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Abstract

This paper proposes an effective universal “on-the-fly” mechanism for stochastic code-
book generation in lossy coding of Markov sources. Earlier work has shown that the rate-
distortion bound can be asymptotically achieved by a “natural type selection” (NTS) mech-
anism that iteratively considers asymptotically long source strings (from an unknown dis-
tribution P ) and regenerates the codebook from a distribution obtained within a maximum
likelihood distribution estimation framework, based on observation of a set of K codewords
that “d-match” (i.e., satisfy the distortion constraint for) a respective set ofK independently
generated source words. This result was later generalized, in a straightforward manner, to
account for source memory, by considering the source as a vector source, i.e., a sequence of
super-symbols from a corresponding super-alphabet. While ensuring asymptotic optimal-
ity, this extension suffered from a significant practical flaw: it requires asymptotically long
vectors or super-symbols, hence exponentially large super-alphabet, in order to approach
the rate-distortion bound, even for finite memory sources, e.g., Markov sources. Such expo-
nentially large super-alphabet implies that even a single NTS iteration is intractable, thus
compromising the promise of NTS to approach the rate-distortion function, in practice,
for sources with memory. This work describes a considerably more efficient and tractable
mechanism to achieve asymptotically optimal performance given a prescribed memory con-
straint, within a practical framework tailored to Markov sources. Specifically, the algorithm
finds, asymptotically, the optimal codebook reproduction distribution, within a constrained
set of distributions satisfying a prescribed Markovian property, e.g., of the same order as
the source, which achieves the minimum per letter coding rate while maintaining a specified
distortion level.

1 Introduction

Stochastic codebook design, based on source examples and string matching, has
played a central role (with different flavors) in numerous applications in the areas of
source coding, communications, machine learning, etc. Particularly influential were
the seminal contributions of Lempel and Ziv in lossless coding, as evidenced by the
numerous prevalent variants of the LZ77 and LZ78 algorithms [1, 2], which introduce
stochastic codebook generation/adaptation, given source examples, as a powerful tool
for lossless coding. Stochastic codebook generation mechanisms have been proposed
for lossy coding as well, e.g., the gold-washing [3] and natural type selection [4, 5]
algorithms. It is important to emphasize that optimizing the codebook reproduction
distribution is fundamentally more difficult in the lossy coding setting. The lossless
coding problem is “simpler” not only because perfect matching is less complex than
matching with distortion, but more importantly because the optimal codebook gen-
erating distribution, which achieves the minimal coding rate, is exactly the source
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distribution. In other words, the problem is simply to learn the source distribution
from examples. However, in lossy coding, the problem is vastly more difficult as the
source distribution P and optimal codebook generating distribution Q∗ are generally
different, and more so in the high distortion regime [4, 6, 7].

Most relevant to the work presented herein, is the stochastic codebook generation
and adaptation algorithm, known as “Natural Type Selection” (NTS), introduced
in [4, 5] and further made practically tractable in [8, 9]. In this iterative algorithm,
at each time step or iteration n, a sequence of K independently generated source
words from an unknown source distribution, of length L, is encoded using a random
codebook drawn from the current generating distribution Qn. For each source word
in the sequence, the first codeword in the codebook to satisfy a specified distortion
constraint d, is recorded. Then, the codebook reproduction distribution is updated
for iteration n + 1, by estimating the most likely distribution to have generated the
sequence of K d-matching codewords. In other words, the codebook reproduction
distributions (or types) are naturally selected in response to source examples, and
evolve through a sequence of “d-match” operations, hence the name natural type
selection, with a nod to Darwin’s theory of evolution. Consequently, it was shown
that asymptotically in the statistical depth K, the number of iterations n, and the
string length L, the sequence of codebook generating types Q1, Q2, . . . converges to
the optimal reproduction distribution Q∗

P,d that achieves the rate-distortion bound
R(P, d) for memoryless sources. This result was further extended to sources with
memory in [9], by considering the source as a sequence of i.i.d. M -length vectors or
super-symbols, i.e., neglecting inter-vector dependencies, for which the rate-distortion
bound was achieved by a variant of the NTS algorithm, asymptotically as M → ∞.

