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Problems
While integrated physical and control system co-design has been demonstrated successfully
on several engineering system design applications, it has been primarily applied in a
deterministic manner without considering uncertainties. An opportunity exists to study
non-deterministic co-design strategies, taking into account various uncertainties in an inte-
grated co-design framework. Reliability-based design optimization (RBDO) is one such
method that can be used to ensure an optimized system design being obtained that satisfies
all reliability constraints considering particular system uncertainties. While significant
advancements have been made in co-design and RBDO separately, little is known about
methods where reliability-based dynamic system design and control design optimization
are considered jointly. In this article, a comparative study of the formulations and algo-
rithms for reliability-based co-design is conducted, where the co-design problem is inte-
grated with the RBDO framework to yield solutions consisting of an optimal system
design and the corresponding control trajectory that satisfy all reliability constraints in
the presence of parameter uncertainties. The presented study aims to lay the groundwork
for the reliability-based co-design problem by providing a comparison of potential
design formulations and problem–solving strategies. Specific problem formulations and
probability analysis algorithms are compared using two numerical examples. In addition,
the practical efficacy of the reliability-based co-design methodology is demonstrated via a
horizontal-axis wind turbine structure and control design problem.
[DOI: 10.1115/1.4045299]
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1 Introduction
Dynamic systems are common subjects of engineering design.

The behavior of time-varying system states depends both on
plant (physical system) and controller design decisions. These
state trajectories affect the activity of path and boundary con-
straints. Moreover, constraints that are inactive under determinis-
tic treatment may become active when accounting for various
sources of uncertainty. To meet engineering system requirements,
system designers may formulate an optimization problem with
chance constraints that enforce feasibility with a desired level of
reliability with respect to both plant and controller design
decisions.
The above problem fits into the broad discipline of multidisci-

plinary design optimization (MDO) with probabilistic constraints.
It consists of three parts: plant design, controller design, and reli-
ability assessment. Plant design concerns decisions regarding the
embodiment of the physical aspects of a system. Controller
design relates to the sensing and regulating of dynamic system
behavior by providing proper control inputs. Reliability assessment
evaluates the probability of system failure considering various
sources of uncertainty. The two major classes of uncertainty are ale-
atory and epistemic, where the former comes from the random
nature of parameters, and the later is usually due to lack of

information. The uncertainty-based co-design problem has been
addressed partially by two types of previous studies, namely,
co-design and uncertainty-based design optimization. Co-design
is a special class of MDO problems where the coupled design
disciplines include plant (physical system) and control system
design [1]. Unlike conventional sequential design methods, where
control design is performed after plant design is complete,
co-design is an integrated approach that accounts fully for design
coupling between plant and control design, producing a system-
optimal result [2]. Some researchers have studied the simulation-
based implementation of co-design. Fathy et al. showed the
successful implementation of nested co-design for a passive/
active automotive suspension system [3]. Yan and Yan demon-
strated the improved performance of a four-bar linkage powered
by a variable-speed servo motor [4]. Allison et al. demonstrated
the application of both simultaneous and nested co-design for a
robotic manipulator [5], an active suspension [6], and horizontal-
axis wind turbines [7].
Co-design methods presented so far in the literature have been

applied primarily in a deterministic manner. Developing non-
deterministic co-design strategies, including the incorporation of
uncertainty-induced failures into an integrated co-design frame-
work, may help to reach a reliable and system-optimal design of
an actively controlled dynamical system. Simply applying a
safety factor to account for uncertainty not only limits performance
but may not adequately account for multiple constraints and
complex uncertainty propagation in a way that ensures reliable per-
formance. Uncertainty-induced failures can be quantified as the
probability of failure, which are included in standard RBDO formu-
lations. Various strategies have been presented in the literature to
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evaluate the probability of failure efficiently. For example, Tu et al.
presented a general probabilistic constraint evaluation for RBDO
and compared the performance of the reliability index approach
(RIA) and performance measurement approach (PMA) [8]. A
hybrid mean value method was introduced to handle concave prob-
lems for the slow convergence of the conjugate mean value method,
and a modified version was proposed to handle nonlinearities in
Refs. [9,10]. To compare several first-order approximate methods,
Chiralaksanakul and Mahadevan compared their efficiency, accu-
racy, and convergence through numerical examples [11]. In the
case of correlated inputs, Noh et al. provided a method that converts
dependent input variables to independent standard normal variables
using the Gaussian copula [12]. The studies described above all use
double-loop formulations, where design optimization (DO) and reli-
ability analysis (RA) are nested. Likewise, single-loop methods
[13,14] and decoupled methods [15] have also been proposed to
reduce the computational burden.
While significant advancements have been made recently in

co-design and RBDO separately, limited work has been done to
combine reliability-based dynamic system design and control
design optimization. Here, we seek to capitalize on integrated
plant and control design to enhance system reliability, supporting
system-optimal performance while satisfying reliability constraints.
To the authors’ best knowledge, RBDO has not yet been applied to
co-design problems to address design uncertainties. A unified
approach to combining co-design and RBDO could lead to reliable
optimal solutions, with reasonable solution cost. This paper serves
as an initial attempt to solve co-design problems with an efficient
RBDO method.
Note that other formulations exist for uncertainty-based design

optimization, including dynamic systems. One example is robust
design optimization (RDO), which seeks to optimize the mean
design performance as well as minimize the influence of variations
in design variables. An initial implementation of RDO for co-design
problems is discussed in Ref. [16], where Azad and Alexander-
Ramos show a simultaneous design of the plant and controller by
including robustness terms in both the objective function and the
inequality constraints. In their formulation, the robustness terms
are related to the first-order Taylor series approximation of the
variance-induced functional variation. For a general MDO
problem with uncertainties, a comparative study of RBDO,
possibility-based design optimization, and RDO was presented by
Park et al. [17]. It was shown by these authors that RDO suffers
from its complex problem formulation and that RBDO can
provide a good estimate of system reliability if sufficient samples
are available.
This article involves three primary contributions. First, general

formulations of reliability-based co-design problems are provided,
including both simultaneous and nested variants. These formula-
tions are specifically limited to consideration of only plant param-
eter uncertainties. A more general and unified treatment of
multiple sources of uncertainty is a topic of ongoing work.
Second, a feasible simplification of the inner loop is proposed to
improve the computational solution efficiency of the proposed
nested structure. Third, implementation and parametric studies of
these formulations, based on both numerical and engineering
examples, provide quantitative insights into the formulation and
solution characteristics in terms of efficacy, accuracy, efficiency,
and robustness. In summary, this article addresses the initial imple-
mentation of RBDO for co-design problems, in the presence of
aleatory design uncertainties.
The rest of this article is organized into four parts: Sec. 2 intro-

duces concepts and methods for co-design and RBDO. Section 3
provides details regarding reliability-based co-design (RBCD)
problem formulation and outlines the proposed method for
solving this class of problem under aleatory uncertainties. Two
numerical examples and one design application (simplified
co-design of a wind turbine supported by a truss tower) are pre-
sented in Sec. 4. Finally, Sec. 5 concludes the paper and describes
future opportunities for related studies.

