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Abstract— Substantial research and development on the
design and control of robotic ankle-foot prostheses have aimed
to restore normal function and movement capacity for people
with gait impairments and lower limb amputations. However,
prostheses controllers usually fail to incorporate information
pertaining to the properties of the walking terrain, such as
ground stiffness. There is therefore a need for a framework
that adjusts the prostheses parameters according to the user’s
intent to transition to a variable impedance terrain. To achieve
this, we need to incorporate the human wearer in the control
loop of the prosthesis. This work proposes an advanced, high-
level controller framework for powered ankle-foot prostheses
that combines subject-specific pattern recognition (PR) and
classification strategies to predict whether the next step will be
on a rigid or compliant surface. Comparing the Support Vector
Machine (SVM) and k-Nearest Neighbors (k-NN) classification
algorithms for this task, we conclude that by combining a k-
NN implementation with a Pattern Recognition Neural Network
(PR NN), our method can accurately forecast upcoming surface
stiffness transitions in time to allow for prompt adaptation
to the new walking terrain. We also show that the sensor
fusion of kinematic and surface electromyographic (EMG) data
outperforms single-source inputs producing the best prediction
results for all subjects with an accuracy of up to 87.5%.

I. INTRODUCTION

A significant part of a person’s daily locomotion consists
of walking on dynamic terrains and transitions between inho-
mogeneous, uneven surfaces. Proprioception - a mechanism
that is activated before each movement is carried out [1] -
allows healthy individuals to forecast their next move and
adapt their gait to the new walking surface. However, agility
and walking stability on non-flat and compliant surfaces pose
major challenges for people with lower limb amputations
[2,3]. It is thus essential to enable prosthesis/orthosis wearers
to smoothly ambulate and adapt to dynamic environments
by transfusing the intelligent anticipatory mechanisms of
human locomotion into state-of-the-art powered ankle-foot
prostheses.

Previous works have focused on expanding the real-world
viability of prosthetic devices by developing strategies to
coordinate the robotic prosthesis movements with the user’s
neuromuscular system and enable them to transition between
different daily life activities. Running activities and walking
tasks such as avoiding obstacles and alternating between
locomotion modes (i.e. level-ground walking to stair ascend)
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have been the center of focus when it comes to early lower-
limb muscle activation [4, 5]. These works on anticipation
and user intent prediction mainly use EMG [6,7], mechanical
data [8] or multisensory fusion [9-11]. Most recent works
also study the use of sonomyography to classify and distin-
guish between different ambulation modes [12, 13]. Results
of these studies have shown that by combining data from
different sources it is possible to achieve higher prediction
accuracy than by using either data source separately [14].

Early muscle activation during transitions from rigid to
compliant surfaces has been studied in works that reveal
the existence of anticipatory muscle responses for both legs
just before and immediately after an individual encounters
a compliant surface [15-17]. However, in spite of current
progress in the development of user-intuitive prostheses
for transitioning between locomotion modes, characteristic
biosignals, and other available data sources for the identifica-
tion of user intent when transitioning from rigid to compliant
surfaces have only recently been explored [18].

Our goal is to further expand on this first successful
attempt to address robust walking over dynamic terrains
for people with gait impairments or lower-limb amputation
and study the use of different data source signals as inputs
to the proposed phase-dependent, subject-specific pattern
recognition (PR) and classification algorithm for identifying
cases of transversing rigid and compliant terrains (see Fig.
1). Specifically, in this paper we compare the performance
of the proposed strategy when the data input consists of only
the surface EMG signals or kinematic data or a fusion of the
two. The performance results confirm that data fusion is able
to achieve higher accuracy than data from a single source,
proving that kinematics and EMG data fusion is both feasible
and efficient for the control of lower-limb prostheses.

II. METHODS

A. Experimental Protocol

Eight healthy subjects (age 26.6 & 2.2 years, height 174.2
4 8.7 cm, mass 70.8 £ 12.3 kg) were recruited to walk on
a unique robotic platform, the Variable Stiffness Treadmill
(VST) [19-21]. For the data collection, the subjects chose
a comfortable walking speed that closely resembled their
normal, everyday walking patterns. After different treadmill
speeds between 70 and 100 cm /s were tested, all 8 subjects
chose to walk at 90 ¢m/s. All participants completed a total
of 554 gait cycles (GCs), which correspond to approximately
12 minutes of treadmill walking with a belt speed of 90
em/s.
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Fig. 1: Flowchart of the proposed research strategy. Current work focuses on data acquisition, processing and controller framework
development. The Controller block of the flowchart is not included in the analysis.
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Fig. 2: Visual schematic of the experimental protocol. The surface
stiffness of the left belt dropped from 1000 kN/m (rigid) to 40
kN/m (compliant) periodically every 10 gait cycles (GCs) (9 rigid
GCs - 1 compliant GC) for a total of 510 GCs. The surface stiffness
of the right belt was always 1000 kN/m (i.e. rigid ground). The
first 20 rigid surface gait cycles were precluded from the data
processing and analysis.

