

1 **Anomalous ^{33}S in the lunar mantle**

2 **J. W. Dottin III^{1,2}, S.-T. Kim³, B. Wing⁴, J. Farquhar^{1,5}, C. Shearer⁶**

3 ¹Department of Geology, University of Maryland; College Park, MD 20742, USA.

4 ²Earth and Planets Laboratory, Carnegie Institution for Science; Washington, DC 20015, USA

5 ³School of Earth, Environment & Society, McMaster University; Hamilton, ON L8S 4K1,
6 Canada.

7 ⁴Department of Geological Sciences, University of Colorado Boulder; Boulder, CO 80302, USA.

8 ⁵Earth System Science Interdisciplinary Center; College Park, MD 20742, USA.

9 ⁶Institute of Meteoritics, University of New Mexico; Albuquerque, NM 87131, USA.

10 Corresponding author: James W. Dottin III (jdottin@carnegiescience.edu)

11 **Key Points:**

- 12 • Orange glass 74002 preserves negative $\Delta^{33}\text{S}$ values.
- 13 • The negative $\Delta^{33}\text{S}$ associated with orange glass is linked to photochemically processed
14 sulfur in the erupted source.
- 15 • Orange and black glass preserve different S isotope compositions that calls into question
16 their genetic relationship.

17

18 **Abstract**

19 The origin, evolution, and cycling of volatiles on the Moon are established by processes such as
20 the giant moon forming impact, degassing of the lunar magma ocean, degassing during surface
21 eruptions, and lunar surface gardening events. These processes typically induce mass dependent
22 stable isotope fractionations. Mass independent fractionation of stable isotopes has yet to be
23 demonstrated during events that release large volumes of gas on the moon and establish transient
24 lunar atmospheres. We present quadruple sulfur isotope compositions of orange and black glass
25 beads from drive tube 74002/1. The sulfur isotope and concentration data collected on the orange
26 and black glasses confirm a role for magmatic sulfur loss during eruption. The $\Delta^{33}\text{S}$ value of the
27 orange glasses is homogenous ($\Delta^{33}\text{S} = -0.029 \pm 0.004 \text{ ‰, 2SE}$) and different from the isotopic
28 composition of lunar basalts ($\Delta^{33}\text{S} = 0.002 \pm 0.004 \text{ ‰, 2SE}$). We link the negative $\Delta^{33}\text{S}$
29 composition of the orange glasses to an anomalous sulfur source in the lunar mantle. The nature
30 of this anomalous sulfur source remains unknown and is either linked to (1) an impactor that
31 delivered anomalous sulfur after late accretion, (2) sulfur that was photochemically processed early
32 in lunar evolution and was transported to the lunar mantle or (3) a primitive sulfur component that
33 survived mantle mixing. The examined black glass preserves a mass-dependent $\Delta^{33}\text{S}$ composition
34 ($-0.008 \pm 0.006 \text{ ‰, 2SE}$). The orange and black glasses are considered genetically related but, the
35 discrepancy in $\Delta^{33}\text{S}$ composition among the two samples calls into question their relationship.

36 **Plain Language Summary**

37 Using isotopic compositions measured in volatile elements, we can identify the processes linked
38 to isotopic fractionations and ultimately understand processes involved in a planets' evolution. We
39 present sulfur isotope compositions of lunar glass beads from drive tube 74002/1 and demonstrate
40 that an anomalous sulfur source was erupted from the lunar mantle with the orange glass beads.
41 The observed isotopic anomaly has an unknown origin, but it requires a source of sulfur that was
42 photochemically processed prior to its delivery to the lunar mantle and eruption ~ 3.6 Ga. Our results
43 suggest that the lunar mantle is not well mixed with respect to sulfur sources and requires future
44 multi-disciplinary investigations to reconcile these important observations.

46 **1 Introduction**

47 The earliest atmospheres on Earth and Mars, received contributions of volatiles from
48 volcanic outgassing, were optically thin, and dominated by ultra-violet (UV) photochemistry of
49 gaseous sulfur bearing molecules that results in mass-independent fractionation of sulfur (MIF-S)
50 (Dottin et al., 2018; Farquhar et al., 2000a, b; Franz et al., 2014). UV photochemistry was a critical
51 component in the cycling of sulfur on these planets. On Earth, MIF was especially important in
52 establishing sulfur budgets available for the preservation of life.

53 Lunar volcanism, consisting of both effusive and pyroclastic style eruptions, peaked at \sim
54 3.8 Ga and produced both local and global transient lunar atmospheres (Needham & Kring, 2017;

55 Saxena et al., 2017). On the Moon, sulfur was consistently contributed to the tenuous atmosphere
56 through magma ocean outgassing and volcanic eruptions (Needham & Kring, 2017; Saxena et al.,
57 2017). Whether or not the Moon shares a similar history with Earth and Mars of sulfur cycling
58 through UV photochemistry in its early evolution remains unknown. Determining a role for UV
59 photochemistry in early lunar atmospheres can shed light on the processes responsible for the
60 distribution of volatiles throughout lunar reservoirs and the establishment of their respective
61 volatile budgets.

