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Block-based resampling estimators have been intensively investigated
for weakly dependent time processes, which has helped to inform imple-
mentation (e.g., best block sizes). However, little is known about resampling
performance and block sizes under strong or long-range dependence. To es-
tablish guideposts in block selection, we consider a broad class of strongly
dependent time processes, formed by a transformation of a stationary long-
memory Gaussian series, and examine block-based resampling estimators for
the variance of the prototypical sample mean; extensions to general statistical
functionals are also considered. Unlike weak dependence, the properties of
resampling estimators under strong dependence are shown to depend intri-
cately on the nature of nonlinearity in the time series (beyond Hermite ranks)
in addition to the long-memory coefficient and block size. Additionally, the
intuition has often been that optimal block sizes should be larger under strong
dependence (say O(n1/2) for a sample size n) than the optimal order O(n1/3)

known under weak dependence. This intuition turns out to be largely incor-
rect, though a block order O(n1/2) may be reasonable (and even optimal) in
many cases, owing to nonlinearity in a long-memory time series. While op-
timal block sizes are more complex under long-range dependence compared
to short-range, we provide a consistent data-driven rule for block selection.
Numerical studies illustrate that the guides for block selection perform well
in other block-based problems with long-memory time series, such as distri-
bution estimation and strategies for testing Hermite rank.

1. Introduction. Block-based resampling methods provide useful nonparametric ap-
proximations with statistics from dependent data, where data blocks help to capture time
dependence (cf. [28]). Considering a stretch from a stationary series X1, . . . ,Xn, a prototyp-
ical problem involves estimating the standard error of the sample mean X̄n = ∑n

t=1 Xt/n.
Subsampling [13, 22, 41] and block-bootstrap [29, 34] use sample averages X̄i,� computed
over length � < n data blocks {(Xi, . . . ,Xi+�−1)}n−�+1

i=1 within the data X1, . . . ,Xn; in both
resampling approaches, the empirical variance of block averages, say σ̂ 2

� , approximates the
block variance σ 2

� ≡ Var(X̄�). If the series {Xt } exhibits short-range dependence (SRD) with
quickly decaying covariances r(k) ≡ Cov(X0,Xk) → 0 as k → ∞ (i.e.,

∑∞
k=1 |r(k)| < ∞),

then the target variance converges nσ 2
n = nVar(X̄n) → C > 0 as n → ∞ and �σ̂ 2

� is con-
sistent for nVar(X̄n) under mild conditions (�−1 + �/n → ∞) [42]. Block-based variance
estimators have further history in time series analysis (cf. overview in [40]), including batch
means estimation in Markov chain Monte Carlo. Particularly for SRD, much research has
focused on explaining properties of block-based estimators σ̂ 2

� (cf. [17, 29, 31, 32, 42,
48]). In turn, these resampling studies have advanced understanding of best block sizes (e.g.,
O(n1/3)) and implementation under SRD [12, 21, 33, 38, 43].

However, in contrast to SRD, relatively little is known about properties of block-based
resampling estimators and block sizes under strong or long-range time dependence (LRD).
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For example, recent tests of Hermite rank [9] as well as other approximations with block
bootstrap and subsampling under LRD rely on data blocks [4, 6, 10, 26], creating a need
for guides in block selection. To develop an understanding of data blocking under LRD, we
consider the analog problem from SRD of estimating the variance Var(X̄n) of a sample mean
X̄n through block resampling (cf. Sections 2–4); block selections in this context extend to
broader statistics (cf. Section 5) and provide guidance for distributional approximations with
resampling (cf. Section 6). Because long-memory or long-range dependent (LRD) time series
are characterized by slowly decaying covariances (i.e.,

∑∞
k=1 |r(k)| = +∞ diverges), optimal

block sizes in this problem have intuitively been conjectured as O(n1/2), which is longer
than the best block size O(n1/3) associated with weak dependence [10, 23]. However, this
intuition about block selections is misleading. Under general forms of LRD, the best block
selections turn out to depend critically on both dependence strength (i.e., rate of covariance
decay) and the nature of nonlinearity in a time series. To illustrate, consider a stationary
Gaussian LRD time series {Zt }, which we may associate with common models for long-
memory [20, 35], and suppose {Zt } has a covariance decay controlled by a long-memory
exponent α ∈ (0,1) (described more next). Then the LRD process Zt for α < 1/2 can have
an optimal block length O(nα) while a cousin LRD process Zt + 0.5Z2

t has a best block
size O(n1/2) regardless of the memory level α ∈ (0,1/2). That is, classes of LRD processes
exist where nonlinearity induces a best block order O(n1/2). Also, as the optimal block size
O(nα) for Zt (α ∈ (0,1/2)) illustrates, when the covariance decays slowly as α ↓ 0, the best
block sizes for a resampling variance estimator under LRD do not generally increase with
increasing dependence strength. While theory justifies a block length O(n1/2) as optimal in
some cases, the forms of theoretically best block sizes can generally be complex under LRD
and we also establish a provably consistent data-based estimator of this block size. Numerical
studies show that the empirical block selection performs well in variance estimation and
provides a guide with good performance in other resampling problems under LRD (e.g.,
distribution estimation for statistical functionals).

Section 2 describes the LRD framework and variance estimation problem. We consider
stationary LRD processes Xt = G(Zt) defined by a transformation G(·) of a LRD Gaussian
process {Zt } with a long-memory exponent α ∈ (0,1/m) (cf. [49, 50]); here, integer m ≥ 1
is the so-called Hermite rank of G(·), which has a well-known impact on the distributional
limit of the sample mean X̄n for such LRD processes (e.g., normal if m = 1 [15, 51]). Sec-
tion 3 provides the large-sample bias and variance of block-based resampling estimators in
the sample mean case, which are used to determine MSE-optimal block sizes and a consistent
approach to block estimation in Section 4. As complications, best block lengths can depend
on the memory exponent α and a higher order rank beyond Hermite rank m (e.g., second
Hermite rank). Two versions of data blocking are also compared, involving fully overlapping
(OL) or nonoverlapping (NOL) blocks; while OL blocks are always MSE-better for variance
estimation under SRD [31, 32], this is not true under LRD. Section 5 extends the block re-
sampling to broader statistical functionals under LRD (beyond sample means) and includes
the block jackknife technique for comparison. Numerical studies are provided in Section 6
to illustrate block size selections and resampling across problems of variance estimation, dis-
tributional approximations, and Hermite rank testing under LRD. Section 7 has concluding
remarks, and Supplementary Material [55] provides proofs and supporting results.

We end here with some related literature. Particularly, for Gaussian series Xt = Zt (or
G(x) = x with m = 1), the computation of (log) block-based variance estimators over a series
of large block sizes � can be a graphical device for estimating the long-memory parameter α

(using that Var(X̄�) ≈ C0�
−α for subsample averages, cf. Section 2) [36, 53]. Relatedly, [18]

considered block-average regression-type estimators of α in the Gaussian case. For distribu-
tion estimation with LRD linear processes, [37, 56] studied subsampling, while [27] exam-
ined block bootstrap. As perhaps the most closely related works [1, 18, 27] studied optimal
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blocks/bandwidths for estimating a sample mean’s variance with LRD linear processes (under
various assumptions) using data-block averages or related Bartlett-kernel heteroskedasticity
and autocorrelation consistent (HAC) estimators. Those results share connections to opti-
mal block sizes here for purely Gaussian series Xt = Zt (cf. Section 3.1), but no empirical
estimation rules were considered. As novelty, we account for LRD data Xt = G(Zt) from
general transformations G(·) (i.e., the pure Gaussian/linear case is comparatively simpler),
establish consistent block estimation, provide results for more general statistical functions,
and consider the applications of block selections in wider contexts under LRD. In terms of
resampling from LRD transformed Gaussian processes, [30] showed the block bootstrap is
valid for approximating the full distribution of the sample mean X̄n when the Hermite rank
is m = 1, while [23] established subsampling as valid for any m ≥ 1. (While block bootstrap
and subsampling differ in their distributional approximations [42], these induce a common
block-based variance estimator for the sample mean, as described in Section 2.) Recently,
much research interest has also focused on further distributional approximations with sub-
sampling for LRD transformed Gaussian processes; see [4, 6, 10, 26].

2. Preliminaries: LRD processes and block-based resampling estimators.

2.1. Class of LRD processes. Let {Zt } be a mean zero, unit variance, stationary Gaussian
sequence with covariances satisfying

(1) γZ(k) ≡ EZ0Zk ∼ C0k
−α

as k → ∞ for some given 0 < α < 1 and constant C0 > 0; above ∼ denotes that sequences
have a ratio of one in the limit. Examples include fractional Gaussian noise with Hurst pa-
rameter 1/2 < H < 1 having covariances γZ(k) = (|k+1|2H −2|k|2H +|k−1|2H )/2, which
satisfy (1) with C0 = H(2H − 1) and α = 2 − 2H ∈ (0,1), as well as FARIMA processes
with difference parameter 0 < d < 1/2, which satisfy (1) with α = 1 − 2d ∈ (0,1); see [20,
35].

Let G : R → R be a real-valued function such that E[G(Z0)]2 < ∞ holds for a standard
normal variable Z0. In which case, the function G(Z0) may be expanded as

(2) G(Z0) =
∞∑

k=0

Jk

k! Hk(Z0)

in terms of Hermite polynomials,

Hk(z) ≡ (−1)kez2/2 dk

dzk
e−z2/2, k = 0,1,2, . . . ,

and corresponding coefficients Jk ≡ E[G(Z0)Hk(Z0)], k ≥ 0. The first few Hermite polyno-
mials are given by H0(z) = 1, H1(z) = z, H2(z) = z2 − 1, H3(z) = z3 − z, for example, and
EHk(Z0) = 0 holds for k ≥ 1. Let μ ≡ EG(Z0) = J0 denote the mean of G(Z0) and define
the Hermite rank of G(·) (cf. [49]) as

m ≡ min{j ≥ 1 : Jk 
= 0}.
To avoid degeneracy, we assume Var[G(Z0)] > 0 whereby m ∈ [1,∞) is a finite integer.

The target processes of interest are defined as Xt ≡ G(Zt) with respect to a stationary
Gaussian series Zt with covariances as in (1) with 0 < α < 1/m. Such processes Xt exhibit
strong or long-range dependence (LRD) as seen by partial sums

∑n
k=1 |r(k)| of covariances

r(k) ≡ Cov(X0,Xk) having a slow decay proportional to

(3)
n∑

k=1

∣∣r(k)
∣∣ ∼ n1−αm[

Cm
0 /(1 − αm)

]
as n → ∞, where αm ∈ (0,1),



3622 Q. ZHANG, S. N. LAHIRI AND D. J. NORDMAN

depending on the Hermite rank m of the transformation G(·) and memory exponent α ∈
(0,1/m) under (1). This represents a common formulation of LRD, with partial covariance
sums diverging as n → ∞ [49]; see [44, 52] for further characterizations.