Transitions between surfaces are assumed to be first ex-
perienced by one — the leading — leg, which for our study
was the left leg. Therefore, expected stiffness perturbations,
which the subjects were verbally informed of ahead of
time, were applied unilaterally to the left leg, while the
right leg was stepping on a rigid surface throughout the
whole experiment (Fig. 2). The experimental protocol was
approved by the University of Delaware Institutional Review
Board (IRB ID# 1544521-7) and informed consent from the
subjects was obtained at the time of the experiment.

In terms of kinematics, data were recorded by placing
23 reflective motion capture markers on the subjects’ lower
limbs and torso. All kinematic data were sampled at a 100
Hz frequency and synchronized with the recorded muscular
activity using the real-time Foot VErtical & Sagittal Position
Algorithm (F-VESPA) for heel-strike detection [22].

Muscle activity was measured with 12 wireless surface
EMG sensors (Trigno, Delsys Inc.) from six major muscles

of both legs: the tibialis anterior (TA), gastrocnemius (GA),
soleus (SOL), rectus femoris (RF), vastus lateralis (VL), and
biceps femoris (BF). These muscles were selected due to
their major power-generating function and their fundamental
role in ankle motion and stability. EMG data were sampled
at a 2 kHz frequency. After computing the EMG linear
envelope, the data were normalized to the maximum activa-
tion value of each muscle. The gait cycles were categorized
into Rigid (R) and Transition (T) GCs according to whether
the subject was preparing to step on a rigid or a compliant
surface respectively. The perturbation gait cycles, as well as
one gait cycle following each perturbation, were removed
from the dataset. Running an outlier detection method for
periodic data [23] on the remaining GCs, outlier gait cycles
were identified and removed from the dataset.

B. Data Analysis

The proposed controller framework is schematically pre-
sented in Fig. 1. Each process block comprising the frame-
work is thoroughly described in [18] and summarized in this
work for brevity purposes.

1) Overlapping Window Segmentation: We employed the
idea of a phase-dependent analysis, by applying a sliding
window approach on both the EMG and kinematic data. The
input signals were segmented into 50% overlapping windows
of 150ms. The windowing partition was applied only to the
data between the Left Toe-Off (LTO) and Left Heel-Strike
(LHS) gait events, yielding a total of six analysis windows
per GC (Fig. 3). This choice was based on our hypothesis
that the prediction performance of a classifier will increase
as the gait cycle progresses and the subjects prepare to step
on a compliant surface.
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Fig. 3: Representative subject walking on the VST. Each gait cycle begins and ends at Left Heel Strike (LHS). Gait cycles were categorized
into Rigid (R) and Transition (T) GCs according to whether the subject was preparing to step on a rigid (top) or a compliant (bottom)
surface respectively. The red arrow indicates the vertical deflection of the VST to simulate a compliant surface. The continuous windowing
segmentation is schematically presented. The six overlapping (OL = 50%) windows (W1, Wa, ..., W) are aligned with the respective LTO

and LHS gait events.

2) Feature Extraction & Selection: Feature extraction and
selection was carried out in the time domain (TD) to fulfill
the fast time-response requirement of real-time systems.

a) EMG Features: EMG features were extracted from
six muscles of both lower limbs, which included the TA,
VL, BF, and RF of the left leg, and the SOL, and GA of
the right leg. The SOL and GA of the left leg, as well
as the TA, VL, BF, and RF of the right leg were excluded
from the analysis due to their lack of substantial activation
after the Pre-LTO phase. For each window, we extracted
12 features per muscle, which corresponds to a total of 72
EMG features per segmented window. The extracted features
included the Mean Absolute Value, Waveform Length, Dif-
ference Variance Value, Root Mean Square, Simple Square
Integrated, Integrated EMG, Variance of EMG, Difference
Absolute Mean Value, Standard Deviation, Average Ampli-

tude Change, Kurtosis, and Skewness.

b) Kinematic Features: In terms of kinematics, the
features extracted were the maximum, mean, and minimum
values of the leg joint angles including the flexion/extension
of the hip, knee, and ankle of both legs, as well as the angular
velocity of the latter two joints. We extracted a total of 30
kinematic features per segmented window, which correspond
to 3 features for each of the 10 kinematic variables studied.