2 Background
This section introduces the background required for RBDO

co-design with aleatory uncertainty. Optimal control is an important
component of co-design and is discussed briefly. This is followed
by a brief discussion of co-design problem formulations and solu-
tion strategies. Finally, a review of RBDO is provided, specifically
to motivate its use as one possible technique to formulate co-design
problems with uncertainties.

2.1 Optimal Control Problem. An optimal control problem
concerns optimization of a control system, which involves control
inputs that evolve over time and influence the behavior of a
dynamic system that often is characterized by a set of by ordinary
differential equations (ODEs):

ξ̇ − f t, ξ(t), xc(t)
( )

= 0

ξ(t0) = ξ0
(1)

where ξ(t) is the set of state trajectories, xc(t) is the control input, t is
the time, and ξ0 is the initial state at the initial time t0. In a direct
optimal control problem, we seek to minimize a cost function that
depends on dynamic system behavior, with respect to the infinite-
dimensional control input trajectories xc(t). An example of a cost
function over a finite time horizon is

J xc(t)( ) =
∫tf
t0

L t, ξ(t), xc(t)
( )

dt + R tf , ξf
( )

(2)

where L(·) defines the running cost and R(·) defines the cost of
reaching a specific final state ξf at the final time tf [18].
Optimal control problems may include several types of con-

straints, including time-independent constraints, inequality path
constraints that limit the state and control trajectories, and boundary
conditions that define the initial and final states (e.g., for periodic
optimal control). In co-design, system performance is optimized
not only with respect to control input design but also with respect
to physical system design.

2.2 Co-Design Problem Formulation. Co-design problems
address directly the design coupling between the plant and
control design decisions. Design coupling is distinct from physics
coupling, but often the latter gives rise to the former. Consider a
design optimization problem with two or more sets of design vari-
ables (e.g., plant and control). Design coupling exists between two
sets of variables if changes in one set influence how design deci-
sions should be made in the other set (e.g., optimal control decisions
depend on plant design). In realistic co-design problems,
bi-directional design coupling exists between plant and control
design, and conventional sequential design methods cannot
account fully for this coupling. Achieving system optimality
requires a simultaneous variation of both sets of variables (or
approaches that are mathematically equivalent to simultaneous
plant and control design) [1]. One approach to expressing the simul-
taneous co-design formulation is

min
xp, xc(t), ξ(t)

θ t, ξ(t), xc(t), xp
( )

subject to ξ̇ − f t, ξ(t), xc(t), xp
( )

= 0

G t, ξ(t), xc(t), xp
( )

≤ 0

(3)

where xp is the vector of physical system design variables. The
equality constraint f(·) enforces system dynamics. Here, adjust-
ments to plant design (xp) provide additional degrees of design
freedom beyond control design. The inequality constraints G(·)
enforce requirements such as physical failure modes. These in
general are path constraints but may also be time-independent.
Here, θ(·) represents a general cost function that may depend on
time, state, control, and plant design. It should be noted here that
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when the control trajectories xc(t) are treated directly as optimiza-
tion variables, this is known as open-loop optimal control
(OLOC). OLOC problems are especially effective at identifying
system performance limits at early design phases, but most real
systems require closed-loop control (CLC), which may have differ-
ent limitations when compared with OLOC [19]. Later-stage
co-design studies should account for practical implementation con-
siderations for the closed-loop control.
This simultaneous formulation a bove is the fundamental inte-

grated design problem [20]. It is often desirable to identify mathe-
matically equivalent problem formulations that yield system
optimality, but that also support easier numerical solution. One
such strategy is to use the nested co-design formulation, which
adopts a nested structure that optimizes plant design in an outer
loop, and for every candidate plant design, the best possible perfor-
mance is determined by solving an inner-loop optimal control
problem. The outer-loop formulation is [1,21]

min
xp

θ t, ξ∗∗∗∗∗(t), xc∗(t), xp
( )

subject to: GO xp
( )

≤ 0

GF xp
( )

≤ 0

(4)

where xc*(t) and ξ∗∗∗∗∗ refer to the optimal control and the correspond-
ing state trajectories determined by the inner loop. GO(·) represents
the constraints that depend on the plant design variables only. The
additional constraint GF(·) is called the feasibility constraint here.
The purpose of including a feasibility constraint is to limit the
plant design space such that the corresponding feasible control
space is non-empty. As indicated in Ref. [21], a proper feasibility
constraint, though possibly difficult to find, renders the control sub-
problem well-posed for gradient-based methods.
The inner-loop problem is a typical optimal control problem. For

the nested co-design structure, it is formulated as

min
xc(t), ξ(t)

θ t, ξ(t), xc(t), xp
( )

subject to: ξ̇ − f t, ξ(t), xc(t), xp
( )

= 0

GI t, ξ(t), xc(t), xp
( )

≤ 0

(5)

The plant design variables xp remain fixed while solving the inner-
loop problem. The inner-loop constraints include the dynamics f(·)
and inner-loop inequality constraints GI(·). Compared to the simul-
taneous strategy, the nested strategy can both utilize existing efficient
optimal control methods and decouple the optimal control problem
from the complication of plant design. Application of solution
methods tailored for optimal control often results in a net computa-
tional benefit for the nested approach, but not always. A detailed dis-
cussion regarding the optimality conditions using analytic solutions
to Pontryagin’s maximum principle (PMP) [22] can be found in
Ref. [23] for both simultaneous and nested formulations.
There are, in general, two classes of methods to solve the optimal

control problem: (1) optimize-then-discretize methods and (2)
discretize-then-optimize methods. The former is sometimes referred
to as indirect optimal control methods and the latter as direct
optimal control methods. Optimize-then-discretize (indirect)
methods work by applying optimality conditions to the optimal
control problem to form a boundary-value problem (BVP). For
example, PMP provides necessary optimality conditions and Ham-
ilton–Jacobi–Bellman equation, which provides a necessary and
sufficient condition for optimality. In some cases, the resulting
BVP has a closed-form solution (e.g., linear-quadratic regulator
problems), but in general is solved numerically.
The second class of optimal control solution methods

(discretize-then-optimize, or direct) work by transcribing the
infinite-dimensional optimal control problem into a finite-dimension
nonlinear program via time discretization of state and control trajec-
tories. The system dynamics constraints (f( ·)) are transformed from a
system of ordinary differential equations into a set of algebraic

constraints when performing this discretization. Direct transcription
(DT) is one class of discretize-then-optimize methods that has
proven to be particularly effective for co-design, either for nested
or simultaneous formulations. With proper meshing, the co-design
problem can be solved accurately and efficiently [1]. For this
reason, DT [23,24] is chosen here for inner-loop problems that
require numerical solution (namely, the wind turbine case study).
Note that the current state-of-the-art co-design methods produce

control solutions in the form of open-loop control (OLC) trajecto-
ries, which can reveal important insights for early-stage design
studies. However, OLC is not practical for direct implementation
in many systems, which instead require closed-loop control. In
practice, due to information and physical limits, there is a gap in
performance between the optimal OLC trajectory and the closest-
performing CLC design. It has been suggested that the established
OLC co-design methods could be integrated with system architec-
ture decisions and detailed CLC design [19], but this is a challeng-
ing problem that remains a topic of ongoing work. In practice,
OLC co-design results can be analyzed to inform CLC design,
and performance improvements can be realized when compared
with traditional sequential design approaches, but the resulting
implementable system cannot be said to be system-optimal with
respect to all design decisions.

