selected in the overt-mouthed-imagined group show relatively
higher performance in the imagined panel of Fig. 6a and are predomi-
nantly located on or near the Broca’s area (e.g., left inferior and middle
frontal gyrus) and the auditory cortices (e.g., middle and inferior tem-
poral gyrus and sulcus and Sylvian parieto-temporal region), which is
in line with previous studies (Geva et al., 2011; Kohler et al., 2021;
Leuthardt et al., 2011; Martin et al., 2016; Okada et al., 2018; Orpella
et al., 2022; Pei et al., 2011a; 2011b; Zhang et al., 2020).

The brain regions associated with all three groups span grey and
white matter in both brain hemispheres. This is in line with recent stud-
ies that have reported speech-related activity in both hemispheres and
both deeper and superficial brain areas during both overt and imagined
(Alexandrou et al., 2017; Cogan et al., 2014; Geva et al., 2011; Kohler
et al., 2021; Orpella et al., 2022; Soroush et al., 2021; Tourville et al.,
2008).

It should be noted that channels in the overt group may also con-
tain neural features shared with the other modes, but these features
are relatively less dominant than those unique to overt, as the models
trained on overt do not perform significantly above the chance-level on
the mouthed or imagined data. This also applies to the overt-mouthed
group, which may have neural features common in all three modes that
are likewise relatively less dominant than those unique to overt and
mouthed. Moreover, no channels were identified that were uniquely
relevant to imagined, compared to mouthed or overt, or uniquely rel-
evant to both imagined and mouthed, compared to overt. Thus the in-
verse nested hierarchy of (1) imagined, (2) imagined-mouthed, and (3)
imagined-mouthed-overt was not observed. This is in line with prior
work that did not identify any brain regions that were significantly more
active for imagined compared to mouthed modes (Okada et al., 2018).
This HBO-LBO hierarchy was also consistent when grouping channels
according to their relevance for only mouthed and imagined modes,
further confirming the nested behavioral output hierarchy of (1) overt,
(2) overt-mouthed, and (3) overt-mouthed-imagined.

Figure 7b shows a Venn diagram of the nested hierarchical chan-
nel groups from Fig. 7a, with relative areas proportional to the number
of channels in each group, indicated by the numeric values. To sum-
marize, all 119 significant channels are relevant to overt, a subset of
90 are relevant to mouthed, and a nested subset of 78 are relevant to
imagined. Figure 7c shows the average performance of WM paradigm
of these channel groups, in a mutually-exclusive fashion (i.e., the col-
ored channels comprise the respective groups, not the nested subsets).
For each mutually-exclusive grouping, the results are compared across
the three modes indicated by the legend using 10-fold non-shuffled
cross-validation process for each respective mode. While channels in all
groups performed significantly above chance-level (p < 0.0001, r > 0.8,
n = 10), the channels in overt group performed significantly better in
the overt mode than channels in overt or the other two groups in any of
the three modes (p < 0.01, r > 0.7, n = 10). No significant difference was
observed between the performance of the channels in the overt group in
mouthed and imagined modes (p > 0.05, r < 0.2, n = 10). No significant
difference was observed between the performance of the channels in the
overt-mouthed group in overt and mouthed modes (p > 0.05, r < 0.1, n =
10). The performance of the channels in the overt-mouthed group in both
overt and mouthed modes was significantly better than the same chan-
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nels in the imagined mode, the channels in the overt group in mouthed
and imagined modes, and the channels in the overt-mouthed-imagined
group in overt, mouthed, and imagined modes (p < 0.05, 0.8 > r > 0.3,
n = 10). Lastly, no significant difference was observed between the per-
formance of the channels in the overt-mouthed-imagined group in overt,
mouthed, and imagined modes (p > 0.05, r < 0.1, n = 10), but each indi-
vidually was significantly larger than the channels in the overt group in
mouthed and imagined modes and the channels of the overt-mouthed
group in the imagined mode (p < 0.05, 0.6 > r > 0.3, n = 10).