62 To date, quadruple S-isotope measurements on materials from the peak of volcanism on
63 the moon only exist on lunar basalts and show no clear evidence of MIF-S. The sulfur isotope
64 composition of lunar basalts $\delta^{34}\text{S} = 0.62 \pm 0.20 \text{ ‰}$, $\Delta^{33}\text{S} = 0.002 \pm 0.010 \text{ ‰}$, $\Delta^{36}\text{S} = 0.030 \pm 0.13$
65 ‰ (Gargano et al., 2022; Kaplan et al., 1970; Kaplan & Petrowski, 1971; Rees & Thode, 1972,
66 1974; Thode & Rees, 1971, 1972; Wing & Farquhar, 2015). These data have been used to argue
67 the lunar (upper) mantle is well-mixed. However, the data exhibit more variability than what would
68 be expected for a homogenous population given the analytical uncertainties, and suggests there
69 may be previously unidentified processes involved in establishing the S-isotope composition of
70 the lunar basalts. Other materials erupted during the same period, such as lunar glass beads, have
71 not yet been analyzed for quadruple sulfur isotopes. Lunar volcanic glasses are thought to be
72 products of pyroclastic eruptions on the Moon (Heiken et al., 1974) and they contain a surface
73 coating rich in volatiles associated with condensed gas from the volcanic cloud (Weitz et al., 1999).
74 Sulfur is a major component of these surface coatings (Weitz et al., 1999) and it is possible that
75 the sulfur not only retains geochemical information associated with how it was processed while in
76 the volcanic plume, but also provides direct evidence of UV photochemistry that occurred in the
77 volcanic cloud prior to vapor condensation on the glass beads. Furthermore, sulfur also exists

78 within the glass beads (dissolved into the glass and within melt inclusions) (Saal et al., 2008; Saal
79 & Hauri, 2021) This sulfur is likely to retain geochemical information related to the composition
80 of the melt, providing insight into potential sulfur heterogeneity among multiple mantle sources
81 and sulfur behavior during eruption.

82 Here, we present sulfur isotope data on sieved fractions of lunar volcanic glass beads from
83 drive tube 74002/1. Each sample was sieved into nine grain size fractions and each fraction was
84 processed using the HF + CrCl₂ acid digestion technique (see methods for details) to efficiently
85 digest the glassy materials. Using this technique, we were able to extract sulfur trapped within the
86 interior of the glass beads and sulfur coated on the surface of the glass beads. This method is
87 different from the HCl digestion technique that (Ding et al., 1983) used on samples from the same
88 drive tube that likely only extracted sulfur from the grain surfaces. With our new sulfur isotope
89 measurements, we aim to (1) determine any compositional differences between sulfur captured
90 within the glass and condensed on the glass surface and (2) constrain the origin and evolution of
91 sulfur in the lunar mantle.

92 **2 Materials and Methods**

93 *2.1 Acid Digestion*

94 Glass beads from drive tube 74002/1 (74002, 2221 and 74001, 2206) were picked for
95 impurities and sieved into a variety of grain size fractions. Sample 74001, 2206 was sieved as two
96 stacks (Stack A and B). Sample 74002, 2221 is from the horizon that is dominated by orange glass
97 (> 90 %) from a depth of 11.000-11.500 cm. Sample 74001, 2206 is from a horizon that is
98 dominated by black glass (90 %) from a depth of 37.500-38.000 cm. The reduced sulfur
99 components (i.e., S²⁻ containing compounds) of 74002, 2221 and 74001, 2206-Stack B was
100 extracted using the HF + CrCl₂ digestion method. Each sieved sample was placed into a Teflon

101 reaction vessel with a stir bar and attached to a water trap and an AgNO_3 trap. This set-up was
102 purged for 10-15 minutes prior to injection of 20 ml of an acidic Chromium (II) Chloride Solution,
103 10 ml of Hydrochloric Acid, and 10 ml of Hydrofluoric Acid. The sample + acid bath was then
104 heated to ~ 70 °C and stirred while allowing N_2 to continuously flow through the set-up. Sulfur
105 was released from the sample as H_2S and first carried through the water trap (to trap acid) and
106 subsequently into the AgNO_3 trap, where sulfur was precipitated as Ag_2S . We allowed this reaction
107 to run for ~ 2.5 to 3 hours.

108 Stack A underwent a sequential extraction of Acid Volatile Sulfur (AVS), Chromium
109 Reducible Sulfur (CRS), and Thode extraction, to potentially identify and analyze multiple pools
110 of sulfur. This technique was used to attempt extracting mono sulfides (AVS), polysulfides (CRS)
111 and acid soluble sulfate (Thode) from the lunar glasses. We highlight that this extraction occurred
112 in 2008 and there have been advances in the knowledge of sequential sulfur extractions that have
113 led us to only include the results from the Acid Volatile Sulfur fraction. We interpret the results
114 from the AVS fraction from this stack (Stack A) to best represent the reduced sulfur fraction
115 extracted from the surface of the glass beads. To extract AVS, the sieved soil was placed into a
116 glass boiling flask that was connected to a water trap and an AgNO_3 trap and purged with N_2 for
117 ~ 15 minutes. After purging, 25 ml of 5N HCl that was separately purged with N_2 , was injected
118 into the boiling flask and was heated to ~ 70 °C. Sulfur was released as H_2S and trapped as Ag_2S
119 in the AgNO_3 after passing through the water trap. This reaction was allowed to proceed for ~ 3.5
120 hours. For the sequential extraction, the AgNO_3 trap was replaced with a new trap and Thode
121 solution was injected in the boiling flask and allowed to react for 3 hours at slightly hotter
122 temperature (to bring the solution to a boil). After 3 hours, the AgNO_3 trap was, again, replaced
123 with a new trap and CRS solution was injected into the boiling flask and allowed to react for three

124 hours at a sub-boiling (~70 °C) temperature. Finally, residues were rinsed with Milli-Q water,
125 centrifuged, and saved for later work. For samples that yielded measurable sulfur during the AVS
126 step, we subjected the residues to the HF + CrCl₂ acid digestion technique and extracted additional
127 sulfur in this step.

