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Sagnac interferometry can provide a substantial improvement in signal-to-

noise ratio compared to conventional magnetic imaging based on the magneto-

optical Kerr effect (MOKE). We show that this improvement is sufficient to al-

low quantitative measurements of current-induced magnetic deflections due to

spin-orbit torque even in thin-film magnetic samples with perpendicular mag-

netic anisotropy for which the Kerr rotation is second-order in the magnetic

deflection. Sagnac interfermometry can also be applied beneficially for sam-

ples with in-plane anisotropy, for which the Kerr rotation is first order in the

deflection angle. Optical measurements based on Sagnac interferometry can

therefore provide a cross-check on electrical techniques for measuring spin-

orbit torque. Different electrical techniques commonly give quantitatively in-

consistent results, so that Sagnac interferometry can help to identify which

techniques are affected by unidentified artifacts.

Teaser: Sagnac interferometry provides high-sensitive optical readout of spin-orbit torques for

efficient manipulation of nanomagnets.
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Introduction

Spin-orbit torques (SOTs) (1, 2) are of interest for achieving efficient manipulation of mag-

netization for low-power non-volatile magnetic memory technologies. SOTs are produced when

a charge current is applied through a channel with strong spin-orbit coupling, giving rise to a

transverse spin current. This spin current can exert a spin-transfer torque on an adjacent ferro-

magnet (FM), allowing for low-power electrical control of its magnetic orientation. Accurate

quantitative measurements of the efficiency of spin-orbit torques are important for understand-

ing the microscopic mechanisms of the torque and for optimizing materials for applications. The

work-horse techniques for this purpose have been electrical measurements of current-induced

magnetic reorientation with readout based on the magnetoresistance properties of the sam-

ples (2–19), but these have some shortcomings. One must be careful to separate thermoelectric

voltages from the torque signals (20, 21), and even when performed carefully, different elec-

trical techniques can often produce quantitatively inconsistent measurements, indicating that

some may be affected by artifacts which are not yet understood (22–26). Furthermore, in cases

when one wishes to measure spin-orbit torques acting on insulating magnetic layers, electrical

measurements provide much lower signal levels compared to metallic magnets due to decreased

magnetoresistance. Optical techniques based on the magneto-optical Kerr effect (MOKE) have

been introduced as an alternative to quantify spin-orbit torques (27–29), but in previous stud-

ies the sensitivity of MOKE measurements has been insufficient to measure current-induced

small-angle magnetic deflection in samples with perpendicular magnetic anisotropy (PMA) –

the most-direct approach for quantifying the torque in the class of samples of primary interest

for high-density memory applications.

In this work, we demonstrate improved optical detection of SOTs by using a fiber Sagnac

interferometer to measure current-induced small-angle magnetic tilting. Unlike conventional

MOKE measurements that rely on a single laser beam, Sagnac interferometry uses the mod-

ulated phase difference of two coherent beams that travel along overlapping paths, and are

incident on the sample with opposite helicities. By detecting the resulting light intensity of the

interfering beams, we achieve signal-to-noise ratios at least 50 - 100 times greater than conven-

tional MOKE performed on a PMA metallic thin film (SI Section V). This allows us to perform
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accurate, highly-sensitive measurements of the spin-orbit-torque vectors in both PMA samples

and in-plane anisotropy samples, based on direct optical detection of magnetization deflection

in the out-of-plane (OOP) direction.

Results

Principles of Sagnac interferometry

Our Sagnac interferometer consists of free-space optics and a 15-meter-long single-mode

polarization-maintaining fiber in a compact table-top setup. As shown in Fig. 1, two spatially-

overlapping, orthogonal linearly-polarized beams travel inside the fiber along its fast and slow

axes. Both beams pass through a quarter-wave plate to become left- and right-circularly polar-

ized, reflect from the sample, and then pass back through the quarter wave plate to re-enter the

fiber, thereby returning via the opposite fiber axis. The two beams therefore traverse the same

optical path (in opposite directions) with phase and amplitude differences determined by the

differences in reflection of left and right circularly-polarized light from the sample. To measure

this phase difference (i.e., 2θk, where θk is the Kerr rotation angle of the sample) one can mod-

ulate the phase difference of the two beams using an electro-optic modulator (EOM). When the

EOM phase modulation frequency ω matches the total optical path τ (ω = π/τ = 2π (3.347

MHz) for our apparatus), the Kerr rotation can be quantified as

θk = −1

2
arctan

[︃
V ω

APDJ2(2ϕm)

V 2ω
APDJ1(2ϕm)

]︃
, (1)

where V 1ω
APD and V 2ω

APD are the first and second harmonic intensity signals from the interferometer,

ϕm is the EOM phase modulation depth between the fast and slow axes, and J1(2) are the Bessel

functions. Details of this derivation and more information about the Sagnac apparatus and its

operation are provided in the supporting information.

For demonstration purposes, we will describe measurements on two thickness series of Pt(4

nm)/Co(0.86 - 1.24 nm)/MgO(1.9 nm)/Ta(2 nm) and Pt(4 nm)/Co(1.39 - 2.08 nm)/MgO(1.9

nm)/Ta(2 nm) samples in which the Co layer is deposited as a wedge to provide a range of

thicknesses on the same wafer. The samples are made by sputtering on a high-resistivity Si/SiO2

wafer with a 1.5 nm Ta seed layer. They are patterned into 20 µm × 80 µm Hall bars with 6
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µm side contacts by photolithography and ion milling. The Pt resistivity for each series are 40

µohms cm and 54 µohms cm respectively (see SI Section VI. B for details). All measurements

are performed at room temperature.

Magnetic hysteresis loops can be obtained by measuring θk while sweeping an external

magnetic field. The lower-left inset in Fig. 1 shows a hysteresis loop as a function of out-

of-plane magnetic field for a Pt(4 nm)/Co(1.15 nm)/MgO bilayer sample with perpendicular

magnetic anisotropy. We achieve a sensitivity in measuring θk of better than 5 µRad/
√

Hz for

an average laser power of 1 µW at the avalanche photodetector (APD in Fig. 1), sufficient so that

the noise level is not easily visible in Fig. 1. While conventional MOKE can achieve comparable

sensitivity using external modulation of magnetic field, electric field, or current (30, 31), these

methods are not applicable for measuring hysteresis curves of ferromagnets.

The Sagnac signal is sensitive only to the out-of-plane component mz of the magnetization

unit vector, with no measurable dependence on the in-plane components. For linearly-polarized

light incident on the sample in the normal direction, the quadratic MOKE effect does allow

a second-order dependence on the in-plane magnetization components in that the total Kerr

rotation can have the form (28)

θk = κmz + βQmxmy (2)

where κ is a material-specific constant of proportionality relating the out-of-plane net magneti-

zation to θk, βQ is the quadratic MOKE coupling parameter, and mx and my are defined such

that x lies along the plane of light polarization. However, we calculate that the contribution of

quadratic MOKE to the Sagnac signal is approximately a factor of 10−5 smaller than the κmz

contribution (see SI Section III). Furthermore, the quadratic MOKE contribution to the Sagnac

signal should introduce a dependence ∝ sin(2ϕ), where ϕ is the angle between the in-plane

magnetization and a reference plane of light polarization. No such dependence is measurable in

Sagnac measurements if we apply in-plane field of fixed magnitude and then rotate ϕ (see Sup-

plemental Fig. S2). Based on both calculations and measurements we therefore conclude that

the Sagnac signal depends measurably only on mz. The absence of dependence on the in-plane

magnetization components simplifies the Sagnac measurements of spin-orbit torque relative to,
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e.g., electrical measurements of the second harmonic Hall effect (6), for which planar Hall

signals are assumed to affect the signals in addition to the anomalous Hall effect.