To compare the relevance of channels within and across different
modes, performance of each selected channel from Fig. 7a was com-
pared across HBO-LBO mode pairs (i.e., overt-mouthed, overt-imagined,
and mouthed-imagined). For each mode-pair and group, all channels se-
lected in at least one mode in the pair based on the respective single-
channel WM models were analyzed. Figure 8 shows a scatter plot of the
mode-pair performance of each channel across all participants. Channels
are marked according to mode-pair and colorized by nesting grouping.
As a visualization aid, bivariate Gaussian distributions were fit to the
channels of each nested group. The 90% probability contours of the re-
spective distributions are shown as ellipses in Fig. 8. Chance-level clas-
sification, which were a subset of and nearly identical to the chance dis-
tributions in Fig. 4, are depicted by the magenta dashed lines for HBO
and LBO modes, respectively. The average of 10-fold cross-validation
performance of the individual channels was generated for each group
and the Pearson correlation coefficient was calculated for the perfor-
mance of each channel in the mode pairs. While a significantly positive
correlation (r = 0.71 and p < 0.0001) was observed between the LBO and
HBO axes of overt-mouthed-imagined group, no significant correlation
was observed between the LBO and HBO axes of the other two groups
(p > 0.05).

3.1.3. Spectro-temporal characterization

Figure 9 illustrates the absolute value of normalized feature weights
of the single-channel WM models for each mode, averaged over the se-
lected channels of the channel groups from Fig. 7a. While these weights
do not directly represent the spectro-temporal cognitive patterns asso-
ciated with the decoding models, they do convey the relative contri-
butions of spectro-temporal features to the models. As expected from
previous studies, features temporally closer to the frame being decoded
have a greater contribution to the models (Soroush et al., 2021; 2022). A
strikingly similar pattern is observed between the weights of the overt-
mouthed-imagined group across the three modes. Such similarities are
also observed for the overt-mouthed group in the overt and mouthed
modes. While, as expected, broadband gamma was a prominent feature,
it was observed that the lower frequency bands also provide important
contributions to the models. This also supports previous studies that
have shown alpha band to be promising for distinguishing movement
from rest (Li et al., 2021) and speech from non-speech (Soroush et al.,
2021; 2022).

3.2. Multi-channel models: Within-mode and cross-mode

Fig. 10 shows the averaged balanced accuracy in the multi-channel
WM and CM models across participants. To indicate the significance of
the classification results, permutation tests were performed by randomly
shuffling the labels and performing the 10-fold cross-validation process
1000 times. Since the chance-level distributions were nearly identical
for all models, a single distribution of all random permutation results of
all models was generated, with a mean indicated by the magenta dashed
line. The table in Fig. 10 indicates the significance level of comparison
tests between the mode pairs for the multi-channel WM and CM models.

All multi-channel WM and CM models performed significantly bet-
ter than chance-level (p <0.05, r> 0.5, n =10 and 50 for WM and
CM models, respectively), except for the overt-to-mouthed and overt-
to-imagined models of Participant 3. Overt-to-overt models performed
significantly better than all other models (p < 0.0001, r > 0.7, n; = 10
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Fig. 4. Distributions of classification performance (aver-

--- chance aged balanced accuracy over 10-fold non-shuffled cross-
B overt validation models) of decoding models for all channels
in the single-channel WM models for each participant

EEE mouthed and mode. The chance distributions obtained by randomly
I imagined permuting the class labels are shown for each speech

mode, with the magenta dashed line indicating the aver-
age chance-level classification results over all participants,
modes, and channels. The black dots represent the selected
channels for each group. The dashed line within each vi-
olin indicate the median and the dotted lines indicate the
first (Q1) and third (Q3) quartiles.
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Fig. 5. Averaged balanced accuracy of single-channel WM decoding models for all channels for a representative participant (Participant 1). Channels are grouped by
shaft, with 1 representing the deepest channel and 10 representing the most superficial channel. The blue, red, and green horizontal dashed lines show the selection
thresholds for each mode, averaged across respective folds. The magenta dashed line represents the chance-level classification results of each channel, averaged over
the 10 folds of the cross-validation process. The color-coded bars below each shaft plot correspond to the colored electrodes in the caudal and ventral views of both
hemispheres and frontal views of left and right hemispheres at the bottom of the figure. A, P, R, and L indicate Anterior, Posterior, Right, and Left sides of brain,
respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

and n, = 10 or 50), which may be attributed to the more precise la-
beling of the overt trials. Models trained on mouthed performed sig-
nificantly better than all other models (p < 0.05, r > 0.5, n; = 10 or 50
and n, = 10 or 50) on both mouthed (mouthed-to-mouthed models) and
overt (mouthed-to-overt models). However, no significant difference
was observed between the performance of mouthed-to-mouthed and
mouthed-to-overt models (p > 0.05, r < 0.1, n = 10, 10, and 50, respec-
tively). Overt-to-mouthed models performed significantly better than
overt-to-imagined models (p < 0.001, r > 0.8, n = 50).