128 *2.2 Mass Spectrometry*

129 All samples, with the exception of 74001, 2206 20-45 µm Stack A, 74001, 2206 45-90 µm
130 Stack A 74001, 2206 20-45µm Stack A Residue and 74001, 2206 45-90µm Stack A Residue are
131 bracketed by analyses of standard gas of international standard IAEA-S1. Analyses of IAEA-S1
132 were performed at the beginning and end of analytical sessions for 74001, 2206 20-45 µm Stack
133 A, 74001, 2206 45-90 µm Stack A 74001, 2206 20-45µm Stack A Residue and 74001, 2206 45-
134 90µm Stack A. All data are first normalized to analyses of IAEA-S1 performed during the
135 analytical sessions and subsequently to our accepted value of IAEA-S1 relative to Canyon Diablo
136 Troilite measurements performed at UMD ($\delta^{34}\text{S} = -0.401 \text{ ‰}$, $\Delta^{33}\text{S} = 0.116 \text{ ‰}$, $\Delta^{36}\text{S} = -0.796 \text{ ‰}$
137 (Antonelli et al., 2014)). Uncertainties on $\delta^{34}\text{S}$ and $\delta^{36}\text{S}$ of 0.3 ‰ reflect the long-term uncertainty
138 on repeated measurements of IAEA-S1. Uncertainty on $\Delta^{33}\text{S}$ reflects mass spectrometry
139 uncertainty associated with counts on ³³S. Samples analyzed 3 times as 8-26 second cycles on the
140 reference and sample have been attributed an uncertainty (2 σ) of ± 0.016 and samples analyzed 9
141 times as 8-26 second cycles on the reference and sample have been attributed an uncertainty (2 σ)
142 of ± 0.008 (Dottin III, et al., 2020). The sulfur isotope data are reported using the following
143 notation:

144

145
$$\delta^{34}\text{S} = [((^{34}\text{S}/^{32}\text{S})_{\text{sample}} / (^{34}\text{S}/^{32}\text{S})_{\text{reference}}) - 1]$$

146
$$\Delta^{33}\text{S} = [((^{33}\text{S}/^{32}\text{S})_{\text{sample}} / (^{33}\text{S}/^{32}\text{S})_{\text{reference}}) - ((^{34}\text{S}/^{32}\text{S})_{\text{sample}} / (^{34}\text{S}/^{32}\text{S})_{\text{reference}})^{0.515}]$$

147 $\Delta^{36}\text{S} = [((^{36}\text{S}/^{32}\text{S})_{\text{sample}} / (^{36}\text{S}/^{32}\text{S})_{\text{reference}}) - ((^{34}\text{S}/^{32}\text{S})_{\text{sample}} / (^{34}\text{S}/^{32}\text{S})_{\text{reference}})^{1.9}]$

148 **3 Results**

149

150 Sulfur isotope compositions and concentrations measured in 74002, 2221 and 74001, 2206
151 from eight sieved grain size fractions can be found in Table 1. In 74002, 2221, S concentrations
152 range from 231 ppm to 596 ppm. $\delta^{34}\text{S}$ value ranges -1.15 to +0.80 ‰, $\Delta^{33}\text{S}$ ranges from to -0.036
153 to -0.014 ‰, and $\Delta^{36}\text{S}$ ranges from -0.15 to 1.10 ‰. AVS from 74001, 2206 Stack A exhibit S
154 concentrations ranging from 183 to 26 ppm, $\delta^{34}\text{S} = -3.11$ and -2.64 ‰ for the 20-45 μm and 45-90
155 μm fraction respectively, $\Delta^{33}\text{S} = 0.001$ and 0.006 ‰ for the 20-45 μm and 45-90 μm fraction
156 respectively, and $\Delta^{36}\text{S} = -0.16$ and -0.01 for the 20-45 μm and 45-90 μm fraction, respectively.
157 Stack A residues yielded S concentrations ranging from 109 to 131 ppm, $\delta^{34}\text{S} = -0.60$ and -1.34 ‰,
158 $\Delta^{33}\text{S} = -0.015$ and -0.011 ‰, and $\Delta^{36}\text{S} = 0.66$ and 0.37 ‰ for the 20-45 μm and 45-90 μm fraction
159 respectively (Table 1). Sulfur from 74001, 2206 stack B was extracted from 6 sieve fractions
160 ranging from 10-20 μm to 150-250 μm and S concentrations ranged from 244 to 100 ppm,
161 respectively. We were able to reliably analyze S from fractions ranging from 10-20 μm to 75-95
162 μm and observe $\delta^{34}\text{S} = -2.11$ to -1.71 ‰, $\Delta^{33}\text{S} = -0.019$ to 0.003 ‰, and $\Delta^{36}\text{S} = 0.52$ to 2.17 ‰.
163

164 **4 Discussion**

165

166 Previous work that determines the $\delta^{34}\text{S}$ values and sulfur concentrations of lunar glass
167 beads has demonstrated that $\delta^{34}\text{S}$ values and sulfur concentrations associated with lunar glasses
168 are variable and can be readily linked to processes of sulfur degassing during eruption (Ding et al.,
169 1983; Saal & Hauri, 2021). Similarly, we also observed variable $\delta^{34}\text{S}$ values and sulfur

170 concentrations that are associated with sulfur degassing (see supplementary information for
171 detailed discussion). However, unlike previous studies, we have measured the minor stable
172 isotopes of sulfur (^{33}S and ^{36}S) that allow for additional constraints on the nature and origin of
173 sulfur erupted with the pyroclastic glass beads from 74002/1.