While ensuring asymptotic optimality, the NTS algorithm in [9] suffers from funda-
mental practical flaws. In order to converge to the optimal distribution that achieves
the rate-distortion bound for sources with memory, the algorithm needs to encode
source words that are composed of M -length vectors, each distributed according to
the M -th order source joint distribution PM , while sending M to infinity. Further-
more, even for finite-memory sources such as Markov sources of finite order, the
algorithm nevertheless requires asymptotically large M (very long super-symbol vec-
tors), within the codeword of L super-symbols, in order to achieve optimality. It is
important to note that large M implies exponentially large cardinalities of both the
source and code super-alphabet spaces, rendering intractable the main NTS opera-
tions such as d-search, maximum likelihood estimation and codebook regeneration.
The requirement of asymptotically large M is also counter-intuitive, as it also applies
to sources exhibiting modest memory, e.g., Markov sources where dependence on the
past is fully captured by conditioning on a few past samples. In this paper, we propose
to modify the NTS algorithm for Markov sources, such that the algorithm converges
to the optimal distribution without sending M to infinity. Specifically, we restrict the
generating codebook distribution to M -th order Markov distributions, which may in
practice be chosen to be the same order as the source. Then, asymptotic convergence
to the optimal constrained distribution, i.e., the M -th order Markov distribution
that achieves the minimum per letter encoding rate amongst all codebook generating
distributions of up to the same Markov order, is guaranteed.
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2 Relevant Background on Random Coding

Let {Xu}
∞
u=1 be a stationary ergodic source, where the source realizations are denoted

as xu ∈ X . We assume that the source alphabet X , and the reproduction alphabet Y
are discrete spaces, equipped with their associated Borel σ-field X ′, and Y ′, respec-
tively. Furthermore, let {X�}

∞
�=1 and {Y�}

∞
�=1 be a sequence of i.i.d. M -tuples source

and reproduction vectors, where the realizations of source and reproductions vectors
x� ∈ XM , and y� ∈ YM , respectively. Let PM denote the joint stationary distribution
of source M -tuples X�. Define a random source word X̃ and a random codeword Ỹ as
a concatenation of L i.i.d. random source and reproduction vectors, respectively, i.e.,
X̃ = [X1, . . . ,XL], and Ỹ = [Y1, . . . ,YL]. Next, we define an arbitrary non-negative
(measurable) scalar-valued distortion function ρ : X × Y → [0,∞). The distortion
between a realization of the source word x̃ and a realization of the codeword ỹ, is
assumed additive, and is, specifically, the average distortion over samples:

ρ (x,y) =
1

M

M
∑

m=1

ρ (xm, ym) , ρ (x̃, ỹ) =
1

L

L
∑

�=1

ρ (x�,y�) . (1)

For a scalar-valued fidelity constraint d, define a “d-match” event as the event that
ρ (x̃, ỹ) ≤ d. Suppose a random codebook CL of infinite number of length-ML code-

words
(

Ỹ(j), with j ≥ 1
)

is generated such that, each codeword consists of L i.i.d.

vectors as QM = {QM(y) : y ∈ YM)}. We call QM the codebook reproduction distri-
bution. Let NM,L be the index of the first codeword in CL that d-matches the source
word realization x, i.e., NM,L = inf {j ≥ 1 : ρ (x̃, ỹ(j)) ≤ d}, with the convention that
the infimum of an empty set is +∞. Given a codebook reproduction distribution QM

over YM , we define,

Dmin � EPM

[

ess inf
y∼QM

ρ(X,Y)

]

, Dav � EPM×QM
[ρ(X,Y)] , (2)

where ess infy∼QM
(·) denotes the essential infimum of a function, i.e.,

ess inf
Y∼QM

ρ(x,Y) = sup{t ∈ R : QM(ρ(x,Y) > t) = 1}, for any x ∈ XM . (3)

We will assume throughout this paper that Dav is finite, and Dmin < Dav < ∞.
We will also restrict our attention to the non-trivial range of distortion levels d ∈
(Dmin, Dav). Then, Shannon’s lossy coding theorem for scalar-valued distortion mea-
sures states: if a random codebook of length exp(L(R(PM , d)+ ε)) is generated using
an optimal reproduction distribution Q∗

PM ,d, the probability of finding a codeword
that d-matches an independently generated source word, drawn from the source dis-
tribution PM , goes to one as L goes to infinity, wherein R(PM , d) is the joint (or
M -th order) rate-distortion function, i.e., [10–12]

R(PM , d) = inf
V :[V ]x=PM ,

EV (ρ(X,Y))≤d

I(X,Y). (4)

Here, I(X,Y) is the mutual information between the M -tuples random vectorsX and
Y, and the infimum is taken over all joint probability distributions V such that the
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x-marginal of V , denoted [V ]x, is PM and the expected distortion EV (ρ(X,Y)) ≤ d.
Let V ∗