The performance of the mouthed-to-imagined models was only sig-
nificantly better than the overt-to-imagined models (p < 0.01, r > 0.6,
n = 50), and the performances of both of these two models were signifi-
cantly worse than all other multi-channel WM and CM models (p < 0.05,
r> 0.5, n; =50 and n, = 10 or 50). While no significant difference was
observed between the performances of the imagined-to-overt, imagined-
to-mouthed, and overt-to-mouthed models (p > 0.05, r < 0.1, n = 50), the

performances of all of these three models were significantly worse than
imagined-to-imagined models (p < 0.05, r > 0.6, n; = 50 and n, = 10).

Mouthed-to-overt and imagined-to-overt models performed signif-
icantly better than the overt-to-mouthed and overt-to-imagined mod-
els, respectively (p < 0.01, r > 0.5, n = 50). Imagined-to-mouthed mod-
els performed significantly better than the mouthed-to-imagined models
(p <0.05, r > 0.5, n =50).

It should be noted that, for each participant and mode, the chan-
nels selected as capturing relevant neural features in Section 3.1 pro-
vided the largest contributions to the multi-channel models. The model
weights were examined for each participant and mode, and it was ob-
served that the channels selected in overt, overt and overt-mouthed, and
overt-mouthed-imagined groups in Section 3.1.2, respectively, exhibited
the largest contributions to the multi-channel models. In contrast, the
other channels yielded minor or no contributions to the models (i.e.,
model weights near or equal to zero). For reference, without additional
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Fig. 6. (a) Channels from the single-channel WM analysis having averaged balanced accuracy significantly above chance-level for all participants on an averaged
brain model (p < 0.05, r > 0.5, n = 10). The electrodes are colorized based on the averaged balanced accuracy values, which were normalized to 0-1 for each participant
over all three modes. A, P, R, and L indicate Anterior, Posterior, Right, and Left sides of brain, respectively. (b) Average balanced accuracy across participants and
number of selected channels of the single-channel WM decoding models, grouped by relative electrode depth. Selected channels are grouped into ten uniform depth
levels based on the center of the Montreal Neurological Institute (MNI) average brain model (Evans et al., 1993) from the deepest (D) to the most superficial (S)
along the respective electrode shafts. The error bars indicate the 95% confidence intervals of balanced accuracy over channels. For each mode, the magenta dashed

line indicates the average chance-level classification.

model optimization, the performances of the overt-to-overt models are
comparable to a prior speech activity detection study using ECoG, where
the models for a single participant ranged from 95.3-98.8% in detection
accuracy (Kanas et al., 2014a).

3.3. Speech activity detection proportions

Figure 11 a shows the distributions of proportions of speech ac-
tivity detection during each trial for each of multi-channel WM and

CM models, compared to the actual proportion of speech based on the
true or approximated labels over all participants. The mean of the de-
tected speech proportions for all multi-channel WM models was signif-
icantly larger than the mean of the speech proportions based on the
actual labels (p < 0.001, r > 0.7, n = 50). For the WM models, the propor-
tions of detected speech for overt-to-overt was significantly smaller than
both mouthed-to-mouthed and imagined-to-imagined (p < 0.05, r > 0.4,
n = 50); however, no significant difference was found between mouthed-
to-mouthed and imagined-to-imagined (p > 0.05, r < 0.1, n = 50).
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group, selected from more than 800 channels across all participants. (c) Average balanced accuracy across participants of the single-channel WM decoding models in
hierarchical mode groupings. For each grouping, the results are compared across the three modes indicated by the legend using 10-fold non-shuffled cross-validation
process for each respective mode. The error bars indicate the 95% confidence intervals. The magenta dashed line indicates average chance-level classification, which

were a subset of and nearly identical to chance-level of Fig. 4.
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Fig. 9. Average of absolute value of normalized decoding model weights across 10-folds of the channel groups from Fig. 7a. Zero on the horizontal axis indicates

the start of the audio frame.