174 *4.1 Negative $\Delta^{33}\text{S}$ measured in orange glass beads*

175 Although there is variability in $\delta^{34}\text{S}$ values of glasses measured in the glass beads, the $\Delta^{33}\text{S}$
176 values among orange and black glasses are homogenous yet distinct from one another. The black
177 glass beads preserve strictly mass dependent $\Delta^{33}\text{S}$ ($\Delta^{33}\text{S} = -0.008 \pm 0.006 \text{ ‰, 2SE}$), whereas the
178 orange glass beads preserve a mass-independent signature ($\Delta^{33}\text{S} = -0.029 \pm 0.004 \text{ ‰, 2SE}$), that is
179 different from the isotopic composition measured among mare basalts ($\Delta^{33}\text{S} = 0.002 \pm 0.004 \text{ ‰,}$
180 2SE). Our observation of negative $\Delta^{33}\text{S}$ in the orange glass beads is unusual. In lunar environments,
181 production of $\Delta^{33}\text{S}$ variability requires a process that is mass-independent. Mass-dependent
182 processes that may alter the 0.515 power law and induce $\Delta^{33}\text{S}$ variability, such as S degassing
183 likely did not produce the observed negative $\Delta^{33}\text{S}$: the data from the orange glasses require a slope
184 of 0.505 to fit the data, which is outside of the high-temperature limit of 0.513 to 0.516 (Cao &
185 Liu, 2011) and lunar soils with condensed S that experienced fractionation due to atmospheric
186 escape show no associated $\Delta^{33}\text{S}$ variability (Dottin III et al., 2022). We also exclude MIF-S
187 acquisition from cosmic ray spallation for two reasons: (1) to observe a spallation reaction, this
188 needs to occur in a metal phase with Fe and low S concentrations (Gao & Thiemens, 1991) and
189 (2) the $^{40}\text{Ar}/^{36}\text{Ar}$ for these samples is between 4.7 and 10.8, with model ages between 2.6 and 3.6
190 Ga (Fagan et al., 2014), suggesting there was not much exposure at the surface (consistent with
191 their “immature” classification (I_s/FeO of 0.2-2.5) (Morris, 1978). Thus, there are two possibilities
192 for the observation of negative ^{33}S associated with the orange glass beads. The first possibility is

193 that the negative $\Delta^{33}\text{S}$ may have been captured upon condensation of a photolytic component in
194 the volcanic cloud. It is possible that this photochemistry occurred as Lyman-alpha photolysis, a
195 process that has been linked to early solar nebula chemistry that results in small $\Delta^{33}\text{S}$ variation in
196 differentiated meteoritic materials (Antonelli et al., 2014; Dottin et al., 2018; Rai et al., 2005; Wu
197 et al., 2018). The second possibility is that we are observing mantle heterogeneity.

198

199 *4.1.1 Evidence against a condensed photochemical component*

200 Sulfur photochemistry is known to have occurred on early Earth and Mars through the
201 interaction of Ultraviolet (UV) light with gaseous sulfur compounds from volcanic eruptions
202 (Farquhar et al., 2000a, b) and is an analogue for the expected behavior of volatile elements on the
203 Moon. Thus, when searching for evidence of sulfur photochemistry on the moon, it is most logical
204 to investigate materials that have surface coatings condensed from the eruptive cloud, such as glass
205 beads from 74002/1. To produce $\Delta^{33}\text{S}$ variability during photochemistry, UV light needs to be able
206 to penetrate the gas from the eruptive cloud and ultimately interact with gaseous sulfur compounds.
207 The hypothesis for the origin of 74002/1 glass beads is that they originated from a fire-fountain
208 event(s), where the more degassed black glass erupted as a columnar jet and was recycled through
209 the jet through multiple events (Heiken et al., 1974) and the orange glass quenched on the exterior
210 of the broader portions of the eruptive cloud (Heiken et al., 1974; Weitz et al., 1999). When
211 considering the distribution of the orange and black glass in the volcanic cloud, it is possible that
212 the orange glass captured a photochemical component simply because it was at the edge of the
213 plume and the black glass did not capture MIF-S because the UV rays could not penetrate deep
214 enough to affect the isotopic compositions. However, for this to occur, the orange glass melt
215 globules would need to experience in-gassing of photochemically processed sulfur prior to
216 quenching. In sulfur concentration profiles of orange glass beads, the profiles strictly demonstrate

217 sulfur loss and no evidence of sulfur in-gassing (Saal et al., 2008). Furthermore, our data do not
218 support a condensed photochemical component associated with the glass bead coatings. Assuming
219 that the sulfur isotope composition of sulfur within the glass was similar to lunar basalts and given
220 surface/volume ratios of condensed vapor to grain sizes (i.e., condensed vapor component
221 dominates as grain size decreases), we would expect to see a linear mixing relationship (extending
222 from the composition of mare basalts to the smallest grain fraction from orange glass beads)
223 between the largest and smallest sieve fractions of the orange glass beads if a photochemical
224 component was added to the glass beads. This is not observed, and we instead observe a
225 consistently negative $\Delta^{33}\text{S}$ value across all grain sizes which suggests a singular composition was
226 erupted (Table 1 and Figure 1). Although MIF readily occurred on Earth and Mars (Dottin et al.,
227 2018; Farquhar et al., 2000a, b; Franz et al., 2014), it does not seem to have occurred during the
228 fire-fountain eruption(s) associated with the 74002/1 glass beads.

229 *4.1.2 Establishing Lunar mantle heterogeneity*

230 Considering any added anomalous component would result in a mixing relationship in
231 isotopic space among the largest and the smallest grain sizes, our isotopic observations instead
232 suggests that the $\Delta^{33}\text{S}$ value of S associated with the orange glasses is in equilibrium with sulfur
233 within the glass and condensed on the exterior of the glass beads. Thus, any process that strictly
234 affects grain exteriors, such as solar wind sputtering, can be ruled out as the cause of negative
235 $\Delta^{33}\text{S}$. As a result, the observed negative $\Delta^{33}\text{S}$ value is best reconciled as a signature associated with
236 atmospheric UV photochemistry and this requires the S to have been photochemically processed
237 prior to its transport to the lunar mantle. There are three possible hypotheses to establish the source
238 of negative $\Delta^{33}\text{S}$ in the lunar mantle that we admittedly cannot rule out at this time: (1) the sulfur
239 with negative $\Delta^{33}\text{S}$ was delivered to the mantle by a large impactor with anomalous ^{33}S ; (2)

240 anomalous sulfur, which was photochemically processed early in an early formed lunar
241 atmosphere, was transported to the mantle; or (3) the $\Delta^{33}\text{S}$ signature is associated with a primitive
242 sulfur component that survived late accretion and mantle mixing.

