
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 70, NO. 4, APRIL 2022 2135

Machine Learning to Predict Quasi TE011 Mode
Resonances in Double-Stacked Dielectric Cavities

Charles Lewis , Graduate Student Member, IEEE, Jordan Bryan, Nathan Schwartz, Jonathan Hale,

Kane Fanning , and John S. Colton

Abstract— We have applied machine learning in a neural net-
work to calculate the quasi TE011 mode of a cylindrical microwave
cavity with two symmetrically stacked dielectric resonators (DRs)
inside, with aspect ratios of the overall cavity being limited
to the range of 0.25–4. The neural network was trained with
99 970 samples and evaluated using 9564 samples from a holdout
dataset. The samples were created using a supercomputer to solve
random cavity configurations via finite-element method (FEM)
programming. The trained neural network predicts the resonant
frequency of the quasi TE011 mode and expresses the mode in
terms of expansion coefficients of empty cavity TE0 np modes,
from which plots of the electric and magnetic fields can be made.
The predictions are extremely quick, taking ∼0.05–0.2 s running
on a typical personal computer, and are very accurate when
judged against the FEM results: the overall median error in
the frequency neural network is 0.2%, and the overall median
error of the expansion coefficients neural network is 0.003%. This
should allow designers to much more rapidly determine optimal
cavity and DR dimensions and other parameters in order to
achieve the frequency and mode they desire, with a speedup of
approximately 10 000× compared with FEM calculations alone.
A link to the Python implementation of our FEM code and our
trained neural network code is provided.

Index Terms— Cavity resonators, dielectric resonators (DRs),
electromagnetic fields, machine learning, neural networks.

I. INTRODUCTION

RESONANT microwave cavities, namely, hollow metal
cavities in which microwaves can form standing wave

patterns in the electric and magnetic fields, have been studied
and used for decades. A sampling of applications includes
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concentrating fields for electron spin resonance (ESR) [1]–[4],
microwave cavity resonance spectroscopy (MCRS) for study-
ing plasmas [5], to enhance particle accelerators [6], mea-
suring dielectric constants of materials [7], [8], microwave
filters [9]–[11], and antennae [12]–[15]. Such cavities typically
are characterized by high quality factors (Q-factors) and sharp
resonances at specific frequencies.

Although there are an infinite number of cavity modes, one
of the most important for an empty cylindrical cavity is the
TE011 mode. The three mode numbers (m, n, p) = (0, 1, 1)
indicate no azimuthal φ dependence, a single antinode in
the radial r -direction, and a single antinode in the longitu-
dinal z-direction, respectively. The topology of the mode is
described by having an electric field only in the φ-direction
and having a magnetic field only in the r - and z-directions. The
electric field has a node along the axis of the cylinder, whereas
there is a strong on-axis magnetic field Bz . The TE011 mode
of two representative cavities is plotted in Fig. 1(a) and (c).
From an ESR point of view, the center of the cavity provides
a desirable spot for a sample, with a large magnetic field and
small electric field, and the surface currents allow holes to
be made in the side of the cavity for optical access without
substantial degradation of the cavity quality [16].

When the cavity is not empty, the fields change compared
with the fields in a pure TE011 mode. However, there will typi-
cally still be a single mode with the same topology as the TE011

mode of an empty cavity: E being only in the φ-direction, B
being only in r - and z-directions, and a large B-field/small
E-field at the center. This is termed the “quasi TE011” mode.
The quasi TE011 modes for two representative nonempty cavi-
ties are plotted in Fig. 1(b) and (d), with these cavities contain-
ing two symmetrically placed vertically stacked pieces of high
dielectric material, so-called “dielectric resonators” (DRs).

DRs have been used with and without surrounding metal
cavities for decades as a vehicle for concentrating the
fields, typically at microwave frequencies; as the article by
Richtmyer [17] in 1939 declared, “suitably shaped objects
made of a dielectric material can function as electrical res-
onators for high frequency oscillations.” As noted above,
one of the main applications of microwave cavities has been
ESR; and one of the main applications of the enhanced field
provided by DRs has been to enhance the ESR signal. This
was first observed by Carter and Okaya [18] in 1960, who
used pieces of Fe-doped rutile as the DRs. Other ESR articles
employing DRs have followed through the decades since,
consistently pointing out the ability of DRs to enhance the
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Fig. 1. Cavity modes of electric and magnetic fields plotted in cross section;
the magnetic fields being calculated through Faraday’s law and the curl of
the electric field. The cavities use normalized dimensions such that HM as
defined by (5) equals unity. (a) TE011 mode of an empty cylindrical cavity
and (b) quasi TE011 mode of the same cavity but with double-stacked DRs
added. (c) and (d) TE011 and quasi TE011 modes for a second configuration,
empty cavity, and one with double-stacked DRs.

sensitivity of the experiments [3], [4], [19]–[26], at times up to
roughly three orders of magnitude [23]. The field enhancement
is greatest inside the DR itself, leading some to drill holes

into the DRs or place their samples inside DRs with premade
axial holes [20], [24], [25], [27]. Others have chosen to place
their samples sandwiched between two DRs, and indeed, the
two DR configuration has seen a lot of use—for example,
in applications which require high pressure [28]–[30], optical
access [2], or an increased field homogeneity outside of the
DR [31]. The two DR configuration also allows for general
tunability in both ESR and other applications, for example,
by varying the spacing between the two DRs or placement
of the DRs within the cavity [15], [32]–[37]. Some degree of
tunability has also been obtained by exchanging the DRs with
similar ones of different dimensions or dielectric constants in
single or double DR configurations [2], [38].