Using Sagnac interferometry to measure spin-orbit torques

We measure current-induced torques by applying a calibrated low-frequency AC current

along the X direction (ωe = 3.27 kHz) to the heavy metal/ferromagnet bilayers and measuring

the resulting small-angle deflection of the magnetization. The deflection is detected from the

Sagnac signal using a side-band demodulation technique, allowing us to simultaneously mea-

sure both the the steady-state value θk demodulated at the EOM frequency ω, and the current-

induced change ∆θk at the lower side-band frequency ω− ωe. We achieve a current-modulated

Kerr rotation sensitivity of 3 µRad/
√

Hz, allowing us to detect small changes of mz due to

current-induced torques. The AC current frequency ωe is sufficiently low for the magnetic

dynamics to be quasi steady-state. Therefore by balancing torques within the Landau-Lifshitz-

Gilbert-Slonczewski equation (32) in steady state, the current-induced damping-like and field-

like effective torques (per unit magnetization) τ 0DL and τ 0FL can be determined from the deflection

of the magnetic unit vector ∆m̂ according to

γµ0∆m̂× H⃗eff = τ 0DLm̂× (σ̂ × m̂) + τ 0FLσ̂ × m̂ (3)

where γ = 2µB/h̄ is the gyromagnetic ratio with µB the Bohr magneton, and H⃗eff is the vector

sum of the anisotropy field and any applied magnetic field. We assume here that the spin-

source layer has high symmetry, so that the orientation of the current-induced spin polarization

is parallel to Ŷ , i.e., in the sample plane and perpendicular to the charge current (shown in Fig. 1

middle inset).

Samples with perpendicular magnetic anisotropy

We first consider the case of samples with perpendicular magnetic anisotropy (PMA), which

is the more difficult case for optical measurements of spin-orbit torque since the measured

changes in the OOP magnetization are second order in small-angle tilting from the OOP di-

rection. In the presence of an in-plane applied magnetic field H and in the absence of applied
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current, the equilibrium polar angle of the magnetization θ0 (measured from z-axis) satisfies

sin θ0 = H/|Meff|, where the effective magnetization µ0Meff = µ0Ms − 2K⊥/Ms is the sat-

uration magnetization minus the out-of-plane anisotropy (with µ0Meff negative for PMA sam-

ples) (6). Therefore, Kerr rotation associated with the magnetic-field-induced equilibrium tilt

angle (θ0) is approximately

θk = ±κ

(︃
1− H2

2M2
eff

)︃
, (4)

where the ± corresponds to the initial out-of-plane magnetization mZ = ±1 (see SI Section

IV for details). From Eq. (3), the current-driven effective field in the X direction corresponds

to the damping-like torque: µ0∆HX = ∓τ 0DL/γ. The current-induced effective field in the

Y direction is the sum of the field-like spin-orbit-torque contribution and the Ørsted field:

µ0∆HY = µ0HOe + τ 0FL/γ.

In order to measure the current-driven effective fields ∆HX and ∆HY for samples with

PMA, we apply an in-plane magnetic field along the X or Y -axis (HX at ϕH = 0 or HY at

ϕH = π/2, where ϕH is the angle of the in-plane field relative to the current direction) for both

of the cases mz = ±1 and perform simultaneous measurements of θk and ∆θk. The left two

panels of Fig. 2 shows the results for the same PMA Pt(4 nm)/Co(1.15 nm)/MgO bilayer for

which the out-of-plane hysteresis curve is shown in Fig. 1, for an AC current amplitude of 15

mA corresponding to a current density in the Pt layer of 1.9 ×107 A/cm2. Because ∆HX and

∆HY cause small oscillations of the magnetization, the current-induced Kerr rotation (derived

in SI Section IV) can be approximated as

∆θk = ∓κ (∆HX cosϕH +∆HY sinϕH)
H

M2
eff
. (5)

Therefore, ∆HX and ∆HY can be extracted based on equations (4) and (5) as

∆HX =
d∆θk(ϕH = 0)

dH

(︃
d2θk
dH2

)︃−1

(6)

∆HY =
d∆θk(ϕH = π/2)

dH

(︃
d2θk
dH2

)︃−1

. (7)

For the current amplitude of 15 mA, we find µ0∆HX = µ0∆HDL = 5.0(3) mT and µ0∆HY =

µ0∆HFL = -0.9(2) mT for mz = +1, and µ0∆HX = −µ0∆HDL = −5.1(3) mT and µ0∆HY =
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µ0∆HFL = −0.9(2) mT for mz = −1. These signs are consistent with the directions of the

damping-like and field-like effective fields measured by harmonic Hall and spin-torque FMR

from Pt (4, 5, 33).

We can also express these results in terms of dimensionless SOT efficiencies ξDL and ξFL:

ξDL(FL) = τ 0DL(FL)
eMstCo

µBJe
(8)

where Je is the electric current density in the spin source layer, Ms is the saturation magnetiza-

tion of the FM, and tCo is the thickness of the FM Cobalt layer. (Note by this definition that ξFL

contains contributions from both the Ørsted torque and the field-like SOT.) For each of our sam-

ples we calibrate the the saturation magnetization per unit area MstCo using vibrating-sample

magnetometry on 3 mm × 3 mm thin films diced from the wafer adjacent to the patterned

devices (see SI Section VI. C). We calculate Je using a parallel-conduction model after deter-

mining the thickness-dependent conductivities of the different layers in the heterostructure (See

SI section VI. B). For the most acccurate determination of the torque efficiencies, we measure

∆HX and ∆HY for a sequence of applied voltage amplitudes for mz = +1 and fit to a linear

dependence (Fig. 2(e)). We can then extract ξDL(FL) based on the fitted linear slope from Eq. (8).

For the PMA Pt(4 nm)/Co(1.15 nm)/MgO bilayer we find ξDL = 0.132(2) and ξFL = −0.023(2).

We will analyze below the results for full thickness series of the Co layer.

Samples with in-plane magnetic anisotropy

For the case of samples with in-plane anisotropy, the current-induced changes in mz are first

order in the tilting angle for out-of-plane magnetic deflections. Based on Eq. (3), for in-plane

magnetization, the damping-like torque corresponds to an out-of-plane effective field while the

field-like torque gives an in-plane effective field. Therefore, our Sagnac MOKE interferometry

measures only the out-of-plane magnetic deflection from the damping-like effective field, with

the maximum magnitude (for ϕH = 0) of µ0∆HDL = τ 0DL/γ, and ∆θk (derived in SI Section

IV) can be expressed as

∆θk =
κ∆HDL cosϕH

H +Meff
. (9)
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Figure 3(a) shows ∆θk as a function of of the angle of the in-plane magnetic field ϕH with

constant magnitudes of magnetic field (µ0H = 0.1, 0.15, and 0.2 T), and a current amplitude of 8

mA for a bilayer with the composition Pt(4 nm)/Co(1.42 nm)/MgO which has in-plane magnetic

anisotropy. To quantify ∆HDL, we fit the amplitude of the cosϕH components as a function of

1/[µ0(H+Meff)] and perform a linear fit as shown in Fig. 3(b). We also determine the effective

magnetization Meff for each device from spin-torque ferromagnetic resonance measurements

(ST-FMR) (SI Section V.D). For the device featured in Fig. 3, µ0Meff = 0.195 T, and the final

result of the measurement is µ0∆HDL = 3.0(1) mT, corresponding to ξDL = 0.10(1).