243 *Hypothesis 1 – an impactor injected anomalous sulfur into the lunar mantle*

244 It is conceivable that the exogenous S was delivered by a meteoritic component, such as a
245 carbonaceous chondrite source. Carbonaceous chondrite delivery has been used to explain the
246 water contents of the lunar mantle (Hauri et al., 2015) and could possibly explain the sulfur isotope
247 compositions as sulfur was likely also delivered with the carbonaceous chondrite materials. With
248 this mechanism, carbonaceous chondrite sulfur would be injected into the lunar mantle.
249 Carbonaceous chondrites are often sulfur rich (Labidi et al. 2017) with bulk sulfur contents that
250 can exceed $> 21,000$ ppm. Carbonaceous chondrites also often preserve negative $\Delta^{33}\text{S}$ values (e.g.,
251 LEW 85312 bulk $\Delta^{33}\text{S}$ of -0.058 ‰). Given the high S concentration of these materials, delivery
252 of carbonaceous chondrite material to the lunar mantle post core formation and late accretion can
253 readily overprint the isotopic composition of the lunar mantle, particularly if lunar mantle mixing
254 and homogenization was not efficient.

255 *Hypothesis 2-Sulfur processed in an early formed atmosphere and transferred to the
256 mantle*

257 The sulfur erupted with the orange glasses may have been photochemically processed early
258 in lunar evolution (Saxena et al., 2017) and delivered to the lunar mantle by a process associated
259 with early lunar mantle evolution (Zhong et al., 2000) and crust formation (Prissel & Gross, 2020).
260 At this time, we are not able to identify a mechanism that could be responsible for the transport of
261 sulfur from the lunar surface into the lunar mantle. Although on Earth plate tectonics is primarily
262 responsible for the transfer of surface materials into the mantle, the Moon does not have plate

263 tectonics. However, our data may indicate either a high Rayleigh number convection during the
264 existence of a lunar magma ocean (Shearer et al., 2006) or long-wavelength ('degree one')
265 convection during a later mantle overturn event (Zhong et al., 2000) may have transferred the
266 sulfur from an early proto-lunar atmosphere to the surface through condensation, and lastly into
267 the lunar mantle. Such a process may also explain some of the variability in the lunar basalt data.

268 *Hypothesis 3 – The sulfur isotopes represent a primitive signature*

269 Incorporation of an isotopically fractionated vapor component that was produced either
270 during the early solar nebula (Antonelli et al., 2014) or from the moon forming impact (either
271 through photochemistry of gas released during the impact or the introduction of anomalous S from
272 the moon forming impactor), into a poorly mixed lunar mantle, could generate our observations in
273 the orange glasses. Although there is isotopic similarity in sulfur isotopes among the bulk silicate
274 Earth (Labidi et al., 2013) and lunar basalts (Gargano et al., 2022; Wing & Farquhar, 2015), these
275 estimates may not represent primitive unaltered signatures from accretion of sulfur during Earth
276 and Moon formation as the Earth and Moon's primitive mantle have been altered. On Earth,
277 processes, such as plate tectonics, differentiation, and late accretion have altered the original sulfur
278 isotopic composition (Dottin III et al., 2021; Dottin III et al., 2020a, b; Labidi et al., 2013; Labidi
279 & Cartigny, 2016; Labidi et al., 2022). Similarly, the Moon's primitive mantle sulfur isotope
280 composition was likely been altered by differentiation processes (Saal & Hauri, 2021) and late
281 accretion. There are estimates that the Earth's primordial mantle has a $\Delta^{33}\text{S}$ value of 0 ‰ (Dottin
282 III et al., 2020a), but this is a composition that still may have been altered by late accretionary
283 processes, and we still have no robust estimate of the sulfur isotope composition of Earth's core,
284 which would best represent the primitive sulfur isotope composition of the Earth prior to late
285 accretion.

Considering we are observing an unusual $\Delta^{33}\text{S}$ value erupted from the lunar mantle, it is possible that this $\Delta^{33}\text{S}$ value is a representation of the primitive lunar mantle. Primitive anomalous $\Delta^{33}\text{S}$ within the Moon's (or Earth's) mantle is not completely unexpected given that there are early solar system materials from differentiated meteorites that preserve anomalous $\Delta^{33}\text{S}$ (Antonelli et al., 2014; Dottin et al., 2018; Rai et al., 2005; Wu et al., 2018). It is possible that the data can be reconciled as representing a poorly mixed lunar mantle composed of primitive and late accreted sulfur. Assuming the Earth and Moon are genetically related in their primitive starting materials (Dauphas et al., 2014; Herwartz et al., 2014), the anomalous ^{33}S for the Earth may still exist, but may have been sequestered to the earth's core during differentiation. What remains to be reconciled is the apparent homogeneity of other genetic tracers like oxygen isotopes (Hallis et al., 2010; Spicuzza et al., 2007; Wiechert et al., 2001; Young et al., 2016). Although oxygen is chemically similar to sulfur and some heterogeneity in $\Delta^{17}\text{O}$ values have been observed in lunar materials (Cano et al., 2020), similar isotope behavior is not shared between the oxygen and sulfur isotope compositions of lunar basalts (e.g., Gargano et al., 2022; Wing & Farquhar, 2015). From our S isotope data, it is possible that the isotopic composition of lunar glasses are windows into previously unrecognized heterogeneity associated with the building blocks of the Earth and Moon that should be assessed using other genetic tracers.