Suppose X1, . . . ,Xn is an observed time stretch from the transformed Gaussian series
Xt ≡ G(Zt), having sample mean X̄n = n−1 ∑n

t=1 Xt . Setting vn,αm ≡ nαm Var(X̄n), the pro-
cess structure (1)–(3) entails a so-called long-run variance as

(4) lim
n→∞vn,αm = v∞,αm ≡ J 2

m

m!
2Cm

0

(1 − αm)(2 − αm)
> 0

(cf. [1, 49, 50]). Under LRD, the variance Var(X̄n) of the sample mean decays at a slower
rate O(n−αm) as n → ∞ (i.e., αm ∈ (0,1)) than the typical O(n−1) rate under SRD. The
limit distribution of nαm/2(X̄n − μ) also depends on the Hermite rank m ≥ 1 [15, 50].

The development first considers the variance vn,αm ≡ nαm Var(X̄n) of the sample mean
(or, equivalently here, its limit (4)) as target of inference under LRD. Resampling results are
then extended to broader classes of statistics in Section 5.

2.2. Block-based resampling variance estimators under LRD. A block bootstrap “re-
creates” the original series X1, . . . ,Xn by independently resampling b ≡ �n/�� blocks from
a collection of length � < n data blocks. Resampling from the overlapping (OL) blocks
{(Xi, . . . ,Xi+�−1) : i = 1, . . . , n − � + 1} of length � within X1 . . . ,Xn yields the mov-
ing block bootstrap [29, 31, 34], while resampling from nonoverlapping (NOL) blocks
{(X1+�(i−1), . . . ,X�i) : i = 1, . . . , b ≡ �n/��} gives the NOL block bootstrap [13, 32]. Re-
sampled blocks are concatentated to produce a bootstrap series, say X∗

1, . . . ,X∗
�b, and the

distribution of a statistic from the bootstrap series (e.g., X̄∗
�b ≡ (�b)−1 ∑�b

i=1 X∗
i ) approxi-

mates the sampling distribution of an original-data statistic (e.g., X̄n). Subsampling [41,
42] is a different approach to approximation that computes statistics from one resampled
data block. Both subsampling and bootstrap, though, estimate a sample mean’s variance
vn,αm ≡ nαm Var(X̄n) with a common block-based estimator; this is the induced variance
of an average under resampling (e.g., Var∗(X̄∗

�b)), which has a closed form (cf. [30] under
LRD), resembling a batch means estimator [17]. Based on X1, . . . ,Xn, the OL block-based
variance estimator of vn,αm ≡ nαm Var(X̄n) is given by

(5) V̂�,αm,OL = 1

n − � + 1

n−�+1∑
i=1

�αm(X̄i,� − μ̂n,OL)2, μ̂n,OL = 1

n − � + 1

n−�+1∑
i=1

X̄i,�,

where above X̄i,� = ∑i+�−1
j=i Xj/� is the sample average of the ith data block (Xi, . . . ,

Xi+�−1), i = 1, . . . , n − � + 1. Essentially, block versions {�αm/2(X̄i,� − X̄n)}n−�+1
i=1 of

the quantity nαm/2(X̄n − μ) give a sample variance V̂�,αm,OL that estimates v�,αm ≡
�αm Var(X̄�) ≈ vn,αm ≡ nαm Var(X̄n) for sufficiently large �, n by (4). The NOL block-based
variance estimator is defined as

V̂�,αm,NOL = 1

b

b∑
i=1

�αm(X̄1+(i−1)�,� − μ̂n,NOL)2, μ̂n,NOL =
b∑

i=1

X̄1+(i−1)�,�/b,

using NOL averages X̄1+(i−1)�,�, i = 1, . . . , b ≡ �n/��, where μ̂n,NOL = X̄n when n = b�.
Under SRD, variance estimators are standardly defined by letting αm = 1 above (e.g.,

in V̂�,αm,OL from (5)). Likewise, under LRD, both the target variance vn,αm ≡ nαm Var(X̄n)

and block-based estimators V̂�,αm,OL or V̂�,αm,NOL are scaled to be comparable, which in-
volves the long-memory exponent αm ∈ (0,1). In practice, αm ∈ (0,1) is usually unknown.
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To develop block-based estimators under LRD, we first consider αm ∈ (0,1) as given. Ulti-
mately, an estimate α̂mn of αm can be substituted into V̂�,αm,OL or V̂�,αm,NOL which, under
mild conditions, does not change conclusions about best block selection or consistency (cf.
Section 4.2).

3. Properties for block-based resampling estimators under LRD. Large-sample re-
sults for the block-based variance estimators require some extended notions of the Hermite
rank of G(·) in defining Xt ≡ G(Zt) = ∑∞

k=0 Jk/k! ·Hk(Zt), for Jk = EG(Z0)Hk(Z0), k ≥ 1.
Recalling m ≡ min{k > 0 : Jk 
= 0} as the usual Hermite rank of G(·), define the second Her-
mite rank of G(·) by the index

m2 ≡ min{k > m : Jk 
= 0}
of the next highest nonzero coefficient in the Hermite expansion (2) of G(·). In other words,
m2 is the Hermite rank of Xt −μ−JmHm(Zt)/m! upon removing the mean and first Hermite
rank term from Xt = G(Zt). If the set {k > m : Jk 
= 0} is empty, we define m2 = ∞. We also
define the Hermite pair-rank of a function G(·) by

mp ≡ inf{k ≥ m : JkJk+1 
= 0};
when the above set is empty, we define mp = ∞. The Hermite pair-rank mp identifies the
index of the first consecutive pair of nonzero terms (Jk, Jk+1) in the expansion Xt = G(Zt) =
μ+∑∞

k=1 Jk/k!Hk(Zt). For nondegenerate series Xt = G(Zt), the Hermite rank m is always
finite, but the second rank m2 and pair-rank mp may not be (and m2 = ∞ implies mp = ∞).
For example, both series G(Xt) = H1(Zt ) and G(Xt) = H1(Zt ) + H3(Zt ) have Hermite
rank m = 1, pair-rank mp = ∞, and second ranks m2 = ∞ and 3, respectively; the series
G(Xt) = H1(Zt )+H3(Zt )+H4(Zt ) and G(Xt) = H3(Zt )+H4(Zt ) have pair-rank mp = 3
with Hermite ranks m = 1 and 3, and second ranks m2 = 3 and 4, respectively.

In what follows, due to combined effects of dependence and nonlinearity in a LRD time
series Xt = G(Zt), the Hermite pair-rank mp ∈ [m,∞] of G plays a role in the asymptotic
variance of resampling estimators (Section 3.2), while the second Hermite rank m2 ∈ [m +
1,∞] impacts the bias of resampling estimators (Section 3.1).

3.1. Large-sample bias properties. Bias expansions for the block resampling estimators
require a more detailed form of the LRD covariances than (1) and we suppose that

(6) γZ(k) ≡ Cov(Z0,Zk) = C0k
−α(

1 + k−τL(k)
)
, k > 0,

holds for some α ∈ (0,1/m) and C0 > 0 (again γZ(0) = 1) with some τ ∈ (1 − αm,∞) and
slowly varying function L : R+ → R+ that satisfies limx→∞L(ax)/L(x) = 1 for any a > 0.
For Gaussian FARIMA (i.e., α = 1−2d ∈ (0,1)) and fractional Gaussian noise (i.e., α = 2−
2H ∈ (0,1)) processes {Zt }, one may verify that (6) holds with τ = 1 for any α ∈ (0,1/m)

and m ≥ 1. The statement of bias in Theorem 3.1 additionally requires process constants
B0(m), B1(m2) that depend on the first m and second m2 Hermite ranks and covariances in
(6). These are given as B1(m2) ≡ 2

∑∞
j=m2

(J 2
j /j !)∑∞

k=1[γZ(k)]j when αm2 > 1; B1(m2) ≡
2C

m2
0 J 2

m2
/m2! when αm2 = 1; B1(m2) ≡ 2J 2

m2
C

m2
0 /[m2!(1 − m2α)(2 − m2α)] = v∞,αm2

from (4) when αm2 < 1; and

(7) B0(m) ≡ 2Cm
0

J 2
m

m!
{
Iαm +

∞∑
k=1

k−αm
m∑

j=1

(
m

j

)[
L(k)k−τ ]j}

+
∞∑

k=m

J 2
k

k! ,

with Euler’s generalized constant Iαm ≡ limk→∞(
∑k

j=1 j−αm − ∫ k
0 x−αm dx) ∈ (−∞,0).
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THEOREM 3.1. Suppose Xt ≡ G(Zt) where the stationary Gaussian process {Zt } satis-
fies (6) with memory exponent α ∈ (0,1/m) and where G(·) has Hermite rank m and second
Hermite rank m2 (noting m2 > m and possibly m2 = ∞). Let V̂�,αm denote either V̂�,αm,OL
or V̂�,αm,NOL as block resampling estimators of vn,αm = nαm Var(X̄n) based on X1, . . . ,Xn.
If �−1 + �/n → 0 as n → ∞, then the bias of V̂�,αm is given by

EV̂�,αm − vn,αm = B0(m)

(
�αm

�

)(
1 + o(1)

) − v∞,αm

(
�

n

)αm(
1 + o(1)

)
+ I (m2 < ∞)B1(m2)

(
�αm

�min{1,αm2}
)
[log�]I (αm2=1)(1 + o(1)

)
,

where I (·) denotes the indicator function, the constant v∞,αm ≡ 2J 2
mCm

0 /[m!(1 − αm)(2 −
αm)] is from (4), and constants B0(m), B1(m2) are from (7).

REMARK 1. If we switch the target of variance estimation from vn,αm = nαm Var(X̄n) to
the limit variance v∞,αm ≡ limn→∞ vn,αm from (4), this does not change the bias expansion
in Theorem 3.1 or results in Section 4 on best block sizes for minimizing MSE.

To better understand the bias of a block-based estimator under LRD, we may consider the
case of a purely Gaussian LRD series Xt = Zt (i.e., no transformation), corresponding to
G(x) = x, m = 1 and m2 = ∞. The bias then simplifies under Theorem 3.1 as

(8) EV̂�,αm − vn,αm = B0(1)

(
�α

�

)(
1 + o(1)

) − v∞,αm

(
�

n

)α(
1 + o(1)

)
,

depending only on the memory exponent α of the process Zt . This bias form can also hold
when Xt is LRD and linear [18, 27]. However, for a transformed LRD series Xt = G(Zt),
the function G and the underlying exponent α impact the bias of the block-based estimator
in intricate ways. The order of a main bias term in Theorem 3.1 is generally summarized as

(9) O

( [log�]I (αm2=1)

�min{1,αm2}−αm

)
,

which depends on how the second Hermite rank m2 > m of the transformed series Xt ≡
G(Zt), as a type of nonlinearity measure, relates to the long-memory exponent α ∈ (0,1/m).
Small values of m2 satisfying 1/α > m2 induce the worst bias rates O(�−(m2−m)α) compared
to the best possible bias O(�−(1−αm)) occurring, for example, when m2 = ∞ (or no terms
in the Hermite expansion of G(·) beyond the first rank m). In fact, the largest bias rates
arise whenever second Hermite rank terms Jm2Hm2(Zt )/m2! exist in the expansion of Xt ≡
G(Zt) (i.e., Jm2 
= 0) and exhibit long-memory under αm2 < 1 (cf. Section A.1 in [55]). For
comparison, block-based estimators in the SRD case [31] exhibit a smaller bias O(1/�) than
the best possible bias in (9) under LRD.

