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SUMMARY

We describe a protocol to perform fast and non-arbitrary quality control of sin-
gle-cell RNA sequencing (scRNA-seq) raw data using scKB and COPILOT. scKB
is a wrapper script of kallisto and bustools for accelerated alignment and tran-
script count matrix generation, which runs significantly faster than the popular
tool Cell Ranger. COPILOT then offers non-arbitrary background noise removal
by comparing distributions of low-quality and high-quality cells. Together, this
protocol streamlines the processing workflow and provides an easy entry for
new scRNA-seq users.

For complete details on the use and execution of this protocol, please refer to
Shahan et al. (2022).

BEFORE YOU BEGIN

This protocol is designed to process scRNA-seq data from any species, tissue, or system. Please con-
sult the troubleshooting section for potential solutions to common issues.

Processing of scRNA-seq data begins with read alignment against a genome to call a gene-by-cell
matrix of transcript counts. Since this step is time-consuming, implementing a fast alignment algo-
rithm largely reduces the running time and saves computational resources. Quality control/filtering,
which is performed after calling a gene-by-cell matrix, refers to the removal of low-quality cells in
scRNA-seq data by detecting signals characteristic of unhealthy, damaged, dying cells or debris.
The typical quality filtering simply removes cells that do not meet an arbitrary UMI (Unique Molecular
Identifier) count threshold, assuming a clear-cut separation of background noise from high-quality
cells. The background noise could be cells that are unhealthy, dying or damaged, and empty drop-
lets containing ambient RNA or cell debris. Due to the multiple possible sources of background
noise, the assumption on which an arbitrary UMI count threshold is based can be easily violated.
To address these issues, we describe a protocol to perform fast and non-arbitrary quality control
on scRNA-seq data using scKB, a bash script, and COPILOT (Cell preprOcessing Plpeline kaLlistO
busTools), an R package that we developed. scKB is a COPILOT-compatible wrapper that takes
raw reads in and produces gene-by-cell matrices. scKB incorporates two published tools, kallisto
(Bray et al., 2016) and bustools (Melsted et al., 2021). Kallisto provides accelerated alignment of
raw reads while bustools offers barcode error correction, UMI collapsing, and count matrix genera-
tion. Given kallisto’s speedy pseudoalignment algorithm, scKB’s run time is significantly faster than
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the popular commercial tool 10x Genomics Cell Ranger 6.1.2. Following scKB, COPILOT offers non-
arbitrary (distribution-based) and flexible schemes for detecting and removing background noise.
Together, this protocol streamlines multiple independent steps from the processing workflow and
provides an easy entry for new scRNA-seq users. Improving the ease, efficiency, and accessibility
of the scRNA-seq data processing pipeline will ultimately facilitate biological discovery.

There are three main steps in this protocol: 1) read alignment with scKB; 2) quality filtering cells
with COPILOT; and 3) optional downstream analysis with Seurat. Read alignment is performed
by the COPILOT-compatible script scKB, which creates gene-by-cell matrices as output.
COPILOT takes the raw gene-by-cell matrix as input and filters out low-quality cells and outliers.
After quality filtering, COPILOT generates an html summary documenting parameters used for
filtering, cell statistics, and sequencing statistics of the sample similar to the summary produced
by Cell Ranger from 10x Genomics. Finally, users can choose to output the filtered gene-by-cell
matrices in 10x format, the same as produced by the Cell Ranger software suite, or store the
filtered matrix as a Seurat object (Butler et al., 2018; Stuart et al., 2019) with COPILOT. When
stored as a Seurat object, typical downstream analyses including read count normalization, dimen-
sionality reduction, and doublet removal can automatically be performed with Seurat functions. In
addition, if a user applies this protocol to process scRNA-seq data from Arabidopsis thaliana
roots, COPILOT supports annotation of cell types and developmental stages based on (Shahan
et al., 2022). Alternatively, users can apply label transfer (Stuart et al., 2019) to the COPILOT-
generated Seurat object from an annotated reference profile (Shahan et al., 2022). We describe
the details of each step in the following sections:

1. Align reads with scKB.

A bash script is a plain text file containing a series of commands executed in the terminal of a Unix
system. The scKB bash script contains commands from kallisto (Bray et al., 2016) and bustools
(Melsted et al., 2021), which perform fast read alignment to a designated genome to produce
COPILOT-compatible gene-by-cell matrices. There are two gene-by-cell matrices as output for
spliced and unspliced transcripts, respectively. Sequences mapped exclusively to exons of genes
are considered spliced, while those mapped to introns are categorized as unspliced. This feature
of scKB allows users to calculate RNA velocity in downstream analysis, which leverages the
ratio of spliced to unspliced transcripts (Bergen et al., 2021). In addition, scKB summarizes the prop-
erties of single-cell RNA-seq samples, such as the number of UMIs per cell barcode, using bustools.
The kallisto tool supports read alignment from various single-cell technologies. Here we demon-
strate its application to Arabidopsis root data generated with 10x Chromium Single Cell 3' GEM
Kit v3 technology. Details for available technologies are described in the “quantification and statis-
tical analysis” section.

2. Filter low-quality cells with COPILOT.
The typical quality filtering of scRNA-seq data simply removes cells that do not meet an arbitrary
UMI threshold or mitochondrial expression threshold, as demonstrated in the Seurat tutorial
(https://satijalab.org/seurat/articles/pbmc3k_tutorial.html). This approach assumes that there is
a clear cutoff in terms of UMI count and mitochondrial expression separating low-quality cells
from the high-quality cells. Given that published scRNA-seq data varies in quality due to
differences between technologies, batches, and independent studies, quality filtering based on
arbitrary thresholds can result in either over-filtering or under-filtering individual samples. Over-
filtering occurs when valid cells or cell types with relatively low-UMI or high-mitochondrial expres-
sion are removed. Conversely, a sample is under-filtered when substantial numbers of low-quality
cells are retained in the dataset.

a. Understand the COPILOT algorithm.

The COPILOT quality filtering algorithm is designed to avoid applying an arbitrary threshold.

COPILOT identifies the distribution of cell populations showing signals of unhealthy, damaged,
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dying cells or debris in a semi-supervised fashion. Steps in the COPILOT algorithm are as fol-

lows:
i.

Vi.

vii.

viii.

The scKB-generated gene-by-cell matrices of spliced and unspliced transcripts are com-
bined into a single gene-by-cell matrix in COPILOT. After removing genes without any
UMI counts, the algorithm first identifies a group of cells enriched in user-provided genes
characteristic of unhealthy, damaged, dying cells or debris. For example, users can list
genes known to be upregulated by apoptosis or cell damage. The most common genes
applied are mitochondrial genes, which are excessively expressed during apoptosis (Mar-
quez-Jurado etal., 2018). We call the cells defined by user-provided signals as "prior cells’
given that it is based on the domain knowledge.