2.3 Reliability-Based Design Optimization. Reliability-
based design optimization (RBDO) replaces deterministic con-
straints with corresponding chance constraints. These constraints
show dependency both on the design variables and their distribu-
tions; thus, they must be evaluated using reliability analysis.
There are several strategies for RBDO formulation, such as double-
loop RBDO [8], decoupled RBDO [15], single-loop RBDO [13],
and metamodel-based RBDO [25]. A double-loop strategy is used
to solve the RBDO problem in this article, utilizing a nested strategy
for reliability analysis and design optimization. Using a chance-
constrained feasibility constraint in the outer loop of the nested
co-design problem and the approximated inner-loop reliability con-
straint of the proposed simplified formulation, however, utilizes
similar ideas to decoupled RBDO, where reliability constraints
are approximated by linearization. Three approaches exist for
double-loop RBDO: the reliability index approach (RIA), the
PMA, and the approximate moment approach. Details regarding
these three approaches are reviewed in Ref. [26]. For this work,
PMA and RIA are considered. Monte Carlo Simulation (MCS), a
computationally expensive but accurate reliability analysis
method, is utilized for benchmark comparison.
If a design problem has a design vector with uncertain variables

X= (X1, …, XNd) with a mean design vector d= (d1, …, dNd)=
μ(X), the RBDO problem can be formulated as follows [26]:

min
d

θ(d)

subject to Pr Gj X, d( ) ≤ 0
( )

≥ Φ βt
( )

, j = 1, . . . , Nc

dLi ≤ di ≤ dUi , i = 1, . . . , Nd (6)

where Nd and Nc are the number of design variables and constraints,
respectively, Gj(·) is the jth constraint, Φ is the cumulative distribu-
tion due to the standard normal distribution, βt is the target reliabil-
ity level, and dLi and dUi are the lower and upper bounds of the ith
design variable. We further define FGj as the CDF of Gj(·) such that

FGj = Pr Gj(X, d) ≤ 0
( )

(7)

For RIA, Eq. (6) can be rewritten as

min
d

θ d( )

subject to Gr
j = βt −Φ−1 FGj ≤ 0

( )
= βt − βsj ≤ 0, j = 1, . . . , Nc

dLi ≤ di ≤ dUi , i = 1, . . . , Nd

(8)
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The probability in RIA can be approximated using the first-order
reliability method (FORM), which estimates the distance from the
origin to the most probable point (MPP) in the U-space. For
normal random variables, the U-space is simply the normalized dis-
tribution defined by its mean and standard deviation. The MPP can
be found through the Hasofer-Lind and Rackwitz-Fiessler (HL-RF)
method, which uses the steepest ascent direction of the constraint
function to update the search point. Likewise, the RBDO problem
using PMA can be formulated as follows:

min
d

θ d( )

subject to Gp
j = F−1

Gj
Φ(βt)
( )

≤ 0, j = 1, . . . , Nc

dLi ≤ di ≤ dUi , i = 1, . . . , Nd

(9)

Here, F−1
Gj

represents the inverse transformation. To solve for Gp
j ,

the first-order estimate is obtained by solving the following optimi-
zation problem in the U-space:

max
U

gj(U)

subject to ‖U‖ = βt
(10)

where the constraint in the above problem defines the target reliabil-
ity surface. The MPP, uj*, is the point on the target reliability
surface that maximizes the constraint function in the U-space
gj(·), where gj(u)≡Gj(X(u)).
The method used to find the MPP when applying PMA in the

studies presented here is the advanced mean value (AMV)
method. The initial estimate using AMV is calculated as follows
[27]:

u 0( ) = βtn 0( ) = βt
∇UGj(u = 0)
‖∇UGj(u = 0)‖ (11)

where u= 0 corresponds to the mean values of x and n (k) is the stee-
pest descent direction at the MPP of the kth iteration. The MPP is
updated as follows:

u k+1( ) = βtn k( ) = βt
∇UGj u(k)

( )
‖∇UGj u(k)

( )‖ (12)

Typically, both the RIA and the PMAmethods can easily estimate a
target reliability for common distribution types. However, the RIA
tends to diverge for distributions other than the normal distribution,
whereas PMA does not show dependency on the distribution. Also,
PMA outperforms RIA in a sense of reliability analysis conver-
gence for its robustness and efficiency. RIA and PMA are both first-
order reliability methods (FORM). In cases where constraints (or
limit state functions) are highly nonlinear, it is desirable to consider
the curvature of constraints using second-order reliability methods.
Other RBDO methods, such as single-loop methods and decoupled
methods, can potentially be implemented to improve the efficiency
of overall problem solution. Using the single-loop methods,
however, can cause inaccuracy due to an approximated MPP,
while the efficiency improvement of decoupled methods is ques-
tionable since it increases the number of outer-loop iterations and
increases computation time due to solving for additional optimal
control trajectories in the inner loop. The trade-off for both scenar-
ios are application dependent and therefore not included in the
current work.

3 Reliability-Based Co-Design Optimization
Considering a controlled system with uncertainties in the plant

design variables, the task is to find a feasible combination of plant
design variable and control trajectory values that satisfies all

constraints in the presence of design uncertainties. Other types
of uncertainty, such as exogenous variables for the dynamic
system, may be especially important for some systems, but are
outside the scope of this initial RBCD formulation study. In this
section, we will introduce several RBCD problem formulations
and discuss detailed implementation strategies for solving this
type of problem.

3.1 Simultaneous Formulation. The most straightforward
RBCB formulation is the simultaneous co-design formulation
with double-loop reliability analysis. Following the nomenclature
from the earlier discussion, the problem with normally distribu-
ted random design variables (μxp , σxp ) can be formulated as
follows:

min
μxp , xc(t), ξ(t)

θ t, ξ(t), xc(t), μxp
( )

subject to: ξ̇ − f t, ξ(t), xc(t), μxp
( )

= 0

Pr G t, ξ(t), xc(t), μxp
( )

≤ 0
( )

≥ Φ βt
( )