3.2. Large-sample variance properties. To establish the variance of the block resam-
pling estimators under LRD, we require an additional moment condition regarding the
transformed series Xt = G(Zt). For second moments, a simple characterization exists that
EX2

t = E[G(Zt)]2 < ∞ is finite if and only if
∑∞

k=0 J 2
k /k! < ∞. For higher-order moments,

however, more elaborate conditions are required to guarantee EX4
t = E[G(Zt)]4 < ∞ and

perform expansions of EXt1Xt2Xt3Xt4 . We shall use a condition “G ∈ G4(1)” from [50].
(More generally, Definition 3.2 of [50] prescribes a condition G ∈ G4(ε), with ε ∈ (0,1], for
moment expansions, which could be applied to derive Theorem 3.2 next. We use ε = 1 for
simplicity, where a sufficient condition for G ∈ G4(1) is

∑∞
k=0 3k/2|Jk|/

√
k! < ∞, holding
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for any polynomial G, cf. [50]). See the Supplementary Material [55] for more technical
details.

To state the large-sample variance properties of block-based estimators V̂�,αm,OL or
V̂�,αm,NOL in Theorem 3.2, we need to introduce more constants. As a function of the Hermite
rank, when m ≥ 2 and αm < 1, define a positive scalar

φα,m ≡ 2

(1 − 2α)(1 − α)

(
2J 2

mCm
0

(m − 1)!
1

[1 − (m − 1)α][2 − (m − 1)α)]
)2

.

In the case of a Hermite rank m = 1, define another positive proportionality constant, as a
function of α ∈ (0,1) and the type of resampling blocks (OL/NOL)), as

aα ≡ 8J 4
1 C2

0

(1 − α)2(2 − α)2

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + (2 − α)2(2α2 + 3α − 1)

4(1 − 2α)(3 − 2α)
− 	2(3 − α)

	(4 − 2α)
if 0 < α < 1/2, OL or NOL,

9/32 if α = 1/2, OL or NOL,

∞∑
x=−∞

g2
α(x) if 1/2 < α < 1, NOL,∫ ∞

−∞
g2

α(x) dx if 1/2 < α < 1, OL,

where 	(·) denotes the gamma function and gα(x) ≡ (|x + 1|2−α − 2|x|2−α +|x − 1|2−α)/2,
x ∈ R. In the definition of aα , g2

α(x) is summable/integrable when α ∈ (1/2,1) using gα(x) ∼
(2−α)(1−α)x−α/2 as x → ∞. Finally, as a function of any Hermite pair-rank mp ∈ [1,∞]
and α ∈ (0,1), we define a constant as

λα,mp ≡ 8C0

(1 − α)(2 − α)

×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(2C
mp

0 JmpJmp+1

mp!
)2[

(1 − αmp)(2 − αmp)
]−2I (αmp<1) if αmp ≤ 1,( ∞∑

k=mp

∞∑
j=−∞

[
γZ(j)

]k
JkJk+1/k!

)2

if αmp > 1,

with Gaussian covariances γZ(·) and C0 > 0 from (1) and an indicator I (·) function.
With constants λα,mp,φα,m, aα > 0 as above, we may next state Theorem 3.2.

THEOREM 3.2. Suppose Xt ≡ G(Zt) where the stationary Gaussian process {Zt } satis-
fies (1) with C0 > 0 and memory exponent α ∈ (0,1/m) and where G ∈ G4(1) has Hermite
rank m ≥ 1 and Hermite pair-rank mp (note mp ≥ m and possibly mp = ∞). Let V̂�,αm de-
note either V̂�,αm,OL or V̂�,αm,NOL as block resampling estimators of vn,αm = nαm Var(X̄n)

based on X1, . . . ,Xn. If �−1 + �/n → 0 as n → ∞, then the variance of V̂�,αm is given by

Var(V̂�,αm) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
φα,m

(
�

n

)2α(
1 + o(1)

) + rn,α,m,mp if m ≥ 2,

aα

(
�

n

)min{1,2α}
[logn]I (α=1/2)(1 + o(1)

) + rn,α,m,mp if m = 1,

where I (·) denotes an indicator function and

rn,α,m,mp ≡ I (mp < ∞)
λα,mp

nα

(
�αm

�min{1,αmp} [log �]I (αmp=1)

)2(
1 + o(1)

)
.
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REMARK 2. Above rn,α,m,mp represents a second variance contribution, which depends
on the Hermite pair-rank mp and is nonincreasing in block length � (by 1/α < m ≤ mp). The
value of rn,α,m,mp is zero when mp = ∞ and is largest O(n−α) when the pair-rank assumes
its smallest possible value mp = m. For example, the series Xt = Hm(Zt) + Hm+1(Zt ) and
Xt = Hm(Zt) + Hm+2(Zt ) have pair-ranks mp = 1 and ∞, respectively, inducing different
rn,α,m,mp terms. While rn,α,m,mp can dominate the variance expression of Theorem 3.2 for
some block � sizes, the contribution of rn,α,m,mp emerges as asymptotically negligible at an
optimally selected block size �opt (cf. Section 4.1).

By Theorem 3.2, the variance of a resampling estimator V̂�,αm depends on the block size
� through a decay rate O((�/n)2α) that, surprisingly, does not involve the exact value of
the rank Hermite m. The reason is that, when m ≥ 2, fourth-order cumulants of the trans-
formed process Xt = G(Zt) determine this variance (cf. [55]). Also, any differences in block
type (V̂�,αm,OL vs. V̂�,αm,NOL) only emerge in a proportionality constant aα when m = 1 and
α ∈ (1/2,1); otherwise, aα does not change with block type. Consequently, for processes
Xt = G(Zt) with strong LRD (α < 1/2, m ≥ 1), there is no large-sample advantage to OL
blocks for variance estimation. In contrast, under SRD, OL blocks reduce the variance of a
resampling variance estimator by a multiple of 2/3 compared to NOL blocks [29, 31, 32],
because the nonoverlap between two OL blocks (e.g., X1, . . . ,X� and X1+i , . . . ,X�+i , i < �)
acts roughly uncorrelated. This fails under strong LRD where OL/NOL blocks have the same
variance/bias/MSE properties here. Section 6 provides numerical examples. As under SRD,
however, OL blocks remain generally preferable (i.e., smaller aα for weak LRD. α > 1/2).

4. Best block selections and empirical estimation.

4.1. Optimal block size and MSE. Based on the large-sample bias and variance expres-
sions in Section 3, an explicit form for the optimal block size �opt ≡ �opt,n can be determined
for minimizing the asymptotic mean squared error

(10) MSEn(�) ≡ E(V̂�,αm − vn,αm)2

of a block-based resampling estimator V̂�,αm of vn,αm ≡ nαm Var(X̄n) under LRD.

COROLLARY 4.1. Under Theorems 3.1–3.2 assumptions, the optimal block size for a
resampling estimator V̂�,αm,OL or V̂�,αm,NOL is given by (as n → ∞)

�opt,n = Kα,m,m2 ×

⎧⎪⎪⎨⎪⎪⎩
n

α
α(1−m)+min{1,αm2} (logn)I (αm2=1) if 0 < α < 0.5,m ≥ 1,

n0.5(logn)−0.5+I (αm2=1) if α = 0.5,m = 1,

n
1

3−2α if 0.5 < α < 1,m = 1,

for a constant Kα,m,m2 > 0, changing by block type OL/NOL only when m = 1, α ∈ (1/2,1).

The Appendix provides values for Kα,m,m2 > 0. For LRD processes Xt = G(Zt), the best
block lengths �opt depend intricately on the transformation G(·) (through ranks m, m2) and
the memory parameter α < 1/m of the Gaussian process Zt . Optimal blocks increase in
length whenever the strength of long-memory decreases (i.e., α increases); as α moves closer
to 1/m, the order of �opt moves closer to O(n). This is a counterintuitive aspect of LRD in
resampling. With variance estimation under SRD [31, 32], best block size has a known order
Cn1/3 where the process constant C > 0 increases with dependence.

The second Hermite rank m2 of G(·) can particularly impact �opt. Whenever α < 1/m2,
the optimal block order �opt ∝ n1/(m2−m+1) does not change, where “∝” denotes proportional
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as n → ∞. As a consequence in this case, if an immediate second term Hm+1(Z0) appears
in the Hermite expansion (2) of X0 = G(Z0), so that the second rank is m2 = m + 1, then
the optimal block size becomes �opt ∝ n1/2. This suggests that a guess �opt = O(n1/2) often
found in the literature for block resampling under LRD can be reasonable, though not by
the intuition that slow covariance decay under LRD implies larger blocks compared to those
O(n1/3) for SRD. Rather, for transformations G(·) where m2 = m+1 may hold naturally, the
choice �opt ∝ n1/2 is optimal with sufficiently strong α < 1/(m + 1) dependence, regardless
of the exact Hermite rank m.

For completeness, we note that MSEn(�) ≡ E(V̂�,αm − vn,αm)2 has an optimized order as

(11) MSEn(�opt,n) ∝

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n

−2α(min{1,αm2}−αm)

α(1−m)+min{1,αm2} (logn)2αI (αm2=1) if 0 < α < 0.5,m ≥ 1,

n−0.5(logn)0.5+I (αm2=1) if α = 0.5,m = 1,

n− 2(1−α)
3−2α if 0.5 < α < 1,m = 1,

at the optimal block �opt ≡ �opt,n, which also depends on m, m2 and α under LRD.
Section 4.2 shows that, under suitable conditions, estimation of the long-memory exponent

does not change block considerations or consistency with the resampling variance estimators.
Section 4.3 then provides a consistent data-driven method for estimating the block size �opt.

4.2. Empirical considerations for long-memory exponent. We have assumed the mem-
ory exponent αm ∈ (0,1) of the LRD process Xt = G(Zt) is known in the resampling
estimators V̂�,αm for purposes of characterizing the effect of block size � on the error
MSEn(�) ≡ E(V̂�,αm − vn,αm)2 from (10). If an appropriate estimator α̂mn of αm is instead
substituted, then the resulting variance estimators can possess similar consistency rates.