Due to the significance of DRs and the lack of an ana-
lytic solution, a number of numerical techniques have been
developed to calculate approximate resonant frequencies of
DRs and DR-containing cavities. In rough chronological order,
these include solving a transcendental equation through either
the magnetic wall waveguide model [39]–[41], the dielectric
waveguide model [42], [43], or a hybrid of the two [44]; using
a variational procedure for approximating answers [45]; doing
a surface integral implementation with method-of-moments
[46], [47]; using effective dielectric constants [48], [49];
solving a matrix equation after expanding in terms of empty
cavity modes [50]; and using coupled mode theory or a mode-
matching technique [51], [52]. Often these methods require
simple geometries, assume metal caps on top and bottom,
place limitations on usable dielectric constants, and so on
As an example, some useful formulas for predicting resonant
frequencies for single and stacked DR configurations are given
by Jaworski et al. [44] but the formulas are limited to dielectric
constant �r ≈ 30 and DR aspect ratio between 0.4 and 1. To get
more precise values of resonant frequency and/or the pattern
of electric and magnetic fields, typically more sophisticated
approaches are used, which can be time-consuming to imple-
ment and often require commercial software or sophisticated
programming. These include finite integration [53]–[55], the
finite-element method (FEM) [13], [56]–[58], and others [59].
Such approaches are sometimes used to check other theoretical
or experimental work such as those cited above.

For this article, we have chosen to focus on the double-
stacked DR configuration inside a conducting cavity, with
two DRs symmetrically placed above and below the cavity
midpoint, where each DR can additionally contain a central
axial hole. We note that this is a very general configuration,
which can even include single DRs (if the separation distance
is set to zero) and DRs with no holes (if the DR inner diameter
is set to zero).

The goal of this work was to develop a technique which is
nearly as accurate as FEM, but which can run in a fraction
of the time. To do this, we employed machine learning in
the form of two independent neural networks, one of which
learned to predict the resonant frequency of the quasi TE011

mode, the other of which learned to predict the electric field
of the mode (from which the magnetic field can also be
calculated). In order to train the neural networks, we developed
our own FEM code using FEniCS in Python, based in large
part on the work by Weickhmann [13]. In order to efficiently
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represent information about the mode, we characterized the
quasi TE011 mode in terms of empty cavity modes, similar
to previous work by our group [50]. We solved for the
quasi TE011 mode for 97 161 random configurations, added
2809 known configurations of fully filled cavities, and used
the resulting 99 970 modes to train the two neural networks.
We assessed the networks with 9564 independently solved
holdout samples; results show that the trained neural networks
are highly accurate and extremely fast, approximately 10 000×
faster than the FEM calculations. The median error for the
normalized frequency predictions is 0.2%. The median error
in the field prediction is 0.003%, as defined by the projection
of the electric field calculated by the FEM code onto the field
calculated by the neural network. These results show not only
that the trained neural networks excel at their job but also that
electric field mode is in general a very learnable quantity via
the expansion coefficient method.

II. FINITE-ELEMENT METHOD

For creating the training samples for our neural network,
we used FEniCS, an open-source package in Python for solv-
ing partial differential equations (PDEs) through FEM [60].
Generally, the FEM is able to numerically approximate some
unknown function by expressing a PDE as a variational
problem. In finite-element analysis, a weak form governing
equation is a variational form of the original problem, by mul-
tiplying the trial function (the unknown function being approx-
imated) by a test function which is zero on the boundary, inte-
grating the resulting equation over the domain, and performing
integration by parts if needed for terms with second-order
derivatives [60].

In our case, the weak form governing equation is provided
in the Appendix. It is turned into a generalized eigenvalue
problem which FEniCS can solve, as is also demonstrated in
the Appendix. The eigenvalues λ allow the resonant frequency
of the mode to be obtained and the eigenvectors e give the
coefficients (in terms of the finite-element basis functions) of
the electric field for that mode. (The symbol λ here should
not be confused with wavelength, as the eigenvalues relate to
the wavenumber squared as detailed in the Appendix.)

Our FEniCS code solves for the resonant mode near an
estimated target frequency. We use as our starting point a
frequency below any of the resonant frequencies, and then
adjust the target higher and higher until a resonant mode is
found. As explained in the Appendix, our code can only find
m = 0 modes. Our starting point is the resonant frequency
of the TM010 mode for a cavity completely filled with the
DR material, since: 1) the TM010 mode is always the lowest
frequency mode of an empty or completely filled cavity when
m is restricted to 0 and 2) the frequency of the lowest resonant
mode of the actual cavity will necessarily be higher than the
lowest frequency of a completely filled cavity since adding air
pockets to a completely filled cavity only reduces the optical
path length of the electromagnetic wave inside the cavity, thus
increasing the frequency.

If no resonant mode is found near the target frequency,
then our program increases the target frequency iteratively
at a higher and higher rate until a resonant mode is found.

Once a resonant mode is found, our program tests whether
the found mode is quasi TE011 by sampling the electric field
on a 50 × 50 grid over the domain and running two checks
which ensure the topology of the mode matches the empty
cavity TE011 mode; this guarantees the proper topology for
the magnetic field as well. The desired topology is that the
electric field should be only in the φ-direction and should
never change direction. The first check is to make sure that
the sum of |Eφ | over all points in the cavity is larger than
the combined sums of |Er | and |Ez| (which are small but due
to numerical errors potentially nonzero). The second check
is to make sure that Eφ is always positive, within some
tolerance.