4.2 Are the orange and black glasses genetically linked?

The homogenous negative $\Delta^{33}\text{S}$ of the orange glass beads ($\Delta^{33}\text{S} = -0.029 \pm 0.004 \text{ ‰, 2SE}$) analyzed indicates that an anomalous source of sulfur was erupted and that this sulfur is of distinct origin from the melts associated with mare basalts ($\Delta^{33}\text{S} = 0.002 \pm 0.004 \text{ ‰, 2SE}$) and the black glasses ($\Delta^{33}\text{S} = -0.008 \pm 0.006 \text{ ‰, 2SE}$). There are numerous arguments that support a genetic link between the black and orange glasses (i.e., from the same eruption) with their distinction primarily

310 linked to devitrification (Heiken et al., 1974). Upon initial observation, the glass data, including
311 the data from the sequential extraction, hint at a trend that represents mixing among two separate
312 sulfur components. However, the lack of sulfur isotopic similarity between the two glass samples
313 (from bulk glass data) calls into question whether they originate from the same mantle source or
314 if the singular melt source is heterogenous. It is possible that the sulfur isotope data are illustrating
315 that the orange and black glasses are sourced from similar melt compositions and were processed
316 in the mantle (i.e., parental melt generation and volatile loss) identically. These processes would
317 lead to similarities in the mass-dependent tracers for S isotopes ($\delta^{34}\text{S}$), which is observed.
318 However, if the melt sources were inherently different relative to the sulfur source, like mantle
319 heterogeneity on Earth (Dottin III et al., 2021; Dottin III et al., 2020a, b; Labidi et al., 2022), then
320 $\Delta^{33}\text{S}$ values are expected to be different among different lunar mantle reservoirs. Ultimately,
321 further investigation from other isotope systems is needed to fully deconvolute the potential lack
322 in genetic link among the orange and black glasses.

323

324 **5 Conclusions**

325 Our sulfur isotope data indicate that the lunar interior preserves multiple reservoirs of
326 distinct sulfur. The nature and origin of this anomalous sulfur component remains poorly
327 understood and may be linked to (1) an exogenous impactor, (2) photochemically processed sulfur
328 in an early formed lunar atmosphere and its transportation into the lunar mantle, or (3) a primitive
329 sulfur isotope composition of the lunar mantle. If the anomalous S is associated with
330 photochemical processing in an early atmosphere, the data may hint at the first evidence of mantle
331 recycling on the moon. However, to fully understand the mechanism of this process, multiple
332 disciplines within the lunar science community are needed to come together and determine whether

333 this is a viable process on the moon, and whether there are other lines of indirect evidence that
334 indicate there are crustal components that may have been recycled through the lunar mantle.
335 Additional sulfur isotope analyses both as bulk and in-situ measurements on a variety of lunar
336 materials are needed to determine the amount of sulfur isotope heterogeneity that exists among
337 different lunar volatile reservoirs and to establish how the compositions fit within the context of
338 the full lunar volatile cycle. These measurements can also be applied to evaluating the primitive
339 sulfur isotope composition of the lunar mantle.

340 **Acknowledgments**

341 We thank associate editor Ananya Mallik for handling our manuscript. Furthermore, we thank
342 Dr. Nicole Nie and one anonymous reviewer for their thoughtful comments that help improve the
343 quality of our manuscript. We thank the Astromaterials Acquisition and Curation team at NASA
344 JSC for granting samples to conduct this study. JD acknowledges the NSF EAR Postdoctoral
345 Fellowship Program that provided salary support while writing this manuscript.

346

347 **Open Research**

348 All sulfur isotope and sulfur concentration data collected for this study are available in the
349 Digital Repository at the University of Maryland (DRUM) <http://hdl.handle.net/1903/29502>.

350

351 **References**

352

353 Antonelli, M. A., Kim, S.-T., Peters, M., Labidi, J., Cartigny, P., Walker, R. J., et al. (2014).
354 Early inner solar system origin for anomalous sulfur isotopes in differentiated protoplanets.
355 *Proceedings of the National Academy of Sciences of the United States of America*, 111(50),
356 17749–54. <https://doi.org/10.1073/pnas.1418907111>

- 357 Cano, E. J., Sharp, Z. D., & Shearer, C. K. (2020). Distinct oxygen isotope compositions of the
358 Earth and Moon. *Nature Geoscience*, 13(4), 270–274.
- 359 Cao, X., & Liu, Y. (2011). Equilibrium mass-dependent fractionation relationships for triple
360 oxygen isotopes. *Geochimica et Cosmochimica Acta*, 75(23), 7435–7445.
- 361 Dauphas, N., Burkhardt, C., Warren, P. H., & Fang-Zhen, T. (2014). Geochemical arguments for
362 an Earth-like Moon-forming impactor. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 372(2024), 20130244.
- 363 Ding, T. P., Thode, H. G., & Rees, C. E. (1983). Sulphur content and sulphur isotope
364 composition of orange and black glasses in Apollo 17 drive tube 74002/1. *Geochimica et*
365 *Cosmochimica Acta*, 47(3), 491–496.
- 366 Dottin III J. W., Farquhar, J., Kim, S.-T., Shearer, C., Wing, B., Sun, J., & Ni, P. (2022). Isotopic
367 evidence of sulfur photochemistry during lunar regolith formation. *Geochemical*
368 *Perspectives Letters*, 23, 38–42.
- 369 Dottin III, James W., Labidi, J., Jackson, M. G., Woodhead, J., & Farquhar, J. (2020). Isotopic
370 evidence for multiple recycled sulfur reservoirs in the Mangaia mantle plume.
371 *Geochemistry, Geophysics, Geosystems*, (21), e2020GC009081.
- 372 Dottin III, James W., Labidi, J., Lekic, V., Jackson, M. G., & Farquhar, J. (2020). Sulfur isotope
373 characterization of primordial and recycled sources feeding the Samoan mantle plume.
374 *Earth and Planetary Science Letters*, 534, 116073.
- 375 Dottin III, James W., Labidi, J., Jackson, M. G., & Farquhar, J. (2021). Sulfur isotope evidence
376 for a geochemical zonation of the Samoan mantle plume. *Geochemistry, Geophysics,*
377 *Geosystems*, 22(6), e2021GC009816.
- 378 Dottin, J. W., Labidi, J., Farquhar, J., Piccoli, P., Liu, M.-C., & McKeegan, K. D. (2018).
379 Evidence for oxidation at the base of the nakhlite pile by reduction of sulfate salts at the
380 time of lava emplacement. *Geochimica et Cosmochimica Acta*.
381 <https://doi.org/https://doi.org/10.1016/j.gca.2018.07.029>
- 382 Dottin, J. W., Farquhar, J., & Labidi, J. (2018). Multiple sulfur isotopic composition of main
383 group pallasites support genetic links to IIIAB iron meteorites. *Geochimica et*
384 *Cosmochimica Acta*, 224, 276–281. <https://doi.org/10.1016/j.gca.2018.01.013>
- 385 Fagan, A. L., Joy, K. H., Bogard, D. D., & Kring, D. A. (2014). Ages of globally distributed
386 lunar paleoregoliths and soils from 3.9 Ga to the present. *Earth, Moon, and Planets*, 112(1),
387 59–71.
- 388 Farquhar, J., Bao, H., & Thiemens, M. H. (2000). Atmospheric Influence of Earth's Earliest
389 Sulfur Cycle. *Science*, 289(August), 757–758. <https://doi.org/10.1126/science.289.5480.756>
- 390 Farquhar, J., Savarino, J., Jackson, T. L., & Thiemens, M. H. (2000). Evidence of atmospheric
391 sulphur in the martian regolith from sulphur isotopes in meteorites. *Nature*, 404(6773), 50–
392 52. <https://doi.org/10.1038/35003517>
- 393 Franz, H. B., Kim, S.-T., Farquhar, J., Day, J. M. D., Economos, R. C., McKeegan, K. D., et al.
394 (2014). Isotopic links between atmospheric chemistry and the deep sulphur cycle on Mars.
395 *Nature*, 508(7496), 364–8. <https://doi.org/10.1038/nature13175>
- 396 Gao, X., & Thiemens, M. H. (1991). Systematic study of sulfur isotopic composition in iron
397 meteorites and the occurrence of excess ^{33}S and ^{36}S . *Geochimica et Cosmochimica Acta*,
398 55(9), 2671–2679. [https://doi.org/10.1016/0016-7037\(91\)90381-E](https://doi.org/10.1016/0016-7037(91)90381-E)
- 399 Gargano, A., Dottin, J., Hopkins, S. S., Sharp, Z., Shearer, C., Halliday, A. N., et al. (2022). The
400 Zn, S, and Cl isotope compositions of mare basalts: implications for the effects of 1