Let V̂� ≡ V̂�,α̂mn denote a block-based estimator of vn,αm = nαm Var(X̄n) found by replac-
ing αm in V̂�,αm (e.g., V̂�,αm,OL or V̂�,αm,NOL from (5)) with an estimator α̂mn based on
X1, . . . ,Xn. Then a decomposition |V̂� − vn,αm| = Op(|V̂� − V̂�,am|) + Op(|V̂�,am − vn,αm|)
follows. For stating Corollary 4.2 below, define an exponent

(12) κ ≡ κα,m,m2 ≡

⎧⎪⎪⎨⎪⎪⎩
α(min{1, αm2} − αm)

α(1 − m) + min{1, αm2}) if 0 < α < 0.5,m ≥ 1,

(1 − α)

3 − 2α
if 0.5 ≤ α < 1,m = 1,

which relates to the rate of optimized root [MSEn(�opt,n)]1/2 from (11).

COROLLARY 4.2. Suppose Theorem 3.1–3.2 assumptions. As n → ∞:

(i) if |α̂mn − αm| logn
p→ 0, then |V̂� − V̂�,αm| = Op(|α̂mn − αm| logn) holds and V̂� is

consistent for vn,αm, that is, |V̂� − vn,αm| p→ 0;
(ii) if |α̂mn − αm| logn = op(n−κ) for κ in (12), then |V̂� − vn,αm| = Op([MSEn(�)]1/2),

where MSEn(�) ≡ E(V̂�,αm − vn,αm)2 is determined by Theorems 3.1–3.2.

Corollary 4.2(i) helps to separate the effects of block selection �, as our main interest, from
those of α̂mn in V̂�. Namely, the two resampling versions, V̂�,αm (i.e., assuming known αm)
or V̂� (i.e., estimating αm), can differ at most by an extent determined essentially by the con-
vergence rate of α̂mn. Importantly, the block size � considerations developed for controlling
the estimation error of V̂�,αm then be applied to V̂�, as an issue apart from estimating αm.

If convergence of α̂mn is sufficiently fast in Corollary 4.2(ii), then the same probabilistic
bound Op([MSEn(�)]1/2) developed for |V̂�,αm − vn,αm| holds similarly for |V̂� − vn,αm|.
Consequently, the optimal block for minimizing [MSEn(�)]1/2 sets a favorable convergence
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rate for |V̂� − vn,αm| in probability (i.e., given by the root of (11)). On the other hand, if the
Corollary 4.2(ii) condition fails for α̂mn, then block � selection remains important, though
the best possible convergence rate for |V̂� − vn,αm| will be generally limited by an estimation
error Op(|α̂mn − αm| logn) outside of block selection. However, log-periodogram regres-
sion or local Whittle estimation of αm [44, 45], for example, may be anticipated to satisfy
the Corollary 4.2(ii) condition in many cases, given that a cruder estimator of α̂mn (e.g.,
by combining block-based variance estimators at two different block sizes (cf. [18])) can
have a possible rate Op(n−κ) from (11) for Gaussian subordinated processes. Some existing
literature is also suggestive. For linear/Gaussian processes, log-periodogram or local Whit-
tle estimators can exhibit a convergence rate |α̂mn − αm| = Op(n−2/5) (cf. [3, 25]), which
guarantees op(n−κ/ logn) due to κ ≤ 1/4. Additionally, the Corollary 4.2(ii) condition also
comports with some known rates Op(n−min{α,1/2}) from Whittle estimation of α̂mn with sub-
ordinated series Xt = G(Zt) (cf. Theorem 3, [19]), as the exponent κ in (12) is strictly less
than α.

REMARK 3. Section 4.3 next considers empirical block selection, where we note that
milder technical conditions are involved when estimating the memory exponent αm. Rather
than the Corollary 4.2(ii) assumption, we instead require |α̂mn − αm| logn = op(h−2κ),
where h → ∞ as n → ∞ represents a smaller time series length (i.e., h = O(n1/2)) as a
type of user-chosen bandwidth in block selection; see Theorem 4.3. Weaker conditions on
estimating αm are possible because the block selection method is based on subsamples of
time series, which are smaller order in size than the original data length n.

4.3. Data-driven block estimation. The block results from Section 4.1 suggest that data-
driven choices of block size under LRD have no simple analogs to block resampling in the
SRD case. For variance estimation under SRD, several approaches exist for estimating the
best block size �opt through plug-in estimation [12, 33, 43] or empirical MSE-minimization
([21]-method). By exploiting the known block order �opt ≈ Cn1/3 under SRD, these meth-
ods target the process constant C > 0. In contrast, optimal blocks under LRD have a form
�opt ≈ Kna(logn)Ĩ from Corollary 4.1, where K ≡ Kα,m,m2 > 0 and a ≡ aα,m,m2 ∈ (0,1)

are complicated terms based on α, m, m2, while Ĩ ≡ −0.5I (α = 0.5,m = 1) + I (αm2 = 1)

involves indicator functions. Because the order na is unknown in practice, previous strate-
gies to block estimation are not directly applicable in the LRD setting. Plug-in estimation
seems particularly intractable under LRD; general plug-in approaches under SRD [33] re-
quire known orders for bias/variance in estimation, but these are also unknown under LRD
(Theorems 3.1–3.2). Consequently, we consider a modified method for estimating block size
�opt ≡ �opt,n that involves two rounds of empirical MSE-minimization ([21]-method). Unlike
the SRD case, two rounds become necessary under LRD to estimate both an unknown order
exponent a and scaling term K(logn)Ĩ in the block size �opt ≈ Kna(logn)Ĩ .

To adapt the [21]-method for LRD, we take a collection of subsamples (Xi, . . . ,Xi+h−1)

of length h < n, i = 1, . . . , n − h + 1. Based on X1 . . . ,Xn, let α̂mn denote an estimator of
αm for use in resampling estimators to follow and, as in Section 4.2, write V̂

�̃
as a resam-

pling variance estimator based on a pilot block size �̃ (e.g., �̃ ∝ n1/2). Similarly, let V̂
(i,h)
�

denote a resampling variance estimator computed on the subsample (Xi, . . . ,Xi+h−1) us-
ing a block length � < h, i = 1, . . . , n − h + 1. For clarity, V̂

(i,h)
� and V̂

�̃
correspond to the

sample variances of {�α̂mn/2X̄j,�}h−�+i
j=i and {�̃α̂mn/2X̄

j,�̃
}n−�̃+1
j=1 , respectively, when based on

OL block averages, writing X̄j,� ≡ ∑j+�−1
t=j Xt/�, for any j, � ≥ 1. We then define an initial
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block-length estimator �̂opt,h as the minimizer of the empirical MSE,

M̂SEn,h(�) ≡ 1

n − h + 1

n−h+1∑
i=1

(
V̂

(i,h)
� − V̂

�̃

)2
, 1 ≤ � < h.

Here, M̂SEn,h(�) estimates MSEh(�) in (10), or the MSE of a resampling estimator based on
a sample of size h and block size �, while �̂opt,h then estimates the minimizer of MSEh(�) or
the optimal block �opt,h from Corollary 4.1 using “h” in place of “n” there. Above the pilot
estimator V̂

�̃
plays the role of a target variance to mimic the MSE formulation (10).

Theorem 4.3 establishes important conditions on the subsample size h and pilot block
�̃ for consistent estimation under LRD. For the transformed series Xt = G(Zt), the result
involves a general eighth-order moment condition (i.e., G ∈ G8(1) under Definition 3.2 of
[50]) analogous to the fourth-order moment condition described in Section 3.2.

THEOREM 4.3. Assume that h → ∞ and �̃ → ∞ with h/�̃ + �̃h/n = O(1) as n → ∞.
Along with Theorem 3.1–3.2 assumptions, suppose also that G ∈ G8(1) and that |α̂mn −
αm| logn = op(h−2κ) for κ in (12). Then, as n → ∞, the empirical MSE, M̂SEn,h(�), has a
sequence of minimizers �̂opt,h such that

�̂opt,h

�opt,h

p→ 1 and
M̂SEn,h(�̂opt,h)

MSEh(�opt,h)

p→ 1,

where �opt,h has Corollary 4.1 form with MSEh(�opt,h) as in (11) (with “h” replacing “n”).

Theorem 4.3 does not address estimation of the best block size �opt,n for a length n time
series, but rather the optimal block �opt,h for a smaller length h < n series. Nevertheless,
the result establishes a nontrivial first step that, under LRD, some block sizes can be validly
estimated through empirical MSE ([21]-method) provided that the subsample size h and pilot
block �̃ are appropriately chosen. In particular, the condition h/�̃ + �̃h/n = O(1) cannot be
reduced (related to pilot estimation V̂

�̃
) and entails that the largest subsample length possible

is h = O(n1/2) within the empirical MSE approach under LRD.
Based on this and to resolve two unknown terms na and K(logn)Ĩ in �opt,n ≈ Kna(logn)Ĩ ,

we use empirical MSE device twice, based on two subsample lengths h ≡ h1 = �C1n
1/r� and

h2 = �C2n
θ/r�. Here, r ≥ 2 and 0 < θ < 1 are constants to control the subsample sizes (i.e.,

h having larger order than h2) with C1,C2 > 0. A common pilot estimate V̂
�̃

is used for both

M̂SEn,h(�) and M̂SEn,h2(�). We denote corresponding block estimates as �̂opt,h and �̂opt,h2 ,
and define an estimator of the target optimal block size �opt,n as

�̂opt,n ≡
(

�̂opt,h

C
ân

1

)r( hân

�̂opt,h

)r−1
ĉn, ĉn ≡ rÎn

(
logh2

logh

)(r−1)În(logh)/ log(h/h2)

,

where

ân ≡ log(�̂opt,h/�̂opt,h2)

log(h/h2)
, În ≡ 1

2

(
log(�̂opt,h) − ân logh

log logh
+ log(�̂opt,h2) − ân logh2

log logh2

)
estimate the exponent a ≡ aα,m,m2 ∈ (0,1) and indicator quantity Ĩ ≡ −0.5I (α = 0.5,m =
1)+I (αm2 = 1) appearing in the Corollary 4.1 expression for �opt,n ≈ Kna(logn)Ĩ . The esti-

mator �̂opt,n has three components, where �̂h,opt/C
ân

1 estimates Kha(logh)Ĩ while �̂opt,h/hân

captures K(logh)Ĩ up to a constant, and ĉn is scaling adjustment from logn ≈ r logh. The
data-driven block estimator �̂opt,n is provably valid over differing forms for �opt,n under LRD.
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COROLLARY 4.4. Let h ≡ �C1n
1/r� and h2 = �C2n

θ/r� (for C1,C2 > 0, r ≥ 2, θ ∈
(0,1)), and suppose Corollary 4.3 assumptions hold. Then, as n → ∞, the estimator �̂opt,n is

consistent for �opt,n in that �̂opt,n/�opt,n
p→ 1 and, additionally,

ân
p→ a, În

p→ Ĩ , ĉn
p→ [

rθ(r−1)/(1−θ)]Ĩ , �̂opt,h

hân
· 1

K(logh)Ĩ

p→ θ Ĩ/(1−θ),

regarding constants Ĩ ≡ −0.5I (α = 0.5,m = 1) + I (αm2 = 1), K ≡ Kα,m,m2 > 0, and a ≡
aα,m,m2 for prescribing �opt,n ≈ Kna(logn)Ĩ under Corollary 4.1.