Results for samples over the full thickness range

The results of the Sagnac-interferometer measurements of SOT efficiencies for the full range

of thicknesses for the Pt(4 nm)/Co(0.85 - 2.1 nm)/MgO are shown in Fig. 4. By varying the

Co thickness, competition between the in-plane shape anisotropy and interface perpendicular

magnetic anisotropy gives rise to different values of Meff (plotted in SI Fig. S8). We observe

at most only a weak dependence of ξDL on the Co layer thickness (Fig. 4 (a) and (b)). This

is expected as long as the Co layer is sufficiently thick for full absorption of the transverse

component of the incoming spin current, and qualitatively consistent with previous electrical

measurements (34). The values of ξDL obtained by the Sagnac measurements on PMA and in-

plane samples are consistent, which is often not the case for electrically-based second-harmonic

Hall measurements of SOT (35). This value that we find for the damping-like SOT efficiency

is also in quantitative agreement with spin-torque ferromagnetic resonance measurements with

similar Pt resistivity (22, 36, 37). Because the Sagnac interferometry is sensitive only to out-

of-plane magnetic deflections, we obtain measurements of the current-induced field-like torque

only for the PMA samples, in which case the field-like torque efficiency ξFL is considerably

smaller than ξDL as shown in Fig. 4(b). The estimated Oersted torque is of similar amplitude as

indicated in pink line in Fig. 4(b). This indicates that the field-like spin-orbit torque is at most

a small contribution.
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Discussion

We have shown that Sagnac interferometry provides a sufficient improvement in the signal-

to-noise ratio compared to conventional MOKE to enable for the first time optical measure-

ments of spin-orbit torque efficiencies even for thin-film magnetic samples with out-of-plane

magnetic anisotropy for which the Kerr signal is second-order in the magnetic deflection an-

gle. The Sagnac technique also allows optical measurements of the damping-like component

of spin-orbit torque for samples with in-plane magnetic anisotropy, the component of torque

that causes out-of-plane magnetic deflections in this geometry. (Measurements for the in-plane

geometry have also been performed previously using conventional MOKE (27–29).) Optical

measurements provide the capability to perform quantitative studies of spin-orbit torque in

samples for which magnetoresistance signals are small (e.g., insulating magnetic layers). They

can also provide an important cross-check on electrical measurements of spin-orbit torque, to

identify cases in which the electrical measurements are affected by unknown artifacts. In our

Pt/Co wedge series samples, we find that the Sagnac measurements of the damping-like spin-

orbit torque efficiency are in reasonable quantitative agreement throughout the thickness series

for the magnetic layer, for samples with both perpendicular magnetic anisotropy (PMA) and

in-plane anisotropy. These values are also in good agreement with spin-torque ferromagnetic

resonance measurements with similar Pt resistivity (22, 36, 37). However, as we have noted

in a separate arXiv posting, low-frequency second-harmonic electrical measurements for the

PMA samples yield results that are inconsistent with both the Sagnac measurements and the

ST-FMR results on the in-plane samples. The Sagnac results therefore provide confirmation

of the ST-FMR values and reason to question the accuracy of the second-harmonic electrical

technique applied to PMA samples (at least for PMA samples in which the planar Hall effect is

substantial) (35).
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Materials and Methods

Sample fabrication

The sample heterostructures are grown by DC-magnetron sputtering at a base pressure of

less than 3×10−8 torr on high-resistivity, surface-passivated Si/SiO2 substrates. Hall bars are

patterned using photolithography and ion mill etching, then Ti/Pt contacts are deposited using

photolithography, sputter deposition, and liftoff. The Co is deposited with a continuous thick-

ness gradient (“wedge”) across the 4-inch wafers and all devices measured have their current

flow direction oriented along the thickness gradient. The Hall-bar devices measured are 20 µm

× 80 µm in size and the change in Co thickness is negligible on this scale i.e. the gradient over

80 µm is orders of magnitude smaller than the RMS film roughness. The Ta underlayer is used

to seed a smooth growth of subsequent films and the MgO/Ta forms a cap to minimize oxidation

of the Co layer.

Sagnac interferometer design

Our Sagnac interferometer (38), modeled after those in refs. (39, 40), is shown Fig. 1. The

beamline begins with a 770 nm superluminescent diode (SLED). The beam goes through a pair

of Faraday isolators that provide > 65 dB of backward isolation and prevent back-reflections

into the diode that would cause intensity fluctuations and other source instabilities. Next, the

beam goes through a beam splitter, polarizer, and half-wave plate (HWP) that prepare the beam

polarization to be 45◦ with respect to the slow axis of a single mode polarization-maintaining

(PM) fiber into which it is focused. The beam will henceforth be discussed as an equal combi-

nation of two separate beams of linearly-polarized light: one polarized along the slow axis and

one polarized along fast axis of the PM fiber. A fiber electro-optic phase modulator (EOSPACE

Inc.) applies time-dependent phase modulation to the beam traveling along the slow and fast

axes with different amplitude modulation depths: ϕ∥ or ϕ⊥, respectively. The difference of

these two amplitude modulation depths, ϕm = ϕ∥ − ϕ⊥ is controlled by a Lock-in oscillator

voltage output (Zurich Instruments HF2LI). The beam then travels along 15 meters of PM fiber,

whereupon it is collimated and focused by a long-working-distance objective through a quarter-

wave plate (QWP) and onto a sample. The QWP is oriented such that one beam is converted to
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left-circularly-polarized light and the other is converted to right-circularly-polarized light. The

beams then reflect off of a sample, exchanging the handedness of the beams and, if the sample is

magnetic, imparting both the effects of circular dichroism and circular birefringence; the latter

is equivalent to a Kerr rotation of linearly-polarized light. Upon reflection, the two beams (now

exchanged) backpropagate and acquire a net phase difference of ϕm[sin(ω(t + τ) − sin(ω(t)]

at the EOM, where τ is the time it takes for the light to make the round trip back. The two

beams interfere to produce homodyne intensity oscillations at the EOM frequency. The back-

propagating beams are then routed by the beam splitter and focused into a broadband avalanche

photodetector (APD). The APD’s output voltage is measured by a lock-in amplifier that refer-

ences the driving frequency of the EOM, ω. To simplify the interpretation of the signal, the

frequency ω is tuned such that ω = π/τ (39) [2π(3.347 MHz)] for our apparatus). To maximize

the Kerr rotation signal, the phase modulation depth ϕm is set by tuning the magnitude of AC

voltage (Vpk = 0.65 V) applied to the EOM so that ϕm = 0.92 (40). With these simplifying cal-

ibrations, the Kerr rotation signal can be expressed as (see Supplementary Information section

II for a full derivation)

θk ≈
1

2
arctan

[︃
0.543

V ω
APD

V 2ω
APD

]︃
, (10)

where V ω
APD(V

2ω
APD) is the APD voltage measured at the first- and second-harmonic of the EOM

frequency. We quantify our Kerr rotation noise to be less than 5 µRad/
√

Hz using a low power

density on the sample (2 µW/µm2), comparable to the noise in ref. (40) with the similar average

power on the APD detector (∼1 µW). The low power ensures that the laser does not substantially

heat the sample. More details can be found in the Supplementary Information sections II & III.
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Figure 1: Schematic of the Sagnac interferometer. The left inset shows the Sagnac signal
for out-of-plane magnetic-field-swept hysteresis of a Pt(4 nm)/Co(1.15 nm)/MgO device with
out-of-plane anisotropy µ0Meff ≈ − 0.42 T; this is the same device for which we show data in
Figs. 2. The middle inset depicts the device structure and coordinate definitions.

