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Abstract

Wind energy is one of the fastest-growing energy sources due to its cleanness, sustainability, and cost-effectiveness. In
the past, wind turbine design studies focused primarily on a sub-system or single-discipline design and analysis, including
control, structural, aerodynamic, and electro-mechanical studies, for example. More recent studies formulated wind turbine
design problems using multidisciplinary design optimization (MDO) strategies, with either static or dynamic system mod-
els, providing the potential for identifying system-level optimal designs. On the other hand, efforts have also been made to
increase the reliability and robustness of wind turbines by accounting for various sources of uncertainty explicitly in the
design process. In the presented study, the MDO formulation of wind turbine design problem has been extended to include
both control system co-design and reliability considerations in an integrated manner. As a result, the optimal wind turbine
design that has an optimal control solution and is robust to uncertainties can be obtained at an early design stage, which
would benefit the controller design and maintenance design at latter phases. In this paper, the design of a horizontal axis
wind turbine (HAWT) supported by a tubular tower is considered and formulated as a multi-objective control co-design
problem with design parameter uncertainties and stochastic wind load. A physics-based multidisciplinary dynamic model of
tubular-tower-supported pitch-controlled HAWT that captures the main design conflicts under extreme wind is provided and
implemented, along with the necessary modifications to make nested control co-design comply with modern reliability-based
design optimization structures, forming a new class of reliability-based co-design (RBCD) problems. In particular, we provide
detailed discussions about RBCD problem formulations and implementation strategies, and with the HAWT design problem,
we demonstrate the results and computational costs with integrated double-loop, single-loop, as well as decoupled methods.

Keywords Co-design - Reliability-based design optimization - Wind energy

1 Introduction intuitive design method to capture such a trend is upscal-

ing, which increases the sizes of main turbine components

Ever since modern wind turbines were introduced in 1980s,
we have seen continuous increases in tower heights and rotor
sizes for capturing more wind energy at lower cost of energy.
Although the growth in turbine sizes leads to increased
energy capacity and reduced cost of energy, it also intro-
duces growing costs on construction and maintenance. Such
a trend is primarily driven by the facts that wind resource
quality improves at higher altitudes and taller towers also
allow larger size rotors to be used (Lantz et al. 2019). An
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following certain geometrical similarity rules (Sieros et al.
2012). However, the upscaling methods have difficulty to
further reduce the cost of energy since they are based upon
existing designs and their performances only, and therefore
may experience limits in capturing the nonlinear multi-
physics dynamics of the physically coupled components.
Later studies seek improvements as they include dynamics
of components and utilize Multi-disciplinary Design Opti-
mization (MDO) techniques to resolve such a deficiency for
either component-level design (Grujicic et al. 2010; Vas-
jaliya and Gangadharan 2013; Pavese et al. 2017) or system-
level design (Maki et al. 2012; Deshmukh and Allison 2016;
Ashuri et al. 2016; Forcier and Joncas 2012; McWilliam
et al. 2018) while considering design uncertainties and sys-
tem reliability (Li et al. 2017; Hu et al. 2013, 2016).
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As an actuated dynamic system, the states of a wind
turbine show dependency on both the plant and controller
design. Traditionally, such a problem is solved sequentially,
where the physical design is completed before the control-
ler designs. This separation results in decoupled or weakly-
coupled sub-problems and makes it challenging to discover
the system-level optimal solution for the interconnected sys-
tem. Meanwhile, the appearance of uncertainties in prac-
tical implementation adds extra difficulty by reducing the
feasible control design space, where inactive constraints of
the deterministic design may become active due to various
sources of uncertainties. In such a scenario, the early-phase
plant design may become more conservative than needed
due to the lack of information about the actively controlled
dynamics. Iterative methods are a potential alternative, but
it is usually more costly in reality and it could fail to find the
system-level optimum (Fathy et al. 2001; Allison and Nazari
2010). To meet the safety requirements of such engineering
problems and balance the plant and control design efforts,
system designers may formulate an optimization problem
with probabilistic constraints, using reliability as the safety
measurement with respect to an integrated physics and con-
trol design problem, or control co-design (CCD) problem.
This type of problems consists of three tasks: plant design,
controller design, and reliability assessment, which form
a unique type of probability-constrained multidisciplinary
design optimization problems. The plant design usually con-
cerns decisions regarding the construction and sizing of a
physical system; the controller design is related to sensing
and regulating the dynamic behavior by feeding in proper
control inputs, while the reliability assessment evaluates the
likelihood of system failure considering various sources of
uncertainty.

The above problem has been addressed partially by previ-
ous studies in two different areas, namely control co-design
(CCD) and Reliability-based Design Optimization (RBDO).
CCD is a special class of MDO problems where the coupled
design disciplines include control system design and one or
more plant (physical system) design disciplines (Allison and
Herber 2014). Plant design involves determining the embod-
iment of the physical aspects of a system. Controller design
relates to the sensing and regulating of dynamical system
behavior by providing proper control inputs. Unlike con-
ventional sequential design methods, where control design
is performed after plant design is complete, co-design is
an integrated approach that accounts fully for design cou-
pling between plant and control design, producing a sys-
tem-optimal result (Fathy et al. 2001). Numerous successful
simulation-based implementations of co-design have been
demonstrated. Fathy et al. showed successful implementa-
tion of nested co-design for a passive/active automotive sus-
pension system (Fathy et al. 2003). Yan et al. demonstrated
improved performance of a four-bar linkage powered by a
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variable-speed servo motor (Yan and Yan 2009). Allison
et al. demonstrated application of both simultaneous and
nested co-design for a robotic manipulator (Allison 2013),
an active suspension (Allison et al. 2014), and horizontal
axis wind turbines (Deshmukh and Allison 2016).

In recent years, co-design has been applied primarily in
a deterministic manner, where open-loop control (OLC) is
used as part of an integrated system design problem. Spe-
cifically, direct transcription (DT), a direct optimal control
method that discretizes the infinite-dimensional optimal
OLC problem to form a corresponding approximate nonlin-
ear program (NLP), has been demonstrated to be an espe-
cially effective solution strategy (Herber and Allison 2019).
Note that when OLC is adopted, the focus of CCD is to
find a system-level optimal design in early design phase that
would benefit planning and controller design at a later phase.
In other words, the goal is to create a physical design that is
capable of being controlled properly. While the OLC-based
CCD methods provide quantitative system design insights,
they do have limitations due to reliance on OLC, such as
practical implementation for later design phases. Efforts
have also been made to address the practical limitations,
including the development of system-optimal closed-loop
control (CLC) designs based on OLC-based CCD results
(Deshmukh et al. 2015) and CCD for stochastic dynamic
systems utilizing the stochastic Hamilton—Jacobi-Bellman
(sHJB) equation (Cui et al. 2020b).

Another challenge in practical implementation is uncer-
tainty, which appears in modeling, measurements, and envi-
ronments. While considering uncertainties in system design
optimization, probabilistic design formulations can gener-
ally be applied, such as the RBDO, Possibility-based Design
Optimization (PBDO), or Robust Design Optimization
(RDO) (Fan et al. 2019; Jiang et al. 2021; Zhang et al. 2020;
Lee et al. 2019, 2020; Hu and Du 2015; Du et al. 2008; Park
et al. 2015). In standard RBDO formulations, uncertainty-
induced failures can be quantified as probability of failure.
Various strategies have been presented in the literature to
evaluate the probability of failure efficiently. For example,
Tu et al. presented a general probabilistic constraint evalua-
tion for RBDO and compared the performance of the Relia-
bility Index Approach (RIA) and Performance Measurement
Approach (PMA) (Tu et al. 1999). A Hybrid Mean Value
method was introduced to handle concave problems for the
slow convergence of the Conjugate Mean Value method, and
a modified version was proposed to handle nonlinearities
in Youn et al. (2003) and Youn et al. (2005). To compare
several first-order approximate methods, Chiralaksanakul
and Mahadevan compared their efficiency, accuracy, and
convergence through numerical examples (Chiralaksanakul
and Mahadevan 2005). In the case of correlated inputs, Noh
provided a method that converts dependent input variables
to independent standard normal variables using the Gaussian
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copula (Noh et al. 2009). The studies described above all use
double-loop formulations, where design optimization (DO)
and reliability analysis(RA) are nested. Likewise, single-
loop methods (Liang et al. 2007; Nguyen et al. 2010) and
decoupled methods, such as Sequential Optimization and
Reliability Assessment (SORA) (Du and Chen 2004) have
also been proposed to reduce the computational burden.