The prior cells’ UMI count distribution mode is treated as the initial boundary to separate
cells into two groups representing low and high-quality cells.

Expression profile references are built for both low and high-quality cells by taking the
average of log-normalized counts.

Subsequently, the whole distribution of low-quality cells is recovered by comparing the
Pearson correlation coefficient of each high-quality cell to the two references. If cells in
the high-quality group have a higher correlation to the low-quality cell profile than the
high-quality one, then those cells would be re-labeled as low-quality.

COPILOT offers functionality that allows iterative filtering until there are no more cells
more similar to the low-quality cell expression profile than the high-quality one. However,
for samples where the count distributions of high-quality cells and low-quality cells are not
clearly separated, iterative filtering would result in over-filtering. Therefore, to avoid po-
tential over-filtering when processing such samples, the default filtering iteration of
COPILOT is set to one.

To generate quality-filtered gene-by-cell matrices, the low-quality cells and prior cells are
removed along with the top 1% (by default) of high-quality cells in terms of total UMI counts
to address issues associated with outliers. These outliers represent potential multiplets,
which refer to at least two different cells sharing the same cell barcode during single-cell li-
brary preparation. Since multiplets contain at least two cells (doublets), they have higher
UMI counts than singlets on average. This step aims to remove multiplets of extreme cases.
Finally, users have the option to further remove putative doublets that do not have
extremely high UMI counts. COPILOT incorporates DoubletFinder (McGinnis et al.,
2019) and Seurat to perform doublet removal with default parameters according to the
estimated doublet rate (10x Genomics Chromium Single Cell 3’ Reagent Kit User Guide
with v3 Chemistry). There is also an option for users to provide an estimated doublet
rate for different technologies.

The quality-filtered gene-by-cell matrices of spliced and unspliced transcripts are stored
in 10x format. If optional doublet removal and downstream analysis with Seurat is per-
formed, a Seurat object consisting of spliced, unspliced, and combined gene-by-cell
matrices will be generated and stored as a .rds file.

b. Summary of the COPILOT algorithm.
The rationale of the COPILOT quality filtering scheme lies in its algorithm. It starts with user-pro-
vided information (prior) and then identifies where the low-quality cell population is through iter-

ative search, instead of relying on an arbitrary threshold. In addition, COPILOT offers a compre-

hensive suite of arguments for generalizability and applicability, allowing users to fine-tune their

filtering scheme. Detailed explanations of arguments and their applications are described in the

“quantification and statistical analysis” section.

3. Perform optional downstream analysis with Seurat.

This step includes read count normalization, dimensionality reduction, doublet removal, and cell

annotation. Normalization is necessary to remove the artificial bias of sequencing depth among cells

and retain only the biological heterogeneity. Here, we choose to use SCTransform (Hafemeister and

Satija, 2019) incorporated in Seurat to perform normalization.
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a. Perform dimensionality reduction and visualization.

Dimensionality reduction is a technique for making high-dimensional data computationally
manageable and interpretable. [t summarizes the transcriptomic similarity among cells and al-
lows the relationship of cells to be visualized in a human-perceivable way. Before dimensionality
reduction, users have options to remove specific genes with the argument “unwanted.genes” or
choose only highly-variable genes with arguments “HVG” and "HVGN". With Seurat functions,
COPILOT performs PCA (Principal Component Analysis) and UMAP (Uniform Manifold Approxi-
mation and Projection) (Mclnnes et al., 2018) for visualization. If users choose to remove putative
doublets with the argument “remove.doublet”, one can either provide the doublet rate if known
or let COPILOT estimate it according to the 10x Genomics Chromium Single Cell 3’ Reagent Kit
User Guide (v3 Chemistry).

b. Perform clustering and annotation.

Finally, cell annotation is performed by clustering using a chosen algorithm and resolution with
the arguments “clustering_alg” and “res”. For Arabidopsis thaliana root data, additional cell
type and developmental stage annotation is supported with arguments “do.annotation”, “dir_
to_bulk” and “dir_to_color_scheme”. Annotations are based on established reference profiles,
which includes bulk RNA-seq profiles (Li et al., 2016) and microarray data (Brady et al., 2007).
The annotation method applied is the correlation-based method described in Shahan et al.
(2022). Alternatively, users can perform label transfer from an established reference profile as
introduced in Shahan et al. (2022) for cell annotation. Label transfer is our recommended
approach for cell annotation, however, it does require more computational resources (128 GB
memory and 200 GB storage space for this protocol) given that the annotated reference profiles
are usually bulky in size. The legends of arguments are listed in the "quantification and statistical
analysis” section.

Note: For first-time users to quickly test this protocol with minimal computation resource re-
quirements, we demonstrate the utility using an 80 MB toy data subset from a wild-type Arabi-
dopsis thaliana root scRNA-seq dataset (GEO accession GSE152766, sample GSM4626009).
This dataset was generated using the 10x Genomics Chromium Single Cell 3' GEM Kit v3 tech-
nology. The toy data can be found under directory “toy_data” in the GitHub repository for scKB.
For demonstration of scalability and generality, we run the scKB-COPILOT pipeline on a full wild-
type Arabidopsis thaliana root scRNA-seq dataset (col0) and a PBMC dataset published by
10x Genomics (https://www.10xgenomics.com/resources/datasets/1-k-pbm-cs-from-a-healthy-
donor-v-2-chemistry-3-standard-3-0-0). Finally, we benchmark the run time of the scKB-
COPILOT pipeline against 10x Genomics Cell Ranger 6.1.2 on all three datasets. For the tool/
package versions used to verify this protocol, please refer to the "key resources table”.

Install scKB and COPILOT on your machine
® Timing: 20-50 min

This protocol is verified on Linux machines (Ubuntu 22.04 and CentOS 7) with 2 TB storage space,
256 GB memory, and a 32-core CPU.

A CRITICAL: To run the whole protocol with toy col0, full col0 and PBMC data, we recom-
mend users use a machine with 128 GB memory, 500 GB of storage and a CPU of
16-cores. At least 2 GB memory and 10 GB storage is required for toy colO data. At least
16 GB memory and 250 GB storage is required for full colO data without label transfer. 128
GB memory and 250 GB storage is recommended for both full colO data with label transfer
and PBMC data. The Linux operating system should have four command line tools

"o "o Iu

installed, which are “git"”, “unzip”, “curl” and “rename”. Depending on Linux distribution
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types, users can use “sudo apt install” (Ubuntu, Linux Mint), “sudo yum install” (Fedora,
CentOS) or “sudo pacman -S” (Manjaro, Arco Linux) to install the command line tools.