We suggest a first subsample size h = C1n
1/2 of maximal possible order (r = 2). We then

take the pilot block to be �̃ = n1/2, representing a reasonable choice under LRD and also
satisfying Theorem 4.3, Corollary 4.4 (i.e., h/�̃ + h�̃/n = O(1) then holds). For a general
rule in numerical studies to follow, we chose C1 = 9, C2 = 12, θ = 0.95 to keep subsamples
adequately long under LRD. Based on empirical findings with Gaussian subordinated series
(e.g., [5]), we use local Whittle estimation of αm, for simplicity, with bandwidth �n0.7� (cf.
[3]). We also consider a modified block estimation rule

(13) �̂n = min
{�n/20�, ��̂opt,n�},

to avoid overly large block selection in finite sample cases. This variation retains consistency
due to �opt,n = o(n) and performs well over a variety of applications in Section 6.

5. Extending the scope of statistics. Here, we discuss extending block selection and re-
sampling variance estimation to a larger class of statistics defined by functionals of empirical
distributions. Using a small notational change to develop this section, let us denote data from
an observed time stretch as Y1 = G̃(Z1), . . . , Yn = G̃(Zn) (rather than Xt = G(Zt)) and let
Fn ≡ n−1 ∑n

t=1 δYt denote the corresponding the empirical distribution, where δy denotes a
unit point mass at y ∈ R. Consider a statistic Tn ≡ T (Fn), given by a real-valued functional
T (·) of Fn, which estimates a target parameter T (F ) defined by the process marginal distribu-
tion F . A broad class of statistics and parameters can be expressed through such functionals,
with some examples given below.

EXAMPLE 1. Smooth functions Tn of averages given by

Tn ≡ H

(
n−1

n∑
t=1

φ1(Yt ), . . . , n
−1

n∑
t=1

φl(Yt )

)
,

involving a function H : Rl → R of l ≥ 1 real-valued functions φj : R → R for j = 1, . . . , l.
These statistics include ratios/differences of means as well as sample moments ([32], Chap-
ter 5).

EXAMPLE 2. M-estimators Tn defined as the solution to

1

n

n∑
t=1

ψ(Yt , Tn) = 0

for an estimating function with mean zero E[ψ(Yt , T (F ))] = 0. This includes several types
of location/scale or regression estimators investigated in the LRD literature (cf. [7, 8]).
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EXAMPLE 3. L-estimators Tn defined through integrals as

Tn =
∫

xJ
(
Fn(x)

)
dFn(x),

involving a bounded function J : [0,1] → R. These include trimmed means J (x) = I (δ1 <

x < δ2)/(δ2 − δ1) (based on the indicator function and trimming proportions δ1, δ2 ∈ (0,1))
along with Windsorized averages and Gini indices (cf. [47]).

For a fixed integer k ≥ 1, functionals defined by linear combinations or products of com-
ponents in “k-dimensional” marginal distributions might also be considered (i.e., empirical
distributions of (Yt , Yt+1, . . . , Yt+k)). For simplicity, we use k = 1. Under regularity condi-
tions [16, 47], statistical functionals Tn = T (Fn) as above are approximately linear and admit
an expansion

(14) Tn = T (F ) + 1

n

n∑
t=1

IF(Yt ,F ) + Rn,

in terms of the influence function IF(y,F ), defined as

IF(y,F ) ≡ lim
ε↓0

T ((1 − ε)F + εδy) − T (F )

ε
, y ∈ R,

and an appropriately small remainder Rn; note that E[IF(Yt ,F )] = 0 holds. See [14] and [24]
for such expansions with LRD Gaussian subordinated processes.

To link to our previous block resampling developments (Section 2), a statistic Tn as in (14)
corresponds approximately to an average X̄n = ∑n

t=1 Xt/n of transformed LRD Gaussian
observations X1, . . . ,Xn, where Xt ≡ IF(Yt ,F ) = IF(G̃(Zt ),F ) = G(Zt) has Hermite rank
denoted by m with αm < 1 here. That is, under appropriate conditions, the normalized statis-
tic nαm/2[Tn − T (F )] = nαm/2X̄n + op(1) has a distributional limit determined by X̄n (e.g.,
[49, 50]) with a limiting variance limn→∞ nαm Var(X̄n) = v∞,αm given by (4) as before. Re-
sults in [5] also suggest that compositions Xt ≡ G(Zt) = IF(G̃(Zt ),F ) may tend to produce
Hermite ranks of m = 1, in which case nα/2[Tn − T (F )] will be asymptotically normal with
asymptotic variance v∞,αm.

To estimate v∞,αm through block resampling, we would ideally use X1, . . . ,Xn to obtain
a variance estimator as in Section 2, which we denote as V̂�,αm ≡ V̂�,αm(X). Then all esti-
mation and block properties from Sections 3–4 would apply. Unfortunately, F is generally
unknown in practice so that {Xt ≡ IF(Yt ,F )}nt=1 are unobservable from the data Y1, . . . , Yn.
Consequently, V̂�,αm(X) represents an oracle estimator. In Sections 5.1–5.2, we detail two
block-based strategies for estimating v∞,αm based on either a substitution method or block
jackknife. In both cases, these approaches can be as good as the oracle estimator V̂�,αm(X)

under some conditions. These resampling results under LRD have counterparts to the SRD
case [29, 39], though we nontrivially include L-estimation in addition to M-estimation.

5.1. Substitution method. Classical substitution (i.e., plug-in) estimates F in the influ-
ence function IF(y,F ) with its empirical version Fn (cf. [39, 47]) and develops observations
as X̂1, . . . , X̂n with X̂t ≡ IF(Yt ,Fn). For example, in a smooth function Tn = H(Ȳn) of the
average Ȳn, we have IF(y,Fn) = H ′(Ȳn)(y − Ȳn), where H ′ denotes the derivative of H . We
denote a resampling variance estimator computed from such observations as V̂�,αm(X̂).

To compare V̂�,αm(X̂) to the oracle estimator V̂�,αm(X), we require bounds between esti-
mated IF(y,Fn) and true influence functions IF(y,F ). For weakly dependent processes and
M-estimators, [29] considered pointwise expansions of IF(y,F ) − IF(y,Fn) as linear com-
binations of other functions in y. We need to generalize the concept of such expansions to
accommodate LRD and more general functionals (e.g., L-estimators) as follows.
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CONDITION I. There exist random variables U1,n, U2,n, Wn and real constants c, d ∈ R,
C > 0 such that, for any generic real values y1, . . . , yk and k ≥ 1, it holds that∣∣∣∣∣1

k

k∑
j=1

IF(yj ,F ) − 1

k

k∑
j=1

IF(yj ,Fn) + U1,n

∣∣∣∣∣ ≤ |Wn| + |U2,n|
(∫ d

c

∣∣∣∣∣1

k

k∑
j=1

hλ(yj )

∣∣∣∣∣
2

dλ

)1/2

,

where |Wn| = Op(n−αm); |U1,n|, |U2,n| = Op(n−αm/2); and, as indexed by λ ∈ [c, d], hλ(·)
denotes a real-valued function such that hλ(Yt ) = hλ(G̃(Zt )) has mean zero, variance
E[hλ(Yt )]2 ≤ C, and Hermite rank of at least m (the rank of G(Zt) = IF(Yt ,F )).

For context, if we set αm = 1 above and skip the notion of Hermite rank, then Condition I
would include, as a special case, an assumption used by [29] with weakly dependent pro-
cesses. However, under LRD, we need to explicitly incorporate Hermite ranks in bounds. If
we define my ≥ 1 as the Hermite rank of an indicator function I (Yt ≤ y) = I (G̃(Zt ) ≤ y) for
y ∈ R, then the smallest rank m∗ ≡ {my : y ∈ R} is known to be useful for describing conver-
gence of the empirical distribution [Fn(·) − F(·)] (cf. [14]). One general way to ensure any
function hλ(·) appearing in Condition I has Hermite rank of at least m (the rank of IF(Yt ,F ))
is that m = m∗. The reason is that m∗ sets a lower bound on the Hermite rank of any function
of Yt (cf. (2.5) of [14]). Such equality m = m∗ appears implicit in work of [24] on statistical
functionals under LRD and holds automatically when m = 1. We show next that the statistics
Tn in Examples 1–3 can satisfy Condition I.

THEOREM 5.1. For Yt = G̃(Zt ), suppose Xt ≡ G(Zt) = IF(Yt ,F ) has Hermite rank
m ≥ 1 with αm < 1. Then Condition I holds if the functional Tn is as in:

(i) Example 1 (smooth function) where φ1, . . . , φl are bounded functions; first partial
derivatives of H : Rl → R are Lipschitz in a neighborhood of (E[φ1(Yt )], . . . ,E[φl(Yt )]);
and either m = m∗ holds or m = min{Hermite rank of φj (Yt ) : 1 ≤ j ≤ l}.

(ii) Example 2 (M-estimation) where a constant C > 0 and a neighborhood N0 of T (F )

exist such that |ψ(y, θ)| ≤ C on R × N0; ψ̇ ≡ ∂ψ/∂θ exists and |ψ̇(y, θ)| ≤ C on R × N0;
|ψ̇(y, θ1) − ψ̇(y, θ2)| ≤ C|θ1 − θ2| for y ∈ R, θ1, θ2 ∈ N0; Eψ̇(Yt , T (F )) 
= 0; and either
m = m∗ holds or the Hermite rank of ψ(Yt , θ) remains the same for θ ∈ N0.

(iii) Example 3 (L-estimation) where J is bounded and Lipschtiz on [0,1] with J (t) = 0
when t ∈ [0, δ1]∪[δ2,1] for some 0 < δ1 < δ2 < 1; and either m = m∗ holds or m ≤ min{my :
y1 ≤ y ≤ y2} for some real y1 < y2 with 0 < F(y1) < δ1 < δ2 < F(y2) < 1.

Theorem 5.1 assumptions for Examples 1–2, dropping Hermite rank conditions, match
those of [29]. Smooth function statistics in Example 1 have influence functions Xt =
IF(Yt ,F ) as a linear combination of the baseline functions φj (Yt ), 1 ≤ j ≤ l, so that the
smallest Hermite rank among these typically gives the Hermite rank m of IF(Yt ,F ). In M-
estimation, the Hermite rank of Xt ≡ G(Zt) = IF(Yt ,F ) matches that of ψ(Yt , T (F )) and
it is sufficient that ψ(Yt , θ) maintains the same rank m in a θ -neighborhood of T (F ); the
latter condition is mild and implies that the rank of ψ̇(Yt , T (F )) must be at least m, which
is important as ψ̇(·, T (F )) arises in Condition I under M-estimation. To illustrate with a
standard normal Yt = Zt , M-estimation of the process mean uses ψ(Zt , θ) = Zt − θ with a
constant Hermite rank of 1 as a function of θ and a derivative ψ̇(Yt , T (F )) = −1 of infinite
rank; similarly, Huber-estimation uses ψ(Zt , θ) = max{−c,min{Zt −θ, c}} (for some c > 0),
which has constant rank 1 for θ in a neighborhood of T (F ) = 0 here, while the derivative
ψ̇(Zt , T (F )) = I (|Zt | ≤ c) has rank 2. For general L-estimation, conditions on the Hermite
ranks my of indicator functions I (Yt ≤ y) (or the empirical distribution Fn(y)) are necessary,
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particularly when trimming percentages δ1, δ2 are involved; in this case, we may use the rank
my of Fn(y) over a y-region ([y1, y2]) that is not trimmed away.