μLoxp ≤ μxp ≤ μUpxp (13)

where the probability of failure can be evaluated using the
FORM methods introduced in Sec. 2. Several simplifications
are made to emphasize the basic characteristics, where only
the objective function, the dynamic constraint, the probability
constraint, and bounds for the mean design variables are present.
The main purpose of RBDO is generating feasible designs in the

presence of uncertainties; thus, the objective is usually evaluated at
the mean design variables. Objective function variance can also be
included to emphasize robustness in design. This modification,
however, is not necessary if the objective function is insensitive
to the design variations and the design variation is small.
Other than the deterministic constraints that are not affected by

design variations, two types of constraints are considered here:
hard constraints and soft constraints. Hard constraints, usually
physics-based, are always active regardless of design variations.
For example, the dynamics can be evaluated at the mean design
for control trajectory generation. For sample-based reliability anal-
ysis, the dynamics are updated with the sample designs. In contrast,
activity of soft constraints is affected by the randomness in design
variables (e.g., path constraints and boundary conditions). Within
soft constraints, equality constraints can be reformulated as inequal-
ity constraints that are bounded from both sides, with a choice of
acceptance level. Using this reformulation, we may consider a for-
mulation using only soft inequality constraints for reliability
analysis.
System states are time-dependent, which makes RA time-

dependent also for a co-design problem. This brings in design com-
plexity and evaluation difficulty since it requires numerical integra-
tion of a random process. For this work, a simulation-based method
is applied as it evaluates the simulated sample performances and
uses the classification result to estimate the probability of failure.
This method may become impractical for expensive simulations.
To improve the efficiency, several methods that convert time-
dependent RA into time-independent ones had been proposed,
such as extreme value-based methods [28–31], composite limit
state methods [32], and out-crossing rate-based methods [33].
These methods can potentially improve the efficiency of co-design
reliability analysis and are considered for future improvements.

3.2 Nested Formulation. An alternative to the simultaneous
formulation is the nested formulation. Following Eqs. (4)–(5),
the RBCD problem described in Eq. (13) can be formulated as
a deterministic plant design problem in the outer loop, and
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reliability-based optimal control design in the inner loop:

min
μxp

θ t, ξ∗∗∗∗∗(t, μxp ), xc∗(t, μxp , μxp
( )

subject to GF μxp

( )
≤ 0

μLoxp ≤ μxp ≤ μUpxp

(14)

where xc∗(t, μxp ) and ξ∗∗∗∗∗(t, μxp ) refer to the optimal control trajectory
and the corresponding state trajectory determined by the inner loop,
which is defined in Eq. (15):

min
xc(t), ξ(t)

θ t, ξ(t, μxp ), xc(t, μxp ), μxp
( )

subject to ξ̇ − f t, ξ(t), xc(t), μxp
( )

= 0

Pr G t, ξ(t), xc(t), μxp
( )

≤ 0
( )

≥ Φ βt
( )

(15)

Here, the feasibility constraint GF(·) must enforce non-emptiness of
inner-loop reliable optimal control solutions, which enables the
nested formulation to find the same optimal design as the simulta-
neous formulation [2] and thus are mathematically equivalent.
Note that an effective feasibility constraint in the outer loop
usually leads to a more conservative search space. In addition, the
nested structure changes the search direction. This means that the
nested strategy may not be able to converge to the same optimal
solution as the simultaneous formulation in some cases. Perfor-
mance reduction due to the first factor can be improved by minimiz-
ing the approximation error of design spaces, if active constraints
exist at the optimal design. The second factor is case-dependent
and requires additional information to resolve. The feasibility con-
straints can only be generated case-by-case. In general, we only
need to define feasibility constraints if existing constraints cannot
lead to the identification of feasible inner-loop control trajectories.
One obvious yet trivial choice of feasibility constraintGF(·) is the

probability constraint. This formulation guarantees the equivalent
design space. When the search direction and the algorithm does
not inhibit the search of the optimal solution, the two formulations
should result in the same optimal solution. Due to the fact that sat-
isfaction of the reliability constraint in either loop and the symmetry
of the nested co-design structure, it is not necessary to choose the
probability constraint as the feasibility constraint unless exactness
of design space is required.
Moreover, the current state-of-art RA methods can only provide

reliability evaluation up to a certain accuracy level, so recovering
the exact design space of the simultaneous RBCD for the nested
RBCD is impractical.
As mentioned earlier in the reliability assessment discussion, the

nested approach has the potential to increase the computational cost
dramatically due to the increased number of iterations. However,
system complexity is reduced for the decoupled sub-problems. By
decoupling the optimal control design and reliability assessment
from the original problem, there is enhanced flexibility in the
choice of solution algorithm, and choosing a tailored algorithm
for each sub-problem may produce a net benefit by reducing the
cost of solving the inner loop. This is especially important when
dealing with multidisciplinary problems. Solving the optimal
control problem using DT can be very efficient with a quadratic
objective and linear constraints (arising from linear dynamics).
The efficiency and accuracy can be further improved with adaptive
meshing strategies, where the continuous problem is only tran-
scribed at a limited number of steps. Interested readers may refer
to Chap. 4 of Ref. [34] for a deeper understanding of mesh refine-
ment for direct optimal control.

3.3 Implementation Strategy. The nested co-design problem
with reliability constraints is composed of three major elements: the
system-level design optimization with respect to plant design

variables (outer-loop problem), the optimal control design (inner-
loop problem), as well as the reliability assessment (outer-loop,
inner-loop, or both). If reliability constraints are enforced in the
outer loop with the nested co-design problem formulation, the
RBCD problem can be represented using a flowchart as shown in
Fig. 1. Existing solvers can be used for each of these three elements
depending on problem type, computational efficiency, and accuracy
requirements. For example, the DT method can be used to solve the
optimal control problem efficiently, while reliability analysis can be
carried out using first-order reliability methods. The outer-loop
plant design problem solver can also be selected based on the var-
iable type, design space, and continuity of the problem.
The implementation of the reliability-based co-design problem

with the above formulations could start with an initial design for
the plant, generally in the feasible design space. The plant design
can be optimized in the outer loop, with the optimal control for
the candidate plant design information obtained by solving the
inner-loop problem, while reinforcing the reliability constraints
simultaneously. When using the nested co-design formulation, the
plant design is held fixed for during both control design and reliabil-
ity assessment in the inner-loop problem. The detailed steps of this
process are as follows:

(1) Initialize the plant design μxp0
. For the common co-design

problem formulation, the initial plant design can be identified
in the feasible design region where a feasible controller
design exists.

(2) For the current plant design, solve the optimal control
problem in the inner loop. The inner-loop probability con-
straints are moved to the outer loop, while approximated reli-
ability constraints are added to the inner loop and make it
deterministic.

(3) Implement the reliability analysis for the outer loop probabi-
listic constraints, considering a robust optimal control
design. If path constraints are present, forward integration
can be used to generate the states of the controlled plant
for all tested random samples. The sample results are then
used for path reliability assessment by the chosen reliability
analysis method.

(4) Conduct the reliability-based plant design optimization, con-
sidering the optimal control and the assessed reliability.

(5) Check convergence. If the process has not converged, a new
candidate plant design will be proposed by the plant opti-
mizer. Steps 2–4 are then repeated.