While significant advancements have been made recently
in co-design and RBDO separately, limited work has been
done to integrate reliability-based design optimization for
control co-design of dynamic systems. Cui et al. proposed
a Reliability-based Co-design (RBCD) framework for Lin-
ear Quadratic (LQ) problems with double-loop methods for
Reliability Assessment (RA) (Cui et al. 2020a). Azad and
Alexander-Ramos presented reliability-based co-design for
nonlinear problems using SORA (Azad and Alexander-
Ramos 2020). The earlier works attempted to use different
reliability assessment strategies to show efficacy of RBCD
and reduce its computational cost, it is yet to see a real-
world application to provide evidence for its value and reveal
more practical challenges. Also, a real-world application can
serve as a test bed for developing innovative algorithms for
RBCD. In this paper, we focus on the RBDO implementa-
tion for horizontal axis wind turbine (HAWT) co-design, in
the presence of aleatory design uncertainties and stochastic
wind load. The rest of this paper is organized as follows:
Section 2 covers details regarding dynamics of the HAWT
subsystems. The proposed method for reliability-based co-
design of HAWT in the presence of parametric and dynamic
uncertainties is presented in Sect. 3. Section 4 discusses the
results of the probability-constrained problem and com-
pares them with the deterministic results. Finally, Sect. 5
concludes the paper and describes future opportunities for
related studies.

2 HAWT dynamic model

Control co-design brings design optimization of the physical
system and the control decisions together. To achieve that,
it requires the model to (1) capture the controlled dynam-
ics and the coupling among different disciplines; (2) reflect
the change in physically meaningful design variables; and
(3) be as simple as possible such that optimal control and
design optimization problems can be solved efficiently. Both
optimal control and design optimization problems become
challenging for high-dimensional systems, the accumulated
computational cost could be prohibitively high. To meet the
three requirements, we may use first principle models or
hybrid physics-surrogate models. A first principle model is
based on established physical laws and assumes no fitting
parameters. This brings an obvious benefit that the dynamics
can be updated directly when the physical design changes.

However, it is essential to select the models wisely for a
multidisciplinary problem since some first principle models
themselves are difficult to evaluate. There are also simpli-
fied physics-based models that capture the dynamics and are
easy to evaluate. However, they may be not coupled with
physically meaningful design variables. In that case, it is
possible to establish the coupling effect by adopting sur-
rogate models. The downside of hybrid physics-surrogate
modeling is the introduction of the sample-based modeling
sub-problem (Cui et al. 2020c). We choose the first strategy
for this study and balance its computational cost through
model management.

In this study, we optimize an upwind, 3-bladed, tubular
tower supported, 5 MW horizontal axis wind turbine, which
is composed of the rotor (blades and the hub) with pitch
control, the low-speed shaft on the rotor side, the gearbox,
the high-speed shaft on the generator side, the generator, and
the tubular tower, shown in Fig. 1. The task is making design
and control decisions concurrently for a system-level optimal
solution. Specifically, we study the trade-off between more
abundant wind energy at increased height above ground and
the increased cost of the wind turbine tower. Tower design
optimization and pitch angle optimal control are solved in a
co-design framework, with considerations of the multidis-
ciplinary dynamics of all the components mentioned above
and the reliability issue elevated by the increased wind load.
Several simplifications are made to reduce the model com-
plexity while seizing the coupling effect associated with the
design conflict between the cost and energy production. We
suppress the yaw motion of the nacelle by assuming a con-
stant wind direction that flowing toward the rotor, as well as
the structural strength of the blades since we are interested
in the tower geometries only. Besides, wind turbines are usu-
ally operated differently as the wind velocity changes. In
the low-speed region, the wind load, thrust force in particu-
lar, is not large enough to activate structural constraints of
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Fig. 1 Simplified wind turbine diagram
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the tower dynamics. As a result, the design coupling effect
between the tower design and the pitch control will become
minimum due to the loss of activeness in the important
constraints. Hence, we assume the wind turbine operates in
its pitch-controlled region, where the wind velocity is high
(greater than 12 m/s, for example). Also, instead of using
the commonly adopted control strategy at high wind speed
where generator RPM is kept constant through pitch control,
we formulate a constrained optimal control problem for all
the coupled dynamics. This allows us to gain more insights
into the design coupling effect between the tower design and
the pitch control.

Regarding the model selection, the multidisciplinary
design problem concerns aerodynamics of the rotor, trans-
mission from the rotor (low-speed end) to the generator
(high-speed end), electro-mechanical dynamics of the gen-
erator, and structural dynamics of the tower. Since the plant
design variables are related to the tower geometries and the
pitch control is related to the rotor aerodynamics. We adopt
physics-based models that can be updated and evaluated
as the design and control variables change. Since the wind
speed is a height-dependent, time-varying, stochastic input
to the aerodynamics, a spatial-temporal model is created
that can generate time series of wind speed that follows the
stochastic distribution of the local wind. We choose simple
physics-based models for the transmission and generator
dynamics since their models are not directly coupled with
the physically meaning design and control variables. Fol-
lowing these guidelines, we generate dynamic models for
each of the subsystems, and the model parameters are either
fixed or can be derived analytically and based on physical
design variables.

2.1 Wind speed model

Both energy production and load on the structure are
dependent upon the wind speed. The wind speed is coupled
with the height above ground and follows a site-specific
Weibull distribution. As the height above ground increases,
the pressure gradient increases, while the friction due to
ground surface and the air density decreases, which con-
tribute to an increased wind velocity. Along with the aero-
dynamics of the rotor, the wind speed model creates a major
design conflict that the rotor harvests more energy at higher
altitude, but it also adds more load to the structure, which
boosts structure cost. The current control co-design frame-
work solves an OLC problem in the time domain, which
takes wind speed input as a time series. Earlier wind tur-
bine control co-design work (Deshmukh and Allison 2016)
evaluates power production as an integral between cut-in
and cut-off wind speed over a distribution, which does not
provides insights about load and energy production in the
time domain. In this work, a sample wind speed can be
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generated as an altitude-dependent time series that follows
a Weibull distribution. In particular, the wind speed model
(1) follows a site-specific Weibull distribution that is param-
eterized based on actual wind measurements; (2) shows spa-
tial dependency on the hub height above ground; (3) can be
used to generates wind profiles repeatedly to account for its
randomness.