If the mode found by FEniCS fails either of the two tests,
the program starts increasing the target frequency again (after
resetting the increment rate) and looks for the next higher
mode. The process continues until either the quasi TE011

mode is identified, or 12 nonquasi TE011 modes are found,
in which case the program gives up. This only happens rarely
for reasonable cavity configuration choices such as those
described by the parameters in Section IV.

A calculation for a typical cavity configuration takes on
average about 30 min of supercomputer time, running on a
node of the BYU “marylou8” cluster, with the node using a
12-core Intel Haswell (2.3 GHz) processor and 100 GB of
memory.

III. PARAMETRIZING THE QUASI TE011 MODE FOR

MACHINE LEARNING

In order to assist the machine learning algorithm in effi-
ciently finding the quasi TE011 mode, we express the mode
as a linear combination of empty cavity modes, as per (1).
This is similar to a method employed previously by our
group [50], although in that work the D field was expressed
in the expansion rather than the E field. Incidentally, the E
field was used in this current work rather than the D field due
to our inability to obtain a solvable weak form FEM equation
for D. The expansion is

E =
∑
lmnp

almnpElmnp. (1)

In this equation, Elmnp refers to a resonant mode of an empty
cavity having the same dimensions as the dielectric-filled
cavity, with l = 0 or 1 referring to TE or TM, respectively,
and m, n, and p being the azimuthal, radial, and longitudinal
mode numbers. The quasi TE011 mode can be constructed
solely from TE modes having m = 0; therefore, we restrict the
summation to l = m = 0. For a known field E, the coefficient
of the TE0 np term can be obtained by starting with (1) and
applying “Fourier’s trick” of dotting the field into the complex
conjugate of Elmnp, integrating over the domain, then using the
orthogonality condition. Doing so, we obtain

almnp =
∫
� E∗

lmnp · E dV∫
� E∗

lmnp · Elmnp dV
. (2)

The denominator can be evaluated using the electric field
components of the TE modes of an empty cylindrical cavity
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Fig. 2. Geometry of the double-stacked DR configuration.

from, e.g., [61], to obtain the following:

a00 np = 1

hπ R2

2

(
1 +

(
pπ R
hj1n

)2
)

J 2
0 ( j1n)

×
∫

�

E∗
00 np · E dV . (3)

Here, h and R are the cavity height and radius, respectively,
j1n is the nth zero of the first Bessel function, E00 np is the
empty cavity field for the TE0 np mode, and E is the field
of the actual cavity for the resonant mode obtained by our
FEniCS code.

By investigating several representative physical configura-
tions for dual stacked DRs inside a cylindrical cavity, we com-
piled a list of the 200 most significant TE0 np empty cavity
modes, in order, the first ten of which are TE011, TE021, TE013,
TE031, TE041, TE015, TE023, TE051, TE017, and TE061. Note that
the symmetry of the cavity requires p to be odd for the quasi
TE011 mode. Typically, the TE011 coefficient, namely, a0011,
is the largest of the 200 coefficients in magnitude for the quasi
TE011 mode; however, in approximately 10% of the parameter
sets we investigated, some other coefficient was larger.

The integrals to obtain the a00 np coefficients were performed
using 200 × 200 sampling grids of the field found by FEniCS,
and the coefficients for a given field are normalized such that
the sum of their squares equals 1.

IV. CREATING TRAINING SAMPLES

The FEM program described in Section II can be used
with only small modifications for any cylindrically symmetric
cavity configuration, as defined by the �r spatial function
within the code. For the purposes of developing a machine
learning algorithm, however, we limited the physical geometry
to the double-stacked DR configuration as indicated in Fig. 2.
Such a geometry can be completely specified with seven
parameters: cavity diameter (or radius) and height, inner and
outer radii of the DRs, height of the DRs, vertical distance
separating the DRs, and the dielectric constant of the DRs.

Two physical cavities which differ only by a scaling factor
in all dimensions will have an identical field pattern and will
differ in frequency only by that same scaling factor. Therefore,
the machine learning can be made substantially much more

TABLE I

LIST OF NEURAL NETWORK INPUTS AND OUTPUTS

efficient by considering only normalized cavities having the
same size (using a consistent measure of cavity size), as long
as the frequency of the desired cavity can be recovered
from the frequency of a normalized cavity. Using normalized
cavities also removes one degree of freedom from the cavity
parameters: cavities are specified using six parameters instead
of seven.

The measure of cavity size we have chosen to use is the
harmonic mean of the height and diameter, hereafter referred
to simply as “harmonic mean,” or HM. The HM and cavity
aspect ratio AR together determines the cavity height h and
diameter d , according to the following equations:

AR = h

d
(4)

HM = 2hd

h + d
(5)

and the inverse equations

h = 1 + AR

2
HM (6)

d = 1 + AR

2AR
HM. (7)

We enforce the condition HM = 1 when creating our
training samples. Our FEM program additionally sets the speed
of light to unity for convenience and, therefore, outputs a
dimensionless normalized frequency. To recover the actual
frequency in Hz for real-world situations where the harmonic
mean is not unity, we normalize all other physical dimensions
by dividing by HM, and use the following relationship:

f = fnormc

HM
(8)

where c being the speed of light in m/s and HM being the
harmonic mean in meters.