PM ,d be the optimal joint distribution that realizes the infimum in (4), then
the optimal codebook reproduction distribution Q∗

PM ,d is the y-marginal of the op-
timal joint distribution V ∗

PM ,d. However, if a random codebook is generated from
distribution QM �= Q∗

PM ,d, then the minimum encoding rate to guarantee a d-match
in probability, as L goes to infinity, was effectively shown in [13], and extended to
memoryless sources over abstract alphabets in [14], to be

R(PM , QM , d) = inf
V :[V ]x=PM ,

EV (ρ(X,Y))≤d

D(V ||PM×QM) = inf
Q′

M

{Imin(PM ||Q′
M , d)+D(Q′

M ||QM)}, (5)

where D(·||·) is the Kullback-Leibler (KL) divergence (or the relative entropy), and
Imin(PM ||Q′

M , d) is the usual minimum mutual information but with an additional
constraint on the output distribution, i.e.,

Imin(PM ||Q′
M , d) = inf

V :[V ]x=PM , [V ]y=Q′

M
,

EV (ρ(X,Y))≤d

I(X,Y). (6)

Here the infimum is taken over all joint distributions V of the random vectors (X,Y),
whose x-marginal, denoted by [V ]x, is PM , and y-marginal, denoted by [V ]y, is Q

′
M ,

and such that the expected distortion does not exceed d. In [15, Th. 2], it was
shown that, under these assumptions for the memoryless case (for which extension
to the sources with memory case is straight forward), R(PM , QM , d) is finite, strictly
positive, and that the infimum in its L.H.S. definition of (5) is always achieved by
some joint distribution V ∗

PM ,QM ,d. Moreover, since the set of V over which the infimum
is taken is convex, from [16] it can be concluded that V ∗

PM ,QM ,d is the unique minimizer.
Hence, a unique minimizer to the R.H.S. of (5) also exists, and is denoted Q∗

PM ,QM ,d.
Next, we define the minimum coding rate per letter for stationary ergodic sources
with memory required to guarantee a d-match with probability one asymptotically in
L as [11] [12],

R(d) = lim
M→∞

M−1R(PM , d). (7)

The limit in (7) exists for stationary ergodic sources, and for any M , R(PM , d) is
an upper bound to R(d) [17, Th. 9.8.1]. Consequently, the optimal codebook repro-
duction distribution that achieves R(d) is Q∗

d = lim
M→∞

Q∗
PM ,d. Given a source with

discrete input and reproduction alphabets, define a ‘type’ of source or code vector as
the fraction of occurrence of every letter in the alphabet as seen in the vector [18].

In this paper, we restrict our attention to stationary and ergodic sources with
memory described by the Markovian property. The M -th order Markov source prop-
erty implies that the current source sample distribution conditioned on the entire
past is fully captured by conditioning only on the previous M -samples. This Markov
source can be described by a state transition diagram, i.e., a Markov chain, with
|X |M states. Let Pj|i be the source state transition probability, from state i to state
j, where i, j ∈ R = XM . Let P be the state transition probability matrix whose (i, j)
element is Pj|i. Equivalently, let P (X|x) = {P (x|x) : x ∈ X} be the stationary source
letter distribution conditioned on the M previous samples specified in the vector x.
Note that there exists a one-to-one mapping between the set {Pj|i, ∀(i, j) ∈ R2} and
the set {P (x|x), ∀x ∈ X , ∀x ∈ XM}.
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3 Natural Type Selection

This work builds on and expands the NTS random lossy codebook generation ap-
proach for discrete sources, which was originally proposed in [4], a tractable version
for memoryless sources was proposed in [5, 8], and extension to sources with memory
in [9]. Let the sequence of i.i.d. source vectors {x�}

∞
�=1 be generated according to

an unknown source distribution PM = {PM(x) : x ∈ XM}. Furthermore, let the
codebook reproduction distribution be QM = {QM(y) : y ∈ YM}. In [9], the authors
showed that the Maximum Likelihood (ML) distribution that most likely generates a
sequence of K codewords that respectively d-match a sequence of K independently
generated source words, converges in probability to Q∗