- 402 eruption style and pressure on volatile element stable isotope fractionation on the Moon.
403 *American Mineralogist*. <https://doi.org/10.2138/am-2022-8290>
- 404 Hallis, L. J., Anand, M., Greenwood, R. C., Miller, M. F., Franchi, I. A., & Russell, S. S. (2010).
405 The oxygen isotope composition, petrology and geochemistry of mare basalts: evidence for
406 large-scale compositional variation in the lunar mantle. *Geochimica et Cosmochimica Acta*,
407 74(23), 6885–6899.
- 408 Hauri, E. H., Saal, A. E., Rutherford, M. J., & van Orman, J. A. (2015). Water in the Moon's
409 interior: Truth and consequences. *Earth and Planetary Science Letters*, 409, 252–264.
- 410 Heiken, G. H., McKay, D. S., & Brown, R. W. (1974). Lunar deposits of possible pyroclastic
411 origin. *Geochimica et Cosmochimica Acta*, 38(11), 1703–1718.
- 412 Herwartz, D., Pack, A., Friedrichs, B., & Bischoff, A. (2014). Identification of the giant impactor
413 Theia in lunar rocks. *Science*, 344(6188), 1146–1150.
- 414 Kaplan, I. R., & Petrowski, C. (1971). Carbon and sulfur isotope studies on Apollo 12 lunar
415 samples. In *Lunar and Planetary Science Conference Proceedings* (Vol. 2, p. 1397).
- 416 Kaplan, I. R., Smith, J. W., & Ruth, E. (1970). Carbon and sulfur concentration and isotopic
417 composition in Apollo 11 lunar samples. *Geochimica et Cosmochimica Acta Supplement*, 1,
418 1317.
- 419 Labidi, J., & Cartigny, P. (2016). Negligible sulfur isotope fractionation during partial melting:
420 Evidence from Garrett transform fault basalts, implications for the late-vee and the
421 hadean matte. *Earth and Planetary Science Letters*, 451, 196–207.
- 422 Labidi, J., Cartigny, P., & Moreira, M. (2013). Non-chondritic sulphur isotope composition of the
423 terrestrial mantle. *Nature*, 501(7466), 208–211. <https://doi.org/10.1038/nature12490>
- 424 Labidi, Jabrane, Dottin III, J. W., Clog, M., Hemond, C., & Cartigny, P. (2022). Near-zero ^{33}S
425 and ^{36}S anomalies in Pitcairn basalts suggest Proterozoic sediments in the EM-1 mantle
426 plume. *Earth and Planetary Science Letters*, 584, 117422.
- 427 Morris, R. v. (1978). The surface exposure/maturity/of lunar soils-Some concepts and Is/FeO
428 compilation. In *Lunar and Planetary Science Conference Proceedings* (Vol. 9, pp. 2287–
429 2297).
- 430 Needham, D. H., & Kring, D. A. (2017). Lunar volcanism produced a transient atmosphere
431 around the ancient Moon. *Earth and Planetary Science Letters*, 478, 175–178.
- 432 Prissel, T. C., & Gross, J. (2020). On the petrogenesis of lunar troctolites: new insights into
433 cumulate mantle overturn & mantle exposures in impact basins. *Earth and Planetary
434 Science Letters*, 551, 116531.
- 435 Rai, V. K., Jackson, T. L., & Thiemens, M. H. (2005). Photochemical mass-independent sulfur
436 isotopes in achondritic meteorites. *Science (New York, N.Y.)*, 309(2005), 1062–1065.
437 <https://doi.org/10.1126/science.1112954>
- 438 Rees, C. E., & Thode, H. G. (1972). Sulphur concentrations and isotope ratios in lunar samples.
439 In *Lunar and Planetary Science Conference Proceedings* (Vol. 3, p. 1479).
- 440 Rees, C. E., & Thode, H. G. (1974). Sulfur concentratitons of isotope ratios in Apollo 16 and 17
441 samples. *Proceedings of the Fith Lunar Conference*, 2, 1963–1973.
- 442 Saal, A. E., & Hauri, E. H. (2021). Large sulfur isotope fractionation in lunar volcanic glasses
443 reveals the magmatic differentiation and degassing of the Moon. *Science Advances*, 7(9),
444 eabe4641.
- 445 Saal, A. E., Hauri, E. H., Cascio, M. L., van Orman, J. A., Rutherford, M. C., & Cooper, R. F.
446 (2008). Volatile content of lunar volcanic glasses and the presence of water in the Moon's
447 interior. *Nature*, 454(7201), 192–195.