One method to generate a time series model based on its
past values is Auto Regressive Integrated Moving Average
(ARIMA) (Box and Jenkins 1970). It models the differ-
ences as a linear combination of its lagged values as well as
lagged forecast errors. The original model assumes a Gauss-
ian error term, which differs from the generally accepted
Weibull distribution of wind speeds (He et al. 2010). This
drawback can be overcome by applying a power transforma-
tion that truncates the wind distribution to Gaussian (Sim
et al. 2019). The optimal power coefficient can be solved
numerically based on the wind data. The original work was
based on offshore wind speed measurement. To adapt it for
land-based wind turbines, we may use the wind data pro-
vided by the National Wind Technology Center (NWTC),
measured at their 135 m M5 tower. Wind speed measure-
ments are provided at several different heights (NWTC
2020). Specifically, we used the wind speed data between
January Ist to January 31st in 2019, measured at 30 m,
55 m, 80 m, 105 m, and 130 m by cup-type anemometers
to build the height-dependent ARIMA model. NWTC also
provides more accurate wind data measured by sonic ane-
mometers, but additional work is needed to compensate for
their higher rates of fault and missing data. The exemplary
wind data measured at 30 m, 80 m, and 130 m are shown
in Fig. 2.

The optimal power coefficient can be obtained by follow-
ing the method proposed in Sim et al. (2019). As suggested,
a power transformation can be taken for the wind speed.

30

————— Wind Speed at 30m
---------- Wind Speed at 80m
—— Wind Speed at 130m | |

Wind Speed (m/s)

s
0 50 100 150 200 250 300
Time (min)

Fig.2 Sample wind data at M5 provided by NWTC
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Such an operation results in a Gaussian-like distribution and
therefore makes it suitable for an ARIMA model. The type
of ARIMA model adopted is (0, 1, 2), or a damped Holt’s
model. The corresponding model coefficients and Weibull
coefficients are summarized in Table 1.

Here a, is the optimal power transform coefficient, § and A
are Weibull distribution parameters, and 6 and v are ARIMA
coefficients. The coefficients at different heights are inter-
polated by second-order polynomials. After that, the wind
profile at an arbitrary height can be generated as a function
of height, time, and initial speed at the reference height,
after taking the inverse power transform to recover the wind
speed, U,,;. We may summarize the model as:

Uinf:fwind{t’L’vw()}, (1)

where ¢ is the time, L is the hub height above ground, v, is
the initial wind speed at the reference height.

2.2 Rotor aerodynamics

When only power output and wind thrust of an ideal turbine
rotor are considered, the rotor can be modeled using the
well-established actuator disk model, which suppresses all
geometric design elements except the swept area. The actua-
tor disk model is simple to implement but not necessar-
ily ideal for control co-design due to an internal conflict
between its suppressed design parameters and its depend-
ency on its performance curves. The performance curves are
used to map the wind speed, pitch angle, and rotor velocity
to its power coefficient, which is fixed to specific geomet-
ric rotor designs. Since the design parameters (except the
swept area) are not shown in the model, the performance
curves cannot be easily updated within the CCD frame-
work. To resolve this issue, a model based on Blade Ele-
ment Momentum (BEM) theory can be used to predict rotor
performances with specific geometric design parameters for
ideal, steady operating conditions. BEM divides a blade of
radius R into several sections, each section is referred as a
blade element, as shown in Fig. 3. It assumes no aerody-

Fig. 3 Blade element model used in blade element momentum theory

on BEM can be updated with different designs of turbine
blades, with respect to parameters such as blade element
radial distance, r, element length, dr, chord length, c, pre-
bent angle, and the chosen airfoil, which allows design opti-
mization for blade design. For this study, we assume a fixed
design of rotor blades; as a result, the corresponding thrust
and torque applied by the wind can be expressed as functions
of wind speed, rotor speed, and pitch angles.

The adopted rotor design follows the conceptual design
of the 5 MW wind turbine developed by NREL (Jonkman
2009). The tech report provides design parameters, such as
chord length and airfoil of the rotor blade sections. In addi-
tion, the variation of lift and drag coefficients for each air-
foil is provided as a look-up table. Therefore, the functional
dependence of steady-state rotor thrust and torque on wind
speed, rotor speed, and pitch angles can be defined using
look-up tables can be defined using look-up tables. Details of
the parameters can be found in “Appendix 1”. Note that the
look-up tables correspond to steady-state response only. The
transient responses are not provided and may be obtained
using Computational Fluid Dynamics (CFD).

The sectional thrust, d7, and the sectional torque, dQ,
applied to blade sections are estimated based on Kulunk
(2011):

namic 1ntergct10n among dlfferenF sections, and thfarefore the a7 = 47rp£22a’ a+ a’)r3 dr, 2

aerodynamics are solely determined by the section geom-

etries, lift coefficients, and drag coefficients. A database for

i i i irfoi dQ = 4zpU, Qd' (1 — a)r*dr 3)

the lift and drag coefficients for candidate airfoils should be PUint >

available to apply the BEM method. Note that a model based

Table 1 Weibul'l parameters and Height (m) a, 2 (1) 002) N

ARIMA coefficients
30 0.48 1.41 5.35 5.49e-2 —5.76e-2 5.43e-2
55 0.46 1.36 5.67 7.48e—2 —5.15e-2 491e-2
80 0.44 1.33 5.88 8.74e-2 —5.14e-2 4.48e—2
105 0.43 1.31 6.04 9.27e-2 —5.73e-2 4.14e-2
130 0.43 1.30 6.16 9.06e—2 —69le-2 3.90e—2
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p, the air density, is assumed to be a constant 1.225 kg/m3
Q is the rotor angular velocity. U, is the wind speed pro-
vided by the wind model. r and dr denote the radial distance
from the center of hub and the section length, and a and o’
are the axial induction factor and angular induction factor,
which can be calculated as:

1
1 +4sin? ¢/(6C )cos

“

;L 1
" 4cosp/(cC)— 1"

®

where ¢ is the angle of relative wind.The solidity ratio, o,
is defined as:

_ Be
2rr

(6)

where B is the number of blades and c is the chord length.
The induction factors are correlated by

a(l—a) Q%

ad(l+d) U2,

@)

The lift coefficient, C; , is a function of angle of attack. This
function depends on the specific airfoil used as detailed in
“Appendix 1”. The summation of angle of attack, pre-bent
angle of each section, and pitch angle gives the angle of rela-
tive wind. The above equations can be solved for sectional
thrust and torque, and the total thrust and torque on the rotor
is the integration of sectional load over the entire blade
length. Note that the pre-bent angles, cord length, section
length and radius, air foils and the corresponding lift and
drag coefficients are obtained from Jonkman 2009. Accord-
ing to the reference, the innermost nodes, 1-3, are cylinders
with zero lift coefficient. This causes division by zero in
Egs. 4 and 5, and therefore should be calculated separately
by decomposition of the drag force. We may summarize the
model as:

Q T] faero{t Umf’xc’g} (8)
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2

1

" 4618.27
20 30 10
Blade Node Location from Hub (m)

Chord Length (m)

Fig.4 Torque (a) and thrust (b) load of the rotor at U;; = 20 m/s, x, = 10°, and Q =
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Rotor Torque (Nm)

Chord Length (m)

where x, represents the pitch angle control input. To fur-
ther reduce the computational cost of solving the systems
of equation in co-design and reliability assessment, the cor-
responding thrust force, 7, and rotor torque, Q, can be solved
off-line as functions of wind velocity, rotor angular velocity,
and pitch angle. The results can be captured as response
surfaces so that they can be referred efficiently during the
optimization process. We show a sample result of the thrust
and torque load at U, ; = 20 m/s, x, = 10°, and Q = 13 rpm
(Fig. 4).

2.3 Tower design and structural dynamics

The turbine tower is designed as a tubular tower shown below
in Fig. 5, and characterized by its height, L, the height of the
cone after extending the sides until they meet, L,, the inner
diameter of the tower base, d,;, and the outer diameter of the
tower base, d;, assuming that the cones shaped by extensions
of the inner and outer sides meet at the same point.