As indicated in Table I, one sample of training data consists
of the inputs which are the six parameters specifying the
cavity geometry, and the outputs which are the normalized
frequency and the 200 a00 np values describing the quasi
TE011 field.

To sample the 6-D parameter space, we employed Latin
hypercube sampling (LHS), which is a statistical method to
ensure each region of a multivariable distribution is sampled
with near-random values. Each variable is partitioned into N
nonoverlapping intervals. One value is selected at random from
each interval and randomly matched with a value from an
interval of each other variable. This is done over the whole
distribution in such a way that each interval of each variable
is used exactly once. With two variables and visualizing the
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partitioned intervals as rows and columns, the sampling for
N = 8 is equivalent to positioning rooks on an 8 × 8 chess
board in such a way that no two rooks can threaten each
other. There will be exactly one rook (one sample point)
in each row and in each column, with eight total rooks.
Hence, the number of sample points is equal to the number of
partitioned intervals. A Latin hypercube is the generalization
of this concept to an arbitrary number of dimensions, e.g., a
6-D chessboard for our case. This stratified sampling method
offers coverage of the whole multivariable distribution while
maintaining a component of randomness suitable for machine
learning datasets [62], [63]. We implemented LHS over the
input variables for our neural network using the Surrogate
Modeling Toolbox package in Python.

The LHS points are returned as sets of six numbers
from 0 to 1, call them p1, . . . , p6, which then must be rescaled
to correspond to our six parameters. We did that as follows.
To generate the aspect ratio, p1, was rescaled to be between
0.25 and 4, using a log scale so there would be the same
number of aspect ratios less than 1 as above 1. Based on (6)
and (7), the cavity’s height and diameter were then calculated
with an enforced harmonic mean of 1. The smallest aspect
ratio of 0.25 corresponds to a cavity height and diameter
of 0.625 and 2.5, respectively; the largest aspect ratio of
4 corresponds to the reverse, that is to say, cavity height and
diameter of 2.5 and 0.625. The DR inner and outer radii were
then generated by rescaling p2 and p3 to be from 0 to the
cavity radius, swapping the two if p2 > p3. The DR height
was generated by rescaling p4 to be from 0 to half the cavity
height. The parameter set was thrown out if either the DR
annular radius (difference of outer and inner radii) or the DR
height resulted in a value which was too small for the mesh
resolution we employed, namely, 1/100 of the larger of the two
cavity dimensions. The DR separation distance was generated
by rescaling p5 to go from 0 to hcavity−2hDR, to guarantee that
the DRs fit completely within the cavity. Finally, the dielectric
constant was generated by rescaling p6 to go from 1 to 45,
that marking the approximate upper limit of commercially
available DRs, and additionally skewing the distribution away
from the lowest values because: 1) the low dielectric constant
DRs take longer to calculate due to a larger difference between
initial target frequency and the actual quasi TE011 resonant
frequency and 2) very small dielectric constant values are less
likely to be employed in practice.

That process was repeated for each set of p1, . . . , p6

generated by the LHS code, and resulted in 97 161 sets
of usable cavity parameters which we used for developing
our neural network. Histograms of the cavity parameters
are shown in Fig. 3. An additional independently sampled
9564 points generated the same way were created as a holdout
dataset to determine the quality of our neural network. Those
106 725 total sets of parameters were then run through
our FEM code to determine the normalized frequency and
empty cavity expansion coefficients for each one; this took
approximately 53 000 CPU hours of supercomputer time.
After the network architecture was established as described
in this section, an additional 2809 samples of known data
in the form of completely dielectric filled cavities—where

Fig. 3. Histograms of the six parameters in the 106 725 samples used for
training and evaluating the neural network: (a) aspect ratio (shown on a log
scale), (b) DR inner radius, (c) DR outer radius (OR), (d) DR height, (e) DR
separation distance, and (f) dielectric constant. All distances are normalized
such that HM as defined by (5) equals unity.

exact analytic solutions are known—were added, forming
99 970 total training samples.

V. NEURAL NETWORK TRAINING, DEVELOPMENT,
AND RESULTS

We developed two independent neural networks, one of
which learned to predict the resonant frequency of the quasi
TE011 mode for any given set of input parameters, the other of
which calculated the 200 a00 np empty cavity mode coefficients.
In each case, a random 80–20 split of the samples was done to
form training and testing/validation sets and develop the neural
networks. Both networks were developed using mean squared
error loss functions (which for the coefficient-predicting neural
network means average of the sum of the squared errors of all
of the coefficients). We used the Keras API with Tensorflow
backend in Python for all of the neural network programming.
Optimal hyperparameters such as number and type of layers,
activation functions, optimizer, learning rate, and number of
training epochs, were found using standard procedures.

Comparisons between some selected networks and hyper-
parameters can be found in Table II. The dense neural net-
works (DNNs) in Table II follow the same architecture as
presented below. The convolutional neural networks (CNNs) in
Table II have two convolutional layers, flattened and followed
by two dense layers. The bolded row indicates what we used
for the final networks.