Note: To skip the installation procedure, users can begin with steps 7b or 7c for instructions on
Singularity (Kurtzeretal., 2017, 2021) or Docker (Merkel, 2014) usage. Users can pull the scKB-
COPILOT container image from Cloud Library or Docker Hub and build a computational envi-
ronment capable of running this protocol. A container image is a recipe for creating a
container of a specific computational environment. Therefore, a container built from the
scKB-COPILOT image would include every package and tool needed to run this protocol.
The Singularity and Docker engines can be installed following instructions from their github
or website.

For users who are new to bioinformatics and value reproducibility of this protocol, containers are al-
ways the best choice. When using shared computational resources on a high-performance
computing (HPC) cluster, users usually do not have root privileges. Therefore, we recommend using
the singularity container for this protocol as there is no requirement of root privileges to run.

4. Download scKB.
a. The bash script scKB can be downloaded from github or cloned using the “git clone” com-
mand. Git clone is a command for downloading existing source code from a remote repository
such as GitHub.

>git clone https://github.com/ohlerlab/scKB.git

b. Extract cell white lists and annotation files. The white list includes the expected cell barcodes
of a given technology. For Arabidopsis thaliana data, the gene annotation file used here is
TAIR10, while the genome file used in the following sections is TAIR9. Notice that the number
implies versions of gene annotation files, not the genome. That is, TAIR? and TAIR10 share the
same genome file but different gene annotation files. Finally, scKB script should be made
executable before use.

>cd ./scKB

>unzip 10xv2_whitelist.txt.zip

>unzip 10xv3_whitelist.txt.zip

>gunzip Arabidopsis_thaliana.TAIR10.43.gtf.gz

>chmod 777 scKB

5. Install kallisto (Bray et al., 2016) and bustools (Melsted et al., 2021) via conda.

Note: Conda is a package and environment manager that enables easy installation of many
bioinformatic tools. The tool kallisto is developed for speedy read alignment against a
genome. bustools offers functionalities to convert the output from kallisto to gene-by-cell
matrices of transcript counts.

a. Install conda. Download the installer script following instructions from https://bioconda.
gthub.io/user/install.html.

b. Install R, kallisto and bustools via conda. The users can specify package versions to install with
conda.

>conda create -n scKB -c conda-forge -c bioconda r-base=4.1.3 kallisto=0.48.0
bustools=0.41.0
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c. Alternatively, install R, kallisto, and bustools via conda using the yml file, which specifies the
tools and versions to be installed.

>conda env create -f scKB.yml

6. Install BSgenome (Pagés, 2017) and BUSpaRse (Moses, n.d.) in R.

Note: It is required for users to convert their genome file (.fasta) into a BSgenome object (see
problem 1 in the “troubleshooting” section). If the genome you want to use is already avail-
able as a BSgenome object, simply install it from Bioconductor.

Note: Make sure that the name of chromosomes/sequence is the same in the gene annotation
file (.gtf) and the BSgenome object. BUSpaRse is required to extract kallisto-compatible intron

files using the BSgenome object and user-provided gene annotation file (.gtf) as inputs.

a. Activate scKB environment and start R.

>conda activate scKB

>R

b. Install BUSpaRse, BSgenome via BiocManager in the R environment. BiocManager allows
users to install and manage packages from the Bioconductor project (Gentleman et al.,
2004), which disseminates tools from current and emerging biological assays. Install desired
genome file via BiocManager if already available as a BSgenome object.

# Install BiocManager

>install.packages ("BiocManager")

# Install BUSpaRse and BSgenome

>BiocManager: :install ("BUSpaRse")

# Install desired genome if available as BSgenome object
>BiocManager: :install ("BSgenome.Athaliana.TAIR.TAIR9")

# To bash

>quit ()

7. Install COPILOT via devtools in R, which allows users to install R packages hosted on a GitHub
repository.
a. Install COPILOT and its dependencies in R environment.

# In bash

# Install umap-learn for Seurat to run umap under COPILOT
>conda install —-c conda-forge umap-learn

# Activate R and install dependencies

>R

>install.packages(c("devtools", "Seurat’’, "rjson", "R2HTML") )

>BiocManager: :install ("DropletUtils")

6 STAR Protocols 3, 101729, December 16, 2022
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>devtools::install_github(’chris-mcginnis-ucsf/DoubletFinder’)
# Install COPILOT

>devtools::install_github(’ohlerlab/COPILOT")

b. Alternatively, apply a singularity container. The container includes most software and tools
listed above (From steps 5 to 7a). The input data and output results are better stored “outside”
of the container, as they would be deleted once the user exits the container after use. For this,
a directory in the file system should be mounted to the container, which serves as storage for
data and output results. These procedures take about 3 min.

# In bash, make sure singularity is installed on your machine
# Pull container from Cloud Library
>singularity pull library://cheweihsu/collection/sckb-copilot.sif:lastest

# Run the container andmount (with -bind) thedirectorywhereyou storedata (left tothecolon)

to adirectory in the container (right to the colon)

>singularity shell -bind /where/you/store/data/on/filesystem/:/data/ sckb-

copilot.sif_latest.sif
# Source conda bash script
>source /usr/local/etc/profile.d/conda.sh

#Activate conda environment "scKB", move towritablemounteddirectory andclone the scKBrepo
following step 4

>conda activate scKB

>cd /data/

Steps 4a and b

# Exit the container when finished running this protocol

>exit

c. For users with root privileges, a docker container is also an option. Although a docker
container includes all software and tools listed above (From steps 4 to 7a), to avoid storing
data in the container, we strongly recommend users to re-clone the scKB repository following
step 4 to the mounted directory “/data/". Notice that docker should be ran with the “sudo”
command if root privilege is required. These procedures take about 3 min.