The structural dynamics of the tower can be obtained
through Finite Element Analysis (FEA) methods. This
usually leads to high dimensional dynamics and potential
difficulty in solving the optimal control problem. In addi-
tion, FEA mesh may need updating with each new tower
design, which introduces non-smoothness and difficulty in
using gradient-based optimization methods. The tower can
be simplified as a tapered hollow wedge beam with circular
cross-sections and a point load at the tip. As suggested in

Ly

Ly

Fig.5 Tubular tower design

(b)

54449

Rotor Thrust (N)

338.891
0 20

30
Blade Node Location from Hub (m)

10 60

13 rpm
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Wu and Chiang (2004), we may consider the tubular tower
as an Euler—Bernoulli beam characterized by the following
equation of motion:

0? 0%y(x, 1) %y(x,0)
£<E1(x) 5 ) + PAW— = =0, )

where x is the axial coordinate, y is the transverse deflec-
tion, E is the Young’s modulus, p is the density of the tower
material, A(x) is the cross-section area, I(x) is the moment of
inertial at x, and ¢ is time. For free vibration, the transverse
deflection can be written in the form:

Y, 1) = W(x)e'™, (10)

where W is the deflection amplitude and w is the natural
frequency. The cross-section area and the corresponding
moment of inertial can be rewritten in the forms:

Ale) =Ae" (11)

and

I(e) = I,e"*? (12)

where:

Ay = a(d} = dj)/4, (13)

I, = n(d} - d},)/64, (14)
_ X

€= L (15)

Then the following amplitude function can be used
with Eq. 9:

W(e) = L™ [c10,(2) + €Y,(2) + e31,(2) + ¢4, (D).
(16)
where J, and Y, are the nth order Bessel functions of the first
and second kind, /, and K, are the nth order modified Bessel
functions of the first and second kind and z is a parameteri-
zation of the natural frequency, w, which is defined as:

2 =2fe3, (17)
4 _ 274 @

For a free-clamped tapered beam, the boundary conditions
are:

’PW 0 W Ly
¥ -2 (Eell ) =0ate= 2
0€? 0€< 2 d¢e? > e L, (19

_w
de

w =0ate=1 (20)

Substituting Eq. 16 into the boundary conditions yield a sys-
tem of linear equations, Eqs. 21-24.

c13(29) + € V3(20) + ¢303(29) — €4K3(z) = 0, 1)
c1J4(z0) + ¢, Y4(z0) + c314(z0) + c4Ky(z9) =0, (22)
c1J12(z)) + ¢, Yo (2)) + c315(z)) + ¢4 Ky (z)) = 0, (23)
cJ3(z1) + 6, Y3(2)) — 6353(2)) + ¢4K3(2)) = 0, (24)

Setting the determinant of this linear system matrix to zero
and identifying non-trivial solutions result in identification
of natural frequencies, w,, and their corresponding mode
shapes, W,:

_ (%) [EL
wr_<L1> PA1’ =

Wie)=LT'e e11,(z) + 0, Y5(z)  +c35() + ¢4Kq (2]

(26)
The analytical solutions are compared with modal frequency
analysis generated using Finite Element Analysis (FEA) for
sample tower designs (Fig. 6. The corresponding results are
summerized in Table 2.

Clearly, discrepancies exist between the analytical solu-
tions and the FEA solutions. However, the analytical results
can correctly capture the trend of variation and can be effi-
ciently updated, which makes them ideal for co-design and
RBCD in early design phases. The analytical natural frequen-
cies and mode shapes can be used to reconstruct the structural
dynamics of the tapered tubular tower as described by Eqs. 9
and 10. We can superpose the rotor and nacelle mass and the
thrust load for the externally loaded case with a centered mass
on the tip of the tower. We may summarize the model as:

[x, X1 = frower {8 T5Xp ), 27)

where x and x are the motion and its derivative of associ-
ated nodes.

2.4 Drive-train and generator dynamics

The drive-train can be modeled as a simple rotary shaft with
equivalent stiffness, damping, and inertia calues, which are
all available in Jonkman (2009). The 5 MW Doubly Fed
Induction Generator (DFIG) is not detailed in the NREL tech
report, but a dynamic model can be inferred for the pitch-
controlled mode. The generator is operated at the nominal
power rate when the wind turbine in Region 3, that is, when
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E Mode 1: 0.7586 Hz Total Modal Displacement

o u: [ % B

E Mode 1: 1.082 Hz Total Modal Displacement B Mode 1: 0.7802 Hz Total Modal Displacement E Mode 1: 0.7987 Hz Total Modal Displacemer

[ = B (] = B

(a)

Fig.6 FEA results for
x, = [100,200,7,6.8]

sample

Table 2 FEA and analytical

(b)

(0

(d)

tower designs: a xp=[100,300,7,6.8], b xp=[100,300,10,9.8], c xp=[100,300,7,6.9], d

. Sample L (m) L, (m) d; (m) dy; (m) FEA result (Hz) Analytical
modal analysis results result (Hz)
a 100 300 7 6.8 0.7586 0.8006
b 100 300 10 9.8 1.082 1.1468
c 100 300 6.9 0.7802 0.8063
d 100 200 6.8 0.7987 0.8931
the mean wind velocity is above 12m/s. In this region, the . 1 [Py
. . M e p— _rer M 31
generator torque can be modeled as inversely related to its gen = @ gen | (€29
. . cn
angular velocity. A time constant can be added to turn the g
steady-state response into a first-order dynamic model based ~ where wen a0d P ¢ are the time constant and the rated power

on available generator parameters:

) 1 .
Q= I_ (Q - d)Kshaft - ¢Bshaft)’ (28)
rot
. 1 1 ;
w = ]_ <_Mgen + ﬁ(d)Kshaft + ¢Bshaft))’ 29)
gen
$=Q- o 30
- N ’ ( )
where w is the generator angular velocity. M., represents

the generator torque. K¢ and By, are the shaft stiffness
and damping constants. N is the gear ratio.
The generator is modeled as:
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of the generator. Following the reference control strategy, we
assume pitch control is only activated in the high wind speed
region, whereas it remains zero in the low-speed region.

3 Reliability-based control co-design
of HAWT

The HAWT is a multidisciplinary system, concerning aero-
dynamic design regarding the rotor blades, structural design
of the tower, blade, and drive-train, electro-mechanic design
of the generator. In this work, the tower geometry and blade
pitch control are optimized. Although the drive-train and
the generator are not design subjects, they are essential
components that place dynamic constraints on the system
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optimization. In this section, we provide a general reliabil-
ity-based co-design formulation first. Then we present the
HAWT RBCD formulation in the presence of parametric
uncertainty and loading uncertainty. In particular, we adopt
the nested co-design formulation for the convenience of
model updates, in which the reliability assessment is imple-
mented in the outer loop. A double-loop (DLP) method
using the Performance Measurement Approach (PMA), a
single-loop (SLP) method , and a decoupled method using
SORA are implemented for comparison of different RBCD
performances.

3.1 General nested formulation of reliability-based
control co-design

Let x,, &, and x, denote the set of physical system design
variables, state trajectories, and the control inputs, respec-
tively. Both control and state are functions of time, 7. The
dynamic model is defined as follows:

E—1£(1,£(0).x.(0).x,) =0, (32)

In a direct optimal control problem, we seek to minimize
a cost function that depends on dynamic system behavior,
with respect to the infinite-dimensional control input tra-
jectories, x.(#). An example of a cost function over a finite
time horizon is:

J(x.()) = / ' O(t, &), x.(1))dt + R(1y. ;). (33)

where O(-) defines the running cost, and R(-) is the terminal
cost, i.e., the cost of reaching a specific final state £, at the
final time 7, (Liberzon 2011).