Fig. 4 presents summaries of the final architectures of each
of the two networks. The final frequency-predicting neural
network is comprised of six fully connected layers with 256,
128, 64, 32, 16, and 1 nodes. The first five layers use the
“swish” activation function defined by f (x) = xsigmoid(x).
The output layer uses a linear activation function. Other hyper-
parameters are as follows: Adam optimizer, initial learning
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TABLE II

COMPARISON OF SELECTED NEURAL NETWORKS

rate of 0.005, and a batch size of 50. The final expansion
coefficient-predicting neural network is comprised of seven
fully connected layers with 2048, 1024, 512, 256, 256, 256,
and 200 nodes. After these, a lambda layer is used to enforce
L2 normalization of the coefficient array. Swish activation
functions are used for all layers. Other parameters chosen for
this network include Adam optimizer, initial learning rate of
0.0005, and a batch size of 25.

Both networks were trained using three callbacks:
EarlyStopping, ModelCheckpoint, and LearningRateSched-
uler. EarlyStopping, implemented with a patience of 150 for
the frequency network, 75 for the coefficients network, and a
minimum delta of 10−5, ensured that little time was wasted on
unproductive training. That is to say, if the loss function failed
to improve by at least 10−5 in the given number of consecutive
epochs, training was stopped early. ModelCheckpoint made
sure that a new version of the network was saved only
when the error metric improved. After a specific number of
epochs, LearningRateScheduler began decreasing the learning
rate according to the following formula: LRnew = LRolde−0.1.
For the frequency network, this process started after 100
epochs; and 75 epochs for the coefficients network. Plots of
the loss functions versus epoch for the two neural networks are
included in Fig. 5. The two networks hit their EarlyStopping
limits after 383 and 206 epochs, respectively.

Once the neural networks were developed, the holdout
dataset was used to assess the performance of the final
networks. A plot of all of the frequency errors for the
9564 holdout points is provided in Fig. 6(a); the median of the
absolute values of the fractional frequency errors was 0.2%.

To assess the coefficient network, we have used a “similarity
score” obtained by projecting the field predicted by the neural
network onto the field generated by FEniCS, which due to the
orthogonality of the empty cavity modes is just the dot product
of the two vectors of coefficients

Similarity score =
∫

E∗
FEniCS · Eneural net dV

=
∑

a00 np,FEniCSa00 np,neuralnet. (9)

A similarity score of 100% means the two fields are identical,
whereas a score of 0% would indicate no similarity between
fields. A plot of the field errors (1—similarity score) for the
holdout points is provided in Fig. 6(b). The overall ability of
the neural network to correctly predict the electric field of

Fig. 4. Schematic depiction of the final architectures of (a) frequency-
predicting and (b) expansion coefficient-predicting neural networks.

Fig. 5. Loss functions versus training epoch for the two neural networks.
The solid lines are the loss functions for the training sets; the scatter points
are the loss function of the testing/validation sets displayed at selected points,
namely, the points at which the training loss improved.

the quasi TE011 mode is remarkable! The median similarity
score of the 9564 holdout points is 99.997%, which is to
say a 0.003% error in the field; and all but seven of the
9564 points have a similarity score of 99% or higher. There
is a trend indicating the neural network does not predict the
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Fig. 6. Results of the two neural networks for the 9564 holdout points:
(a) absolute value of the fractional error of the predicted normalized frequency,
plotted versus the normalized frequency given by FEM. The median absolute
fractional error of frequency is 0.2% and (b) deviation from 1 of the similarity
score of the empty cavity a00 np expansion coefficients, plotted versus the
normalized frequency given by FEM. The median similarity score is 99.997%
(i.e., median deviation from unity is 3 × 10−5).

mode quite as well for large frequencies [r = 0.599 and
p < 0.0001 from a linear regression of the log-linear data of
Fig. 6(b)]; nevertheless, the extremely low errors demonstrate
that the empty cavity modes are remarkably well suited as
basis functions for this type of machine learning.

Running the two neural networks to establish the frequency
and expansion coefficients for a given set of cavity parameters
takes roughly 0.07 s for each network running on a typical
personal computer, a speedup of approximately 10 000×
compared with our FEniCS code.

Analyzing the coefficient neural network performance a
bit further through linear regressions using log–log plots,
we find the following, with p < 0.0001 for all of these
results. The neural network performed better for aspect ratios
toward the center of the range (r = −0.118 when analyzing
AR < 1; r = 0.275 when analyzing AR > 1). The
neural network performed better for smaller DR separations
(r = 0.362) and only very slightly better for smaller DR �r

(r = 0.054). So far, the most significant factors were the
DR annular radius (DR OR − DR inner radius) and DR
height: when judged as a fraction of the cavity radius and
cavity height, respectively, the neural networks performed
substantially better for larger annular radii and larger heights
(r = 0.478 and r = 0.594, respectively). In other words, the
neural network is at its best when the DRs are not too thin in
either dimension. Interestingly, the frequency neural network
shows far milder trends for small DR annular radius and height
than the coefficient network, perhaps because using thin DRs
should cause the quasi TE011 mode frequency to become close
to the empty cavity TE011 frequency.

As another assessment of how the neural networks perform
at the limits of the trained parameter space, we have tested the
networks for a random selection of 3000 fully filled cavities,
for which exact solutions to frequency and mode are known.
This was done for a range of aspect ratios from 0.125 to 8,
i.e., including aspect ratios both less than and greater than
our trained region by factors of two; and dielectric constants
from 1 to 90, i.e., greater than our trained region by a factor of
two. For parameters inside our trained region, the frequency
and field errors were 0.2% and an incredible 0.00007%,
respectively; and for parameters outside the trained region,
the errors were 4.7% and 0.002%, respectively. As would be

expected, the largest errors came at the limits of the aspect
ratios (especially those close to 0.125) and dielectric constants.
In particular, when dielectric constant was greater than 45,
there is a very large correlation between large errors and large
dielectric constants (r = 0.818).