PM ,QM ,d as the statistical depth
K → ∞ and string length L → ∞. Note that Q∗

PM ,QM ,d is more efficient in coding the
source than QM . This immediately suggests a recursive and iterative algorithm. Let
n be the iteration index, and assume that the algorithm starts with a strictly positive
initial codebook reproduction distribution denoted Q0,M,L,K , over the entire reproduc-
tion space. At each iteration, the algorithm performs a sequence of K d-match events
to a sequence of K independently generated source words. Afterward, the algorithm
computes the ML codebook distribution that would generate the set of d-matching
codewords. In other words, the next iteration’s codebook reproduction distribution
is naturally selected by the source through a sequence of d-match events, hence the
name “natural type selection”. Let Q0,M,L,K , Q1,M,L,K , . . . be the sequence of ML
codebook reproduction distributions, it was shown in [9] that this sequence of distri-
butions converges to the optimal codebook distribution Q∗

PM ,d that achieves the M -th
order rate-distortion function R(PM , d) in (4), i.e., Q∗

PM ,d = lim
n→∞

lim
L→∞

lim
K→∞

Qn,M,L,K .

In the next section, we introduce a variant of the NTS algorithm which is specialized
for Markov sources and analyze the asymptotic optimality of its codebook generating
distribution over all Markov distribution of the same order.

4 Proposed NTS Algorithm for Markov Sources

In order to take into account the M -th order Markovian property of the source,
we restrict the codebook reproduction distribution to distributions with M -th order
Markov property. Let Qj|i be the codebook distribution state transition probability
from state i to state j, where i ∈ S, j ∈ S, and S = YM . Hence, let Q be the state
transition probability matrix for which the entry in the i-th row and j-th column
is Qj|i. Let the random L-tuples source words and codewords X = [X1, . . . , XL],
and Y = [Y1, . . . , YL], be generated according to state transition matrices P and Q,
respectively. First, we introduce a variant of NTS algorithm for the above setup. At
every NTS iteration with index n, the algorithm finds a set of d-matching codewords
in the random codebook to a set of K independently generated source words. Let the
realizations of the d-matching source and code sets be denoted as {x(i1), . . . ,x(iK)},
and {y(j1), . . . ,y(jK)}, where jk is the index of the codeword that d-match the k-th
source word in the codebook. Next, similar to before, the NTS algorithm finds the
most likely (constrained) reproduction distribution to produce the set of d-matching
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codewords, where the distribution is constrained to haveM -th order Markov property.
Note that in the codebook training stage, we assume that each source word (and hence
each codeword) among the K-size set is generated independently of the other source
words. This condition is necessary to guarantee convergence to the desired optimal
constrained distribution, as will be illustrated in Theorem 1. However, once the
training is completed and the codebook distribution has converged, this condition
can be relaxed. Furthermore, for a given codebook distribution, the encoder and the
decoder “agree” on a given random codebook by synchronizing the random number
generator seed.

Lemma 1 [19]: The ML estimate of theM -th order Markov process state transition
probabilities underlying the codebook reproduction distribution, given a set of K d-
matching codewords, is the average of the d-matching codewords’ transitions, i.e.,

Qn+1,M,L,K = QML =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Qj|i : Qj|i =

K
∑

k=1

N(i �j|y(k))

K
∑

k=1

∑

j′∈S

N(i �j′|y(k))

, ∀(i, j) ∈ S2

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

, (8)

where k enumerates the d-matching events, and N(j � i|y(jk)) is the number of tran-
sitions from state i to state j as seen in the k-th d-matching codeword y(jk), whose
index in the random codebook is jk.

Thus, this algorithm yields a sequence of state transition matrices (8), or equiv-
alently, conditional distributions Qn+1,M,L,K(Y |y) = {Qn+1,M,L,K(y|y) : y ∈ Y}. We
next quantify the asymptotic performance of the NTS variant tailored to Markov
sources. Let the random codebook be generated according to a Markov process with
conditional probabilities Q(Y |y), ∀y ∈ YM . We start by transforming this variant
of NTS algorithm into a dual set of NTS algorithms for memoryless sources.