# In bash, make sure docker is installed on your machine
# Pull image from docker hub
>sudo docker pull cheweihsu/sckb-copilot:latest

# Run the image with 128 GB memory applied and mount the directory where you store the data

(source) toadirectory in the container (target)

>sudo docker run -it —-memory 128G —-mount type=bind, source=/where/you/store/data/on/filesys-

tem/, target=/data/ -d cheweihsu/sckb-copilot:latest
# Check running container ID
>sudo docker ps

# Enter the container with the corresponding container ID

>sudo docker exec -it {container ID} bash

STAR Protocols 3, 101729, December 16, 2022 7
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>conda activate scKB
>cd /scKB/

# Or

>cd /data/

Steps 4a and b

>exit

>sudo docker rm {container ID}

# In the container, activate conda environment "scKB" andmove to the scKBrepo or to themounted
/data/ directory and repeat step 4

# Exit the container when finished running this protocol

# (Optional) To stop and remove a container

>sudo docker stop {container ID}

# (Optional) Copy file to and from a container
>sudo docker cp foo.txt {container ID}:/foo.txt

>sudo docker cp {container ID}:/foo.txt foo.txt

STAR Protocols

KEY RESOURCES TABLE

REAGENT or RESOURCE

SOURCE

IDENTIFIER

Deposited data

Single-Cell mRNA Sequencing data

COPILOT and CellRanger
v6.1.2 summary files

(Shahan et al., 2022);
10x Genomics

(Hsu, 2022a)

Arabidopsis thaliana root: GEO accession GSE152766, sample
GSM4626009;PBMC dataset: https://www.10xgenomics.com/
resources/datasets/
1-k-pbm-cs-from-a-healthy-donor-v-2-chemistry-3-standard-3-0-0
https://data.mendeley.com/datasets/smétnbthxy/1

Software and algorithms

singularity (v3.8.7)
docker (v20.10.14)
scKB

conda (v4.12.0)
kallisto (v0.48.0)
bustools (v0.41.0)

R (v4.1.3)
BiocManager (v3.14)
devtools (v2.4.3)
BUSpaRse (v1.8.0)

BSgenome (v1.62.0)

COPILOT
umap-learn (v0.5.2)
rjson (v0.2.21)
R2HTML (v2.3.2)
DropletUtils (v1.14.2)

DoubletFinder (v2.0.3)
Seurat (v4.1.0)

(Kurtzer et al., 2017, 2021)
(Merkel, 2014)

(Shahan et al., 2022) (Hsu, 2022b)
(Anon, 2020)

(Bray et al., 2016)

(Melsted et al., 2021)

(R Core Team, 2020)

(Gentleman et al., 2004)
(Wickham et al., 2021)

(Moses, n.d.)

(Pages, 2017)

(Shahan et al., 2022) (Hsu, 2021)
(Mclnnes et al., 2018)
(Couture-Beil, 2022)

(Lecoutre et al., 2016)

(Aaron Lun, 2018)

(McGinnis et al., 2019)
(Butler et al., 2018; Stuart et al., 2019)

https://github.com/apptainer/apptainer
https://www.docker.com/
https://github.com/ohlerlab/scKB
https://anaconda.org/anaconda/conda
https://pachterlab.github.io/kallisto/
https://github.com/BUStools/bustools
https://www.r-project.org/
https://www.bioconductor.org/install/
https://github.com/r-lib/devtools

https://bioconductor.org/packages/release/bioc/html/BUSpaRse.
html

https://bioconductor.org/packages/release/bioc/html/BSgenome.
html

https://github.com/ohlerlab/COPILOT
https://umap-learn.readthedocs.io/en/latest/
https://cran.r-project.org/web/packages/rjson/index.html
https://cran.r-project.org/web/packages/R2ZHTML/index.html

https://bioconductor.org/packages/release/bioc/html/DropletUtils.
html

https://github.com/chris-mcginnis-ucsf/DoubletFinder
https://satijalab.org/seurat/
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STEP-BY-STEP METHOD DETAILS

For first-time users, we recommend first running the protocol on toy data following steps 1, 2, 5, and
6. For those who wish to learn how to transform typical raw scRNA-seq data into a normalized and
annotated gene-by-cell matrix, please follow steps 1, 3, and 7. For users who would like to try this
protocol on scRNA-seq data from a species other than Arabidopsis thaliana, (e.g., human PBMC
data), please see steps 4 and 8.

Align raw reads to genome via scKB

O Timing: 2 min for toy data. For the full datasets demonstrated in this protocol, the running
time ranged between 25 min to 120 min, depending on data size and species

This step aligns raw reads to the designated genome and calls transcript UMI counts for each cell
barcode and gene. The expected output of this step includes gene-by-cell matrices of spliced
and unspliced UMI counts of transcripts, reads/aligning stats of the sample, cell barcodes, and
gene ID files. These outputs are COPILOT-compatible and can serve as direct inputs to COPILOT
for quality filtering and generation of the summary file.

1. Extract intron information with the R package BUSpaRse and make kallisto index. This step is
important for kallisto to distinguish spliced and unspliced reads when mapping against the desig-
nated genome.

Note: Extraction of intron information is done by running BUSpaRse::get_velocity_files().
Notice that argument “X"” should point to the directory of your annotation file. Argument
“L" specifies the length of reads, which varies with single-cell technologies. For example,
10x Genomics v1: 98 nucleotides, 10x v2: 98 nucleotides, 10x v3:91 nucleotides, Drop-seq:
50 nucleotides. In this example, we set “L"” to 91 since our toy data was generated with 10x
v3 chemistry. We should set the argument “style” to “Ensembl” since our gene annotation
(.gtf) file is downloaded from Ensembl (https://plants.ensembl.org/index.html). For details
related to get_velocity_files() arguments, please refer to the BUSpaRse manual (https://
bioconductor.org/packages/release/bioc/manuals/BUSpaRse/man/BUSpaRse.pdf).

A CRITICAL: After running get_velocity_files(), the working directory should have files
"cDNA _introns.fa”, "cDNA_tx_to_capture.txt”, “introns_tx_to_capture.txt”, and "tr2g.tsv".
Preparing intron files for the Arabidopsis thaliana genome takes about 1 min.

#InR

>setwd ("~/to/where/you/clone/the/repo/scKB")
# Load libraries and genome

>library (BUSpaRse)

>library (BSgenome.Athaliana.TAIR.TAIRY)

# Extract intron information

>get_velocity_files(X = "./Arabidopsis_thaliana.TAIR10.43.gtf", L = 91, Genome =
BSgenome.Athaliana.TAIR.TAIR9, out_path = "./", isoform_action = "separate", chrs_only=-
FALSE, style="Ensembl")

# Index the intronfile with kallisto and exit R
>system("kallisto index -i ./cDNA_introns_10xv3.idx ./cDNA_introns.fa")

>quit ()
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2. Run scKB.

Note: Name the output directory as your sample name and set the number of computational
threads/cores available accordingly with argument “t".

Note: After running scKB, the output directory (in this case “./col0_toy") should have 8 files: a
"“inspect.json”, a “run_info.json”, a “spliced.barcodes.txt”, a “spliced.genes.txt”, a “spli-

ced.mtx"”, a"unspliced.barcodes.txt”, a “unspliced.genes.txt” and a “unspliced.mtx".