For the scenario with a nested co-design formulation that requires
reliability analysis in both inner and outer loops, the computational

Fig. 1 Reliability-based nested co-design flowchart
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expense could increase significantly, especially for the reliability
analysis considering time-dependent control trajectories. While
conducting the reliability analysis in both loops could ensure accu-
racy, it is impractical, however, for most realistic design applica-
tions due to its prohibitively high-computational costs. In
addition, the combination of reliability analysis with inner-loop
optimal control trajectories presents a significant challenge, as a
time-dependent RBDO problem must be solved repeatedly for
each co-design iteration.
From the perspective of formulation, having reliability con-

straints in both loops does inspire more applicable formulations.
For instance, a practical formulation of nested RBCD is to
convert the probabilistic constraints in one design loop (e.g.,
inner loop) to their deterministic approximations and retain the
probabilistic constraints in the other design loop (outer loop), so
that the computationally expensive reliability analysis need only
to be conducted in one design loop. Note that replacing the proba-
bilistic constraints in both loops leads to a robust nested co-design
formulation, which is outside the scope of this paper. Similar to
deterministic co-design problems, there are many choices of the
deterministic approximations for probabilistic constraints. One pos-
sible choice could be a linear approximation of the worst-case con-
straint functional variation:

Gj t, ξ(t), xc(t), μxp
( )

+
∑N
i=1

ηimax
dGj

dμx pi
σx pi

( )

≤ 0, j = 1, . . . , Nc (16)

where i indicates the ith random variable of N variables. The max (·)
function determines the linear approximation of the worst function
variation caused by design uncertainties. The product of the coeffi-
cient ηi and the standard deviation of random variable σxpi can be
used to account for plant design uncertainties in a deterministic
manner for control design, and the values can generally be chosen
based upon the confidence interval.
Since this probabilistic constraint simplification is only made to

one of the design loops, tightening, or even some relaxation, of
design constraints is allowable when using algorithms that accom-
modate intermediate constraint violations. For the RBCD problem
using the nested design formulation with probabilistic constraints
applied to both design loops, it is recommended to apply the
stated deterministic approximation of probabilistic constraints to
the inner-loop control design problem, since the computational
cost of reliability analysis can be reduced significantly once the
inner-loop design constraints become deterministic with respect to
the design variables.

4 Reliability-Based Co-Design Case Studies
Three case studies are introduced in this section. The first case

study (Case 1) is a simplified co-design problem, which can be
viewed as the design of a static time-invariant system. In Case 1,
the RBDO implementations with different co-design formulations
are presented and compared. The second case study is a co-design
problem involving a scalar dynamic system, with a constraint on
the final state. Different reliability analysis methods are applied to
the nested co-design formulation, with a comparison of conver-
gence and computational efficiency characteristics of different
random variable distributions and different target reliabilities. The
third case study is a simplified wind turbine co-design problem
involving optimal rotor control optimal lattice tower design. The
results of deterministic nested co-design and a sensitivity study
(with different levels of inner-loop relaxations for the reliability-
based nested co-design) are presented.

4.1 Case Study 1: Static Co-Design Problem. As a tractable
example to compare different problem formulations, this case study
uses a modified bi-variate Matyas function as the objective function,

with two probability constraints that couple the scalar plant and
control variables. The simultaneous formulation is

min
μxp , xc

0.26(μxp
2 + x2c ) + 0.48μxp xc

subject to Pr xp − 3x0.6c ≤ 0
( )

≥ 0.95

Pr
xc2

5
− xp ≤ 0

( )
≥ 0.95

0 ≤ μxp ≤ 3

0 ≤ xc ≤ 3

(17)

where xp ∼ N (μxp , σ
2
xp ) is a random design variable and u represents

a static (time-invariant) control variable. The above problem is a
simple example of a static reliability-based co-design problem for-
mulated as a simultaneous problem, which can be solved as a two-
dimensional RBDO problem. Note that this problem only serves
as a comparison for simultaneous RBCD, nested RBCD, and
nested RBCDwith either inner-loop only or outer-loop only reliabil-
ity analysis. This is not necessarily appropriate for a dynamic system,
but it helps provide insight into the formulations, including the
nature of the bi-level structure of the nested formulation.
For the nested formulation, since both probability constraints are

control-dependent, they should be included in the inner loop follow-
ing the classical nested co-design formulation:

min
xc

0.26(μxp
2 + xc

2) + 0.48μxp xc

subject to Pr(xp − 3x0.6c ≤ 0) ≥ 0.95

Pr
xc2

5
− xp

( )
≤ 0 ≥ 0.95

0 ≤ xc ≤ 3

(18)

where μxp is assigned by the corresponding outer loop. As discussed
in Sec. 2.2, a feasibility constraint can be added in the outer loop to
guarantee the existence of a solution in the inner loop. The choice of
feasibility constraint is case-dependent; yet, we can always choose
the inner-loop constraint to be the trivial (yet redundant) option. If
the reliability constraints are chosen as feasibility constraints for this
problem, the corresponding outer loop can be formulated as

min
μxp

0.26(μxp
2 + xc∗2) + 0.48μxp xc∗

subject to Pr xp − 3x0.6c∗ ≤ 0
( )

≥ 0.95

Pr
xc∗2

5
− xp ≤ 0

( )
≥ 0.95

0 ≤ μxp ≤ 3

(19)

where xc* is obtained by solving the inner-loop problem for a value
of μxp designated by the outer loop.
Alternatively, the feasibility constraint can be chosen by replac-

ing the limit state functions by their upper bounds, for example:

min
μxp

0.26 μxp
2 + xc∗2

( )
+ 0.48μxp xc∗

subject to μxp − 3x0.6c∗ + ϵ1 ≤ 0

xc∗2

5
− μxp + ϵ2 ≤ 0

0 ≤ μxp ≤ 3

(20)

where ϵi are lumped parameters that shift the limit state functions to
their upper bounds. Unlike the previous formulation, we no longer
need reliability analysis for the outer loop, which reduces the com-
putational effort.
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As discussed at the end of Sec. 3.3, a significant reduction in the
computational effort can be achieved by converting the probability
constraints in the inner loop to their deterministic approximations.
Based on this, the forth formulation is

min
xc

0.26 μxp
2 + xc

2
( )

+ 0.48μxp xc

subject to μxp − 3x0.6c + ϵ1 ≤ 0

xc2

5
− μxp + ϵ2 ≤ 0

0 ≤ xc ≤ 3

(21)

where ϵi are lumped parameters that add robustness to the optimal
control problem. Azad and Alexander-Ramos [16] used a similar
strategy for adding robustness to inequality constraints of the simul-
taneous co-design problem, where they reasoned that the tolerance
term can be determined as a function of the first-order approxima-
tion of the variations in constraint function evaluation. Here, the
purpose of robust control is to compensate for the relaxation in
the inner loop where the mean values of the design variables are
used for the optimal control design. Without the tolerance term,
the controller designed for the mean design variables would fail
for the reliability-constrained outer loop when randomness-induced
variations in limit functions violate the constraints. As discussed in
Sec. 3, the conservative constraints should be close to the worst
functional variation, for retaining a closely approximated design
space. The linearly approximated variations of the constraints are
simply the standard deviation, which is 0.316 for this problem.
The conservative coefficients are chosen as [1.65, 1.65] accord-
ingly, which result in ϵ1 = 0.52 and ϵ2 = 0.52.
For the choice of conservative coefficients, probability con-

