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Abstract— Recent studies have demonstrated that it is pos-
sible to decode and synthesize acoustic speech directly from
intracranial measurements of brain activity. A current major
challenge is to extend the efficacy of this decoding to imagined
speech processes toward the development of a practical speech
neuroprosthesis for the disabled. The present study used in-
tracranial brain recordings from participants that performed
a speaking task consisting of overt, mouthed, and imagined
speech trials. In order to better elucidate the unique neural
features that contribute to the discrepancies between overt and
imagined model performance, rather than directly comparing
the performance of speech decoding models trained on respec-
tive speaking modes, this study developed and trained models
that use neural data to discriminate between pairs of speaking
modes. The results further support that, while there exists a
common neural substrate across speech modes, there are also
unique neural processes that differentiate speech modes.

I. INTRODUCTION

Speech is the first and foremost modality of human inter-
personal communication. Brain-Computer Interfaces (BCls)
that decode and synthesize speech could dramatically im-
prove life for individuals unable to speak due to injury
or disease. Invasive measurements of brain activity using
electrocorticography (ECoG) [1] or stereotactic electroen-
cephalography (sEEG) [2] have recently shown promise for
developing such speech BClIs [3], [4], [5], [6], [7].

For those who have lost the ability to speak, the objective
is to translate neural processes during imagined speech to
acoustic speech. However, the lack of behavioral output
during imagined speech makes it extremely challenging to
design an effective decoding model [8], [9]. To overcome
this challenge, studies often employ neural processes or
behavioral output from overt or mouthed (i.e., inaudible
articulations without vocalization) speech as a surrogate to
study associated neural activity [3], [10] or to train decoding
models [5], [7], [11] for imagined speech applications.

While these studies have shown substantial promise, there
are clear limitations to using overt speech surrogates for
training imagined-speech decoding models. This may be due,
in part, to the unique brain regions activated during overt,
mouthed, and imagined speech, and the differences between
the neural features extracted from these regions [8], [12],
[13], [14]. In order better elucidate the unique neural features
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Fig. 1: The combined sEEG depth electrode (channel) loca-
tions of the 7 participants from different perspectives using
an averaged brain model.

that contribute to the discrepancies between overt and imag-
ined model performance, rather than directly comparing the
performance of speech decoding models trained on respective
speaking modes, the present study developed and trained
models that used neural data to discriminate between pairs
of speaking modes.

II. METHODOLOGY
A. Participants and Electrode Locations

sEEG data were collected from 7 native English-speaking
participants being monitored as part of treatment for in-
tractable epilepsy at UCSD Health. The demographic infor-
mation of the participants is provided in Table I. The study
design was approved by the Institutional Review Boards
of Virginia Commonwealth University and UCSD Health,
and informed consent was obtained for experimentation with
human subjects. The locations of sEEG electrodes were
determined solely based on the participants’ clinical needs.
A subset of the implanted electrodes for each participant was
determined to be in or adjacent to brain regions associated
with speech and language processing. Fig. 1 shows the
depth electrode locations for the 7 participants, with SEEG
electrode (channel) counts provided in Table I.

B. Experimental Design and Data Collection

The experimental setup and trial sequence structure are
depicted in Fig. 2. For each trial sequence, a sentence

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on October 26,2023 at 17:38:22 UTC from IEEE Xplore. Restrictions apply.



Participant | Gender Age # Recorded # Excluded Channels  # Trials
P1 Male 25 90 5 25
P2 Male 60 70 3 50
P3 Male 32 80 50
P4 Female 42 175 1 50
P5 Male 21 232 7 50
P6 Male 22 94 5 50
P7 Male 31 108 8 50

TABLE I: Demographic information, numbers of SEEG
channels, and unique trial sequences for each participant.

was displayed on a computer monitor and simultaneously
narrated via computer speakers for a 4-second interval. While
the acoustic speech and SEEG signals were simultaneously
recorded, the participants were visually prompted by a se-
quence of icons as cues to (1) speak the sentence audibly
(overt), (2) inaudibly articulate the sentence (mouth), and (3)
imagine speaking the sentence without articulating or vocal-
izing (imagine). This structure was repeated for 50 unique
sentences [14]. Each icon prompt and participant response
during the task is referred to as a single trial. The stimuli
were presented and synchronized with the sEEG recordings
using Presentation®) software (Version 18.0, Neurobehav-
ioral Systems, Inc., Berkeley, CA, www.neurobs.com).
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(a) Experimental setup. (b) Trial sequence structure.