Note: The json files document the sample stats of reads and alignment; the mtx files represent
gene-by-cell matrices; the txt files contain cell barcodes and gene IDs information.

Note: The toy data contain 1 million reads and the run takes about 30 s.

# In bash
>cd ~/to/where/you/clone/the/repo/scKB
# Run bash script scKB. Please name the output directory as your sample name using "-n" flag

>./scKB -f ./toy_data -i ./cDNA_introns_10xv3.idx -d ./ -s 10xv3 -t 16 -w ./10xv3_white-
list.txt -n ./col0_toy

3. Run scKB on Arabidopsis thaliana wild-type Columbia-0 (“col0”) full data.
Note: The colO full data contains 386 million reads and downloading can take 2-3 h.
Note: Here, we store the fastq files for the full dataset under the folder named "colO_data".
Note: Notice that if containers were applied, it is recommended to set the output directories
of sra files and the fastgs files under the mounted directory “/data/" to avoid potential data

loss (see steps 7b and c in the section “install scKB and COPILOT on your machine”).

Note: The scKB run takes 22 min.

# In bash

>cd ~/to/where/you/clone/the/repo/scKB

# Install sra-tools and download sra from sample GSM4626009 (col0 full data)

>conda install -c bioconda sra-tools

>prefetch -v SRR12046119 SRR12046120

# Convert sra to fastgs (sras are downloaded to /home/ [USER] /ncbi/public/sra/ by default)

>fastg-dump -outdir ./col0O_data/ -split-files -gzip /home/[USER]/ncbi/public/sra/
SRR12046119.sra

>fastg-dump -outdir ./colO_data/ -split-files -gzip /home/[USER]/ncbi/public/sra/
SRR12046120.sra

#Rename fastgfiles for scKB compatibility

>rename ‘s/_1.fastqg.gz/_R1_001.fastqg.gz/’ ./col0_data/*.fastqg.gz

>rename ‘s/_2.fastqg.gz/_R2_001.fastqg.gz/’ ./col0_data/*.fastqg.gz
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>rename 's/_3.fastqg.gz/_I1_001.fastqg.gz/’ ./col0_data/*.fastqg.gz
# Run scKB on the full data col0 fromwhich the toy_data is subsetted

>./scKB -f ./col0_data -i ./cDNA_introns_10xv3.idx -d ./ -s 10xv3 -t 16 -w ./10xv3_white-
list.txt -n ./col0

4. Run scKB on PBMC dataset generated with 10x v2 technology.

Note: The codes cover data download, intron file extraction, kallisto index building, and scKB
execution.

Note: Notice that if containers were applied, the data downloaded and the output
directory are recommended to be put under the mounted directory “/data/" to avoid poten-
tial data loss (see steps 7b and c in the section “install scKB and COPILOT on your
machine”).

Note: The whole process takes about 120 min (preparing genome and intron files take 85 min,
scKB takes 45 min).

# In bash

>cd ~/to/where/you/clone/the/repo/scKB

# Download PBMC dataset from 10x Genomics website

>mkdir pbmc

>cd pbmc

>curl -Ohttps://cf.l0xgenomics.com/samples/cell-exp/3.0.0/pbmc_lk v2/pbmc_1lk_v2_fastgs.tar
>tar xvf pbmc_1k_v2_fastgs.tar

>cd ../

# Download gene annotation file from 10x Genomics website

>curl -Ohttps://cf.l0xgenomics.com/supp/cell-exp/refdata-gex-GRCh38-2020-A.tar.gz
>tar zxvf refdata-gex-GRCh38-2020-A.tar.gz

# Activate R and set working directory in R

>R

>setwd ("~/to/where/you/clone/the/repo/scKB")

# Install Human BSgenome object

>BiocManager: :install ("BSgenome.Hsapiens.UCSC.hg38")

# Load libraries and genome

>library (BUSpaRse)

>library (BSgenome.Hsapiens.UCSC.hg38)

# Extract intron information

>get_velocity files(X = "./refdata-gex-GRCh38-2020-A/genes/genes.gtf", L = 98, Genome =
BSgenome.Hsapiens.UCSC.hg38, out_path="./", isoform_action = "separate", chrs_only=TRUE,
style="Ensembl")

# Index the intronfile with kallisto
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>system("kallisto index -i ./cDNA_introns_10xv2.idx ./cDNA_introns.fa")
>quit ()

# In bash

# Run scKB

>./scKB -f ./pbmc/pbmc_1lk_v2_fastgs -i ./cDNA_introns_10xv2.idx -d ./ -s 10xv2 -t 16 -w
./10xv2_whitelist.txt -n ./pbmc_1lk v2

Run COPILOT for quality filtering

O Timing: between 30 s to 50 min, depending on data size and whether downstream analysis
with Seurat is performed

This step includes quality filtering on cells, optional doublet removal, and cell type/developmental
stage annotation (optional). Notice that if containers were used, the data downloaded and the
output directory are recommended to be put under the mounted directory “/data/" to avoid poten-
tial data loss (see steps 7b and c under the section “install scKB and COPILOT on your machine”).

5. Run COPILOT for non-iterative quality filtering without doing downstream analysis with Seurat.

Note: The toy data contain only 1 million reads. Therefore, the argument “min.UMI.low.qual-
ity” and “min.UMl.high.quality” are adjusted accordingly for expected low sequencing depth.

Note: The non-iterative filtering is achieved by setting the argument “filtering.ratio” to 1.

Note: The run takes about 30 s.

#InR
>setwd("~/to/where/you/clone/the/repo/scKB")
# Load COPILOT

>library (COPILOT)

# Run COPILOT

>copilot (sample.name = "col0_toy", species.name = "Arabidopsis thaliana", transcriptome. -
name = "TAIR10", sample.stats = NULL, mt.pattern = "ATMG",

mt.threshold=5, cp.pattern="ATCG", remove.doublet = FALSE, do.seurat = FALSE, do.an-
notation = FALSE, unwanted.genes = NULL, filtering.ratio=1, min.UMI.low.quality =1, min.U-
MI.high.quality =3)

6. Run COPILOT for iterative quality filtering without downstream analysis.
Note: The iterative filtering is achieved by setting the argument “filtering.ratio” to 0, which will
run until there are no cells more similar to the low-quality cell expression profile than the high-

quality cell expression profile.