straints should be used as upper bounds if an interior-point
method is used in the outer loop. This should lead to a conservative
plant design and an aggressive control strategy due to the relaxed
(or the aggressively approximated) inner-loop constraints. The
closer the approximated constraints are to the true probability con-
straints, the more the original feasible design space is preserved. If
the violation of constraints is allowed for intermediate steps, we can
also approximate the inner-loop constraints conservatively, which
leads to a robust control strategy. A trade-off always exists
between robustness and accuracy. Larger tolerance terms increase
the robustness of the controller, which makes the outer loop
easier to solve. On the other hand, the optimal solution may be
close to the constraints, and conservative (large) coefficients may
exclude the original optimal solution and lead to sub-optimality.
The conservative coefficients used above were found analytically,
which was possible because the confidence interval of a normalized
distribution can be approximated as the confidence interval.
Due to the simplicity of the first case study, Monte Carlo simula-

tion is used to reduce errors induced by the approximation-based
reliability analysis. The deterministic constraints are evaluated
100,000 times for each reliability constraint. An interior-point
method is employed as the solver, which incorporates a barrier
function into its objective. For a starting point of [xp0, xc0]

T= [2,
2]T, the convergence performance of the four methods is presented
in Fig. 2 and summarized in Table 1.
The optimal solution of the deterministic problem is [xp, xc]

T= [0,
0]T at the intersection of the two constraints. Any uncertainty would
cause the failure of the deterministic design. The simultaneous
reliability-based co-design solution [μxp , xc]

T = [0.5270, 0.1731]T

is considered as the baseline design. For the nested formulations,
since the inner-loop control problem is always solved first, interme-
diate designs would always activate the upper constraint first. Then,
the conflict between the gradient descent direction and the feasibil-
ity gradients keeps the convergence trajectory close to the upper
constraint. The nested co-design formulation with reliability analy-
sis in both loops leads to the closest result to the baseline design.
This agrees with previous analysis since it provides an accurate

approximation of the feasible design space. However, it also
requires the largest number of function evaluations across the
three nested formulations, which is particularly expensive when
MCS is employed. The solution produced by nested co-design
with outer-loop reliability analysis is only slightly farther away
from the strategy that has RA in both loops, with significantly
fewer function evaluations. The converged optimum of the nested
co-design with inner-loop reliability analysis is much farther
away from the baseline, which indicates incoherence between the
approximated design space and the original feasible design space.
Note that an interior-point method is used for the outer-loop optimi-
zation, which limits the result of the nested formulations that use
approximations to a combination of conservative plant designs
and aggressive control designs. In addition, this demonstrates the
flexibility of using a bi-level approach to tune the plant and
control design, resulting in a feasible and near-optimal solution.

4.2 Case Study 2: Scalar Linear System. Consider the fol-
lowing simultaneous formulation of a co-design problem based
on a scalar linear system:

min
μx p1

, μx p2 xc(t), ξ(t)

1
2

∫tf
t0

xc
2(t)dt +

1
2
cξ2(tf )

subject to Pr{ξ(tf ) ≤ ξmax} ≥ P0

ξ̇ = xp1ξ + xp2xc

ξ(0) = ξ0

(22)

where ξ is the scalar state, xc(t) is the control input, and ξmax is the
maximum allowed state value. The initial state ξ(t0) is specified. The
plant design variables xp1 and xp2 are random design variables with
the same distribution and c is a fixed parameter with value 1. The
cost function has both running cost and terminal cost components.
The problem is fixed-time free-end, which poses a probability

Table 1 Convergence history comparison for different
formulations of the static co-design problem

Method μxp xc Objective
Fcn
evals

Simultaneous RBCD 0.5270 0.1731 0.1238 287
Nested RBCD with outer-loop RA 0.5289 0.1740 0.1248 52
Nested RBCD with inner-loop RA 0.7707 0.2453 0.2608 55
Nested RBCD with double-loop RA 0.5272 0.1731 0.1239 63

Fig. 2 Convergence performance of reliability-based co-design
formulations
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constraint on the final state. The upper simultaneous problem can be
reformulated as a nested problem:

min
μx p1

, μx p2

1
2

∫tf
t0

x2c∗(t)dt +
1
2
cξ∗(tf )

2

subject to Pr{ξ(tf ) ≤ ξmax} ≥ P0

ξ̇ = xp1ξ + xp2xc∗
ξ(0) = ξ0

(23)

where xc*(t) and ξ∗(tf ) are the optimal control trajectory and the cor-
responding final state obtained by the inner loop:

min
xc(t), ξ(t)

1
2

∫tf
t0

x2c (t)dt +
1
2
cξ(tf )2

subject to ξ̇ = μx p1 ξ + μx p2 xc

ξ(0) = ξ0

(24)

In this case, the inner loop is kept as the original deterministic
optimal control problem. However, the inner loop is still intended
for the satisfaction of the reliability constraint. The robustness is
achieved solely via plant design. Note that this relaxation is valid
here because the final state also appears in the objective function.
It can be considered to be the penalty-based method, where the
final state is minimized. The deterministic problem can be solved
analytically by application of Pontryagin’s maximum principle,
which gives the following optimal trajectory and control:

ξ∗(t) = ξ(t0)e
μx p1

(t−t0)

+
μ2x p2

ceμx p1 (2tf−t0−t)ξ(t0)

2μx p1 − μ2x p2
c(1 − e2μx p1 (tf−t0))

[
eμx p1 (tf−t) − eμx p1 (t+tf−2t0)

]
(25)

and

xc∗(t) =
2μx p1 μx p2 ce

μx p1
(2tf−t0−t)ξ(t0)

2μx p1 − μ2x p2
c(1 − e2μx p1 (tf−t0))

(26)

For the nested formulation, the optimal control trajectory obtained
from the inner loop is sent to the outer loop for RA, where the
state trajectories of sampled plants are generated using numerical
integration. The plant design variables are assumed to be normally
distributed with a standard deviation of 0.1. The solution to the
deterministic problem is [0.4586, 1.3980] for μx p1 and μx p2 , which
has a probability of failure of approximately 0.0934 (validated
using MCS with a sample size of 100, 000). In addition to the deter-
ministic results, the problem is also solved using MCS, AMV, and
HL-RF methods. Five commonly used distributions (normal, log-
normal, Weibull, Gumbel, and uniform) are used to test the robust-
ness of different methods. In addition, a sensitivity study on the
target reliability level and its effect on computational cost was
also performed. The test results are summarized in Tables 2 and 3.
The MCS result is considered to be the baseline here. It is shown

that the result of the AMV method is closest to the baseline result,

both in the plant and control design spaces. There is a deviation for
the HL-RF method in the sense of the final state and control trajec-
tory. Among the three tested methods, MCS requires a very large
number of function evaluations, and therefore is not an efficient
or practical method for reliability analysis. For all cases, the
optimum obtained by the AMV method is closer to the MCS
results than those of the HL-RF method, indicating that accuracy
is an advantage of AMV. There is no divergence for the AMV or
HL-RF methods for the cases with different distributions, so a
robustness advantage of AMV is not evident. For efficiency, the
AMV method requires fewer total iterations than the HL-RF
method in most tested cases. It requires more iterations for lognor-
mal distribution and when the target reliability is 0.99.