- 448 Saxena, P., Elkins-Tanton, L., Petro, N., & Mandell, A. (2017). A model of the primordial lunar
 449 atmosphere. *Earth and Planetary Science Letters*, 474, 198–205.
- 450 Shearer, C. K., Hess, P. C., Wieczorek, M. A., Pritchard, M. E., Parmentier, E. M., Borg, L. E.,
 451 et al. (2006). Thermal and magmatic evolution of the Moon. *Reviews in Mineralogy and*
 452 *Geochemistry*, 60(1), 365–518.
- 453 Spicuzza, M. J., Day, J. M. D., Taylor, L. A., & Valley, J. W. (2007). Oxygen isotope constraints
 454 on the origin and differentiation of the Moon. *Earth and Planetary Science Letters*, 253(1–
 455 2), 254–265.
- 456 Thode, H. G., & Rees, C. E. (1971). Measurement of sulphur concentrations and the isotope
 457 ratios $^{33}\text{S}/^{32}\text{S}$, $^{34}\text{S}/^{32}\text{S}$ and $^{36}\text{S}/^{32}\text{S}$ in Apollo 12 samples. *Earth and Planetary Science*
 458 *Letters*, 12(4), 434–438.
- 459 Thode, H. G., & Rees, C. E. (1972). Sulphur Contents and Isotope Ratios in Lunar Samples. In
 460 *Lunar and Planetary Science Conference* (Vol. 3, p. 749).
- 461 Weitz, C. M., Rutherford, M. J., III, J. W. H., & McKay, D. S. (1999). Ascent and eruption of a
 462 lunar high-titanium magma as inferred from the petrology of the 74001/2 drill core.
 463 *Meteoritics & Planetary Science*, 34(4), 527–540.
- 464 Wiechert, U., Halliday, A. N., Lee, D.-C., Snyder, G. A., Taylor, L. A., & Rumble, D. (2001).
 465 Oxygen isotopes and the Moon-forming giant impact. *Science*, 294(5541), 345–348.
- 466 Wing, B. A., & Farquhar, J. (2015). Sulfur isotope homogeneity of lunar mare basalts.
 467 *Geochimica et Cosmochimica Acta*, 170, 266–280.
- 468 Wu, N., Farquhar, J., Dottin III, J. W., & Magalhães, N. (2018). Sulfur isotope signatures of
 469 eucrites and diogenites. *Geochimica et Cosmochimica Acta*, 233, 1–13.
- 470 Young, E. D., Kohl, I. E., Warren, P. H., Rubie, D. C., Jacobson, S. A., & Morbidelli, A. (2016).
 471 Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact.
 472 *Science*, 351(6272), 493–496.
- 473 Zhong, S., Parmentier, E. M., & Zuber, M. T. (2000). A dynamic origin for the global
 474 asymmetry of lunar mare basalts. *Earth and Planetary Science Letters*, 177(3–4), 131–140.
- 475

476
 477 Figure captions and Tables
 478

479
 480 Figure 1. A.) $\Delta^{33}\text{S}$ vs. $\delta^{34}\text{S}$ and B.) $\Delta^{36}\text{S}$ vs. $\Delta^{33}\text{S}$ for lunar glasses (this study) and basalts
 481 (Gargano et al., 2022; Wing & Farquhar, 2015).
 482

483

Table 1. Sulfur isotope compositions and sulfur concentrations for lunar soils and glasses

	Size	S	$\delta^{34}\text{S}$	$\Delta^{33}\text{S}$	$\Delta^{36}\text{S}$
	Fraction	(ppm)	(‰)	(‰)	(‰)
74002, 2221	0-10	596	-1.15	-0.026	0.33
74002, 2221	10-20	355	-0.39	-0.014	-0.15
74002, 2221	20-45	296	-0.04	-0.036	0.05
74002, 2221	45-75	289	0.12	-0.034	0.11

74002, 2221	75-90	313	0.80	-0.029	0.51
74002, 2221	90-150	270	0.30	-0.028	0.12
74002, 2221	150-250	231	0.66	-0.033	0.16
74002, 2221	250-500	294	0.66	-0.031	1.10
74001-2206 stack B	10-20	165	-2.10	-0.019	0.52
74001-2206 stack B	20-45	244	-1.71	-0.018	0.60
74001-2206 stack B	45-75	134	-2.11	0.009	0.95
74001-2206 stack B	75-90	107	-2.01	0.003	2.17
74001-2206 stack B*	90-150	225			
74001-2206 stack B*	150-250	100			
74001-2206 stack B	250-500	n.d.			
74001-2206 stack A Res.	20-45	120	-0.60	-0.015	0.66
74001-2206 stack A Res.	45-90	131	-1.34	-0.011	0.37
74001-2206 stack A Res.*	90-150	109			
74001-2206 stack A [†]	20-45	182	-3.01	0.001	-0.29
74001-2206 stack A [†]	45-90	133	-2.54	0.006	-0.14
74001-2206 stack A [†]	90-150	119			
74001-2206 stack A [†]	150-250	94			
74001-2206 stack A [†]	250-500	26			

*Refers to samples that were too small to measure

[†]Refers to samples that were extracted using AVS technique. See methods for details.

n.d. = not detected