Note: The run takes about 2 min.
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# Run COPILOT

>copilot (sample.name = "col0_toy", species.name = "Arabidopsis thaliana", transcriptome. -
name = "TAIR10", sample.stats = NULL, mt.pattern = "ATMG",

mt.threshold=5, cp.pattern= "ATCG", remove.doublet = FALSE, do.seurat = FALSE, do.an-
notation = FALSE, unwanted.genes = NULL, filtering.ratio=0, min.UMI.low.quality =1, min.U-
MI.high.quality =3)

7. Run COPILOT for non-iterative quality filtering with downstream analysis (do.seurat = TRUE),
including doublet removal (remove.doublet = TRUE) and annotation of cell types and develop-
mental stages based on bulk-RNAseq and microarray data (do.annotation = TRUE).

Note: If users wish to annotate cells based on an established reference profile as described in
Shahan et al. (2022), example code for label transfer is also provided.

Note: Notice that the code for label transfer is suitable only for reference objects created by
Seurat version 4. Label transfer demonstrated here requires users to have sufficient amount of
space storage and memory (128 GB) to host and load the reference object.

Note: Here we also demonstrate how to remove genes from downstream analysis with the
argument “unwanted.genes”. In this case, the protoplasting-induced genes are removed
from the Arabidopsis data. Protoplasting refers to a process of removing cell walls from plant
cells, which alters the expression of a subset of genes (Denyer et al., 2019). Therefore, to cor-
rect for artificial factors in downstream analysis, genes known to be induced by protoplasting
during library preparation are removed. The run takes about 50 min without label transfer and
60 min with label transfer.

#InR
>setwd("~/to/where/you/clone/the/repo/scKB")
# Load COPILOT

>library (COPILOT)

# Load unwanted genes (optional)

>pp.genes <-as.character (read.table("./supp_data/Protoplasting DEgene_FC2_list.txt",
header=F) $V1)

# Run COPILOT

>copilot (sample.name = "col0", species.name = "Arabidopsis thaliana", transcriptome.name =
"TAIR10", sample.stats = NULL, mt.pattern = "ATMG",

mt.threshold=5, cp.pattern="ATCG", remove.doublet = TRUE, do.seurat = TRUE, do.annotation

= TRUE, unwanted.genes = pp.genes, filtering.ratio =1, dir_to_color_scheme = "./supp_data/

color_scheme_at.RData", dir_to_bulk ="./supp_data/Root_bulk_arabidopsis_curated.RD")
# Label transfer from Shahan et al. (2022)

# After downloading supplementary file Root_Atlas_seud.rds.gz directly from GEO GSE152766,

decompress Root_Atlas_seud.rds.gz in bash
>gunzip Root_Atlas_seud.rds.gz
# Load Seurat, reference atlas and query data in R

>R

>library (Seurat)
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>rc.integrated <- readRDS ("./Root_Atlas_seud.rds")
>seu <- readRDS("./c0l0/col0_COPILOT.rds")
# Find anchors and transfer annotation from reference in Shahan et al.,2022

>1t.anchors <- FindTransferAnchors (reference = rc.integrated, query = seu, normalization. -
method = "SCT", npcs =50, dims =1:50)

>predictions <- TransferData(anchorset = lt.anchors, refdata = rc.integratedS$cellty-

pe.anno, dims =1:50, weight.reduction = "pcaproject")
>seu <- AddMetaData (seu, metadata = predictions)
>seu@meta.datasScelltype.anno <- seu@meta.data$predicted.id

>predictions <- TransferData (anchorset = lt.anchors, refdata = rc.integrated$time.anno,

dims = 1:50, weight.reduction = "pcaproject")

>seu <- AddMetaData (seu, metadata = predictions)
>seu@meta.datastime.anno <- seu@meta.data$predicted.id

# Visualize the transferred labels and save them as plots (optional)
>pdf ("colO_transferred_celltype_anno.pdf", height=8, width=8)
>DimPlot (seu, reduction = "umap", group.by = "celltype.anno")
>dev.off ()

>pdf ("colO_transferred_time_anno.pdf", height=8, width=8)
>DimPlot (seu, reduction = "umap", group.by = "time.anno")

>dev.off ()

# Save the query data with transferred labels

>saveRDS (seu, file="./c0l0/col0_COPILOT.rds")

8. Run COPILOT on the PBMC dataset generated with 10x v2 technology for non-iterative quality
filtering without downstream analysis.

Note: The run takes about 15 s.

# In bash
# Extract mitochondrial gene names from genome annotation file

>grep chrM ./refdata-gex-GRCh38-2020-A/genes/genes.gtf | awk /{print $10}’ | uniqg | sed -e
's/"//g’ -e 's/;//g’ >mt_genes.txt

# Activate R and set working directory in R

>R

>setwd ("~/to/where/you/clone/the/repo/scKB")
# Load COPILOT

>library (COPILOT)

# Run COPILOT

>copilot (sample.name = "pbmc_1lk_v2", species.name = "Homo sapiens", transcriptome.name =
"hg38", sample.stats = NULL, mt.pattern = read.table("mt_genes.txt")$Vl, mt.threshold =75,
cp.pattern = NULL, remove.doublet = FALSE, do.seurat = FALSE, do.annotation = FALSE, unwan-
ted.genes = NULL, filtering.ratio=1, legend.position=c(0.2,0.8))
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Figure 1. Distribution of cell populations for col0 toy data
(A) UMI count histogram.

(B) Gene number histogram.

(C) Barcode rank plot ranked by UMI count.

(D) Parameters, sample stats of cells and sequencing.

EXPECTED OUTCOMES

After running this protocol, one should expect to have quality-filtered and unfiltered gene-by-cell
matrices for both spliced and unspliced transcripts stored as 10x format. The two matrices should
have the same dimensions of genes and cells. Other than the matrices, one should also expect a
COPILOT summary file in html format documenting parameters used, cell stats, sequencing stats,
and histograms showing the distribution of low and high-quality cell populations (Figure 1, Dataset
ST (Hsu, 2022a)). As a rule of thumb, a high quality sample should have the estimated number of high
quality cells (in Cell Stats) close to the number of cells users expect to recover. In addition, it should
have a high percentage of reads mapped to the genome (Reads Pseudoaligned in the section
Sequencing Stats) and high percentage of reads that belong to cells with a valid cell barcode (reads
on Whitelist in the section Sequencing Stats).

If the COPILOT argument “do.seurat” is set to TRUE, one should also expect to see feature plots in
the “Analysis” panel of the summary file (Hsu, 2022a). In addition, one should expect a quality-
filtered Seurat object stored in the rds format under the working directory. If label transfer from
the reference profile (Shahan et al., 2022) is performed, the meta data of the Seurat object should
contain transferred labels with names “celltype.anno” (cell types) and “time.anno” (developmental
stages).