Fig. 2: sEEG and acoustic signals were simultaneously
recorded as the participant performed the task as prompted
by icons presented on a monitor.

The sEEG electrodes were referenced to a pair of subder-
mal needle electrodes in the scalp and digitized at 1,024 Hz.
The audio signal was recorded via an external microphone
and digitized at 44,100 Hz. The audio recordings of the
overt trials were used to label the data as speech or non-
speech in 10-ms non-overlapping segments. The 10-ms frame
length was chosen to capture the relevant temporal dynamics
of speech activity for eventual closed-loop implementation.
These labels were used to define surrogate labels for the
mouthed and imagined trials [14].
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C. Data Pre-processing and Feature Extraction

All sEEG data were visually inspected for noisy or anoma-
lous channels, as well as was analyzed for any potential
audio contamination or perceptual information [14], [15].
The number of channels excluded as a result of this screening
are reported in Table I. The remaining raw sEEG channels
were re-referenced using the Laplacian method [16].

The narrow-band power of each sEEG channel was com-
puted in four conventional frequency bands: theta (4-8 Hz),
alpha (8-12 Hz), beta (12-30 Hz), and broadband gamma
(70-170 Hz), based on prior studies [14], [17]. To extract the
spectral features, using the labeled 10-ms frames from the
audio signals, the SEEG channels over a specified temporal
window around each audio frame were zero-phase filtered
for using a sixth-order Butterworth filter for each frequency
band. A 210-ms window length was chosen (corresponding
to 200 ms before the frame to the end of the frame). An
additional notch filter from 118-122 Hz was applied to
broadband gamma to suppress the second harmonic of the
60 Hz line noise. The features were computed every 10
ms as the natural logarithm of the signal energy over 210
ms, representing 10 ms overlapping the audio frame and
200 ms prior to the frame to emulate a causal design. This
causal design was selected to ensure decoding activity related
to speech production rather than perception for the future
implementation in real-time, closed-loop applications.

The features from each included channel were concate-
nated to form the feature vector (# channels x 21 features
x # frequency bands - representing spatial, temporal, and
spectral information, respectively) for the decoding models.

D. Mode-Discriminating Models

Mode-Discriminating (MD) models were developed to
investigate the similarities and differences across speech
modes beyond basic speech/non-speech gating. For each
participant and mode, approximately one tenth of the trials
were randomly selected and reserved for evaluating the
models, herein referred to as MD test trials. The data from
the remaining trials, referred to as MD training trials, were
used to perform channel selection and model training as
subsequently described.

1) Logistic Regression Model and Classification Evalu-
ation: All models were designed using logistic regression
with L1 regularization and were specific for each participant
and comparison [17], [18]. Due to the difference between the
amount of data for each class in some of the models, and
for consistency, the performance of all models was evaluated
using balanced accuracy (i.e., the average of the recalls of the
classes). To establish the chance-level classification for each
model, a randomization test was performed where all labels
were randomly shuffled and the cross-validation process was
repeated for 1,000 separate randomizations of the labels.

All significance tests were performed using a Benjamini-
Hochberg corrected Wilcoxon signed-rank test. The resulting
p-value (p) is reported for each respective test.
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2) Channel-Selection: Channel selection for the MD
models was performed by comparing the relative perfor-
mance of single channels for speech activity detection (i.e.,
binary classification of speech versus non-speech segments)
using logistic regression on the MD training trials. For each
mode, the decoding performance was evaluated using a 10-
fold, non-shuffled cross-validation. To prevent from training
bias, during the cross-validation process, the training data
(partitioned from the independent validation and test data)
was normalized to zero mean and unit variance, and the same
normalization parameters were applied to the validation (one
tenth of the data in the nine training folds) and test data. The
validation data was used to optimize the hyperparameters of
the training models, while the test data was solely used to
obtain the performance of the trained models for each fold.

For each participant, mode, and fold in the cross-validation
process, the mean plus one standard deviation of the balanced
accuracy of all channels was determined as the threshold for
the fold, which were aggregated to form a distribution of
thresholds over the ten folds of the cross-validation process.
Additionally, for each channel, the distribution of balanced
accuracies over the 10 folds of the cross-validation process
was computed. The distribution of balanced accuracies were
used to identify channels with discrepant performance across
each pairwise combination of modes.