4.3 Case Study 3: Simplified Wind Turbine Co-Design
Problem. A simplified wind turbine co-design problem is pre-
sented here where a two-dimensional lattice tower supports a
horizontal-axis wind turbine, and a lumped-parameter aerodynamic
model is used (Fig. 3). The plant design is the tower geometry, and
the control design is parameterized as the time-varying axial induc-
tion factor (which in practice can be influenced by generator torque
and pitch control). Plant design variables include tower height h,
inner side length wb of the square tube truss member, and the
tube thickness tb.
The two design objectives include maximizing energy production

and minimizing tower cost. A path constraint limits the maximum
tip deflection. The objective and constraints conflict since wind
speed and energy potential generally increase with height (due to
wind shear), but increased height (and tip thrust force) requires a
stronger and more expensive tower. Meanwhile, control inputs of
the turbine can mitigate excessive load, which provides an alterna-
tive to reduce the cost of energy. A sweet spot exists for a given cost
model and wind profile where the total cost of energy is minimized.
A lattice tower design is chosen instead of the popular tubular
towers for the purpose of reducing material and installation cost
for small-scale systems. Increasing height while maintaining a
fixed cost generally results in increased structural deflections, but
these are limited here by the path constraint on tip deflection men-
tioned earlier.
The simplified wind turbine model accounts for rotor aerodynam-

ics and the tower structural dynamics. The well-known actuator disk
model is used for aerodynamics (i.e., the air velocity at the disc is
related to the free stream velocity Uinf and the axial induction
factor a). The axial induction factor is essentially the relative
change in the wind velocity from upstream to downstream. The
power output and thrust force are also related to the axial induction
factor. Here, we assume that the induction factor can be arbitrarily
changed within the limits 0≤ a≤ 1/3. The largest physically mean-
ingful value of this factor is a= 1/2, but maximum energy extraction
occurs at a= 1/3. For the disk actuator model, the velocity at the
disk Ud can be calculated as

Ud = Uinf (1 − a) (27)

The time-varying free stream velocity trajectory used here is
based on the wind data acquired from Ref. [35]. The wind speed
is modeled as a superposition of the mean wind speed (which
varies with tower height) and a time-varying portion based on the
first three Fourier modes of the referenced data. Specifically, it is

Table 2 Comparison among MCS, AMV, and HL-RF for Log-normal, Weibull, Gumbel, and Uniform distributions

Lognormal (0,1) Gumbel (0,1) Weibull (1,1.5) Uniform (−0.5,0.5)

Method F, μx p1 , μx p2 Iteration F, μx p1 , μx p2 Iteration F, μx p1 , μx p2 Iteration F, μxp1 , μx p2 Iteration

MCS 5.73,0.58,1.4 64 5.77,0.59,1.4 64 5.76,0.59,1.4 64 5.88,0.6,1.4 64
AMV 6.8,0.72,1.4 364 5.24,0.48,1.34 339 4.65,0.4,1.35 245 4.56,0.41,1.4 245
HL-RF 4.85,0.40,1.04 204 5.77,0.4,1.01 320 5.79,0.4,1 322 5.81,0.4,1 325
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modeled as

Uinf (t, h) = 5
h

10

( )0.17

− 6.77 cos 0.185t + 4.37 sin 0.185t

+ 0.874 cos 0.37t + 6.59 sin 0.37t

+ 4.81 cos 0.555t − 0.854 sin 0.555t

(28)

where t ranges from 0 to 24 hours. The corresponding power coef-
ficient CP and thrust coefficient CT are defined as

CP = 4a(1 − a)2, CT = 4a(1 − a) (29)

CP can be rewritten as a function of CT:

CP = CT 1 +
��������
1 − CT

√( )
, 0 ≤ CT ≤

8
9

(30)

allowing us to use the thrust coefficient as the control input instead
of a. With the coefficients known, we can apply momentum theory
to calculate the mechanical turbine power:

P =
1
2
ρCPAbU

3
inf (31)

where Ab is the turbine swept area and ρ is air density (assumed to
be 1.225 kg/m3 here). The thrust force at the turbine axis of rotation
(tower tip) is

T =
1
2
ρCTAbU

2
inf (32)

Here, we assume the tower is composed of a fixed number of equal-
height repeating mast sections, as shown in Fig. 3. The total tower
height is treated as a continuous design variable. The structural
dynamics of the tower is modeled using finite element analysis
with a mesh having m movable nodes and 2m degrees of
freedom, expressed in the following equation (after applying
boundary conditions):

Mẍ + Cẋ +Kx = F(t) (33)

where x ∈ R2m represents the planar movement of all m non-fixed
nodes.M andK are the 2m × 2m global mass and stiffness matrices.

The forces on all nodes are expressed using the time-varying 2m × 1
vector F(t). Before applying boundary conditions (fixed base
nodes), the stiffness matrix is singular, but after eliminating rows
and columns corresponding to fixed (zero degrees of freedom)
nodes, the stiffness matrix is symmetric positive definite. The cor-
responding state-space model is

ξ̇ = 0 I
−M−1K −M−1C

[ ]
ξ + 0

M−1

[ ]
F(t) (34)

The quantity ξ ∈ R4m is the augmented state variable vector com-
posed of both position and velocity states, i.e., ξT = [xT, ẋT]. The
system model used here does not approximate physical damping.
Real structures do have internal damping, and here, an approximate
damping term is added for numerical stability. Here, we assume the
damping matrix is a linear combination of the mass and stiffness
matrices [36]:

C = γ1K + γ2M (35)

where γ1 and γ2 are damping coefficients. The damping ratio κ is
defined as a function of damping coefficients and the natural fre-
quency. It is expressed as

κ =
γ1
2ωn

+
γ2ωn

2
(36)

where ωn represents a natural frequency of the tower. Substituting
ωn with the first modal frequency of the tower and the damping
ratio with a designated value, the system of equations can be
solved for corresponding γ1 and γ2 values.
For the inner loop of the optimal control problem, the variable is

the thrust coefficient trajectory CT(t), which is constrained to remain
between 0 and 8

9 throughout the time horizon. The inner loop is
solved using the DT method (see Sec. 2). A MATLAB-based
toolbox for solving linear-quadratic dynamic optimization problems
[23,24] is used as the solver. To solve higher-order problems with
nonlinear dynamics, it is recommended to use nonlinear direct
optimal control packages, such as GPOPS II, which have built-in
mesh refinement and automatic differentiation algorithms for an
efficient and accurate solution.
The energy production revenue is calculated based on the price of

electricity (0.12 USD/kWh) and the expected service life (20 years).
The tower cost is estimated using a material mass cost (3.0 USD/kg)
and an approximate construction cost (10 times the material cost).
Operating expense is not included in this simplified model. The
Pareto front was obtained using the ϵ-constraint method, which is
presented in Fig. 4. Here, ϵ is chosen as the tower cost changing
between the minimum tower cost and the maximum tower cost
determined by the variable boundaries. About 30 points are
picked and spaced uniformly; the resulting Pareto front illustrates
the tradeoff between (approximate) energy revenue and tower
cost. After the following discussion of the deterministic multi-
objective problem, the deterministic and reliability-based co-design
problems are solved for a fixed tower cost. In addition, a parametric
study on the estimated robustness term of the inner-loop inequality
constraint is also conducted.
The objective function axes displayed in Fig. 4 are normalized

using the maximum possible tower cost (based on plant variable
bounds), 4.236 × 107, and energy revenue based on the maximum