QUANTIFICATION AND STATISTICAL ANALYSIS

1. Benchmark the run time against 10x Genomics Cell Ranger 6.1.2.
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Given the same version of the gene annotation and genome files, we documented the runtimes of
CellRanger v6.1.2 and this protocol. We ran CellRanger using “cellranger count” command with
"nosecondary” flag to skip dimensionality reduction, clustering, and visualization. This procedure
is equivalent to running the scKB-COPILOT pipeline for non-iterative quality filtering without down-
stream analysis. The CellRanger summary files for each data set are available in Dataset S2 (Che-Wei
Hsu, 2022). The runtime covers the read alignment, quality-filtering, and output file generation.

CellRanger
scRNA-seq data Species Single-cell technology Number of reads run time scKB-COPILOT run time
Col0_toy_data Arabidopsis thaliana 10x Genomics v3 1 million 3.5 min 1 min (scKB 30 s, COPILOT 30 s).
Col0_full_data Arabidopsis thaliana 10x Genomics v3 386 million 640 min 25 min (scKB 22 min, COPILOT 3 min)
PBMC Homo sapiens 10x Genomics v2 77 million 185 min 45 min (scKB 45 min, COPILOT 15 s)

2. Argument legends for scKB:

-h (-help): Software usage.

-f (file): Directory to fastq files.

-i (-index): Directory to intron index files (includes the .idx file itself).
-d (-dir_intermediate): Directory to intermediate files output.

-s (-supported_tech): Single cell technique supported, which is equivalent to argument “x" in kal-
listo. The argument “x"” of kallisto can be adapted to process any existing and new technologies. It
accepts a string specifying a technology in the format of “bc:umi:seq” (for cell barcodes, UMI, and
the transcript), where each of bc, umi, and seq are a triplet of integers separated by a comma,
denoting the file index, start and end position of the sequence. An example demonstrating
how to specify a 10x Chromium Single Cell 3' GEM Kit v2 single-cell library is provided in
kallisto manual.

-t (~thread): Number of threads used. Maximum 16.

-w (—whitelist): Directory to whitelist file (includes the text file itself).
-n (=dir_final): Directory to final output that includes gene cell matrix.
3. Argument legends for COPILOT:

COPILOT accepts inputs that are not generated by scKB. Users can provide the unfiltered gene-
by-cell matrices generated by Cell Ranger or other tools (see arguments “spliced.mtx”, “unspli-
ced.mtx”, and “total.mtx”). Other than commonly-used mitochondrial gene expression, users
have options to use any signature of gene expression to decide the initial boundary separating
low and high-quality populations (see arguments “mt.pattern”, “mt.threshold”, and “cp.pattern”).
In cases where the given signature of gene expression fails to determine the initial boundary, users
can specify the boundary manually by providing thresholds for low and high-quality cells in terms
of UMI counts (see arguments “min.UMl.low.quality” and “min.UMI.high.quality”). For iterative
filtering, users can decide whether or not to filter until there are no cells more similar to the
low-quality cell expression profile than the high-quality cell expression profile (see argument “fil-
tering.ratio”). Users can specify the percentage using argument “top.percent” to remove potential
outliers.
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After quality filtering, users can continue with Seurat downstream analysis directly with COPILOT
(see arguments “do.seurat”, “do.annotation”, “unwanted.genes”, “HVG", "HVGN", "dir_to_bulk”,
"dir_to_color_scheme”, “clustering_alg” and "“res"). Notice that the Seurat analysis is only optional
and is not a dependency for non-arbitrary quality filtering. In addition, users can choose whether or
not to remove putative doublets and by what rate (see arguments “estimate.doublet.rate”, “double-
t.rate” and “remove.doublet”). Removing doublets depends on Seurat as it is part of optional down-
stream analysis. Finally, to edit contents shown in COPILOT summary files, users can adjust the ar-

"o T

guments “species.name”, “transcriptome.name”, “sample.stats”, and “legend.position”.
sample.name: User defined sample name (character). This should be the same as the name of the
directory that contains spliced and unspliced matrices if you use scKB to produce raw UMI count

matrices.

spliced.mtx: Gene by cell matrix of spliced counts, which should have column and row names.
Default is NULL.

unspliced.mtx: Gene by cell matrix of unspliced counts, which should have column and row names.
Default is NULL.

total.mtx: Gene by cell matrix of total counts, which should have column and row names. Default is
NULL.

filtered.mtx.output.dir: Output directory for quality filtered matrices. Default is NULL.
species.name: Species name (character). Default is “Not Provided".

transcriptome.name: Name of transcriptome annotation file (e.g., TAIR10 for Arabidopsis). Default
is "Not Provided".

sample.stats: Meta data of the sample in R data.frame format. Default is NULL.

mt.pattern: Pattern of gene names/IDs (character; e.g., "ATMG") or list of genes (character vector).
Here we demonstrate COPILOT usage with mitochondrial genes. This argument is mandatory to run
COPILOT.

mt.threshold: Threshold of expression percentage. Cell would be treated as prior cell if it has
expression percentage of genes provided in "mt.pattern” higher than this threshold (numeric).

Default is 5.

cp.pattern: Pattern of chloroplast gene names/IDs (character; e.g., “ATCG") or list of chloroplast
genes (character vector). Default is NULL.

top.percent: Percentage of cells that contain a high number of UMIs filtered (numeric). Default is 1.

filtering.ratio: Metric that controls the stringency of cell filtering (lenient: 1; strict:0; moderate: 0 < fil-
tering.ratio < 1; numeric). Default is 1.

estimate.doublet.rate: Whether or not to estimate doublet rate according to 10x Genomics’ estima-
tion (boolean). Default is TRUE.

doublet.rate: User specified doublet rate (numeric). Default is NULL.

¢? CellPress

OPEN ACCESS

STAR Protocols 3, 101729, December 16, 2022 17




¢ CellPress STAR Protocols

OPEN ACCESS
remove.doublet: Whether or not to remove doublets after quality filtering (boolean). Default is
TRUE.

do.seurat: Whether or not to perform normalization, PCA, UMAP dimensionality reduction, and clus-
tering using Seurat and output a Seurat object (boolean). Default is TRUE.

do.annotation: Whether or not to perform cell annotation (boolean). COPILOT only supports anno-
tation for Arabidopsis thaliana root scRNA-seq data. Default is FALSE.

unwanted.genes: Gene IDs/names of unwanted genes (character vector, e.g., cell cycle related
genes, organelle genes, etc). Default is NULL.