Theorem 5.2 establishes that the oracle resampling estimator V̂�,αm(X) (true influence)
and the plug-in version V̂�,αm(X̂) (estimated influence) are often close to the extent that the
latter is as good as the former. Blocks can be either OL/NOL below.

THEOREM 5.2. For Yt = G̃(Zt ), suppose Xt ≡ G(Zt) = IF(Yt ,F ) has Hermite rank
m ≥ 1 with αm < 1, Condition I holds, and �−1 + �/n → 0 as n → ∞. Then

V̂�,αm(X̂) = V̂�,αm(X) + Op

(
(�/n)αm/2) + Op

(
n−αm/2)

.

Theorem 5.2 is the LRD analog of a result by [29] for weakly dependent processes (i.e.,
setting αm = 1 above). As in the SRD case, the difference between estimators is often no
larger than the estimation error Op((�/n)min{α,1/2}) from the standard deviation of the ora-
cle V̂�,αm(X) (Theorem 3.2). Consequently, optimal block orders and convergence rates for
V̂�,αm(X) (Section 4.1) generally apply to the substitution version V̂�,αm(X̂). The block rule
of Section 4.3 can also be applied to X̂1, . . . , X̂n, which we illustrate in Section 6.

5.2. Block jackknife (BJK) method. For estimating the asymptotic variance v∞,αm of the
functional Tn, a block jackknife (BJK) estimator is possible under LRD. BJK uses only OL
data blocks, as NOL blocks are generally invalid (Remark 4.1, [29]). For j = 1, . . . ,N ≡
n − � + 1, we compute the functional T

(j)
n after removing observations in j th OL block

(Yj , . . . , Yj+�−1) from the data (Y1, . . . , Yn). The BJK estimator of v∞,αm is then

V̂ BJK
�,αm,OL = (N − 1)2

�2

�αm

N

N∑
j=1

(
T (j)

n − T̄n

)2
, T̄n ≡ 1

N

N∑
j=1

T (j)
n .

Unlike the plug-in method (Section 5.1), BJK does not involve influence functions, but uses
repeated evaluations of the functional. For the sample mean statistic Tn = ∑n

t=1 Yt/n, the
BJK estimator matches the plug-in estimator V̂�,αm(X̂) ≡ V̂�,αm,OL(X̂) with OL blocks (cf.
[29]). More generally, these two estimators may differ, though not substantially, as shown in
Theorem 5.3. To state the result, for each OL data block j = 1, . . . ,N , we define a remainder
S

(j)
n ≡ T

(j)
n − Tn − M

(j)
n , due to a type of Taylor expansion of T

(j)
n about Tn, where

M(j)
n ≡ 1

n − �

∑
1≤t≤n,

t /∈[j,j+�−1]

X̂t − 1

n

n∑
t=1

X̂t

involves an average of estimated values {X̂i ≡ IF(Yi,Fn)}ni=1 after removing the j th block.

THEOREM 5.3. For Yt = G̃(Zt ), suppose Xt ≡ G(Zt) = IF(Yt ,F ) has Hermite rank
m ≥ 1 with αm < 1, and that the OL block plug-in estimator V̂�,αm,OL(X̂) is consistent. Then

V̂ BJK
�,αm = V̂�,αm,OL(X̂) + Op(�/n)

holds as n → ∞ if �αm ∑N
j=1[S(j)

n ]2/N = Op(�4/[n2(N − 1)2]); the latter is true under
Theorem 5.1 assumptions for Examples 1–3.

The above difference Op(�/n) between BJK and plug-in estimators holds similarly under
weak dependence (akin to setting αm = 1 above), which improves the bound Op(�3/2/n)

originally given by [29] (Theorem 4.2). Theorems 5.2–5.3 show that BJK can also differ no
more from the oracle estimator V̂�,αm,OL(X) than the plug-in estimator V̂�,αm,OL(X̂).
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FIG. 1. MSE curves (over block length �) for resampling estimators with different LRD processes (m,α).

6. Numerical illustrations and applications.

6.1. Illustration of MSE over block sizes. Here, we describe an initial numerical study
of the MSE-behavior of resampling variance estimators under LRD. In particular, results
of Section 3 suggest that OL/NOL resampling blocks should induce identical large-sample
performances under strong dependence (e.g., α < 1/2) and that optimal blocks should gen-
erally decrease in size as the covariance strength increases (cf. Section 4.1). LRD se-
ries were generated as Xt = H2(Zt ) or Xt = H3(Zt ), using three values of the mem-
ory parameter with α < 1/m for m = 2 or m = 3, based on a standardized fractional
Gaussian process Zt with covariances as in (1) (i.e., H = (2 − α)/2). For each simu-
lated series, OL/NOL block-based estimators V̂�,αm of the variance vn,αm = nαm Var(X̄n)

were computed over a sequence of block sizes �. Repeating this procedure over 3000
simulation runs and averaging differences (V̂�,αm − vn,αm)2/v2

n,αm produced approxima-
tions of standardized MSE-curves E(V̂�,αm − vn,αm)2/v2

n,αm, as shown in Figure 1 with
sample sizes n = 1000 or 5000. The MSE curves are quite close between OL/NOL
blocks, particularly as sample sizes increase to n = 5000, in agreement with theory.
Also, as suggested by Section 4.1, MSEs should improve at the best block choice as
covariance strength increases under LRD (α ↓), which is visible in Figure 1. Table 1
presents best block lengths from the figure, showing that optimal blocks decrease for
these LRD processes with decreasing α. The Supplementary Material [55] provides addi-
tional simulation studies to further illustrate bias/variance behavior of resampling estima-
tors.

6.2. Resampling variance estimation by empirical block size. We next examine empirical
block choices for resampling variance estimation of the sample mean and provide comparison
to other approaches under LRD. Application to another functional is then considered.

We use the data-based rule (13) of Section 4.3 for choosing a block size. We first com-
pare resampling estimators V̂� of the sample mean’s variance vn,αm between block selections
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TABLE 1
Optimal OL block sizes for LRD series with Hermite ranks m = 2 and 3

m = 2 m = 3

α 0.400 0.425 0.450 0.300 0.315 0.330

n = 1000 4 6 9 2 3 5
n = 5000 12 21 35 8 9 18

� = �̂n and � = �n1/2�, where the latter represents a reasonable choice under LRD by theory
in Section 4.1. OL blocks are used along with local Whittle estimation α̂m of the memory
parameter αm (Section 4.3). Similar to Section 6.1, we simulated samples from LRD pro-
cesses defined by Xt = Hm(Zt) for m = 2 with α = 0.20,0.45 or m = 3, α = 0.20,0.30
and approximated the MSE E(V̂� − vn,αm)2/v2

n,αm using 500 simulations. Table 2 provides
these results. Estimated blocks �̂n are generally better than the default �n1/2�, though the
latter is also competitive. The default seems preferable with a small sample size and particu-
larly strong dependence (e.g., n = 500, m = 3, α = 0.2), but empirical block selections show
improved MSEs with increased sample sizes n = 1000,2000 under LRD.

For comparison against resampling variance estimators, we also consider the Bartlett-
kernel heteroskedasticity and autocorrelation consistent (HAC) estimator [54] and the mem-
ory and autocorrelation consistent (MAC) estimator [46], whose large-sample properties have
been studied for the sample mean with linear LRD processes (cf. [1, 18]), but not for trans-
formed LRD series Xt = G(Zt). As numerical suggestions from [1], we implemented HAC
and MAC estimators of the sample mean’s variance using bandwidths �n1/5�, �n4/5�, respec-
tively; the HAC approach further used local Whittle estimation of the memory parameter
αm, like the resampling estimator. The MSEs of HAC/MAC estimators are given in Table 3
(approximated from 500 simulation runs) for comparison against the resampling estimators
in Table 2 with the same processes. For the process Xt = H2(Zt ) with α = 0.45, HAC/MAC
estimators emerge as slightly better than the resampling approach with estimated block sizes,
though the resampling estimator outperforms HAC/MAC estimators as the dependence in-
creases (smaller α) or as the Hermite rank increases (m = 3). With small sample sizes n and
strong dependence, the HAC estimator can exhibit large MSEs, indicating that the bandwidth
�n1/5� is perhaps too small for the nonlinear LRD series in these settings. In comparison, the
empirical block selections with resampling estimators show consistently reasonable MSE-
performance among all cases, which is appealing.

We further consider a different statistical functional with resampling estimators and em-
pirical blocks �̂n. In the notation of Section 5, we simulated stretches Y1, . . . , Yn of LRD pro-
cesses defined by Yt = H2(Zt ) or Yt = sin(Zt ) and considered an L-estimator Tn as a 40%

TABLE 2
MSE for resampling estimators V̂� of sample mean’s variance based on blocks � = �̂n or � = �n1/2� with LRD

series Xt ≡ G(Zt ) with G = H2(Zt ) (m = 2) and G(Zt ) = H3(Zt ) (m = 3)

n = 500 n = 1000 n = 2000

G/m α �̂n �n1/2� �̂n �n1/2� �̂n �n1/2�

m = 2
0.20 0.294 0.316 0.236 0.248 0.180 0.214
0.45 0.270 0.312 0.269 0.293 0.280 0.292

m = 3
0.20 0.917 0.754 0.805 0.858 0.455 0.495
0.30 0.270 0.294 0.396 0.413 0.393 0.393
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TABLE 3
MSE for HAC and MAC estimators of sample mean’s variance with LRD series Xt ≡ G(Zt ) with G = H2(Zt )

(m = 2) and G(Zt ) = H3(Zt ) (m = 3)

n = 500 n = 1000 n = 2000

G/m α HAC MAC HAC MAC HAC MAC

m = 2
0.20 8.297 0.336 0.989 0.250 0.286 0.174
0.45 0.256 0.252 0.265 0.257 0.279 0.267

m = 3
0.20 26.43 1.667 1.492 0.797 1.020 0.804
0.30 0.515 0.442 0.379 0.378 0.369 0.358

trimmed mean based on the empirical distribution Fn (i.e., δ1 = 1 − δ2 = 0.2 in Example 3,
Section 5). For either process, the influence function Xt ≡ IF(Yt ,F ) = YtI (F−1(0.2) < Yt <

F−1(0.8))/0.6 has Hermite rank m = 1, where F and F−1 denote the distribution and quan-
tile functions, respectively, of Yt . To estimate the variance, say vn,αm, of nαm/2Tn, we apply
the substitution method (Section 5.1). That is, using estimated influences X̂t ≡ IF(Yn,Fn) =
YtI (F−1

n (0.2) < Yt < F−1
n (0.8))/0.6, we obtain an estimator α̂m of the memory-parameter

by local Whittle estimation and compute a plug-in resampling variance estimator V̂�(X̂). Ta-
ble 4 provides MSEs (i.e., E(V̂�(X̂)−vn,αm)2/v2

n,αm approximated from 500 simulation runs)
with block choices � = �̂n or �n1/2� over sample sizes n = 500,1000,2000. The empirical
block selections perform better than the default �n1/2� with the plug-in variance estimator
here, though the choice �n1/2� appears also reasonable.