We have additionally explored the behavior of the frequency
network for some parameters outside of the trained region,
in a more standard double-stacked DR configuration. Typically
the neural network provides plausible, although presumably
incorrect, values when one is not too far away from the
trained region. For example, when the DR height is too
large to fit into the cavity, the predictions are reasonable
although perhaps not physically meaningful. In looking at
DR height and annular widths which are too small for the
trained region (due to limits of FEM mesh size, as mentioned
in the Appendix), the frequency predictions are also somewhat
reasonable, in the sense that they are close to predictions at the
limits of the trained region. However, as some parameters get
farther and farther away from the trained region, eventually
the neural network stops predicting meaningful values and
the frequencies even go negative (e.g., for aspect ratios above
about 8 and dielectric constants above about 200, in one test).

Resonant cavities are often characterized by the Q-factor,
a measure of the sharpness of the resonance, and degree of
cavity loss. Because our methods assume perfectly conducting
walls and a lossless dielectric, the Q-factor in our calculations
is in some sense infinite. Instead, we use the magnetic filling
factor (FF), an important parameter for spin resonance exper-
iments in particular, which is equal to the magnetic field’s
energy integrated over the volume occupied by the sample,
divided by the total magnetic field energy in the cavity. One
can show that in the limit of a negligibly small sample placed
in the cavity center, the FF becomes

FF ∼ Vcavity|B(r = 0)|2∑∣∣blmnp

∣∣2 (10)

where blmnp are the expansion coefficients of the magnetic
field B in terms of the empty cavity magnetic field modes; it
can be shown that blmnp = ωlmnp/ω with ωlmnp indicates the
resonant frequency of the corresponding empty cavity mode
and ω indicates the resonant frequency of the actual mode.
(The formula for blmnp appears as the reverse of (20) of [50]
because in that work it is the D field which is expanded
in empty cavity modes.) To assist with cavity design, our
neural network Python code also outputs the result of (10)
for the specified parameters, which we call the “scaled FF.”
To recover the actual FF, one must multiply the scaled factor,
(10), by the ratio of the sample volume to cavity volume.

VI. APPLICATION EXAMPLE AND COMPARISON

WITH EXPERIMENTS

As an illustration of an application of the neural network,
we present the following analysis of a situation where we have
defined an overall cavity of height 35.65 mm and diameter
14.18 mm, to match the physical cavity of [50] for comparison,
and then experiment with how the DR properties affect the
resonant frequency and scaled FF of the quasi TE011 mode.
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Fig. 7. Results of neural network frequency and scaled FF calculations for
a configuration similar to [50], namely, an overall cavity of height 35.65 mm
and diameter 14.18 mm. In each of the graphs (a)–(e) one of the parameters is
varied (DR inner radius, DR OR, DR height, DR separation, and DR dielectric
constant, respectively, as indicated by the x-axis), while the nonvarying
parameters are held constant at these values: DR inner radius = 1 mm, DR OR
= 5 mm, DR height = 4.5 mm, DR separation distance = 5 mm, and �r = 14.

In each of the graphs in Fig. 7, one of the parame-
ters is varied (as indicated by the x-axis), while the non-
varying parameters are held constant at these values: DR
inner radius = 1 mm, DR OR = 5 mm, DR height = 4.5 mm,
DR separation distance = 5 mm, �r = 14. To obtain the
frequency for a given set of parameters, we normalize all
dimensions according to the harmonic mean of cavity height
and diameter, feed the values into the frequency neural net-
work, obtain the dimensionless normalized resonant frequency
back, and then rescale according to (8) to obtain the physical
frequency in Hz. The process is repeated for 200 values across
each of the x-axis to form the curves shown in Fig. 7. Again
to emphasize the tremendous speedup offered by the neural
network, each of these frequency plots takes roughly 14 s to
generate—or roughly double that if the FF is also plotted, as in
that case the expansion coefficients must also be calculated—
as compared with approximately 100 h if we were calculating
200 different configurations via FEniCS.

This type of analysis could be useful, for example, when
DRs are added to a cavity in order to target a particu-
lar frequency, or when tunability is obtained by varying
parameters such as the DR separation distance as in the
design of Sienkiewicz et al. [37] and Mattar and Elnag-
gar [36] (which is discussed further below), which allow
frequencies to be altered in a ∼1–2-GHz range. The work
of Khalajmehrabadi et al. [15] similarly involves a study of
how frequencies vary as DR parameters are changed, in their
case, DR thickness and dielectric constant.

TABLE III

COMPARISON WITH EXPERIMENT

Since real-world applications typically involve additional
dielectric material inside the cavities, such as Rexolite sup-
ports [2], [4], [13], [30], [33], [37], [44], [50], [65], [66],
we suggest that designers could combine our neural net-
work and FEM programs—using the neural network to first
obtain a desired result by analyzing hundreds or thousands
of configurations of stacked DRs in an otherwise empty
cavity, then double-checking the chosen configuration with a
single final (slow) calculation using our FEM code in which
additional dielectric material can easily be incorporated. This
is quite similar to what has been done by Hyde and Mett [64],
in a work involving a single DR extending axially from cavity
wall to cavity wall—they used contour plots of dimensions
of the metallic cylinder, developed using analytical equations,
to find a cavity with a resonance at 9.5 GHz and then con-
firmed that by time-consuming finite-element modeling [64].
(As a parenthetical note, their design of a DR filling the cavity
axially, which as they pointed out distinguishes their work
from the extensive body of work on DRs, falls under the
parameter ranges covered by our neural network simply by
setting the OR equal to the cavity radius.)