Figure 11 b and c show the histograms of the distributions of all
multi-channel WM models’ speech-onset and speech-offset, respectively.
The black vertical lines shown on the histograms indicate the actual
speech-onset and speech-offset of the overt mode, and the blue, green,
and red, triangles mark the means of the overt-to-overt, mouthed-to-
mouthed, and imagined-to-imagined models’ detection distributions, re-
spectively. For all WM models, the detected speech windows ended sig-
nificantly later than when the actual or estimated speech ended (p <
0.0001, r > 0.7, n = 50), while for all mouthed-to-mouthed and imagined-
to-imagined WM models, the detected speech windows started signifi-
cantly earlier than when the actual or estimated speech started (p < 0.01,
r > 0.6, n = 50). For all overt-to-overt WM models, the detected speech
windows started significantly later than the detected speech windows of
mouthed-to-mouthed and imagined-to-imagined WM models (p < 0.01,
r > 0.6, n =50), while no significant difference was observed between
these window starts and when the actual speech started (p > 0.05, r <
0.1, n = 50).

For all multi-channel CM models, except the overt-to-mouthed and
overt-to-imagined models, the mean of the detected speech proportions
was significantly larger than the mean of the speech proportions based
on the actual or estimated labels (p < 0.001, r > 0.7, n = 50). For the
overt-to-imagined models, the mean of the detected speech proportions
was significantly lower than the mean of the speech proportions based
on the estimated labels (p < 0.001, r > 0.7, n = 50). This can be related
to the relatively lower performance of these two models as depicted in
Fig. 10. No significant difference was observed between the mean of
the detected speech proportions of overt-to-mouthed models and the
mean of the speech proportions based on the estimated labels (p > 0.05,
r < 0.1, n = 50).

4, Discussion

This study used sEEG data collected during overt, mouthed, and
imagined speaking conditions to identify common neural features and
relationships across these conditions using a speech activity detection
paradigm. The relevant features were found to occur near speech-onset,
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across all frequency bands examined as shown in Fig. 9, which is in line
with previous studies (Soroush et al., 2021; 2022) which analyzed data
from a subset of the participants from the present study.

4.1. Nested behavioral hierarchy: Single channel models

Recent studies in neurolinguistics have offered evidence for the ex-
istence of a nested hierarchy in the brain activity associated with dif-
ferent speech modes, formed from highest behavioral output to lowest
behavioral output (Cooney et al., 2018; Hickok et al., 2003; Li et al.,
2020; MacKay, 1992; Oppenheim and Dell, 2010; Perrone-Bertolotti
et al., 2014; Zhang et al., 2020). Facial micromovements during imag-
ined speech, commonly assumed to be a byproduct of short-circuited
motor signals, induced activity in language-associated brain areas (e.g.,
Broca’s and Wernicke’s areas) during both overt and imagined speech,
and similar motor-to-sensory transformation (starting from frontal and
continuing to parietal and temporal lobes) in both overt and imagined
speech are among the evidence supporting this hypothesis (Bookheimer
et al., 1995; Hickok et al., 2003; Huang et al., 2002; Orpella et al.,
2022; Palmer et al., 2001; Perrone-Bertolotti et al., 2014; Tian and
Poeppel, 2013; Tian et al., 2016; Zhang et al., 2020). It has also been
posited that hierarchical forward predictions, generated by motor com-
mands for comparison of auditory output and its consequences, occur
during speech production tasks with and without audible output (i.e.,
overt, mouthed, and imagined) (Heinks-Maldonado et al., 2006; Hickok
et al., 2011; Okada et al., 2018; Pickering and Garrod, 2013). More-
over, the presence of articulatory and acoustic information in motor
and auditory cortices, respectively, during imagined (no motor or au-
ditory output), mouthed (no auditory output), and overt modes fur-
ther supports this hypothesis (Zhang et al., 2020). In an fMRI study of
twenty-four participants silently articulating (i.e., mouthing) or imag-
ining to speak a sequence, greater activations were observed in pre-
motor cortex, insula, and auditory cortex during mouthed compared to
imagined speech, suggesting forward predictions arise from additional
levels of the perceptual/motor hierarchy that are involved in monitor-
ing the intended speech output (Okada et al., 2018). It is hypothesized
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Fig. 10. Box plot of the average balanced accuracy of the multi-channel WM
and CM models across participants and corresponding table of significance levels
between performances of the mode pairs. Blue boxes represent the WM models.
Red boxes represent both train-test combinations of the CM models for overt
and mouthed. Green and orange boxes represent the CM models for the combi-
nations of overt/imagined and mouthed/imagined, respectively. The horizontal
line within each box shows the median, while the extents of the boxes repre-
sent the first (Q1) and third (Q3) quartiles. The whiskers extend from the box to
1.5 times the inter-quartile range (IQR). Each dot represents a data point from
an individual participant that lies between the two 1.5IQRs and the outliers
are indicated with diamonds. The chance distribution represents chance-level
classification performance of all models based on a random permutation of the
class labels, with the magenta dashed line indicating the average chance-level
significance level of p > 0.05, p < 0.05, p < 0.01, p < 0.001, and p < 0.0001, re-
spectively.