¢) EMG & Kinematic Features Fusion: Combining the
feature extraction processes followed for the distinct EMG
and kinematic cases respectively, the result is a 72430 = 102
(features) x 6 (windows) = 612 elements wide feature vector
per GC and subject. The extracted features were organized
in a single, window-specific feature vector.

To preserve the important features of the dataset but
decrease the complexity of the system, we employed a



wrapper feature selection method called Particle Swarm Op-
timization (PSO) [24] to select a subset of relevant features
to use in our classification model for faster and more accurate
predictions. Details on parameter selection and algorithm
application are analytically presented in our previous work
on gait classification on compliant surfaces [18].

3) Classification and PR Strategy: We suggest that a clas-
sification algorithm can be trained to differentiate between
rigid and compliant surface transitions when a sufficient set
of feature inputs is provided. In this paper, the feature inputs
tested for each window classifier consist of 1) kinematics
only, 2) EMG only, and 3) EMG & kinematics fusion signals.
In addition to studying the effect of the feature input on
classifier performance, the present study also compares the
efficiency of the k-Nearest Neighbors (k-NN) and Support
Vector Machine (SVM) algorithms to identify and classify
walking patterns on transitions between surfaces of variable
stiffness. Our goal is to classify gait cycles into two class
labels according to whether the transition happens on: (1)
rigid-rigid (R), and (2) rigid-compliant surface (T) (Fig. 3).

a) k-NN: The k-NN algorithm is a supervised learning
classifier, which uses proximity to classify and predict the
group an individual data point belongs to. Our k-NN algo-
rithm utilizes k& = 9 nearest neighbors. For our algorithm
implementation, the built-in Matlab function fitcknn() was
used, implementing a Euclidean distance metric d in combi-
nation with an inverse distance weight (w = é)

b) SVM: An SVM classifies data by finding the best
hyperplane that separates all data points of one class from
those of the other class. The support vectors are the data
points closest to the separating hyperplane. For algorithm
implementation, the built-in Matlab function fitcsvm() was
used, utilizing a Radial Basis Function (RBF) kernel.

For both k-NN and SVM, the software centered and
scaled each predictor variable by the corresponding weighted
column mean and standard deviation. Also, it must be noted
that the classifiers were trained and applied to each of the six
segmented windows, which resulted in six distinct classifier
decisions per gait cycle.

c¢) PR Neural Networks (NN): To combine the distinct
decisions of the six window classifiers into a final decision
for each gait cycle, we developed a pattern recognition NN.
We used the classification training data to extract six binary
decisions (R or T for each window) per gait cycle. The binary
decisions were then used as the training input to the PR
NN. In a similar manner, the testing data used to evaluate
the window classifiers were also used for evaluating the
performance of the PR NN. For algorithm implementation,
the built-in Matlab function patternnet() was used with 1
hidden layer of 100 nodes.

4) Performance Evaluation Metrics: In order to evaluate
the classification and prediction performance of our high-
level control strategy under different inputs and algorithms,
we define the Balanced Accuracy and Matthews Correlation
Coefficient (MCC) metrics. MCC ranges between -1 and 1,
with 1 representing the perfect classifier and values around

0 representing a random guess classifier.

III. RESULTS
A. Feature Extraction & Selection

Applying the PSO feature selection method, we were able
to reduce the dimensionality of each of the input feature
vectors. Specifically, the initial feature set pertaining to the
EMG data (72 extracted features) and the kinematics data (30
extracted features) was reduced to approximately 21+ 7 and
6=+ 3 features per window across all subjects, respectively.
Similarly, the dimensionality of the feature set for the EMG
and kinematics fusion case (102 total features) was reduced
to 30 £ 9 for each window.