Let the sets of K d-matching source words and codewords be concatenated into
KL-length source and code blocks denoted as, s = [x(i1), . . . ,x(iK)], and c =
[y(j1), . . . ,y(jK)], respectively. Next, let the source and code blocks be indepen-
dently divided into sub-streams based on the previous source and code M -tuples,
denoted as {sx, ∀x ∈ XM}, and {cy, ∀y ∈ YM}. The first M letters in each source
word and codeword are not assigned to any sub-stream, which is of negligible conse-

Figure 1: Division of the d-matching source and code blocks into i.i.d. sub-streams based
on the previous sample.
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quence asymptotically in L. Note that as we assume a time-invariant Markov source,
each sub-stream sequence {sx} is i.i.d. and drawn from P (X|x). The set of d-match
event {ρ(x(ik),y(ik)) ≤ d, ∀k}, implies that ρ(s, c) ≤ d, which is equivalent to a set
of size |XM × YM | events of distortion matches between the sub-streams {sx} and
{cy}, each with distortion level denoted as dx,y, such that,

∑

x,y Mn(x,y)dx,y ≤ d.
Here Mn(x,y), is the empirical probability of mapping a letter in sub stream sx,
to a letter in sub stream cy, at NTS iteration n, as seen by the code and source
blocks s, and c, respectively. Fig 1 illustrates this for binary source and code blocks,
which are formed by concatenating three L-length d-matching source and code words,
with L = 10, where the source and codebook generating distributions are first order
Markov, hence the number of Markov states is |X | = |Y| = 2, the distortion measure
is Hamming, and the distortion constraint is d = 1/3. Samples in different i.i.d. sub-
streams are assigned different colors. Samples whose immediate predecessor is a ‘0’
are colored black, and samples following a ‘1’ are colored blue. The i.i.d sub-streams
sx and cy are formed by collecting all samples that follow the same letter, see Fig. 1.

Theorem 1: For an initial codebook generating Markov chain with strictly pos-
itive transition probabilities Q(Y |y) > 0, ∀y ∈ S = YM , and distortion measure
satisfying 0 ≤ Dmin < Dav < ∞, the transition probabilities Q(Y |y), of the recur-
sive NTS algorithm for Markov sources, where each recursion involves collecting K
d-matches, converge in probability and asymptotically, as L → ∞, as follows,

Qn+1,M,K(Y |y)→
∑

x∈XM

M
∗
n(x|y)Q

∗
(

P (X|x), Qn,M,K(Y |y), d∗x,y
)

,

V ∗
(

P (X|x), Q(Y |y), d∗x,y
)

� arg min
V ∈Ex,y(d∗x,y)

D
(

V
∣

∣

∣

∣

∣

∣
P (X|x)×Q(Y |y)

)

,

Q∗
(

P (X|x), Q(Y |y), d∗x,y
)

=
[

V ∗
(

P (X|x), Q(Y |y), d∗x,y
)]

y
,

(9)

where Qn+1,M,K(Y |y) = lim
L→∞

Qn+1,M,L,K(Y |y), and the set Ex,y(dx,y) is defined as,

Ex,y(d
∗
x,y) =

{

V : V = P ′ ◦W ′, P ′ = P (X|x), ρ(P ′,W ′) ≤ d∗x,y
}

. (10)

Here ρ(P ′,W ′) is the average distortion computed over distributions, and the set of
distortion levels {d∗x,y, ∀(x,y) ∈ XM × YM}, satisfies,

∂

∂δ
R(P (X|x), Q(Y |y), δ)

∣

∣

∣

δ=d∗
x,y

= R′
P,Q,d, ∀(x,y),

∑

x,y

M
∗
n(x,y)d

∗
x,y ≤ d, (11)

where R′
P,Q,d is independent of the sub-stream pair (x,y). In other words, the dis-

tortion allocation to sub-stream pairs, d∗x,y, ensures they all maintain the same rate-
distortion slope, given codebook generating distributions {Q(Y |y)}, while satisfying
the overall average distortion constraint d.

Proof sketch1: We employ a variant of the conditional limit theorem [18] to es-
tablish that, conditioned on the rare event that the joint input-output distribution
of a block of K concatenated respective source and codewords (S,C) belongs to a
convex set of distributions that satisfy the distortion constraint d, the conditional
distributions of this code block on Y converge in probability, as L → ∞, to the dis-
tribution

∑

x∈XM

M
∗
n(x|y)Q

∗
(

P (X|x), Qn,M,K(Y |y), d∗x,y
)

. Next, by [11], the minimum

1While detailed theorem proofs are omitted for space constraints, see note at the end of this
section for additional information
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of the output-constrained rate is achieved by adding the output-constrained rate-
distortion functions at points of equal slopes in all co-ordinates, implying (11). The
theorem and proof are very closely related to the Gibbs Conditioning Principle of sta-
tistical mechanics (see [20] and references therein), which (roughly) states: Consider
{X1, . . . , XN} i.i.d. random variables distributed over a Polish space with marginal
distribution PX and a measurable function f : X → R. Under suitable conditions on

PX and f(·), and conditioned on the rare event that

{

1
N

∑

i

f(Xi) ∈ [a− δ, a+ δ]

}

,

where a ∈ R and δ > 0, the distribution of Xi converges in probability, as N → ∞,
to the distribution that minimizes the divergence D(·||PX) over all distributions that
satisfy the constraint. Very similar arguments are used to prove Theorem 1.