For each mode pair, the threshold computed for the first
mode was used to select channels that performed signifi-
cantly better than this threshold (p < 0.05) for the first mode
and performed significantly below this threshold (p < 0.05)
for the second mode. This way, channels uniquely relevant
to only one mode in the pair were selected.

3) Mode-Discriminating Models: For each pairwise com-
bination of speech modes, the MD training trials and MD test
trials were respectively parsed into speech (combination of
speech segments of the two modes) and non-speech (combi-
nation of non-speech segments of the two modes) conditions.
The training data was then normalized to zero mean and
unit variance, and the same normalization parameters were
applied to the test data. Next, for each selected channel and
each speech and non-speech condition, a logistic regression
model was trained and tested on the training and test data,
respectively. The MD models are labeled as (Mode A)-(Mode
B). For each mode pair and condition, the average of the
performance of the selected channels was used to compare
the differences between the brain activity during the two
modes.

III. RESULTS

Overt, mouthed, and imagined speech modes can be com-
pared based on their respective degree of behavioral output
[14]. In the subsequent paired comparisons, the mode in the
pair having the higher behavioral output and the mode with
lower behavioral output will be denoted as the HBO and
LBO modes, respectively.

A. Channel-Selection

Fig. 3 illustrates violin plots of the distributions of aver-
aged balanced accuracy of the 10-fold cross-validation from
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Fig. 3: Distributions of classification performance of decod-
ing models for all channels for the channel selection proce-
dure. The black dots represent the channels with significantly
above threshold performance for each group (p < 0.01).

the channel selection process. To compare to chance-level
performance, permutation tests were performed by randomly
shuffling the labels and performing the 10-fold non-shuffled
cross-validation process 1,000 times. At total of 68 channels
across participants were selected for the overt-mouthed pair,
94 for the overt-imagined pair, and 87 for the mouthed-
imagined pair.

1) Discrimination of Modes: Fig. 4 illustrates the dis-
tribution of average performance of the MD models of
selected channels according to HBO relevance for speech
and non-speech conditions. The chance-level is computed as
the average of the chance-level distributions extracted from
randomly shuffling the labels and training and evaluating
the models 1,000 times. The models for all three HBO-
LBO mode pairs performed significantly above chance-level
(p < 0.001) for speech, but showed no significant difference
for non-speech (p > 0.05). To validate the channel selection,
MD models were generated from the non-selected channels
and none were found to perform significantly above chance
level (p > 0.05).

For the speech condition, the overt-imagined models
performed significantly better than both the overt-mouthed
and mouthed-imagined models (p < 0.01), and the overt-
mouthed models performed significantly better than the
mouthed-imagined models (p < 0.05). This is in line with
prior studies that showed a greater difference between neural
processes involved during overt and imagined, compared to
either overt and mouthed or mouthed and imagined, and overt
and mouthed compared to mouthed and imagined [8], [13],
[14].

While each of the respective models contained at least
eight channels per participant, alternately generating models
according to LBO relevance (i.e, mouthed-overt, imagined-
overt, and imagined-mouthed pairs) yielded fewer than 4
channels in all cases, with four participants having no
channels selected. Additionally, no significant difference
was observed between the average performances of these
channels vs. chance-level (p > 0.05). This is in line with
evidence from prior studies showing a hierarchy of neu-
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Fig. 4: Box plots of the average balanced accuracy of the
selected channels (across all participants) during speech and
non-speech segments.

ral processes with respect to degree of behavioral output,
increasing monotonically in imagined, mouthed, and overt
speech modes [12], [14].

IV. CONCLUSION

This study examined models of neural features that dis-
criminate between speech modes that vary with respect
to degree of behavioral output. While prior studies have
posited common neural substrates underlying these speech
modes, the present results further highlight the existence of
features that are unique to each mode. Moreover, since the
models were separately evaluated for speech and non-speech
segments, the results indicated that the differences between
these modes are due to speech-related neural processes rather
than other factors related to experimental design such as
trial ordering or repetition effects. These findings further
highlighted the need for careful consideration and treatment
when using overt or mouthed speech as surrogates of imag-
ined speech for designing and interpreting imagined-speech
decoding models.

Relevant brain regions across modes were found beyond
the cortex, bilaterally and at various depths, providing ad-
ditional evidence of deeper structures’ potential relevance
in the development of improved speech decoding models.
Further work is needed to explore the specific differences of
brain regions and networks with respect to speech production
across the three modes, as well as whether these results can
be generalized across a larger participant pool.
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