Optimal control problems may include several types of
constraints, including time-independent constraints, state
and path constraints that limit the state and control trajec-
tories, and boundary conditions that define the initial and
final states (e.g., for periodic optimal control). In co-design,
system performance is optimized not only with respect to
control input design, but also with respect to physical system
design.

We may consider a nested formulation, where the RBCD
problem can be formulated as a deterministic plant design
problem in the outer loop, and reliability-based optimal con-
trol design in the inner loop. For normally-distributed ran-
dom design variables (,uxp, o-xp), the problem can be formu-

lated as follows:

3661
min H(t,f*(l‘,llx )sxc*(t»”x )’ Hy )
My, ’ b
subject to GF(”XP> <0 (34)

Lo Up
< <
lep = lep = lep s

where x_, (2, yxp) and &,(¢, ,uxp) refer to the optimal control

and the corresponding state trajectories determined by the
inner loop, which is defined in Eq. (35):

R QL SRV

subject to & — f(t, &), x. (1), [lxp) =0 (35)
Pr(6(n &0, %0, 1, ) <0) = @),

where 0 represents the general cost function, @ is the cumula-
tive distribution due to the standard normal distribution, and
f' is the target reliability level. Here, the feasibility constraint
Gp(+) must enforce non-emptiness of inner loop reliable opti-
mal control solutions. The inner loop is an optimal control
problem with probability constraints, which suffers from the
computational cost induced by reliability assessment and
optimal control. Earlier work (Cui et al. 2020a) shows that
the computational burden can be alleviated by choosing an
intuitive yet trivial feasibility constraint, Gg(:), as the prob-
ability constraint, Pr(G(z, E.(0), %, (1), Hx,,> < 0). Having the
reliability constraint in the outer loop, we may relax the inner
loop reliability constraint by using a deterministic constraint
evaluated at the mean value of design, G(z, &), x,(2), Hy, )

We further define F as the CDF of G(-), such that:
Fo = Pr(6(n£.0.x.0. 1, ) 0) (36)

Note that G(-) is time-dependent and requires simulations
of the dynamics for evaluation. The limit state function of a
time-dependent problem can be considered as a limit state
function at each time step. Therefore, they are only acti-
vated at the time steps where constraints are not satisfied. we
choose the infinity norm of the constraint violation as the G
value. When the simulation results of the trajectories show
no violation of the constraints, the G value is zero. When
the simulation results show violation of any constraints (not
necessarily for one constraint), the maximum absolute value
between the state/path and their constraints is taken as G.
The reliability constraint evaluated using PMA can be for-
mulated as follows:

G’ = F;' (®(8)) <0 37)

Here, F 81 represents the inverse transformation. To solve for
GP, the first-order estimate is obtained by solving the follow-
ing optimization problem in the U-space:
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ml}n G(U)

38
subject to [|U|| = # (38)

where the constraint in the above problem defines the target
reliability surface. The MPP, u*, is the point on the target
reliability surface that maximizes the constraint function in
the U-space, g(-), where G(u) = G (x,(u)).

3.2 Double-loop RBCD formulation of HAWT

Wind turbine design problems are typically formulated as
bi-objective: maximizing energy production and minimiz-
ing construction cost. Since we are only considering turbine
operation under the pitch-controlled high-speed region, the
generator is assumed to operate under a constant magnetic
field (fixed field excitation current). The optimization vari-
ables include the pitch angle trTajectory X,, tower geometry
parameters x, = [L, Ll,dl,du] , and statg VariaTbles &) =
L0, 30, Q1), (1), B(0), My, (), p(0), beta(r)] . The tower
geometry parameters are assumed to follow normal distribu-
tions. Their normalized values have a standard deviation of 0.1.
The exact numbers can be modified based on manufacturing
statistics. Constraints include dynamics as introduced in Sect. 2,
state constraints, path constraints, and plant constraints. State
constraints refer to the bounds of the state and control trajec-
tories, while path constraints are functions of states. For this
work, we consider the tip deflection as the only active path
constraint for simplicity purpose, and all the states are bounded
based on values presented in the turbine reference. We adopt the
weighted sum of the two objectives as the objective:

Iy
0HAWT (t’ (:(l‘, ﬂxp)’ Xc(t’ ”xp)’ ﬂxp> =Ww / Mgenwdt + W2Vtower’
Iy

(39)
where V, ., 1S the volume of the tapered tubular tower and
w, and w, are objective function weights. The inner loop
optimal control problem is formulated as:

Jn 9HAWT<fs §@t, py ), X (1, py ) ﬂxp)

subject to & — f(t, £(1), x,(0), yxp) —0 (40)
gmin < 5 < §max

The outer loop shares the same objective and takes the opti-
mal control of the inner loop as its control input, x,,. It is
constrained by the reliability constraint (as the feasibility
constraint) and design variable bounds.

IlI}in min HHAWT (L 5(1, l'lxp > X (t’ ”xp)’ ”xp )
*p
subject t0 Pr(yp(t: Xeur %) < Vimax) = P(BY) S
xp,min < xp < xp,max

where the reliability constraint is solved as a sub-problem,
Eq. 38. The dynamics is simulated through numerical ODE
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solution, where the optimal control trajectory obtained in
the inner loop is considered as a time-varying parameter.
The state trajectories are compared with their corresponding
constraints. The infinity norm of the constraint violation is
taken as the limit state. The double-loop RBCD can be rep-
resented using a flowchart as shown in Fig. 7. Note that for
the double-loop method, the optimal control problem and the
reliability assessment problem are solved at each iteration.
This should provide the most accurate results for both sub-
problems and therefore should require fewer iterations com-
pared to the single-loop and decoupled methods. However,
this by no means indicates the lowest total computational
cost. For some problems, the computational cost of reliabil-
ity assessments could be much larger than optimal control
due to excessive simulation time; in this case using SLP or
SORA methods may be beneficial due to the reduced num-
ber of reliability assessments.

3.3 Single-loop RBCD formulation of HAWT

According to the Karush—Kuhn-Tucker (KKT) theorem
(Karush 1939), Eq. 38 admits a necessary optimality condi-
tion when

VGW) - AV([|U|| - B') =0, (42)

where A is the Lagrange multiplier. The single-loop RBDO
replaces the most probable point sub-problem by its optimal-
ity condition, or utilizes a sequential linear programming
approach, which can significantly reduce the cost of reliabil-
ity assessment. For RBCD implementation, we may simply
replace the MPP by its linear approximation, x,,:
%, =t + P Z |10V, 3)

where o is the vector of design variable standard devia-
tions and VG are the gradients of the limit state. Since

Initial Design

Optimal Xex
Control 1
\ X Fxp | Reliability
New Plant Assessment
Design Design |
Fg
No

Converge?
Yes

Fig. 7 Reliability-based co-design with double-loop method for reli-
ability assessment
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the active constraint, tip deflection, is time-dependent, we
may define the limit state as:

G(t’ xc*(t)) = max|yL(t)| - yL,max’ (44)

where y; denotes the tip deflection and y; ..., is the upper
bound of tip deflection, which is positive. The limit state
function here solves the infinity norm of the constraint vio-
lation. It is set to zero if the constraint is satisfied. The gra-
dients of the time-dependent limit state are evaluated using
a finite difference method, which is also simulation-based
and could introduce some additional computational cost.