Table 3 Comparison among MCS, AMV, and HL-RF for Normal distributions with different target reliability

P0= 0.9 P0= 0.95 P0= 0.99

Method F, μxp1, μx p2 Iteration F, μx p1 , μx p2 Iteration F, μxp1 , μxp2 Iteration

MCS 5.76,0.58,1.4 64 5.78,0.59,1.4 63 5.78,0.59,1.4 64
AMV 4.7,0.4,1.36 245 4.78,0.4,1.31 309 5.37,0.4,1.36 354
HL-RF 5.8,0.40,1 322 5.78,0.4,1 322 5.76,0.4,1.01 320

Fig. 3 Simplified lattice tower supported wind turbine
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wind speed and a thrust coefficient of 16/27, which is 3.128 × 107.
The increasing tower cost leads to infeasible designs as the tower
height approaches 119m, since the cross-sectional variables both
approaches the upper limits. Also, we observe non-monotonic beha-
vior of cross-sectional geometry at points C and E. This could be a
result of relaxing the tower height as a continuous variable. Lattice
towers are usually repeated stacks of mast sections, which should be
an integer. By setting the total number of levels fixed, we are able to
make the tower height a continuous variable.
For two consecutive points on the Pareto front, an increase in

height may lead to a more rapid decrease in stability, which takes
a much larger thickness and therefore even smaller side length of
the cross section to compensate. For optimal designs between C
and D, E and F, both side length and thickness grow simultaneously
as the height increases.
Consider a case where the tower cost is fixed at 2.5 × 106, the

height range is constrained between 85m and 119m, and the
member section geometry bounds are tightened to [0.2, 0.3]m
(side length) and [0.02, 0.03]m (side thickness). The purpose of
this modification is to reduce the range of these two degrees of
freedom such that observation of the trade-offs between control tra-
jectory and height can be made. In addition, different robustness
terms have been tested, the results are summarized in Table 4 and
Fig. 5.
Comparing with the deterministic co-design results, which takes

an aggressive control trajectory for a shorter (yet stronger) tower,
RBCD-based designs all converge very closely to [h, wb, tb]

T=
[110, 0.2, 0.02]T. The converged plant design results do not
depend upon the choice of robustness terms in the inner-loop
control problem. Alternatively, a large robustness term results in
a more conservative control in the inner loop. The conservative
control in the inner loop leads to sub-optimal design at the system

level, which agrees with the discussion in Sec. 3. However, this
change of control design space does not affect the plant design
space much, leading to the observed behavior where the RBCD
cases all converge closely in the outer loop.

5 Discussion and Conclusion
In this work, a comparative study of RBCD problem has been

conducted for different formulations and algorithms, where the
co-design problem is integrated with the reliability-based design
optimization framework for an optimal system design and a corre-
sponding control trajectory that satisfies all reliability constraints
pertaining to plant design uncertainties. The RBCD problem is
decomposed in a nested manner, with robust optimal control and
reliability assessment performed in the inner and outer loops,
respectively. Plant and control design changes can work together
synergistically to provide a more robust design under aleatory
uncertainties. Numerical and application-based examples are pre-
sented to provide an in-depth discussion of the different problem
formulations, accuracy and efficiency comparison of different reli-
ability assessment strategies, implementation challenges, as well as
strategies for feasible relaxations.
In particular, a reformulation based on the directly incorporated

nested co-design and reliability-based design optimization is pro-
vided, which relaxes the soft constraints of the optimal control
design problem such that the nested RBCD problem can be
solved more efficiently. The efficacy and trade-offs are discussed
and shown through analysis and case studies. It shows that the refor-
mulated nested RBCD problem simplifies the process of solving the
reliability-based optimal control problem but can still converge to a
feasible solution with respect to the original reliability constraints.
However, the nested RBCD would converge to the same optimal
solution as the simultaneous RBCD when the original probabilistic
constraints can be accurately approximated in the inner-loop design
problem.
The current RBCD framework is demonstrated for reliability-

constrained co-design problems with quadratic objectives, linear
dynamics, and plant parameter uncertainties. However, the frame-
work can be extended to problems with higher-order objectives
and nonlinear constraints by employing SQP methods with mesh
refinement. Likewise, a surrogate-model-based adaptation can be
made by implementing a sample-based modeling problem on top
of the current framework. In both cases, the efficacy complies
with a trade-off between accuracy and efficiency. For a more
general co-design problem with uncertainties, other sources of
uncertainties, such as stochastic loading, measurement noise, and
model uncertainties, may exist. The proposed framework cannot

Table 4 Tower design results of the wind turbine co-design
problem

Method h wb tb Energy revenue

Co-design 95.67 0.2106 0.021 3.54e9
RBCD(10%) 110.08 0.2 0.02 5.08e7
RBCD(30%) 110.8 0.2 0.02 5.08e7
RBCD(50%) 110.03 0.2 0.02 4.92e7
RBCD(70%) 110.08 0.2 0.02 4.91e7

Fig. 4 Pareto front of the deterministic wind tower co-design
problem, numerical values correspond to h/wb/tb

Fig. 5 Control trajectory of deterministic and reliability-based
co-design
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be applied directly in such cases due to the optimal control of the
stochastic process, incomplete information, as well as unmodeled
dynamics. These topics are considered future developments of
RBCD.
As indicated at the end of Sec. 2.2, the state-of-art co-design strat-

egy mainly focuses on OLC problems. This certainly does not with-
hold its capability of advanced control strategies. For example,
model predictive control, which iteratively solves the open-loop
optimal control problem with a receding time window, is an ideal
candidate for short period control with known nonlinear dynamics.
Since the inner loop of the proposed nested structure solves a fixed-
time problem. It is a worthwhile future work to adopt different
control strategies for different co-design problems, in particularly
in the presence of different types of uncertainties.
In order to expand the current formulation to more general prob-

lems with different types of uncertainties, the modification for cases
with loading uncertainties and model uncertainties and their effects
on general dynamics should be investigated. Meanwhile, an accu-
rate and efficient estimation of the robustness term in the relaxed
nested structure would help to improve the robustness and effi-
ciency of the nested RBCD strategy. In addition, RBCD can be
viewed as a special class of time-dependent reliability-based multi-
disciplinary design optimization problems. Accordingly, an explo-
ration of state-of-the-art time-dependent RBDO methods and
uncertainty-based multidisciplinary design optimization methods
would be a worthwhile effort.
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