6.3. Resampling distribution estimation by empirical block size. Block selection also
plays an important role in other resampling inference, such as approximating full sampling
distributions with block bootstrap for purposes of tests and confidence intervals. While opti-
mal block sizes for distribution estimation are difficult and unknown under LRD, we may ap-
ply blocking notions developed here for guidance. For distributional approximations of sam-
ple means and other statistics as in Section 5, the block bootstrap is valid with transformed
LRD series when a normal limit exists (e.g., Hermite rank m = 1) [30]. Such normality may
occur commonly in practice [5] and can be further assessed as described in Section 6.4.

To study empirical blocks for distribution estimation with the bootstrap, we consider two
LRD processes as Yt = sin(Zt ) or Yt = Zt + 20−1H2(Zt ) defined by Gaussian {Zt } as be-
fore with memory exponent α. Based on a size n sample, block bootstrap is applied to
approximate the distribution of �n ≡ nα̂m/2|Tn − θ |, where Tn ≡ T (Fn) represents either
the sample mean or the 40% trimmed mean (Example 3, Section 5), while θ ≡ T (F ) de-
notes the corresponding process mean or trimmed mean parameter. In sample mean case,

TABLE 4
MSE for plug-in resampling estimators V̂�(X̂) of the variance of the 40% trimmed mean statistic Tn based on

blocks � = �̂n or � = �n1/2� with LRD series Yt ≡ H2(Zt ) or Yt = sin(Zt )

n = 500 n = 1000 n = 2000

Yt α �̂n �n1/2� �̂n �n1/2� �̂n �n1/2�

H2(Zt )
0.20 0.463 0.494 0.383 0.413 0.366 0.402
0.45 0.568 0.603 0.565 0.585 0.565 0.575

sin(Zt )
0.20 0.608 0.641 0.597 0.613 0.590 0.606
0.30 0.561 0.589 0.565 0.582 0.550 0.565
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TABLE 5
Empirical coverage probabilities of 95% block bootstrap confidence intervals for the process mean or 40%
trimmed mean, based on block sizes � = �̂n or � = �n0.5�, with LRD series as sin(Zt ) or Zt + 20−1H2(Zt )

α = 0.20 α = 0.50 α = 0.80

� n = 1000 5000 n = 1000 5000 n = 1000 5000

Mean

sin(Zt )
�̂n 0.820 0.866 0.932 0.944 0.964 0.958

�n1/2� 0.766 0.814 0.878 0.914 0.958 0.934

Zt + 1
20H2(Zt )

�̂n 0.848 0.864 0.922 0.930 0.942 0.960
�n1/2� 0.806 0.854 0.914 0.894 0.938 0.952

Trimmed Mean

sin(Zt )
�̂n 0.798 0.848 0.934 0.942 0.964 0.950

�n1/2� 0.752 0.792 0.892 0.920 0.962 0.946

Zt + 1
20H2(Zt )

�̂n 0.864 0.876 0.930 0.916 0.956 0.980
�n1/2� 0.828 0.852 0.918 0.908 0.876 0.754

we compute α̂m using local Whittle estimation with data stretch X1 = Y1, . . . ,Xn = Yn and
define a bootstrap average X̄∗

b� by resampling b ≡ �n/�� OL data blocks of length � (see Sec-
tion 2.2); the bootstrap version of �n is then �∗

n ≡ b1/2�α̂m/2|X̄∗
b� − E∗X̄∗

b�| (cf. [30]), where
E∗X̄∗

b� = ∑n−�+1
i=1 X̄i,�/(n−�+1) is a bootstrap expected average. In the trimmed mean case,

the estimator α̂m and the bootstrap approximation �∗
n are similarly defined from estimated

values X̂t ≡ IF(Yn,Fn) = YtI (F−1
n (0.2) < Yt < F−1

n (0.8))/0.6, t = 1, . . . , n. We construct
95% bootstrap confidence intervals for θ by approximating the 95th percentile of �n with
the bootstrap counterpart from �∗

n (based on 200 bootstrap recreations). Note that, for these
processes and statistics, the effective Hermite rank is m = 1 (i.e., the rank of Xt = IF(Yt ,F ))
so that the bootstrap should be valid in theory.

We used the empirical rule (13) as a guide for selecting a block length �. Table 5 shows
the empirical coverages of 95% bootstrap intervals with samples of size n = 1000 or n =
5000 (based on 500 simulation runs). For strongest LRD α = 0.02, bootstrap intervals exhibit
undercoverage, as perhaps expected, though accuracy improves with increasing sample size
n in this case. The bootstrap performs well in the other cases of long memory. The coverage
rates of bootstrap intervals are closer to the nominal level with empirically chosen blocks �̂n

compared to a standard choice �n1/2�, for both the sample mean and trimmed mean. This
suggests that the driven-data rule for blocks provides a reasonable guidepost for resampling
distribution estimation, as an application beyond variance estimation.

6.4. A test of Hermite rank/normality. In a concluding numerical example, we wish to
illustrate that data blocking has impacts for inference under LRD beyond the resampling.
One basic application of data blocks is for testing the null hypothesis that the Hermite rank is
m = 1 for a transformed LRD process Xt = G(Zt) against the alterative m > 1. This type of
assessment has practical value in application. For example, analyses in financial economet-
rics can involve LRD models with assumptions about m (cf. [11]). More generally, inference
from sample averages under LRD may use normal theory only if m = 1 [49, 50]. Even con-
sidering resampling approximations under LRD, the block bootstrap (i.e., full data recreation)
becomes valid when m = 1 [30], while subsampling (i.e., small scale recreation) should be
used instead if m > 1 [4, 10, 21].
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Algorithm 1: Hermite rank test for m = 1 (normality) from LRD series
Data: Given a LRD sample X1, ..,Xn.
Set initializations: block size �; number M of resamples; and significance level
αsig = 0.05.
Step 1. Calculate a test statistic T0 for normality (e.g., Anderson–Darling) from block
averages;
Step 2. Estimate α̂m the memory parameter αm or Hurst Index Ĥ = 1 − α̂m/2;
Step 3. for k = 1, . . . ,M do

(i) Simulate a fractional Brownian motion sample {B ∗̂
H

( 1
n
), . . . ,B ∗̂

H
(n
n
)} with Hurst

index Ĥ ;
(ii) Obtain a bootstrap sample X∗

1, . . . ,X∗
n as X∗

1 = B ∗̂
H

( 1
n
) and

X∗
j = B ∗̂

H
(
j
n
) − B ∗̂

H
(
j−1
n

), j = 2, . . . , n;
(iii) Calculate the kth bootstrap test statistic, T ∗

k , for normality from block averages
in X∗

1, . . . ,X∗
n;

end
Step 4. Compute q̂ as the 1 − αsig sample percentile of {T ∗

1 , . . . , T ∗
M};

Step 5. Reject if T0 > q̂ .

Based on data X1, . . . ,Xn from a LRD process Xt = G(Zt), a simple assessment of H0 :
m = 1 can be based on data blocks of � as follows. The idea is to make averages (say)
Wi ≡ ∑�

j=1 Xj+�(i−1)/� of length � blocks, i = 1, . . . , b ≡ �n/��, as in Section 2.2, and then
check their agreement to normality. Letting �(·) denote a standard normal cdf, we compare
the collection of residuals Ri ≡ �((Wi − W̄ )/SW ) to a uniform(0,1) distribution, where W̄ ,
SW are the average and standard deviation of {W1, . . . ,Wb}. In a usual fashion, we can assess
uniformity by applying a Kolmogorov–Smirnov statistic or an Anderson–Darling [2] statistic
(e.g., A ≡ −b − b−1 ∑b

i=1(2i − 1) log{R(i)[1 −R(b+1−i)]} for ordered R(i)). The distribution
of such a test statistic then requires calibration under the null H0 : m = 1. A central limit
theorem [51] for LRD processes Xt = G(Zt) when m = 1 gives

(15)
1√

Var(X̄n)

1

n

�nt�∑
i=1

(Xi − μ)
d→ cBH (t), 0 ≤ t ≤ 1,

as n → ∞, where BH(t) denotes fractional Brownian motion with Hurst index H = 1 −
α/2 ∈ (0,1) and c > 0 is a process constant. Note that (15) no longer holds under LRD when
m > 1, which aids in testing. The property (15) suggests a simple bootstrap procedure for re-
creating the null distribution of residual-based test statistics, given in Algorithm 1, because
such statistics are invariant to the location-scale used in a bootstrap sample.

The role of data blocking for tests of Hermite rank H0 : m = 1 with LRD series Xt =
G(Zt) may be traced to recent work of [9]. Those authors test for m = 1 (normality) with a
cumulant-based two-sample t-test, using two samples generated from data by different OL
block resampling approaches. Our block-based test is different and perhaps more basic. To
briefly compare these tests, we use data generation settings from [9] where Xt = G(Zt) with
G(z) = z+20−1H2(z)+ (20

√
3)−1H3(z) (i.e., m = 1) or G(z) = cos(z) (i.e., m = 2), and Zt

denotes a standardized FAIRMA(0, (1 −α)/2,0) Gaussian process for α = 0.2,0.8. The test
in [9] uses block lengths � = n1/4 or � = n1/2, where some best-case results provided there
assume the memory parameter to be known. To facilitate comparison against these, we simply
use a similar block � = n1/2 for our test, as a reasonable choice under LRD, and consider both
OL/NOL blocks; we also use local Whittle estimation of the memory parameter along with
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TABLE 6
Rejection rates of nominal 5% tests of Hermite rank m = 1 from block-based statistic (Algorithm 1 with OL/NOL

blocks � = �n1/2�) with LRD series Xt ≡ G(Zt ) using G1(z) = z + 20−1H2(z) + (20
√

3)−1H3(z) or
G2(z) = cos(z). Results from the test of [9] (OL blocks � = n1/2 or n1/4) are included

α = 0.20 α = 0.80

G/m Testing Method n = 400 1000 10000 n = 400 1000 10000

G1, m = 1
Algorithm 1

OL 0.06 0.06 0.07 0.05 0.08 0.07
NOL 0.10 0.06 0.08 0.06 0.05 0.06

[9]-test
� = n1/2 0.04 0.05 0.03 0.01 0.03 0.03
� = n1/4 0.03 0.04 0.04 0.07 0.06 0.03

G2, m = 2
Algorithm 1

OL 0.60 0.85 0.99 0.13 0.14 0.13
NOL 0.45 0.68 0.99 0.06 0.09 0.07

[9]-test
� = n1/2 0.11 0.23 0.26 0.13 0.13 0.20
� = n1/4 0.19 0.24 0.32 0.24 0.16 0.27

200 resamples in Algorithm 1. Table 6 lists power (based on 500 simulation runs) of our test
using a 5% nominal level compared to test findings of [9] (Table 2); we report an Anderson–
Darling statistic in Table 6 though a Kolmogorov–Smirnov statistic produced similar results.
Both the proposed test and the [9]-test maintain the nominal size for the LRD processes with
m = 1, but our block-based test has much larger power for the LRD process defined by m = 2
and α = 0.2. The process defined by m = 2 and α = 0.8 in Table 6 is actually SRD; as both
our test and the [9] test are block-based assessments of normality, both tests should maintain
their sizes in this case and our test performs a bit better. This illustrates that data-blocking
has potential for assessments beyond usage in resampling.