We present some results using this approach in Table III,
where we compare with experimental data from [50] obtained
by varying the DR height. The columns include our neural
network calculations, which incidentally are five points from
Fig. 7(c), followed by FEM calculations assuming only DRs
in the cavity, followed by FEM calculations with Rexolite
supports as described in [50], then finally the experimental
measurements. The neural network matches the FEM without
Rexolite calculations extremely well, with a median absolute
value error of 0.2%, and the FEM with Rexolite calculations
match the experimental measurements also extremely well,
with a median absolute value error of 0.5%. For additional
comparison, a column giving the (much less accurate) results
of Jaworski et al. [44] for stacked DRs in an otherwise
empty cavity has also been included as a commonly used
approximation.

VII. COMPARISON WITH OTHER METHODS

We now present a comparison of our neural network with
several other calculations for the configuration of Mattar and
Elnaggar [36], which is two stacked DRs having �r of 29.2,
DR height of 2.65 mm, DR inner radius of 0, DR OR of
3 mm, and a variable DR separation; placed in a cavity with
height h = 41 mm and diameter d = 41 mm (i.e., AR = 1).
Mattar et al. use an energy-coupled mode theory (ECMT) to
obtain an approximation for the cavity mode and resonant
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Fig. 8. Frequency versus separation distance for the configuration of [36],
using various techniques: HFSS (a commercial FEM solver; black), ECMT
(green), our FEM code (red), our neural network (cyan), and the Jaworski
method from [44] (blue). The data for the black and green curves are
from [36].

frequency by computing coupling coefficients describing the
overlap of fields of isolated DRs and of DRs and cavity [51].
In that work, they also use HFSS (a commercial FEM solver)
to compute the modes and frequencies for comparison. In
Fig. 8, we present their ECMT and HFSS solutions as DR
separation distance is varied, along with the results from our
own FEM code (FEniCS) and our neural network. As in
Table III, we additionally present results from the method of
Jaworski et al. [44] for comparison.

From Fig. 8, one can see the FEM, ECMT, and neural
network curves are all in reasonably good agreement with each
other (±0.5% over most of the range); however, the neural
network has increased error for some of the larger separation
distances (∼1.4% error in the 29–33-mm range). We believe
that this is just coincidentally a bad region of our trained
parameter space. This corresponds to configurations where the
dielectrics are very close to the ends of the cavity, which could
especially perturb the fields as the distance from the cavity
wall is varied, and we did not have a great many sampled
training points under such conditions. Therefore, even though
the holdout points under those conditions did not display a
significant error, the frequency neural network is apparently
slightly mismodelling this region of parameter space.

To conclude this comparison, we note that one downside of
the ECMT technique is that the fields of isolated DRs must be
known in order to compute the overlap integrals. The fields are
not analytically solvable, and so some other technique must
be used in order to obtain them. Our neural network technique
has the large advantage of being stand-alone.

VIII. CONCLUSION

In conclusion, we have developed two neural networks,
to predict the resonant frequency and the field pattern of the
quasi TE011 mode of a cylindrical microwave cavity with
double-stacked DRs. The neural network was trained and
evaluated with more than 100 000 samples created using
a supercomputer to solve random cavity configurations via
FEM implemented via FEniCS in Python. The neural net-
works are extremely accurate (0.2% median error in frequency
predictions) and quick (speedup of approximately 10 000×
compared with FEM calculations), and these results indicate
that the empty cavity modes which we have employed as
a basis form of a machine learnable set of functions. This
machine learning technique could be extended to other modes

and geometries, such as annular stacked DRs [52], side-by-side
DRs [67], or even rectangular microwave cavities (although the
FEniCS code would need to be substantially altered to generate
training samples in a noncylindrically symmetric case).

APPENDIX

DERIVATION OF WEAK FORM EQUATION

To obtain the weak form equation for use with FEM,
we follow in large part the derivations of [13] and [68].
Maxwell’s equations for a linear, isotropic, ohmic medium
where D = �E, H = (1/μ)B, and Jf = σE are the following:

∇ · �E = ρf

∇ × E = −μ
∂H
∂ t

∇ · μH = 0

∇ × H = �
∂E
∂ t

+ σE. (A.1)

We assume ρf = 0, μ = μ0, and harmonic fields so
(∂/∂ t) = iω. Taking the curl of Faraday’s law results in

∇ × ∇ × E =ω2�μ0E − iωμ0σE. (A.2)

In order to obtain the weak form governing equation for
use with the FEM, we take the inner product on the domain
� with test function E∫

�

(∇ × ∇ × E) · E dV = ω2μ0

∫
�

�(r)E · E dV

− iωμ0

∫
�

σ(r)E · E dV. (A.3)

Note that � and σ are functions of the spatial coordinates,
and are now explicitly written as such and, therefore, cannot
be removed from the integrals.