3.4 Decoupled HAWT RBCD formulation

The double-loop RBDO method requires reliability anal-
ysis at each iteration of the outer loop due to its nested
formulation, which is accurate but time-consuming. The
single-loop method replaces the MPP search sub-problem
by its KKT necessary optimality condition, which is very
efficient but could fail for maximizing non-concave limit
state functions. An alternative is sequential optimization and
reliability assessment, or SORA. SORA is one approach to
solver RBDO problems in a decoupled manner. Specifically,
SORA decomposes the problem into a deterministic design
optimization problem with approximated probability con-
straints and an inverse most probable point problem. The
two sub-problems are solved in a sequential manner until
convergence. Unlike the double-loop RBDO, SORA only
performs reliability analysis once for every completion of
the deterministic optimization. This reduces the number of
reliability analysis significantly and improves its suitability
for solving RBCD problems. The approximation of the reli-
ability constraints in the deterministic design optimization
is achieved by introducing a shifting vector:

S = g~ Xippe 435)
where ygf) is the optimal mean design of the deterministic
problem in the kth iteration, and Xfﬁpp indicates the MPP of
the kth iteration. For the corresponding deterministic prob-
lem, its constraints are evaluated at the design points after
applying the shift, which can be formulated as:

I'Llil’l 9HAWT<I’ 5([, I‘lxp)s Xc*(t’ l‘lxp)’ ﬂxp>
*p
. k+1
Sllb]CCt to yL(t’ Xews l‘lxp - Sl.+ ) < YL, max (46)
xp,min < xp < xp,max

The SORA method is trading the number of iterations to
reduce the number of reliability assessments. Therefore, they
require high accuracy for both optimal control and reliability
assessment for good convergence performance. The method
can be represented using a flowchart as shown in Fig. 8.
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Fig. 8 Reliability-based nested co-design flowchart

The whole procedure starts with an arbitrary choice of
initial design with a zero shifting vector. Then it starts the
iteration between deterministic co-design with shifting vec-
tors and reliability analysis. The deterministic co-design is
a bi-level problem, where the optimal control problem is
solved first. The optimal control policy is sent to the outer
loop plant design for cost evaluation at non-shifted design
points, as well as being sent to the reliability analysis loop
for simulation. The detailed steps of this process are as
follows:

1. [Initialize the plant design - For the common co-
design problem formulation, the initial plant design can
be identified in the feasible design region where a feasi-
ble controller design exists.

2. Within the SORA framework, the RBCD problem is
solved iteratively as a nested co-design problem and an
inverse reliability assessment problem.

3. For the deterministic co-design problem, solve the opti-
mal control problem for the shifted plant design in the
inner loop. The obtained control input is shared with the
outer loop plant design, for use in evaluating outer loop
cost and constraint components.

4. After convergence of the previous step, the determinis-
tic co-design result for the shifted plant design is used
to evaluate the reliability constraints. The reliability
constraints are approximated as a shift toward the most
probable point. If the reliability constraint is active, the
shifted design will touch the limit state, which leads to
a control policy that is conservative for the non-shifted
design yet is aggressive for the shifted design.

5. The deterministic co-design and reliability assessment
sub-problems are solved iteratively until convergence
of the most probable point and a feasible non-shifted
design.
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6. If the design fails to meet the stopping criteria, a new
candidate plant design will be proposed by the plant
optimizer. Steps 2—4 are then repeated with the updated
shifting vector.

The outer loop is solved using fmincon using default toler-
ances, le — 6, on constraints, optimality, and numerical conver-
gence. The inner loop optimal control problem is solved using
GPOPSHI (Patterson and Rao 2016), which is a commercially
available software for solving optimal control problems using
collocation and sparse nonlinear programming (NLP) meth-
ods. It works by transcribing the infinite-dimensional optimal
control problem into a finite-dimension nonlinear program via
time discretization of state and control trajectories using global
polynomials. The system dynamics constraints (f(-)) are trans-
formed from a system of ordinary differential equations into
a set of algebraic constraints when performing this discretiza-
tion. The method can also be referred to as direct transcrip-
tion (DT), one class of discretize-then-optimize methods that
has proven to be particularly effective for co-design, either for
nested or simultaneous formulations. With proper meshing,
the co-design problem can be solved accurately and efficiently
(Allison and Herber 2014). Some key GPOPS — [l parameters
are summarized in Table 3.

The control trajectory adds many degrees of freedom,
of which the exact number depends on the specific mesh-
ing in the time-domain. The solver finds local optima, and
the high problem dimension can increase the probability of
missing the global optimum or encountering saddle point
issues. Solution efficiency is often improved by using the
optimal control trajectory of the previous iteration as the
initial guess for the current optimal control problem. In the
results here we claim only local optimality, and for consist-
ency we use the same initial design and control trajectory
for all implemented methods. In practice, different initiali-
zation techniques can be applied to improve convergence
performance.

Table3 GPOPS — [l settings

Field Setting

Mesh method hp—
LiuRao-
Legendre

Mesh tolerance 103

NLP solver IPOPT

Linear solver ma57

IPOPT tolerance 101!

IPOPT max iteration number 100
Derivative supplier sparseFD

Derivative level Second
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Another note is that sometimes a hard limit on the maxi-
mum number of iterations on the inner loop optimal control
is placed to account for cases when optimal control problem
takes an impractical amount of time to solve. For the wind
turbine problem, it was found that a poor guess of initial con-
trol requires approximately 40-50 iterations to converge to a
feasible result. This is reduced to about 20 iterations when an
optimal control trajectory from the previous iteration is used
as the initial guess. Any inner loop problem that requires more
than 100 iterations is stopped by the optimal control solver. If
a properly chosen feasibility constraint is present in the outer
loop, the overall co-design algorithm will still find a feasible
design and control combination. This can be considered as a
potential advantage of nested co-design over the simultaneous
formulation, which allows the inner loop to stop prematurely
for efficiency yet still converge to a feasible solution.

4 Results

In this section, we present the results of deterministic and
reliability-based co-design. To explore the tradeoff between
energy production and tower mass a parametric multi-objec-
tive solution strategy was employed, and the resulting Pareto
fronts are presented as the major results, along with their
specific optimal design and corresponding state and con-
trol trajectories. The common initial design is specified as
X, = [80, 200, 10, 9.9], which is the most conservative design
within the design space. A conservative initial tower design
guarantees the existence of an optimal control solution in the
inner loop; i.e., the co-design problem is initialized within
the feasible design space.

As shown in Fig. 9, the energy production increases with
increasing allowed tower mass, with a steep gradient in the
low-mass region and flatter gradient in the heavier tower
region. All reliability-based co-design solutions converge to
a more conservative tower design compared to deterministic

7
445 X0
=3
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Fig.9 HAWT CCD and RBCD pareto frontiers of the HAWT
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solutions, and therefore result in lower energy production, or
higher levelized cost of energy. Also, the fact that the three
RBCD strategies converge to the same Pareto front indicates
the efficacy, and validate the robustness of the model and
problem formulation across the different RBDO methods.

We consider the deterministic co-design results, summa-
rized in Table 4, as the benchmark. The height of the tower,
L, serves as the main coupling factor as its derivative with
respect to the optimal power production is steady. This agrees
with the wind model that wind speed is higher at greater alti-
tude. The width and thickness of the tower are critical for the
structural stability, that they reach the upper bound quickly
as the tower mass increases. The tapper ratio of the tower is
the least sensitive design parameter; it only becomes influ-
ential as the width and thickness reach their upper bounds.
For the 10th point on the Pareto front, which represents a
case that the tower weight is at its maximum or over-design,
the optimal tower width and thickness actually dropped. The
structural stability is compensated by a drastic increase in the
tapper ratio. The over-designed 10th tower also resulted in a
large drop in the probability of failure as compared with tow-
ers 1-9; however, it is still above the target, 5%. Note that
the probability of failure does not necessarily drops as the
weight of the tower increases, since a more aggressive control
strategy may be adopted by inner loop.