18



Figure 2: Sagnac interferometry measurements of current-induced torque for a Pt(4
nm)/Co(1.15 nm)/MgO sample with perpendicular magnetic anisotropy. (A, B) The Sagnac
signals θk and ∆θk for an in-plane magnatic field applied in the X direction, for which ∆θk pro-
vides a measurement of the damping-like torque. (C, D) Corresponding signals for an in-plane
magnetic field applied in the Y direction, for which ∆θk provides a measurement of the field-
like torque. (E) Current-induced effective fields as a function of current density in the Pt layer,
with linear fits to extract the spin-torque efficiencies.
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Figure 3: Sagnac interferometry measurements of current-induced torque for a Pt(4
nm)/Co(1.42 nm)/MgO sample with in-plane magnetic anisotropy. (A) ∆θk as a function of
in-plane magnetic field angle ϕH at 0.1, 0.15, and 0.2 T. (B) Amplitudes of the cosϕH compo-
nent for different applied field magnitudes. The linear slope as a function of 1/µ0(H + Meff)
allows extraction of the damping-like effective field based on Eq. (9).

20



Figure 4: Final results for the damping-like and field-like spin-orbit-torque efficiencies for
the sample series Substrate/Ta(1.5)/Pt(4)/Co(0.85−2.1)/MgO(1.9)/Ta(2). The numbers in
parentheses are thicknesses in nanometers. The pink line in (B) indicates the estimated Oersted
torque based on the calculated current density. The larger error bars for the IP series compared
to the PMA series in (A) are primarily a result of greater sample-to-sample scatter in the VSM
measurements of MstCo rather than uncertainty in the Sagnac measurements.
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I. Details of the Sagnac Interferometer

We begin this section by recommending the work by Fried et al., Rev. Sci. Instrum. 85,

103707 (2014) (40). This paper served as the most helpful resource when building and debug-

ging our interferometer, and many of the details in this section are inspired by the helpful level

of detail in that work. We will show again here Fig. 1 from our main, but we will discuss some

of the finer details of the apparatus. The entire setup, including all of the optics, sample stage,

Figure S1: Schematic of the Sagnac interferometer. Main text Fig. 1 repeated here for ease
of viewing.

and magnet are housed on a floating optical table and enclosed in a rigid polycarbonate box

affixed with sound-proof foam to block air currents and external vibrations.

For the source, we use a 770 nm SLED, which has a broad (≈ 15 nm) linewidth. In our

original design we used an ultra-narrow-linewidth 780 nm diode, but we found that the broad-

linewidth source reduced our noise by about a factor of two; this is because the small-linewidth

source has a long beam coherence length. Therefore, the forward-going beam remained co-

herent with the reflected beam upon cycling through the apparatus, which gave them the op-

portunity to interfere and produce spurious interference signals not related to the Kerr rotation.

The SLED diode and most of its pigtailed fiber are stored inside a closed styrofoam box within
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the polycarbonate box to further prevent temperature fluctuations and air currents. We use two

Faraday isolators that provide > 65 dB of isolation to protect the diode from backreflections.

Backreflections into the diode affect not only the longevity of the diode itself, but also can cause

spurious intensity/spectral variations.

Next, the EOSpace fiber electro-optic phase modulator (EOM) is driven by a 50-MHz-

bandwidth Zurich Instruments HF2LI lock-in amplifier and all of the signals (transport and

optics) are detected on the same lock-in using its multiple demodulators. Our EOM is perma-

nently pigtailed with a 5 m fiber and we append a 10 m fiber to it for a total length of 15 m.

Both the EOM and the fiber are stored inside a closed styrofoam box (not the same box as the

diode) within the polycarbonate box.

Upon exiting the fiber above the objective stage, the beam is collimated by a screw-on

FC/APC lens adapter to a beam diameter of about 8 mm. We choose such a large beam diameter

to maximize the filling of the back aperture of the objective lens and reduce our beam spot size

on the sample. The beamsplitter after the collimating lens is retractable. It is illuminated with

white light and inserted only to align the desired sample properly under the beam. The beam

does not go through this beamsplitter during measurement. For the objective we choose to use

a 20× near-IR ultra-long-working-distance objective lens to minimize the spot size, maximize

the numerical aperture and field-of-view, and leave enough room for probes to make contact to

the sample. The quarter-wave plate (QWP) is placed after the lens so that light is still linearly

polarized while going through the lens. Most lenses have non-negligible Verdet constants so

this is very important for reducing the spurious Faraday rotation incurred by the beam while it

traverses the lens.

Our beam spot size on the sample is approximately 6 µm and our power incident on the

device is < 70 µW. We find that optical powers exceeding a few hundred µW can begin to

show local heating effects on the sample as indicated, e.g., as a change in the magnetic coerciv-

ity. To accommodate such a low-power beam, we detect the signal with a 50-MHz-bandwidth

avalanche photodiode (APD) because it maintains a very low noise equivalent power (NEP)

while sacrificing its saturation power, which we remain safely below.
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II. Derivation of the Sagnac MOKE Signal

A. Measurement of the Kerr rotation angle θk in the absence of applied
current

We will use the language of Jones matrices to derive Eq. 1 in the main text. This formalism

allows us to calculate the behavior of two orthogonal modes of light at the same time. First, we

define some general Jones matrices:

P(θp) =
(︃

cos2 θp sin θp cos θp
sin θp cos θp sin2 θp

)︃
(11)

WP(θwp, ϕwp) =

(︃
cos ϕwp

2
+ i sin ϕwp

2
cos 2θwp i sin ϕwp

2
sin 2θwp

i sin ϕwp

2
sin 2θwp cos ϕwp

2
− i sin ϕwp

2
cos 2θwp

)︃
(12)

EOM(t) =

(︃
eiϕ∥ sinωt 0

0 eiϕ⊥ sinωt

)︃
(13)

S =
1

2

⎛⎝ e−iδ+

r+
+ e−iδ−

r−
i
(︂

e−iδ+

r+
− e−iδ−

r−

)︂
−i
(︂

e−iδ+

r+
− e−iδ−

r−

)︂
e−iδ+

r+
+ e−iδ−

r−

⎞⎠ . (14)

Here, our Jones vectors are in the basis of the laboratory: P(θp) is a polarizer oriented at an

angle θp. WP(θwp,ϕwp) is a ϕwp-wave plate oriented at an angle θwp. EOM is the electro-optical

phase modulator that applies a voltage-dependent phase (ϕ⊥ or ϕ∥ depending on whether the

polarization of the incoming beam is along or perpendicular-to the optical axis of the EOM

crystal) at a frequency of ω. In the main text we say that the EOM only applies the phase to

the beam traveling along the slow axis of the fiber; this is how the EOMs are designed, but our

Jones matrix is more general to account for some phase shifts in the fast-axis beam, as well. Our

final result is unchanged by this. S is the effect of the sample, which quite generally, has left-

and right-circularly polarized light as its eigenvectors and applies an unequal phase (δ+ ̸= δ−;

“circular birefringence”) and an unequal Fresnel reflectance (r+ ̸= r−; “circular dichroism”) to

each of the two helicities of light. The effect of the sample reflectance exchanging the hand-

edness of circularly polarized light is not captured by S, but will rather be accomplished by a

complex conjugation later.

At the start of the beam path for the interferometer, unpolarized light exits our laser and

encounters a polarizer, P, oriented such the power lost through cross-polarization of the source
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beam is minimized (the source diode outputs partially-polarized light). We will assume without

loss of generality that polarizer angle is 0◦ so the starting point for our Jones calculus is

v =

(︃
1
0

)︃
.