To simplify the left-hand side of (A.3), we first note that the
vector identity ∇ ·(a×b) = b·(∇×a)−a ·(∇×b), when used
with a = ∇×E and b = E , results in an equation which, when
integrated over the domain and with the divergence theorem
applied to the last term, results in∫

�

(∇ × ∇ × E) · E dV =
∫

�

(∇ × E) · (∇ × E) dV

+
∫

d�

(∇ × E × E)·n̂d S. (A.4)

From the standard boundary conditions, the right most
term in (A.4) can be neglected if we restrict ourselves to
a perfectly electric and magnetic conducting boundary and
ignore radiative losses [68]. Combining the nonzero terms
of (A.4) with (A.3), and additionally using �μ0 = �r/c2,
we obtain∫

�

(∇ × E) · (∇ × E) dV = ω2

c2

∫
�

�r (r)E · E dV

− iωμ0

∫
�

σE · E dV . (A.5)

For a dielectric filled cavity with conducting walls, the
conductivity function σ = 0 over the domain � for a lossless
medium and the field E = 0 on the boundary d� according
to the previous boundary condition. Therefore, the integrand
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of the rightmost term of (A.5) is zero everywhere over the
domain of the integral, and the weak form or variational form
of the original boundary-value problem is∫

�

(∇ × E) · (∇ × E) dV = ω2

c2

∫
�

�r (r)E · E dV . (A.6)

The weak form can then be turned into a matrix eigenvalue
equation by discretizing the fields in the function space and
then minimizing the functional [68], [69]. Due to the assump-
tion of azimuthal symmetry, the problem can be decomposed
into a Nédélec space for the r and z components and a con-
tinuous Galerkin or Lagrange space for the φ component [13].
As such, the electric field E is approximated on � using
2-D curl-conforming basis functions N j and nodal scalar basis
functions L j , as

Erz ≈
N∑

j=1

(erz) j N j Eφ ≈
N∑

j=1

(eφ) j L j (A.7)

where N is the number of bases in the finite element frame-
work and erz and eφ the sets of unknown expansion coefficients
for the (r, z) and φ-directions, respectively [69]. It should
be noted that this set up may lead to spurious modes [58];
however, the quasi TE011 mode checks eliminate any spurious
modes as possible solutions.

Substituting the discretized field equations into the weak
form equation of (A.6) and applying a minimization procedure
give the matrix equation(

Srz 0

0 Sφ

)(
erz

eφ

)
= λ

(
Trz 0

0 Tφ

)(
erz

eφ

)
(A.8)

where Srz , Sφ , Trz , and Tφ each represent N × N matrices,
given below in (A.10) through (A.13), and erz and eφ each
represent length N vectors.

This can be recognized as a generalized eigenvalue problem
of the form

↔
S ·e = λ

↔
T ·e (A.9)

where S and T represent the stiffness and mass matrices. The
i, j components of the four matrices are defined as [68], [69]

(Srz)i j =
∫

�

(∇rz × Ni) · (∇rz × N j
)

dV (A.10)

(
Sφ

)
i j

=
∫

�

(∇φ Li
) · (∇φ L j

)
dV (A.11)

(Trz)i j =
∫

�

�r (r)Ni · N j dV (A.12)

(
Tφ

)
i j

=
∫

�

�r (r)Li L j dV . (A.13)

In these equations, ∇rz and ∇φ represent the (r, z) and φ parts
of the curl or gradient operations as indicated.

The computations are greatly sped up by enforcing
azimuthal symmetry in cylindrical coordinates, namely dV =
2πrdrdz, turning the 3-D finite-element problem into a 2-D
problem using a grid over r and z (and in practice nearly all
factors of 2π are canceled out of our code). This has the
additional effect of restricting the solutions to modes with
azimuthal mode number m = 0, which have no φ dependence.

The eigenvector e in the generalized matrix equation (A.9)
is the vector of the expansion coefficients, and the eigenvalue
λ corresponds to a resonant frequency ω via

λ = ω2

c2
. (A.14)

We can obtain the resonant frequency f from the eigenvalue
via f = c(λ)1/2/2π . Note that λ here is not wavelength but
rather a generic symbol for eigenvalue. For computational
simplicity, we have used c = 1 in our code. To recover
frequency in Hz, use (8).

The FEniCS-specific implementation is done by first using
the FEniCS-related packages mshr and DOLFIN to define
the dimensions of the cavity and create a rectangular 2-D
mesh representing r and z dimensions. The mesh is created
via the command: mesh = generate_mesh (domain, 100),
where the argument of 100 indicates we would like to resolve
the geometry with 100 cells across the larger dimension.
Consequently, we only trust the FEniCS results with DRs
as small as approximately 1/100 of the larger of the two
cavity dimensions. The dielectrics are mapped by creating
mesh subdomains with different dielectric constants within the
overall domain of the cavity.

After the mesh has been created, we instantiate portable
extensible toolkit for scientific computation (PETSc) matrices,
assemble the matrices with the equations from the weak form,
and then apply the two Dirichlet boundary conditions. The first
boundary condition forces E = 0 on the conductive boundary,
while the second boundary condition forces Eφ = 0 on the
central axis, both of which are required for the quasi TE011

mode. (Other TE and TM modes will be found, which also
satisfy those two boundary conditions.) The program then
solves for λ and e with a scalable library for eigenvalue
problem computation (SLEPc) eigensolver, around some tar-
get frequency provided. If a resonant mode is found, the
get_eigenpair function in FEniCS returns four objects which
are the real and complex solutions of the electric field and the
resonant frequency. Since the resonant modes of the cylindrical
cavity have real electric fields and resonant frequencies, the
complex solutions are ignored while the real solutions undergo
further testing to determine whether they characterize the quasi
TE011 mode as described in the body of this article.
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