The probability of failure (POF) is validated using a
Monte Carlo Simulation (MCS) with a sample size of 10,
We observe a continuous drop of POF as we increase the
tower weight, such that the extra material can be allocated
to increase the strength of the tower. For an over-designed
tower, the 10¢h tower, there is a significant drop in the POF.
This also shows that over-design can be less effective for
design problems with uncertainties compared to explicit
treatment of reliability.

The RBCD results obtained from the double-loop method
(as shown in Table 5), the single-loop method (as shown in
Table 6), and SORA (as shown in Table 7) are very close.
Comparing against the benchmark results, the optimal designs
have lower heights to reduce the load on the towers, and wider
and thicker towers for enhanced strength. These conservative
designs leave less space for the tapper ratio, so we observe a
lower gradients of tower tapper ratio for heavy tower designs.
All the RBCD implementations result in feasible solutions
regarding the reliability constraint, which is 95%. They
show trends similar to the deterministic co-design results,
where the POF decreases as the tower weight increases.

Among the three RBCD implementations, the SORA-
based method requires the lowest number of iterations. All
points on the Pareto front converged within three iterations.
The double-loop and single-loop methods have similar

Table 4 Design results of the

s Index L, (m) L (m) dy(m) d;(m) 4. dL, dd, _dd;, POF (%)

deterministic pareto front dObj, dObj, dObj, dObj,
1 200.16 87.34 7.17 7.16 0 0.07 0.01 0.01 45.49
2 200.16 93.33 7.83 7.82 0 0.07 0.01 0.01 45.44
3 200.16 98.96 8.49 8.48 0 0.07 0.01 0.01 45.29
4 200.16 104.44 9.14 9.13 0 0.07 0.01 0.01 45.21
5 200.16 109.74 9.80 9.79 0.12 0.08 0.01 0.01 45.17
6 214.15 113.60 10.06 10.05 0.47 0.08 0 0 45.07
7 239.56 116.35 10.06 10.05 0.84 0.08 0 0 45.04
8 268.40 118.84 10.06 10.05 1.08 0.08 0 0 44.97
9 301.57 121.10 10.06 10.05 293 0.08 0 0 45.89
10 353.25 121.26 10.01 10.00 27.73 0.08 -0.03 -0.03 15.56

Table 5 Design results of the Index L;(m) L(m) d,(m) dy;(m) A db. dd.  ddb  [er Obj RA POF (%)

DLP-based RBCD pareto front dObj,  dObj,  dObj,  dObj,
1 200.16  85.43 7.25 724 0 0.07 0.01 0.01 6 6 6 481
2 200.16  91.33 791 790 O 0.07 0.01 0.01 5 5 5 483
3 200.16  96.84  8.57 856 0 0.07 0.01 0.01 6 6 6 4.82
4 200.16 102.19  9.23 922 0 0.07 0.01 0.01 6 6 6 476
5 200.16 107.38  9.88 9.87 0.15 0.07 0.01 0.01 9 9 9 474
6 217.69 110.88 10.06 10.05 056 0.08 O 0 11 11 11 474
7 24458 11355 1006 1005 091 0.08 O 0 12 13 13 473
8 27540 11596 10.06 10.05 1.18 0.08 0 0 11 12 12 4.69
9 31130 118.15 10.06  10.05 1.54 008 O 0 10 10 10 471
10 353.86 120.16 10.06  10.05 176 0.08 O 0 8 11 11 471
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Table 6 Design results of the

Index L;(m) L(m) dy(m) d;;(m) 4L dL, dd, — dd,  Jer Obj RA POF (%)
SLP-based RBCD Pareto Front dObj,  dObj,  dObj,  dObj,
1 200.16 8543  7.25 724 0 0.07 0.01 0.01 6 7 7 4381
2 200.16 9133 791 790 0 0.07 0.01 0.01 5 5 5 4383
3 200.16  96.84  8.57 856 0 0.07 0.01 0.01 5 5 5 4383
4 200.16 102.19  9.23 922 0 0.07 0.01 0.01 5 5 5 476
5 200.16 107.38  9.88 9.87 0.15 0.07 0.01 0.01 6 6 6 4.77
6 217.69 110.89 10.06 10.05 056 0.08 O 0 8 12 12 477
7 244,57 113.55 10.06 10.05 1.30 0.08 0 0 9 14 14 474
8 288.38 115.21 9.88 9.87 095 008 0 0 6 21 21 4.69
8 27540 11596 10.06 10.05 - - - - 9 9 9 471
9 29744 118.06 10.06 10.05 1.09 0.08 0 0 15 60 60 4.68
9 311.30 118.15 10.06 10.05 - - - - 9 12 12 473
10 353.85 120.17 10.06 10.05 222 008 O 0 11 15 15 473
Table7 Design results of the Index L,(m) L(m) d,(m) d,(m) 9. . dd_ dd  [er Obj RA POF (%)
SORA-based RBCD pareto dObj,  dObj,  dObj,  dObj,
front 1 200.16 8543  7.25 724 0 0.07 0.01 001 3 12 3 4.81
2 200.16 9133 791 790 0 0.07 0.01 001 3 12 3 4.83
3 200.16  96.84  8.57 856 0 0.07 0.01 001 3 13 3 4.82
4 200.16 102.19  9.23 922 0 0.07 0.01 001 3 13 3 4.76
5 200.16 107.38  9.88 9.87 0.15 007 001 001 3 15 3 4.74
6 217.69 110.88 10.06 10.05 056 0.08 O 0 3 15 3 4.74
7 244,58 113.55 10.06 10.05 091 0.08 O 0 3 18 3 4.73
8 27540 11596 10.06 10.05 1.18 008 O 0 3 20 3 4.69
9 311.30 118.15 10.06 10.05 1.54 0.08 0 0 3 20 3 4.71
10 353.86 120.16 10.06  10.05 1.76  0.08 0 0 3 19 3 4.71

iteration counts, with the caveat that more iterations are
needed for heavier towers. One potential cause of such a sce-
nario is that heavier towers are more likely to be feasible,
which yield smaller gradients for the constraint violation. In
fact, the 8¢k and 94 point on the SLP Pareto front terminated
at points that did not satisfy optimality criteria to the speci-
fied tolerance. MCS tests, however, showed that these two
designs are still feasible. Also, convergence behavior can be
improved by adjusting the step size of the finite difference
method used to approximate the limit state function gradients
(i-e., fromle-6 to le-3). This suggests that the SLP method is
more sensitive to gradients information, which is reasonable
since it depends on this information for the linearized KKT
condition. If we take a closer look at the total number of opti-
mal control and reliability assessments, we see that SORA
is in fact shifting the computational cost from the reliability
assessment to optimal control. Again, the SORA implemen-
tation only evaluate the reliability after each convergence of
a shifted deterministic co-design problem; consequently, the
total number of reliability assessment will be significantly
reduced if the total number of iterations is low. However,
the total number of optimal control sub-problem solutions is
much larger than for the other RBCD implementations.
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As identified above, tip deflection is the only active reli-
ability constraint in this problem. It is reasonable to move
forward assuming that this constraint is active because 1) it
was found to be the only active constraint of the inner loop
optimal control problem, 2) it is directly coupled with the
wind load and the design variables, and 3) early investiga-
tions showed that this constraint was consistently active. To
validate such assumption and formulation simplification,
we performed MCS of size 10° for point 1, 5, and 10 using
each RBCD method; these tests represent solution behavior
for heavy, medium, and light-weight towers. The results are
summarized in Table 8.