From our beam path we can simply apply the time-ordered Jones matrices of our optical com-

ponents:

P(0)WP(π/8, π)EOM(t+ τ)WP(π/4, π/2) [S WP(π/4, π/2)EOM(t)WP(π/8, π)v]∗ . (15)

In words, we begin with linearly-polarized light that is polarized at 0◦ (v). The beam goes

through a half-wave plate that rotates the polarization of the beam to 45◦, which is equivalent

to to two superimposed beams, one horizontally polarized and one vertically polarized. Sub-

sequently, the light goes through an EOM at time t, then through a quarter-wave plate, reflects

from the sample, the LCP and RCP beams exchange due to the reflection (this is captured by the

complex conjugation), goes through the quarter-wave plate again, through the EOM at a (now

later) time t+ τ , and finally through the polarizer. We define τ as the time it takes for the beam

to travel from the EOM to the sample and back. The result of the above matrix product is

(︃
ie−iδ−+ϕ∥ sinωt+ϕ⊥ sin[ω(t+τ)]

2 r−
+

ie−iδ++iϕ⊥ sinωt+ϕ∥ sin[ω(t+τ)]

2 r+

)︃(︃
1
0

)︃
. (16)

In our experiment, we specifically tune the EOM frequency, ω, such that τ = π/ω (39, 40);

this results in the simplification:(︃
ie−iδ−+iϕm sinωt

2 r−
+

ie−iδ+−iϕm sinωt

2 r+

)︃(︃
1
0

)︃
(17)

where ϕm is the modulation depth ϕm := ϕ∥ − ϕ⊥. We detect the time-averaged intensity of

light so we take half of the complex square of the above to get:

1

8 r2−
+

1

8 r2+
+

1

8 r−r+

(︁
ei(δ+−δ−)e2iϕm sinωt + e−i(δ+−δ−)e−2iϕm sinωt

)︁
. (18)

Next, we define

θk := (δ+ − δ−)/2
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Note θk is the angle linearly polarized light would rotate after hitting the sample, as one can see

by applying the sample matrix (Eq. 14) to any linearly polarized Jones vector.

Applying this definition and the Jacobi-Anger expansion to the light-intensity expression,

we get

1

8 r2−
+

1

8 r2+
+

1

8 r−r+

(︄
e2iθk

∞∑︂
n=−∞

Jn(2ϕm)e
inωt + e−2iθk

∞∑︂
n=−∞

Jn(2ϕm)e
−inωt

)︄
. (19)

To measure the first harmonic signal, we use a lock-in amplifier to isolate the component

proportional to sin(ωt)

Iω =
1

T

∫︂
T

dt

[︄
1

8 r2−
+

1

8 r2+
+

1

8 r−r+

(︄
e2iθk

∞∑︂
n=−∞

Jn(2ϕm)e
inωt + e−2iθk

∞∑︂
n=−∞

Jn(2ϕm)e
−inωt

)︄]︄
sinωt

=
1

2iT

∫︂
T

dt

[︄
1

8 r−r+

(︄
e2iθk

∞∑︂
n=−∞

Jn(2ϕm)e
inωt + e−2iθk

∞∑︂
n=−∞

Jn(2ϕm)e
−inωt

)︄]︄ [︁
eiωt − e−iωt

]︁
=

1

2iT

∫︂
T

dt

[︄
1

8 r−r+

(︄
e2iθk

∞∑︂
n=−∞

Jn(2ϕm)
(︁
ei(n+1)ωt − ei(n−1)ωt

)︁
+e−2iθk

∞∑︂
n=−∞

Jn(2ϕm)
(︁
e−i(n−1)ωt − e−i(n+1)ωt

)︁)︄]︄
.

(20)

The only terms in the sums that will survive the integration are those for which the complex

time-dependent exponentials are identically 1 (i.e. when n+ 1 = 0 or n− 1 = 0):

Iω =
1

2iT

∫︂
T

dt

[︃
1

8 r−r+

[︁
e2iθk (J−1(2ϕm)− J1(2ϕm)) + e−2iθk (J1(2ϕm)− J−1(2ϕm))

]︁]︃
(21)

=
1

T

∫︂
T

dt
1

8 r−r+
[sin 2θk (J−1(2ϕm)− J1(2ϕm))] (22)

=
1

8 r−r+
[sin 2θk (J−1(2ϕm)− J1(2ϕm))] (23)

= −sin 2θkJ1(2ϕm)

4 r−r+
. (24)

Here we applied the J−1 = −J1 property of the Bessel-J functions. We can compute the second

harmonic (the cos 2ωt component) using an analogous procedure
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I2ω =
cos 2θkJ2(2ϕm)

4 r−r+
. (25)

From these two expressions, we can solve for θk and also normalize out all of the dependencies

on the Fresnel amplitude coefficients (r+ and r−) by simply taking the ratio of the two signals:

θk = −1

2
arctan

[︃
J2(2ϕm)I

ω

J1(2ϕm)I2ω

]︃
. (26)

For our measurements, we maximize the first harmonic signal, because it is proportional to

the quantity we want to measure (θk). By tuning ϕm to maximize J1(2ϕm), we get ϕm = 0.92

(40) and J2(2ϕm)/J1(2ϕm) ≈ 0.543. The above equation and aforementioned constant are

exactly Eq. 1 in the main text.

B. Measurement of changes in the Kerr angle ∆θk due to current-induced
magnetic deflections

To derive a similar result with an AC applied current, we can begin at Eq. (19) with an added

oscillation from a time-dependent θk that results from current-induced tilting of the magnetic

moment at the current frequency ωe:

1

8 r−r+

(︄
e2i(θk+∆θk sinωet)

∞∑︂
n=−∞

Jn(2ϕm)e
inωt + e−2i(θk+∆θk sinωet)

∞∑︂
n=−∞

Jn(2ϕm)e
−inωt

)︄
.

(27)

We can apply the Jacobi-Anger expansion again

1

8 r−r+

(︄
e2iθk

∞∑︂
n,m=−∞

Jn(2ϕm)Jm(2∆θk)e
i(nω+mωe)t + e−2iθk

∞∑︂
n,m=−∞

Jn(2ϕm)Jm(2∆θk)e
−i(nω+mωe)t

)︄
.

(28)
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Now we demodulate this signal at the sideband frequency ω±ωe. We will only show the ω+ωe

derivation for sign simplicity, but the result is identical for the upper and lower sidebands:

Iω+ωe =
1

T

∫︂
T

dt
1

8 r−r+

(︄
e2iθk

∞∑︂
n,m=−∞

Jn(2ϕm)Jm(2∆θk)e
i(nω+mωe)t+

e−2iθk

∞∑︂
n,m=−∞

Jn(2ϕm)Jm(2∆θk)e
−i(nω+mωe)t

)︄
× cos (ωt+ ωet)

=
1

2T

∫︂
T

dt
1

8 r−r+

(︄
e2iθk

∞∑︂
n,m=−∞

Jn(2ϕm)Jm(2∆θk)e
i(nω+mωe)t+

e−2iθk

∞∑︂
n,m=−∞

Jn(2ϕm)Jm(2∆θk)e
−i(nω+mωe)t

)︄
×
(︁
eωt+ωet + e−ωt−ωet

)︁
(29)

Again, the only complex exponentials that will survive integration are the ones where the expo-

nent is identically zero. This leaves us with:

Iω+ωe =
1

16 r−r+

[︁
e2iθk (J−1(2ϕm)J−1(2∆θk) + J1(2ϕm)J1(2∆θk))+

e−2iθk (J−1(2ϕm)J−1(2∆θk) + J1(2ϕm)J1(2∆θk))
]︁

=
1

4 r−r+
cos 2θkJ1(2ϕm)J1(2∆θk).

(30)

In our experiments ∆θk is very small so we use that J1(x) ≈ x/2 for small x

Iω+ωe =
cos 2θkJ1(2ϕm)

4 r−r+
∆θk. (31)

Finally, we take the ratio of this signal with the second harmonic (at ω) derived earlier to reach

a simple expression for the current-induced change in the Kerr signal

∆θk =
J2(2ϕm)I

ω+ωe

J1(2ϕm)I2ω
. (32)

All of the ∆θk data presented are determined using this equation.