B. Classification

Our classification strategy was tested using the k-NN and
SVM classification algorithms under three different input
feature sets: i) kinematics only (KIN), ii) EMG only (EMG)
and iii) KIN-EMG fusion.

a) k-NN: We observe that the Balanced Accuracy met-
ric presents a consistently increasing profile for the case of
the KIN-EMG fusion as we approach the end of each gait
cycle (yellow bar in Fig. 4), unlike the kinematic and EMG
only cases. We specifically observe that the kinematics case
(blue bar in Fig. 4) fluctuates between 50.1% and 56.4%
throughout the last 5 window classifiers. The EMG case (red
bar in Fig. 4) achieves similar accuracy rates with the KIN-
EMG fusion, however, the latter is able to outperform the
former for the majority of the windows. The performance
of the KIN-EMG fusion set peaks in window classifier
6, achieving a subject average accuracy of 71.5%. These
findings are also confirmed by studying the MCC behavior
of each k-NN classifier across all subjects (Fig. 5). To be
more exact, the KIN-EMG fusion shows a robust increasing
behavior that achieves higher values compared to KIN or
EMG alone. We can therefore deduce that for the k-NN
classification algorithm, the KIN-EMG fusion constitutes on
average a more efficient source of information to predict
transitions between surfaces of variable stiffness.

b) SVM: The results observed for the case of the k-
NN classifiers were also replicated for the SVM. Similarly
to the k-NN, the kinematic data source consistently generates
the lowest classification accuracy among the available data
sources (Fig. 6). The EMG and KIN-EMG fusion cases
closely resemble each other, with the data fusion once again
outperforming the EMG-only case for the majority of the
segmented windows. The highest accuracy value achieved by
the SVM data fusion was 70.9% in window 5. The superior-
ity of the fusion case can also be confirmed by the average
corresponding MCC profiles of each SVM classifier (Fig.
7), which show similar trends as with the k-NN (Fig. 5). It
can therefore be concluded that the KIN-EMG fusion indeed
yields better prediction rates and classifier performance for
the SVM case as well.

Comparing the two algorithms under the KIN-EMG fusion
input we observe more stable and consistent results for the
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Fig. 4: Performance evaluation of the k-NN algorithm implemen-
tation under kinematic (KIN), EMG, and kinematic-EMG (KIN-
EMG fusion) input across all subjects. Statistical significance (*)
was calculated using an independent 2-sample t-test at the 95%
confidence level.
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Fig. 5: MCC progression of the k-NN algorithm implementation
under KIN, EMG, and KIN-EMG fusion input across all subjects.

case of the k-NN. Specifically, the performance of each k-
NN window classifier confirms our initial hypothesis that the
prediction accuracy will be higher toward the end of each gait
cycle as we approach the last segmented windows. On the
other hand, the SVM classifiers seem to fluctuate between
the segmented windows, leading to a rather unreliable result
when compared to the k-NN algorithm.

In fact, the performance evaluation with our best subject
in the case of the k-NN KIN-EMG fusion showed that
Balanced Accuracy gradually improved from 45.8% (window
1) to 87.5% (window 6), achieving an impressive increase
of 41.7% (Fig. 8), outperforming the respective kinematics
input by up to 133.3%.

c¢) PR NN: Applying the PR NN methodology to the
resulting k-NN window classifiers, we shift our focus to
serial combinations of windows rather than single window
classifiers. Combining the prediction results of each classifier
into a final PR NN framework, we observe that the KIN-
EMG fusion outperforms its KIN and EMG counterparts by
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Fig. 6: Performance evaluation of the SVM algorithm imple-
mentation under KIN, EMG, and KIN-EMG fusion input across
all subjects. Statistical significance (*) was calculated using an
independent 2-sample t-test at the 95% confidence level.
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Fig. 7: MCC progression of the SVM algorithm implementation
under KIN, EMG, and KIN-EMG fusion input across all subjects.

13.19% and 6.51% respectively (Fig. 9).

IV. CONCLUSION

This work combines surface EMG signals and kinematic
data with a phase-dependent PR algorithm for predicting
user intention to step on a rigid or compliant surface. The
kinematics-EMG data fusion was able to distinguish between
the two cases based exclusively on human user biosignature
input, accomplishing up to 87.5% prediction accuracy while
outperforming single-source inputs by up to 133.3%.

The benefit of our subject-specific approach is that it is
trainable to each subject’s signals, taking into account the
distinct EMG and kinematic parameters of each individual
subject under different surface stiffnesses. Therefore, we
support that our framework can be used to generate accurate
and comparable predictions about the surface compliance of
the user’s upcoming step even in populations not tested in
this analysis, e.g., transtibial amputees. These predictions
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can

be applied as input to a high-level controller to tune

the prosthesis ankle stiffness in real-time. The proposed
method can be incorporated into the control architecture of
lower limb prostheses to allow for intuitive human-in-the-

loop

controls that can lead to increased safety, stability, and

overall acceptance of the prosthesis.
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