HVG: Whether or not to select highly variable genes (boolean). Default is FALSE.

HVGN: Number of highly variable genes selected (numeric). Defalut is 200.

dir_to_bulk: Directory to reference expression profile for annotation. Default is NULL.
dir_to_color_scheme: Directory to color scheme file for annotation. Default is NULL.
clustering_alg: Algorithm for clustering (1 = original Louvain algorithm; 2 = Louvain algorithm with
multilevel refinement; 3 = SLM algorithm; 4 = Leiden algorithm, which requires the python module
leidenalg; numeric). Default is 3.

res: Resolution used for clustering (numeric). Default is 0.5.

min.UMIl.low.quality: Minimum UMIs for a barcode to be considered a cell (numeric). Default is 100.

min.UMl.high.quality: Minimum UMIs for a cell to be considered a high quality cell (numeric). Default
is 300.

legend.position: x y position of the legend on UMI histogram plot (numeric vector of length 2).
Default is ¢(0.8,0.8).

LIMITATIONS

The current version of COPILOT only supports cell type and developmental stage annotation for the
root of Arabidopsis thaliana.

TROUBLESHOOTING

Problem 1

The required genome is not available as a BSgenome object or users need to convert a customized
genome into a BSgenome object. (Related to step 6b under the section ‘install scKB and COPILOT
on your machine’).

Potential solution
Users can convert the genome fasta file into BSgenome object following sections 2.2.5 and 2.3 in the
BSgenome manual.

Problem 2
COPILOT dependencies fail to be installed (related to step 7 under the section ‘install scKB and
COPILOT on your machine’).
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Potential solution

If dependencies fail to be installed via the R command "install.packages()”, BiocManager, or dev-
tools, try using conda to install them. For example, we encountered problems installing Seurat
v4.1.0 because one of its dependencies, “shiny”, failed to be installed. We solved it by installing
shiny via conda before installing Seurat v4.1.0 with the install.packages() function.

Problem 3
scKB fails to run properly (related to the section ‘align raw reads to genome via scKB).

Potential solution

e Under the directory that the user provides to the argument “f”, make sure to have at least one
sequence run (R1 and R2 gzipped fastq). Note that the file names should contain strings “_R1_"
and “"_R2_" for read 1 and read 2 respectively. Multiple runs of the same sample should be put
under the same directory. Each run of scKB will call gene-by-cell matrices for one sample.

e The directory to intron file index file (-i), whitelist (-w), and intermediate files (-d) can be the same,
yet the final output directory (-n) should be different.

e Although this protocol only demonstrates the processing of 10x Genomics v2 and v3 chemistry
scRNA-seq data, scKB supports various technologies such as CELSeq and DropSeq. One can
adjust the argument "”s” to meet sequencing conditions of different techniques as documented

u_n

in the kallisto manual. The argument “x” in kallisto bus is analogous to the argument “s"” in scKB.

Problem 4
COPILOT fails to locate the input data. Related to the section 'run COPILOT for quality filtering.’

Potential solution

The name of the output directory for scKB should be the same as the COPILOT argument "sample.-
name". Alternatively, the user can directly feed gene-by-cell matrices to COPILOT by using argu-
ments "spliced.mtx", "unspliced.mtx", and "total.mtx". Note that if "total.mtx" is provided, then
please let "spliced.mtx" and "unspliced.mtx" remain as NULL.

Problem 5
COPILOT fails to start with quality filtering. Related to the section ‘run COPILOT for quality filtering.’

Potential solution

e COPILOT relies on detecting a distribution of cells enriched in signals characteristic of unhealthy,
damaged, dying cells or debiris (prior cells) to identify the initial filtering threshold for low-quality
cells. Thus, it is required to provide a list of gene IDs or a character pattern shared among these
gene IDs (see argument "mt.pattern”).

o Ifthe COPILOT algorithm detects no prior cells, the initial filtering threshold will be set as specified
in the argument "min.UMl.high.quality". If the initial boundary determined by the prior cells dis-
tribution mode is lower than what the user provides to the argument “min.UMI.high.quality”, then
it will be replaced by “min.UMI.high.quality”.

Problem 6
When running COPILOT with downstream analysis, users encounter an error message (related to
step 7 under the section ‘run COPILOT for quality filtering’):

Error in .External2 (C_X11, d$display, dSwidth, dSheight, d$pointsize, :

unable to start device X1llcairo.
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In addition: Warning message:
In (function (display ="", width, height, pointsize, gamma, bg, :

unable to open connection to X11 display’ "’

Potential solution

This error message is caused by the unavailability of x11 device required to generate feature plots for the
COPILOT summary file. If the R environment is installed via conda as demonstrated in this protocol, it may
not locate x11 device. To solve the issue, we recommend running COPILOT in JupyterLab (https://
jupyterlab.readthedocs.io/en/stable/), a web-based user interface for programming. In addition, to let
JupyterLab recognize the R kernel, one needs to install the R package "“IRkernel” and run the function
“installspec()”. An R kernel activated via JupyterLab will be able to locate x11 device.

# In bash

# Install jupyterlab

>conda install -c conda-forge jupyterlab

# Activate R and install IRkernel

>R

>install.packages ("IRkernel")

# Make R kernel recognizable by jupyterlab then exit
>IRkernel: :installspec ()

>quit ()

# In bash

# Start a jupyterlab session, it will open automatically in your browser
>jupyter lab

# For a jupyter lab started on a remote cluster, specify a port number which ranged from1111 to
9999

>jupyter lab -port=8888
# In terminal of local machine

# Listen to jupyter lab session on remote cluster through the port via ssh command, the user

should specify the user and cluster/node name with -J

>ssh -N-L, 127.0.0.1:8888:127.0.0.1:8888 -J [user@]host[:port]

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead
contact, Uwe Ohler (uwe.ohler@mdc-berlin.de).

Materials availability
This study did not generate new unique reagents.

Data and code availability

The toy dataset, codes, and supplementary data needed to reproduce the demonstrated protocol
are available on GEO repository GSE152766 and GitHub: https://github.com/ohlerlab/scKB and
https://github.com/ohlerlab/COPILOT.
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The single-cell RNA-seq data used to generate the toy data have been deposited at GEO with acces-
sion number GSE152766 and sample number GSM4626009. The PBMC single-cell RNA-seq data is
published by 10x Genomics.

The supplementary summary files of COPILOT and CellRanger v6.1.2 are available at Mendeley
Data.

SUPPLEMENTAL INFORMATION
Supplemental information can be found online at https://doi.org/10.1016/j.xpro.2022.101729.
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