III. Absence of Quadratic MOKE effects

Quadratic MOKE (qMOKE) is a magneto-optic effect that is second-order in magnetiza-

tion, specifically, the in plane moments. This section justifies analytically and experimentally

9



our main-text claim that qMOKE negligibly impacts our Sagnac signals, despite appearing in

conventional polar-Kerr rotation measurements. In those measurements, linearly polarized light

illuminates the sample at normal incidence. Upon reflection, the polarization rotates by (28)

θk,linear = κmz + βQmxmy (33)

where κ is still the MOKE coupling parameter, βQ is the qMOKE coupling parameter and m̂ is

the magnetization unit vector. The components of m̂ are defined in coordinates such that z is

still the film normal, but now x lies along the plane of light polarization.

In contrast, the next section derives the Sagnac signal to be

θk,Sag = κmz + 2βQmxmy sin (κmz)
[︁
0.71 cos (2κmz)− 0.62 cos2 (κmz)

]︁
+O

(︁
β2
Q

)︁
. (34)

The first term is equivalent to θk := (δ+ − δ−)/2 defined previously. The second term comes

from qMOKE. However, unlike θk,linear, the ratio of the qMOKE term to the polar MOKE

term is only of order βQκ/κ = βQ (not βQ/κ). Since βQ is of order 10−4 (28), the qMOKE

contribution should be negligible compared to the polar MOKE contribution to the Sagnac

Signal.

A. Calculation of the qMOKE contribution

The effect of qMOKE on the Sagnac signal can be derived by extending our Jones matrix

calculation (Eq. 15), with two changes: a new sample matrix and mirror operator:

P(0)WP(−π/8, π)EOM(t+ τ)WP(−π/4, π/2)mirror [SQ WP(π/4, π/2)EOM(t)WP(π/8, π)v] .
(35)

First, we replace the sample reflection matrix S used previously, with a new sample reflec-

tion matrix SQ that includes the quadratic effects. We start with our original sample matrix

(Eq. 14), and for simplicity assume no circular dichroism (ξ := 1/r+ = 1/r−) . We set the

phase shifts to be equal (δ+ = −δ− = κmz) without loss of generality, because unequal phase

shifts only cause a global phase, which is irrelevant and also can be absorbed into the prefactor

ξ. Finally we add in the quadratic effect term, following Fan et al. (28). For the coordinate
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frame where the in-plane magnetization points along the x direction, the sample matrix includ-

ing quadratic MOKE can be written

Mk = ξ

(︃
cos (κmz) +

1
2
βQ sin2 (θ) sin (κmz)

− sin (κmz) cos (κmz)− 1
2
βQ sin2 (θ)

)︃
(36)

where θ is the polar angle of the magnetization. Note that this matrix is identical to Fan et

al. (28) to lowest order in κ and βQ. Next, because the magnetic moment may point in other

directions besides the x-z-plane we change the basis of MK by a rotation about the z axis (28).

To do this, we apply the rotation matrix R, defined as

R(ϕ) =

[︃
cosϕ − sinϕ
sinϕ cosϕ

]︃
, (37)

where ϕ is the azimuthal angle of the magnetization, to yield the general sample reflection

matrix (in the linearly-polarized laboratory basis)

SQ = R(ϕ) ·MK ·R(−ϕ)

= ξ ×
(︃

cos (κmz) +
1
2
βQ sin2 (θ) cos (2ϕ) sin (κmz) + βQ sin2 (θ) sin (ϕ) cos (ϕ)

βQ sin2 (θ) sin (ϕ) cos (ϕ)− sin (κmz) cos (κmz)− 1
2
βQ sin2 (θ) cos (2ϕ)

)︃
(38)

Note that for ferromagnets with PMA or easy-plane anistropy where the in-plane magnetization

follows the in-plane applied field such as in our case: ϕ = ϕH + ϕframe. ϕframe is added to

account for the arbitrary rotation of the reference frame of light polarization relative to the

current direction due to the fiber. The above equation can also be expressed equivalently in

terms of the Cartesian components of the magnetization unit vector:

SQ = ξ ×
(︃

cos (κmz) +
1
2
βQ

(︁
m2

x −m2
y

)︁
mxmyβQ + sin (κmz)

mxmyβQ − sin (κmz) cos (κmz)− 1
2
βQ

(︁
m2

x −m2
y

)︁ )︃ . (39)

The second change between Eq. (15) and Eq. (35) is that the mirror operator replaces the

complex conjugation. qMOKE requires this generalization because the complex conjugate only

mirrors circularly polarized light, not linearly polarized light. qMOKE produces linear light

components, even when illuminated with circular light, so it is necessary to mirror those com-

ponents upon reflection as well. The mirror operator is

mirror =
(︃

1 0
0 −1

)︃
. (40)
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which flips the sign of the y-component of the electric field. This choice of mirroring axis is

physically irrelevant; it only causes a global phase shift and changes the angles of the optical

elements through which the light back-propagates. We chose to mirror over the x axis, so that

the angles of the optical elements simply pick up a minus sign.

The above two changes to the Jones matrices result in the following Jones vector at the

detector:

−iξ

(︃
cos (ϕm sin(tw) + κmz) +

1

2
βQ sin2 (θ) sin (2ϕ)

)︃(︃
1
0

)︃
. (41)

The first term here matches the previously calculated version (Eq. (17)), within the assumptions

we made. The second term represents the quadratic effects, which have no dependence on

the time-dependent phase modulation from the electro-optic modulator. If we were able to

make a direct measurement of the modulated part of the electric field, qMOKE would give

no contribution. However, we measure the intensity, so the qMOKE signal contributes to the

modulated intensity upon multiplying with the other term while taking the complex square.

Nevertheless, this results in a much smaller contribution to the Sagnac signal from qMOKE

than might be anticipated intuitively.

Now that we have the Jones vector incident on the detector, we repeat the mathematics of

section A. to derive the new Sagnac signal:

θk,Sag =
1

4
tan−1

(︄
2ϕmJ2 (2ϕm) sin (κmz)

(︁
βQJ1 (ϕm) sin

2 (θ) sin (2ϕ) + J1 (2ϕm) cos (κmz)
)︁

|ϕm| J1 (2ϕm)
(︁
2βQJ2 (ϕm) sin

2 (θ) sin (2ϕ) cos (κmz) + J2 (2ϕm) cos (2κmz)
)︁)︄ .

(42)

In the case of no quadratic effects (βQ = 0), this expression reduces to the first order Kerr

rotation:

θk,Sag = mzκ. (43)

We can also expand the full expression for θk,Sag to first order in βQ:

θk,Sag = κmz+βQ sin2 (θ) sin (2ϕ) sin (κmz)

(︃
J1 (ϕm) cos (2κmz)

J1 (2ϕm)
− 2J2 (ϕm) cos

2 (κmz)

J2 (2ϕm)

)︃
+O

(︁
β2
Q

)︁
(44)

and, upon substituting in the modulation depth ϕm = 0.92 used for the Sagnac measurement,

θk,Sag = κmz + βQ sin2 (θ) sin (2ϕ) sin (κmz)
(︁
0.71 cos (2κmz)− 0.62 cos2 (κmz)

)︁
+O

(︁
β2
Q

)︁
.

(45)
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From this we conclude that a qMOKE signal would have a dependence on the angle of the

in-plane magnetization ∝ mxmy ∝ sin(2ϕ) ∝ sin(2ϕH), and we have reached the expression

of Eq. (34).