Next, we look at the asymptotic convergence of the codebook reproduction con-
ditional distributions as the number of iterations n goes to infinity.

Theorem 2: Given an initial codebook that is generated using a Markov process
with strictly positive conditional distributions Q(Y |y) for any state y ∈ S = YM , the
recursion in (8) achieves the minimum average coding rate over the cross product of
all source-code sub streams, denoted as R(d), i.e.,

R(d) = min
Q(Y |y)

min
M(y|x)

dx,y,Vx,y

∑

x,y

M(x)M(y|x) D
(

Vx,y

∣

∣

∣

∣ P (X|x)×Q(Y |y)
)

. (12)

and the set of optimization variables that achieves the minimum in (12), satisfies,
∂

∂δ
R (P (X|x), Q∗(Y |y), δ)

∣

∣

∣

δ=d∗
x,y

= R′
P,Q∗,d,

∑

x,y

M
∗(x,y)d∗x,y ≤ d, (13)

where R′
P,Q∗,d is independent of the sub-stream pair (x,y).

Proof sketch: First, we show that the average encoding rate over the cross product
of all i.i.d. source and code sub-streams can be written as double minimization over
convex sets, due to the convexity of all constraints. Then, we invoke the Csiszar and
Tusnady theorem of alternating minimization over convex sets [21] to show the conver-
gence of the average encoding rate to its minimum, and consequently, the convergence
of the conditional distributions to the distributions that achieve the minimum average
encoding rate. Hence, this establishes that the NTS algorithm finds the conditional
distributions that minimize the average encoding rate over the cross product of the
sets of all i.i.d. source and code sub-streams {sx×cy} while maintaining the distortion
level d, hence implying asymptotic optimality.

Note that the detailed proofs of Theorem 1 and Theorem 2 have been omitted here
due to space limitations, but they largely follow from, and employ similar arguments
as in optimality proofs for earlier NTS algorithms in our prior work [4, 8, 9], based on
conditional limit theorems and alternating minimization over convex sets. Current
detailed proofs can be found in an unpublished extended draft for a journal paper
submission [22].

5 Toy Example

In this section, we illustrate the convergence behavior of the proposed NTS algorithm
variant, which is tailored to Markov sources. We consider a first-order binary Markov
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Figure 2: Evolution of state transition probabilities in the NTS codebook generating Markov
chain versus iteration index n, for different source word lengths L, statistical depth is
K = 105; operating on a binary Markov source with Hamming distortion constraint at
d = dmax = 1/3.

source with the transition probabilities P (0|0) = 0.8, P (1|0) = 0.2, P (0|1) = 0.4, and
P (1|1) = 0.6, to be encoded under the Hamming distortion measure. To illustrate
how the algorithm operates, we choose a distortion constraint for which one can guess
the optimal solution: d = dmax = 1/3. In Fig. 2, we depict the evolution of transition
probabilities of the codebook reproduction distributions versus the number of NTS
iterations n, for different values of source word length L . It is worth noting that
as L increases, and for the given distortion level d = dmax, the transition probabili-
ties employed for codebook generation approach Q∗(0|0) = 1, which strongly favors
the optimal codeword achieving dmax, namely, the all zero codeword. Thus, NTS
is converging to the optimal first-order Markov codebook generating distribution,
without prior knowledge of the source distribution. Furthermore, it is important to
note that, even for finite length L, the codebook generating distributions converge
asymptotically in the statistical depth K, and the number of NTS iterations n.

6 Conclusion

This paper proposes a modified and more effective NTS approach for a stochastic gen-
eration of random codebook in the lossy coding settings, specifically when Markov
sources are considered. Unlike the NTS approach in [9], the algorithm is not re-
quired to send the memory depth M to infinity in order to achieve the rate-distortion
bound, which dramatically reduces the otherwise intractable complexity of the NTS
algorithm and most importantly the search for d-match in the codebook, a central step
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in the iteration. It was further shown by Theorem 1 and Theorem 2, that the code-
book generating distribution, that emerges from the proposed stochastic algorithm,
converges to the optimal Markov codebook generating distribution of the prescribed
order, asymptotically as L → ∞, and n → ∞.
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