that imagined speech is an abbreviation of overt speech, suggesting that
cognitive processes relevant to imagined speech are also involved dur-
ing overt speech, whereas overt speech involves additional processes
beyond imagined speech - likely associated with articulatory planning,
articulation, sound production, and possibly aspects of perceptual feed-
back.

The present study provides evidence that channels relevant to differ-
ent speech modes generally form nested hierarchical subsets from high-
est behavioral output to lowest behavioral output. Specifically, chan-
nels relevant to imagined were found to be a subset of those relevant
in mouthed, while those relevant for mouthed were a subset of those
relevant for overt. The subset of relevant channels for mouthed and
overt that is mutually exclusive with imagined likely represents activity
related to direct control of the speech articulators modulated in both
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modes. The channels exclusive to overt are presumed to be related
to brain activities present exclusively for overt, including perceptual
feedback, articulatory planning, articulatory motor executions, and/or
sound production. The perceptual feedback likely represents both di-
rect and indirect perceptual activity, e.g., forward prediction (Heinks-
Maldonado et al., 2006; Hickok et al., 2011; Pickering and Garrod,
2013). The subset of channels relevant for all modes is hypothesized to
represent the common substrate of activity for general speech planning
and production.

When examining individual channels across modes, as shown in
Fig. 7, the nested nature of channels within the mode hierarchy is appar-
ent. The majority of relevant channels were shared amongst the three
modes, while only about ten percent were unique to overt and mouthed
but not imagined. The channel subset relevant to imagined speech was
found to reside in bilateral frontal and temporal regions, which is con-
sistent with prior ECoG and fMRI studies indicating that overt, mouthed,
and imagined speech produce neural activity in both right and left cor-
tical hemispheres (Okada et al., 2018; Pei et al., 2011a). Furthermore,
these activations occurred at various bilateral depths as indicated in
Fig. 6b. This is consistent with previous studies showing neural fea-
tures from both grey and white matter contributing to decoding models
(Angrick et al., 2021; Kohler et al., 2021; Li et al., 2021; Okada et al.,
2018; Soroush et al., 2021; 2022), further demonstrating the relevance
of deeper structures and white matter for speech decoding.

Roughly a fourth of the relevant channels were unique to overt,
which predominantly resided in more superficial temporal regions, de-
spite pre-screening channels for auditory feedback. Notwithstanding the
absence of auditory feedback, neural activations in or around the audi-
tory cortex were observed for mouthed and imagined. This is consis-
tent with prior studies using overt and imagined speech and has been
hypothesized to be related to inner speech rehearsal or forward predic-
tions of intended speech and its consequences (Brumberg et al., 2016;
Cooney et al., 2018; Hickok et al., 2011; Leuthardt et al., 2012; Li et al.,
2020; Okada et al., 2018; Palmer et al., 2001; Pei et al., 2011a; 2011b;
Pickering and Garrod, 2013; Price, 2012; Zhang et al., 2020).

Figures 7c and 9 further support the nested behavioral hierarchy
by comparing the model performances and respective neural feature
weights of the nested channel groups across modes. The overt-mouthed-
imagined group exhibits highly consistent performance across the three
modes, while performance is degraded for the other groupings when
evaluated on the LBO modes. While the relevant spectro-temporal fea-
tures of the overt-mouthed-imagined group are quite similar across all
three modes, the features of the overt-mouthed group for the overt and
mouthed are also similar and noticeably different from imagined. Fur-
thermore, differences between the feature of the overt group are ob-
served between overt and the two LBO modes.