B. Experimental limit on the qMOKE contribution

To test experimentally for any contribution of qMOKE to the Sagnac signal, we perform a

measurement analogous to a calibration of the electrical planar Hall effect – we directly measure

the change in the Sagnac signal as we apply an in-plane magnetic field to tilt the PMA magnet

partially in-plane and then rotate the field angle ϕH . Supplementary Fig. S2 shows the result

of these measurements for (a) the electrical Hall signal and (b) the Sagnac signal, each for 3

different strengths of applied magnetic field. The data for this figure were collected on the same

Pt(4 nm)/Co(1.15 nm) sample discussed in the main text (i.e, Figs. 1-2), which had µ0Meff ≈
− 0.42 T, as calculated by the parabolic fits in the main text.

As explained above (Eq. (34)), if there were any measurable contribution from qMOKE, we

should expect a signal ∝ sin(2ϕH), i.e., with a π periodicity. Such a π-periodic signal is clearly

visible in the electrical planar Hall measurement. However the ϕH dependence of the Sagnal

signal is much weaker, and it is 2π-periodic, not π-periodic. Therefore, no contribution from

qMOKE is measurable.

Based on the calculation above (Eq. (34) or (45)), with the parameters κ = 4.9×10−3 (from

the hysteresis curve in Fig. 1 of the main text), βQ = 1.1× 10−4 (based on data for Pt/Py from

X. Fan et al. (28)), and θ = arcsin(H/|Meff|), the expected amplitude of the sin(2ϕH) signal for

the |µ0H| = 75 mT scan is approximately 1.4 nano-radians. This is indeed orders of magnitude

less than the experimental noise in Fig. S2(b), so in agreement with the experiment we should

not expect any visible qMOKE contribution.

The π-periodic signal that is visible in Fig. S2(b) can be understood instead as due to a small

misalignment of the applied magnetic field from the plane of the sample. The first-harmonic
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Figure S2: The electrical Hall signal and the Sagnac signal for sweeps of in-plane field
angle ϕH . (A) The measured first-harmonic electrical Hall signal, V ω

XY due to a combination of
the anomalous and planar Hall effects and (B) the Kerr rotation signal measured by the Sagnac
interferometer, θk, vs. the angle of applied magnetic field within the plane of the magnet. Three
different strengths of applied magnetic field are shown and they are artificially vertically offset
in (B) for clarity. The overlayed lines are best-fits to Eq. (47). The data are collected for
the Pt(4 nm)/Co(1.15 nm) sample with µ0Meff ≈ − 0.42 T; this is the same device for which
measurements are highlighted in the main text Fig. 2.

Hall voltage signal as a function for small tilt angles has the form (6, 35)

V ω
XY

∆I
=RAHE cos

(︃
H

|Meff|

)︃
+RPHE sin

2

(︃
H

|Meff|

)︃
sinϕH cosϕH

+RAHE
H2 sin θoff

(Meff)2
sin

(︃
H

|Meff|

)︃
cos(ϕH − ϕoff). (46)

In analogy with Hall measurements, for a field rotation axis misaligned by an angle θoff relative

to the sample normal direction, the polar-MOKE Sagnac signal should have the dependence for

small tilts (35)

θk ≈ κ cos

(︃
H

|Meff|

)︃
+ κ

H2 sin θoff

(Meff)2
sin

(︃
H

|Meff|

)︃
cos(ϕH − ϕoff). (47)

Fits of these curves for both the Hall and Sagnac measurements are shown in Supplementary

Fig. S2. Both sets of data indicate a field/sample tilt of θoff ∼ 1◦ (Supplementary Fig. S3).

This is most likely caused by a slight misalignment of the projected-field magnet (GMW 5201)

center.
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Figure S3: Field misalignment angle calibration. The measured field misalignment angle,
θoff, versus the strength of applied magnetic field applied nominally in the plane of the device.
θoff = 0◦ means that the magnetic field is perfectly aligned in the device plane.

IV. Expression of Kerr rotation θK and current induced changes
in the Kerr angle ∆θK .

In this section, we will derive the field dependence of the Kerr rotation and current induced

changes in the Kerr angle, coupled to just the out-of-plane component of the magnetic mo-

ment. To do this, we follow a procedure similar to those used in refs. (6, 35) for deducing the

equilibrium positions and current-induced modulation amplitudes of the magnetization.

We begin the derivation by writing the equilibrium magnetic energy divided by the total

magnetic moment in the absence of any applied current

Feq(θ, ϕ)

Ms

= −µ0m ·H+
µ0Meff

2
(m · Ẑ)2

= −µ0H sin θ sin θH cos(ϕ− ϕH)−
µ0

2
cos θ(2H cos θH −Meff cos θ). (48)

Here Feq is the equilibrium free energy, Ms is the saturation magnetization, m is the normal-

ized vector magnetic moment, H is the vector external magnetic field, and µ0Meff = µ0Ms −
2K⊥/Ms is the effective magnetization. PMA is indicated by a negative Meff. The angles in the

second line denote the direction of external applied magnetic field when subscripted with an H

and refer to the direction of the magnetic moment when they lack a subscript. Minimization of

this free energy yields the equilibrium magnetic orientation θ0,ϕ0. As we apply an AC current
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the SOTs produced will act as effective fields that reorient the magnetic moment. This is a

“slow” process (ṁ ≪ γ|H|) so it may be described as an effective modification of equilibrium

free energy (Eq. (48)). With the perturbation from a general, current-induced effective magnetic

field, ∆H (assumed small compared to H), the free energy becomes

F (θ, ϕ)

Ms

=
Feq(θ, ϕ)

Ms

− µ0m ·∆H

≈
Feq(θ0, ϕ0)

Ms

+
1

2Ms

∂2Feq

∂θ2

⃓⃓⃓
θ0,ϕ0

(∆θ)2 +
1

2Ms

∂2Feq

∂ϕ2

⃓⃓⃓
θ0,ϕ0

(∆ϕ)2 +
1

Ms

∂2Feq

∂θ∂ϕ

⃓⃓⃓
θ0,ϕ0

∆θ∆ϕ

− µ0(sin θ cosϕ∆HX + sin θ sinϕ∆HY + cos θ∆HZ).

(49)

(The first derivatives of Feq are zero when evaluated at the equilibrium orientation.) We have

included the cross second derivative in this expression, but when evaluated it gives zero.

The new magnetic orientation in the presence of the current-induced magnetic field can then

be calculated as a minimization problem

∂F

∂θ
=

∂F

∂ϕ
= 0. (50)

Here we consider the case of a PMA magnet when the external field is in-plane (θH = π
2
) and

assume negligible within-plane anisotropy so that the in-plane projection of the equilibrium

magnetic moment is aligned with the external field i.e. ϕ0 = ϕH .

The solutions of Eq. (50) to first order in the current-induced field yield

∆θ =
cos θ0(∆HX cosϕH +∆HY sinϕH)−∆HZ sin θ0

−Meff cos 2θ0 +H sin θ0
(51)

∆ϕ =
−∆HX sinϕH +∆HY cosϕH

H
. (52)

The solution for the equilibrium polar angle of the magnetization is

∂Feq

∂θ

⃓⃓⃓
θ0,ϕ0

= −µ0H cos θ0 − µ0Meff sin θ0 cos θ0 = 0 (53)

θ0 =

{︄
arcsin( H

|Meff|
) H < |Meff|

π
2

H ≥ |Meff|.
(54)

To get from the above equations to the full expected Sagnac MOKE signal (Eqs. (4), (5) and (9)

in the main text) we begin with the expression for the polar MOKE signal in the linear regime,
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which is only sensitive to the out-of-plane component of the magnetization mz

θk = κmZ . (55)

We let θ consist of an equilibrium contribution due to the external magnetic field and a time-

dependent contribution due to the AC-current-induced spin-orbit fields: θ → θ0 + ∆θ with

∆θ ≪ 1 and then Taylor expand

θk +∆θk ≈ κ (cos θ0 −∆θ sin θ0) . (56)