The minimum and maximum value of the MCS state tra-
jectories are all within the lower and upper state bounds. This
suggests that the uncertainty-induced variation in states is not
large enough to turn inactive constraints active, tip deflection
(upper bound) is indeed the only active reliability constraint.
Therefore, the formulation simplification is valid for this
wind turbine RBCD problem. However, this simplification
is based on a good understanding of the uncertainty and its
quantitative effects on the dynamics. In a general case, or if
such knowledge is lacking, all the states and path constraints
may need to be treated as reliability constraints.
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Table 8 In-activeness of . -

. Index QO (MN -m) T (MN) w (rad/s) Q (rad/s) @ (rad) M,., (KN ‘- m)
other sate constraints under &
uncertainty LB, UB 0,5 0,0.5 1.26,1.51 122.52,146.61 —0.0175,0.0175 0, 47.40

DLP 1 0.03, 0.38 0.11,0.40  1.28,1.47 124.39,142.74 0.0004, 0.0062 35.16, 38.70
DLP 5 0.05, 0.42 0.13,0.43 1.32,1.47 127.54,142.70  0.0006, 0.006 35.16, 37.37
DLP 10 0.06, 0.43 0.13,0.44 1.33,1.47 128.44,142.69 0.0007, 0.0059 35.16, 37.05
SLP 1 0.03, 0.38 0.11,040  1.28,1.47 124.39,142.74 0.0004, 0.0062 35.16, 38.70
SLP 5 0.05, 0.42 0.13,0.43 1.32,1.47 127.54,142.70  0.0006, 0.006 35.16, 37.37
SLP 10 0.06, 0.43 0.13,0.44 1.33,1.47 128.44,142.69 0.0007, 0.0059 35.16, 37.05
SORA 1 0.03, 0.38 0.11,040  1.28,1.47 124.39,142.74 0.0004, 0.0062 35.16, 38.70
SORAS5  0.05,042 0.13,0.43 1.32,1.47 127.54,142.70  0.0006, 0.006 35.16, 37.37
SORA 10  0.06, 0.43 00.13,0.44 1.33,1.47 128.44,142.69 0.0007, 0.0059 35.16, 37.05
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Fig. 12 Control trajectories of 0.5 0.025
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We can also inspect the optimal control trajectories. For
the pitch-controlled rotor blade, a lower pitch angle lead
to a larger thrust load, given the same wind velocity and
angular velocity. On the same Pareto front, the heavier tow-
ers allow the rotor to spin at a faster speed for their faster
wind speeds. However, they compensate the increased load
by choosing more conservative pitch angles. In the con-
trast, lighter lower-elevation towers are subject to slower
wind speeds, so they reduce the angular velocity of the
rotor and choose a more aggressive pitch trajectory. This
is a result from the effect of balancing between the power
output and thrust load, a core design coupling mechanism
in this CCD problem (Figs. 10, 11, 12, 13).

The details of the state and control trajectories at the
optimum HAWT designs obtained using the determinis-
tic co-design and RBCD problem formulations have been
provided in “Appendices 2 to “Appendices 5”. Comparing
the control trajectories between the RBCD and its deter-
ministic benchmark, the RBCD control trajectories for light
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time(s)
(b) Pitch Angle (zoom-in)

towers are slightly more aggressive. This can serve as an
evidence of the design coupling between the plant design
and the control design, specifically, that the conservative-
ness of one sub-system will affect the optimal solution of the
other. Further studies with quantitative evaluations of such
coupling effects can help to reveal greater insights into this
design relationship.

5 Conclusion

In this work, the uncertainty-based HAWT co-design prob-
lem is decomposed into a nested problem involving plant
design, a robust optimal control trajectory design, and reli-
ability assessment. The nested co-design structure supports
intuitive strategies for updating the plant design as well
as the corresponding dynamics. It also enables more effi-
cient allocation of computational design burdens across plant
and control design sub-problems. State-of-art co-design
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strategy primarily utilize OLC strategies to enhance compre-
hensive plant design exploration. This characteristic places
no limitation on the specific control strategy and certainly
does not admits consideration of advanced control strategies.

The current formulation considers different types of
uncertainties, which includes loading uncertainties and
model uncertainties. Loading cases are generated following
the spatial and statistical distribution, which are character-
ized from actual wind data and can be generated for arbitrary
numbers of test cases. All the generated wind profiles fol-
low the site-specific Weibull distribution. The parametric
uncertainty is integrated using double-loop, single-loop,
and SORA. With proper formulation, all three RBDO meth-
ods can be utilized in solving the CCD problem. Results
show the efficacy as well as offer a flavor of how different
algorithms allocate the computational cost. These results
provide insights that may help in choosing appropriate
RBCD methods for different engineering problems, espe-
cially when there is a significant difference in computational
cost between the optimal control problem and the reliability
assessment problem.

We introduced multidisciplinary dynamic models of
a HAWT that has been tailored for co-design and RBCD
implementations. The aerodynamics of the rotor and the
structural dynamics of the tower can be updated conveni-
ently without any extra simulations or surrogate modeling.
Transmission and generator system design are assumed to be
fixed, so they are only modeled using simplified dynamics.
By selecting appropriate models, we can solve multidisci-
plinary dynamic problems efficiently yet still capture their
coupling effects.

For future work, an accurate and efficient estimation of
the robustness term in the relaxed nested structure should be
investigated. In addition, an efficient reliability estimation
for path constraints would help to reduce the computational
cost for the design of dynamic systems.

Appendices

Appendix 1: NREL 5MW wind turbine blade
parameters

This appendix provides the NREL SMW wind turbine blade
parameters (Jager and Andreas 1996). Additionally, the
listed airfoils are corresponding to the lift and drag coef-
ficients extended to [—180°, 180°], based on the DOWEC
blades (Kooijman et al. 2003; Lindenburg 2002) (Table 9).

Table9 NREL 5MW wind turbine blade element properties

Element 7 (m) Pre-bent angle  dr (m) c¢(m) Airfoil

®)
1 2.8667 13.308 2.7333 3.542 Cylinderl
2 5.6000 13.308 2.7333 3.854 Cylinderl
3 8.3333 13.308 2.7333 4.167 Cylinder2
4 11.7500 13.308 4.1000 4.557 DU40_A17
5 15.8500 11.480 4.1000 4.652 DU35_A17
6 19.9500 10.162 4.1000 4.458 DU35_A17
7 24.0500 9.011 4.1000 4.249 DU30_A17
8 28.1500  7.795 4.1000 4.007 DU25_A17
9 32.2500 6.544 4.1000 3.748 DU25_A17
10 36.3500 5.361 4.1000 3.502 DU21_A17
11 40.4500 4.188 4.1000 3.256 DU21_A17
12 44.5500 3.125 4.1000 3.010 NACA64_A17
13 48.6500 2.319 4.1000 2.764 NACA64_A17
14 52.7500 1.526 4.1000 2.518 NACA64_A17
15 56.1667 0.863 2.7333 2.313 NACA64_Al17
16 58.9000 0.370 2.7333 2.086 NACA64_A17
17 61.6333  0.106 2.7333 1.419 NACA64_A17
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Appendix 2: HAWT deterministic co-design state and control trajectories

Appendix 2 provides state and control trajectories of the optimum design obtained from the HAWT deterministic co-design

formulation.
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Appendix 3: HAWT reliability-based co-design with DLP state and control trajectories

Appendix 3 provides state and control trajectories of the optimum design obtained from the HAWT reliability-based co-

design with the DLP formulation.
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(e) Rotor Velocity
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Appendix 4: HAWT reliability-based co-design with SLP state and control trajectories

Appendix 4 provides state and control trajectories of the optimum design obtained from the HAWT reliability-based co-
design with the SLP formulation.
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Appendix 5: HAWT reliability-based co-design with SORA state and control trajectories

Appendix 5 provides state and control trajectories of the optimum design obtained from the HAWT reliability-based co-
design with the SORA formulation.
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