This hierarchy, with respect to relative decoding performance of rel-
evant channels between mode pairs, is also observed from Fig. 8. Nearly
all channels yield an above-chance performance for each mode in the
pairs, except for a select group of channels in the lower portion of the
plot that perform well for overt but not the other modes. This indi-
cates that nearly all channels with above-chance performance in the LBO
mode also performed above chance-level in the HBO mode, while the
inverse does not hold. The majority of channels in the overt-mouthed-
imagined group and the mouthed-imagined pair of the overt group are
clustered within the same range on the LBO and HBO axes (i.e., 0.5-
0.65), suggesting that these channels roughly yield comparable perfor-
mance for both modes. However, the majority of the overt-mouthed and
overt-imagined pairs of the overt group reside toward the right side of
the plot, with the HBO axis (overt mode) having noticeably larger val-
ues, showing that these channels have a more dominant and potentially
unique neural activity during overt compared to the other two modes.
This relationship is also apparent in the overt group of Fig. 7c. A weaker
but similar trend is observed among the overt-mouthed group, with ma-
jority of values in the same range on the LBO and HBO axes (i.e., 0.5-
0.65) and some located toward the bottom right of the plot, with the
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Fig. 11. (a) Average proportions of decoded speech vs. actual/surrogate speech labels for all participants and modes for all multi-channel WM and CM models.
The bold-shaded boxes represent the speech proportions based on the actual/surrogate labels. For reference, the colors of lighter-shaded boxes are coordinated with
colors of the actual/surrogate labels of the respective test modes. Refer to Fig. 10 for a description of the box plot properties. (b) Histograms of speech-onset detection
timings of all multi-channel WM models. The black, vertical line indicates speech-onset based on actual labels of overt mode. (c) Histograms of speech-offset detection
timings of all multi-channel WM models. The black, vertical line indicates speech-offset based on actual labels of overt mode. The blue, green, and red, triangles
in (b) and (c) mark the mean of overt-to-overt, mouthed-to-mouthed, and imagined-to-imagined distributions, respectively. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)

HBO axis (overt or mouthed) having noticeably larger values than the
LBO axis (imagined). This is also apparent in overt-mouthed group of
Fig. 7c.

4.2. Further evidence: Multi-channel models

These findings are relevant for understanding why multi-channel de-
coding models successfully trained and tested using overt speech tend to
be poor at generalizing to imagined speech, as shown in Fig. 10. This fig-
ure also shows that there is a consistent decrease in performance when
training on an HBO mode and testing on an LBO mode compared to
the inverse, and this decrease is more pronounced for larger differences
in the behavioral output hierarchy. It is also observed that the imag-
ined models perform consistently well across modes, while the overt-
to-imagined performs poorest amongst the combinations. This further
suggests that the relevant channels for the imagined models also capture
speech processes present for mouthed and overt, whereas the other rele-
vant channels from overt (likely associated with articulation and aspects
of perceptual feedback) do not extend to imagined. When interpreting
these results, it is important to note that although the relevant LBO chan-
nels are available when training the HBO models, they do not appear to
be selected or weighted in a way to generalize to the LBO modes. This
is presumed due to the neural activity unique to the HBO modes (e.g.,
motor and auditory) having more prominent contributions to the HBO
models, and hence having comparatively larger model weights, while
the LBO-relevant channels are weighted near or equal to zero as a result
of the L1 regularization.