For the tilting measurements on samples with perpendicular magnetic anisotropy, sin θ0 =

H/|Meff| (Eq. 54) and ϕ0 = ϕH . Using the expression for ∆θ derived previously (Eq. 51),

and separating the equilibrium and current-induced signals in Eq. (56), in the regime of weak

applied fields H ≪ |Meff| we get for small tilts about the ± mz directions

θk =± κ

(︃
1− H2

2M2
eff

)︃
(57)

∆θk =∓ κ (∆HX cosϕH +∆HY sinϕH)
H

M2
eff
. (58)

For in-plane field azimuth sweep measurements on samples with in-plane magnetic anisotropy,

θ0 = π
2

and ϕ0 = ϕH . Substituting in the expression for ∆θ from Eq. (51), and considering the

current-induced term in Eq. (56), we get

∆θK =
κ∆HZ

H +Meff

=
κ∆HDL cosϕ

H +Meff
. (59)

V. Comparison of a Sagnac MOKE measurement and a con-
ventional polar-MOKE measurement for a PMA thin film

Here we present a comparison between the conventional polar MOKE method and Sagnac

MOKE interferometry for Ta/Co40Fe40B20 test samples with perpendicular magnetic anisotropy.

In Supplementary Fig. S4(a), out-of-plane magnetic hysteresis is measured using a conventional

polar MOKE setup for a Ta(4 nm)/Co40Fe40B20(0.65 nm) sample. In comparison, Supplemen-

tary Fig. S4(b) shows Sagnac MOKE interferometry readout on a similar CoFeB sample from
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the same wedge wafer with a slightly different thickness Ta(4 nm)/Co40Fe40B20(0.85 nm). The

difference in the coercivity field between Supplementary Fig. S4(a) and S4(b) is due to this

small difference in film thickness. One can visually observe that the signal-to-noise of the

Sagnac MOKE interferometry is a substantial improvement compared to conventional polar

MOKE. The linear background in polar MOKE readout (Supplementary Fig. S4(a)) comes

from the Faraday effect in the objective lens. Sagnac interferometry is insensitive to this effect

in the case that the quarter-waveplate is positioned between sample and the objective (40). Fur-

thermore in this data, the Sagnac took a single scan in ∼ 1 minute with a lock-in amplifier time

constant of 10 milliseconds, while the polar-MOKE took the average over 10 scans in a total of

∼ 10 - 20 minutes, with a lock-in amplifier time constant of 500 milliseconds.

Our conventional polar-MOKE setup mimics the setup of (30) with the only difference of

using a Helium-neon laser as the light source. A linearly-polarized beam is incident normal

to the sample through an objective lens with a numerical aperture of 0.4, focusing the beam

to a circular spot with a full width at half maximum of ∼ 1 µm. The rotation of the reflected

beam polarization is detected by a balanced photodiode bridge with a noise equivalent power

of 1.1 pW/
√

Hz, which gives a readout noise of ∼ 400 µRad/
√

Hz for the conventional MOKE

setup (Supplementary Fig. S4(a)). In contrast, our Sagnac MOKE readout noise (Supplemen-

tary Fig. S4(b)) is less than 5 µRad/
√

Hz. As we noted in the main text, while conventional

MOKE can achieve comparable resolution with external modulation of magnetic field, electric

field, or current (30, 31), these methods are not applicable for measuring hysteresis curves of

ferromagnets.

VI. Pt Sample Details

A. Wedge Thickness

All samples measured are grown by DC-magnetron sputtering onto a high-resistivity, surface-

passivated Si/SiO2 wafer. The stacks are Si/SiO2/Ta(1.5)/Pt(4)/Co(tCo)/MgO(1.9)/Ta(2) where

all of the numbers in parentheses are layer thicknesses in nanometers. The bottom Ta is used

as a seed layer to promote smooth growth of the films, and the top MgO/Ta stack is used to

cap the Co and minimize oxidation of the Co Layer. Both the bottom and capping Ta layers

18



Figure S4: Comparison between conventional MOKE and Sagnac readouts. (A) Conven-
tional polar MOKE readout compared to (B) Sagnac MOKE interferometry readout on a CoFeB
film with perpendicular magnetic anisotropy.

are sufficiently resistive that they carry negligible current density compared to the Pt and Co

layers. By strategically stopping the wafer rotation during sputter deposition, we grow the Co

layer with a thickness-gradient “wedge”. The wedge’s thickness gradient is along the direction

of current flow (X-axis) for all devices measured. The Co thickness as a function of device

distance from the wafer flat is shown in Supplementary Fig. S5, for both PMA series and IP

series shown in the main text. This calibration is performed using atomic-force microscopy

measurements at different points on a test wafer, followed by a polynomial fit and interpolation

to get the thickness variation across the full wafer.

Figure S5: Co thin wedge film calibration. The thickness of the Co “wedge” film as a function
of the distance from the 4-inch wafer flat for (A) PMA series and (B) IP series.
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B. Film Conductivity

We characterize the electrical conductances of our films by measuring the four-point resis-

tance on many devices across the Co-wedge wafer as shown in Supplementary Fig. S6. In the

Figure S6: Electrical conductance measurements. Measured 4-point conductance of the fab-
ricated devices as a function of the Co film thickness for (A) the PMA series and (B) the IP
series. The red line is a fit to the linear regime of the data where a parallel resistor model of the
HM/FM stack is appropriate.

very low Co thickness regime (∼ 0.4 nm), the Co likely does not yet form a continuous film on

top of the Pt so we expect the conductance measured here is entirely due to that of a bare Pt.

As the Co thickness is increased, the conductance decreases due to increased surface scattering

of conduction electrons in the Pt from the growing Co layer. In the regime above 0.8 nm of

Co, the conductance is linear in the Co thickness, which is the expected behavior of a simple

parallel-resistor model. We fit a line to the linear regime, the slope of which is the (inverse)

resistivity of Co: 9.59 µohms cm for the PMA series and 25.26 µohms cm for the IP series. We

estimate the resistivity of the 4 nm Pt layer adjacent to an established Co layer as corresponding

approximately to the conductivity value at the minimum of the GXX (as indicated in the figure):

40 µohms cm for PMA series and 53.9 µohms cm for IP series. All of the Pt/Co/MgO samples

for which we performed measurements of current-induced torque have Co layers thicker than

0.8 nm.
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C. Magnetometry

To find the saturation magnetization Ms of the Co, we measure the magnetic moment on 3

mm × 3 mm thin films diced from the wafer adjacent to the patterned devices with vibrating

sample magnetometry (VSM). The magnetic moment it measures is (µ0MsVolume). If we

divide this by area, we get µ0MstCo, which is an expression we use in the main text Eq. 8. To

get this quantity for each device, we plot it versus tCo. tCo and linearly interpolate with the line

shown in Supplementary Fig. S7.

Figure S7: Saturation magnetization measurements. Measured saturation magnetization per
unit area µ0MstCo as a function of Co thickness tCo.
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D. Calibration of effective magnetization of samples with in plane anisotropy
via spin-torque ferromagnetic resonance (ST-FMR) measurements

We adopt the conventional ST-FMR measurements to obtain the effective magnetization

Meff for devices with in-plane magnetic anisotropy. Meff is obtained by fitting the resonance

peak using the Kittel formula (ref. (41)). We measured µ0Meff for eight devices with varying

tCo values, as shown below marked in black dots. We then fit the µ0Meff versus tCo using a

second order polynomial, and use the fitted curve to interpolate µ0Meff for every device with

in-plane anisotropy measured in main text Fig. (4).

Figure S8: Effective magnetization calibration. Effective magnetization measured using con-
ventional ST-FMR for samples with in-plane magnetic anisotropy.
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