While the present results offer strong evidence for the nested be-
havioral output hierarchy, other studies suggest this may be an over-
simplification and imagined speech can be more than just an abbrevia-
tion of overt speech processes (Cooney et al., 2018; Geva et al., 2011;
Li et al., 2020; MacKay, 1992; Oppenheim and Dell, 2010; Perrone-
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Bertolotti et al., 2014; Scott et al., 2013; Zhang et al., 2020). These
prior studies indicate that imagined speech may involve different lin-
guistic processes than those relative to overt speech or may contain
unique neural processes (e.g., inhibitory activity) that are not involved
in overt speech such as more prominent activity in the middle frontal
gyrus, left and right temporal gyrus, left supramarginal gyrus, left supe-
rior frontal gyrus, and in various regions of white matter (Cooney et al.,
2018; Geva et al., 2011; Li et al., 2020; Okada et al., 2018; Perrone-
Bertolotti et al., 2014; Proix et al., 2022; Rampinini et al., 2017; Shuster
and Lemieux, 2005; Zhang et al., 2020). In an fMRI study where partici-
pants performed overt, mouthed, and imagined trials of sixteen Chinese
syllables, increasing monotonically from LBO to HBO modes, similar ac-
tivity patterns were observed across the three speech modes in different
brain regions, including superior temporal gyrus, angular gyrus, and in-
ferior frontal gyrus. While these results indicated substantial overlap in
regions activated during the three speech modes, activation unique to
one or two modes was also observed in distinct regions (Zhang et al.,
2020). Nevertheless, other studies have proposed that imagined speech
may be an abbreviation of overt and mouthed speech processes, but fur-
ther investigation is required to verify the precise mechanisms at the lin-
guistic and motor levels (Okada et al., 2018; Oppenheim and Dell, 2010;
Perrone-Bertolotti et al., 2014). The present study is limited by the na-
ture and availability of SEEG recordings from a relatively low number of
participants with sparse and inconsistent electrode coverage. While this
coverage is not designed or ideal for speech decoding, it does provide
important insights regarding previously unexplored neural features for
this purpose.

Because this study was designed to specifically investigate speech
modes, it is possible that the results may be influenced by neural pro-
cesses that are not unique to speech production such as participant en-
gagement or type of behavioral task. For example, it is conceivable that
a similar nested hierarchy could be revealed for overt, mouthed, and
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imagined whistling. A separate experimental design is required to test
this hypothesis.

4.3. Speech activity detection proportions

While the use of the speech activity detection model provides a very
coarse labeling for the actual and surrogate speech, it yielded statis-
tically above-chance performing models across modes, thus providing
a solid and simplified basis for exploring and comparing the models
and relevant features. Figure 11a shows that the proportions of detected
speech tend to be overestimated when training using the surrogate la-
bels. This is likely due to the inherent variability when applying surro-
gate labels. In contrast, the proportion of detected speech is underes-
timated when training on the actual (overt) labels and testing on the
surrogate labels, and this effect is more pronounced for decreasing be-
havioral output. The detected proportions are strikingly consistent when
training on imagined and testing across other modes. This further sug-
gests the existence of a nested behavioral output hierarchy.

It was observed that the detected windows generally lead the actual
speech-onset and lag the speech-offset (Fig. 11b and c), resulting in a
higher false positive rate than false negative rate. This is again likely
due to the inherent variability of the surrogate labels, but nevertheless
may be desirable in practical application where the primary goal is to
reliably detect the intention to speak.

5. Conclusion

The main objective of this study was to elucidate neural features as-
sociated with imagined speech to inform the development of imagined-
speech neuroprostheses. This was achieved by comparing neural fea-
tures and associated speech activity detection decoding model perfor-
mance across three speech modes with varying degrees of behavioral
output. The results suggest that the relevant channels can be orga-
nized in a nested hierarchy according to the degree of behavioral out-
put, with the overt mode encompassing all relevant channels across
modes, the relevant channels from the mouthed mode being a sub-
set of overt, and the relevant channels from the imagined mode be-
ing a subset of mouthed. This nested hierarchy suggests that there
may be a common neural substrate of related speech production pro-
cesses that progressively extends with increasing behavioral output.
These findings also provide important insights toward the design and
development of imagined speech decoding models based on available
overt speech data. Additionally, through the acquisition of sEEG, rel-
evant neural activity across modes was found beyond the cortex, bi-
laterally at various depths, in both grey and white matter. This pro-
vides further evidence that deeper structures are relevant and may be
beneficial in the development of improved speech decoding models.
These findings also show that, with proper consideration and treatment,
recordings of overt speech can serve as viable surrogates for generating
imagined-speech decoding models. Given the limitations of SEEG record-
ings in terms of coverage and patient accessibility, additional work is
needed to further characterize and understand the neural activity re-
lationships across speaking modes. While the speech activity detection
model provides a simplified framework for comparison, it is envisioned
that these findings can be extended to more sophisticated imagined
speech decoding schemes to reveal more nuance to the features and
relationships.
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