7. Concluding remarks. While block-based resampling methods provide useful esti-
mation under data dependence, their performance is intricately linked to a block length pa-
rameter, which is important to understand. This problem has been extensively investigated
under weak or short-range dependence (SRD) (cf. [32], Chapter 3), though relatively lit-
tle has been known for long-range dependence (LRD), especially outside the pure Gaussian
case (cf. [27]). For general long-range dependent (LRD) Xt = G(Zt) processes, based on
transforming a LRD Gaussian series Zt , results here showed that properties and best block
sizes with resampling variance estimators under LRD can intricately depend on covariance
strength and the structure of nonlinearity in G(·). The long-memory guess O(n1/2) for block
size [23] may have optimal order at times, owing more to such nonlinearity rather than intu-
ition about LRD. Additionally, we provided a data-based rule for best block selection, which
was shown to be consistent under complex cases for blocks with LRD. While we focused on
a variance estimation problem with resampling under LRD, block selection for distribution
estimation is also of interest, though seemingly requires further difficult study of distribu-
tional expansions for statistics from LRD series Xt = G(Zt). However, we showed that the
block selections developed here can provide helpful benchmarks for choosing block size with
resampling or other block-based inference problems under LRD.

The current work may also suggest future possibilities toward estimating the Hermite m

rank (or other ranks) under LRD. No estimators of m currently exist; instead, only estimation
of the long-memory exponent αm of Xt = G(Zt) has been possible, which depends on the
covariance decay rate α < 1/m of Zt . Results here established that the variance of a block
resampling estimator depends only on α, apart from the Hermite rank m itself. This suggests
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that some higher-order moment estimation may be investigated for separately estimating the
memory coefficient α and Hermite rank m under LRD.

APPENDIX A: COEFFICIENT OF OPTIMAL BLOCK SIZE

The coefficient Kα,m,m2 of Corollary 4.1 is presented in cases with notation: A ≡ B2
0(m),

B ≡ (2C
m2
0 J 2

m2
/m2!)2, C ≡ (B0(m)+2

∑∞
j=m2

∑∞
k=1[γZ(k)]j J 2

j /j !)2 and D ≡ (2C
m2
0 /[(1−

m2α)(2−m2α)](J 2
m2

/m2!))2 related to (7); E ≡ v2∞,αm in (4); and F ≡ aα from Theorem 3.2.

Case 1: m2 = ∞

Kα,m,m2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(1 − 2α)
√

AE + √
(1 − 2α)2AE + 4α(1 − α)A(E + F)

2α(E + F)

if 0 < α < 0.5,m = 1,(
A

F

)0.5

if α = 0.5,m = 1,

(
2A(1 − α)

F

) 1
3−2α

if 0.5 < α < 1,m = 1

(
A(1 − αm)

Fα

) 1
2(1+α−αm)

if 0 < α <
1

m
,m ≥ 2.

Case 2: m2 < ∞ with αm2 > 1

Kα,m,m2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(1 − 2α)
√

CE + √
(1 − 2α)2CE + 4α(1 − α)C(E + F)

2α(E + F)

if
1

m2
< α < 0.5,m = 1,(

C

F

)0.5

if α = 0.5,m = 1,

(
2C(1 − α)

F

) 1
3−2α

if max
{

1

m2
,0.5

}
< α < 1,m = 1,

(
C(1 − αm)

Fα

) 1
2(1+α−αm)

if
1

m2
< α <

1

m
,m ≥ 2.
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Case 3: m2 < ∞ with αm2 = 1

Kα,m,m2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(1 − 2α)
√

BE + √
(1 − 2α)2BE + 4α(1 − α)B(E + F)

2α(E + F)

if 0 < α = 1

m2
< 0.5,m = 1,(

B

F

)0.5

if α = 1

m2
= 0.5,m = 1,

(
B(1 − αm)

Fα

) 1
2(1+α−αm)

if 0 < α = 1

m2
< 0.5,m ≥ 2.

Case 4: m2 < ∞ with αm2 < 1

Kα,m,m2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
(m2 − 2) + √

(m2 − 2)2 + (m2 − 1)(E + F)D

E + F

) 1
αm2

if 0 < α <
1

m2
,m = 1,

(
D(m2 − m)

F

) 1
2α(1+m2−m)

if 0 < α <
1

m2
,m ≥ 2.

APPENDIX B: PROOF OF THEOREM 3.2

The Appendix considers the proof for the large-sample variance (Theorem 3.2) of resam-
pling estimators. Proofs are other results are shown in the Supplementary Material [55]. To
derive variance expansions of Theorem 3.2, we first consider the OL block variance estima-
tor V̂�,αm,OL = ∑N

i=1 �αm(X̄i,� − μ)2/N − �αm(μ̂n,OL − μ)2 from (5), expressed in terms
of the process mean EXt = μ, the number N = n − � + 1 of blocks, the block averages
X̄i,� ≡ ∑i+�−1

j=i Xj/� (integer i), and μ̂n,OL = ∑N
i=1 X̄i,�/N . Due to mean centering, we may

assume μ = 0 without loss of generality. We then write the variance of V̂�,αm,OL as

Var(V̂�,αm,OL) = v1,� + v2,� − 2c�,

c� ≡ Cov

(
1

N

N∑
i=1

�αmX̄2
i,�, �

αmμ̂2
n,OL

)
= ca,� + cb,�,

v1,� ≡ Var

(
1

N

N∑
i=1

�αmX̄2
i,�

)
= v1a,� + v1b,�,

v2,� ≡ Var
(
�αmμ̂2

n,OL
) = v2a,� + v2b,�,
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where each variance/covariance component v1,�, v2,� and c� is decomposed into two further
subcomponents

(16)

v1a,� ≡ 2
�2αm

N

N∑
k=−N

(
1 − |k|

N

)[
Cov(X̄0,�, X̄k,�)

]2
,

v2a,� ≡ 2�2αm[
Var(μ̂n,OL)

]2
,

v1b,� ≡ �2αm

N

N∑
k=−N

(
1 − |k|

N

)
cum(X̄0,�, X̄0,�, X̄k,�, X̄k,�),

v2b,� ≡ �2αm cum(μ̂n,OL, μ̂n,OL, μ̂n,OL, μ̂n,OL),

ca,� ≡ 2
(
�2αm/N

) N∑
i=1

[
Cov(X̄i,�, μ̂n,OL)

]2
,

and cb,� ≡ (�2αm/N3)
∑N

i=1
∑N

j=1
∑N

k=1 cum(X̄i,�, X̄i,�, X̄j,�, X̄k,�), which denote sums in-
volving fourth-order cumulants (v1b,�, v2b,�, cb,�) or sums involving covariances (v1a,�,
v2a,�, ca,�). The second decomposition step follows from the product theorem for cu-
mulants (e.g., Cov(Y1Y2, Y3Y4) = Cov(Y1, Y3)Cov(Y2, Y4) + Cov(Y1, Y4)Cov(Y2, Y3) +
cum(Y1, Y2, Y3, Y4) for arbitrary random variables with EYi = 0 and EY 4

i < ∞). Note that
EX4

t = E[G(Z0)]4 < ∞ and G ∈ G4(1) imply these variance components exist finitely for
any n, � (see (S.9) or Lemma 3 of the Supplementary Material [55]). Collecting terms, we
have

Var(V̂�,αm,OL) = 	�,OL + ��,OL,

where 	�,OL ≡ v1a,� + v2a,� − 2ca,� and ��,OL ≡ v1b,� + v2b,� − 2cb,� denote sums over
covariance-terms 	�,OL or sums of fourth-order cumulant terms ��,OL. In the NOL estima-
tor case V̂�,αm,NOL, the variance expansion is similar Var(V̂�,αm,NOL) = 	�,NOL + ��,NOL
with the convention that 	�,NOL, ��,NOL are defined by replacing the OL block number
N = n − � + 1, averages X̄i,� (or X̄j,�, X̄k,�) and estimator μ̂n,OL = ∑N

i=1 X̄i,�/N with
the NOL counterparts b = �n/��, X̄1+(i−1)�,� (or X̄1+(j−1)�,�, X̄1+(k−1)�,�) and μ̂n,NOL =∑b

i=1 X̄1+(i−1)�,�/b in v1a,�, v2a,�, ca,�, v1b,�, v2b,�, cb,�.
Let 	� denote either counterpart 	�,OL or 	�,NOL, and �� denote either ��,OL or ��,NOL.

Theorem 3.2 then follows by establishing that

	� =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
O

((
�

n

)min{1,2αm}
[logn]I (2αm=1)

)
= o

((
�

n

)2α)
if m ≥ 2,

aα

(
�

n

)min{1,2α}
[logn]I (α=1/2)(1 + o(1)

)
if m = 1,

and

�� − rn,α,m,mp =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
φα,m

(
�

n

)2α(
1 + o(1)

)
if m ≥ 2,

o

((
�

n

)min{1,2α}
[logn]I (α=1/2)

)
if m = 1,

where I (·) denotes an indicator function and rn,α,m,mp is defined in Theorem 3.2. For refer-
ence, when the Hermite rank m ≥ 2, the contribution of �� ∝ (�/n)2α dominates the variance
of V̂�,αm,OL or V̂�,αm,NOL; when m = 1, the contribution of 	� ∝ (�/n)min{1,2α}[logn]I (α=1/2)

instead dominates the variance in Theorem 3.2.
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To establish these expansions of 	�, ��, we require a series of technical lemmas (Lem-
mas 1–4), involving certain graph-theoretic moment expansions. To provide some illustra-
tion, Lemma 1 is briefly outlined in Appendix C; the remaining lemmas are described in
the Supplementary Material [55]. Define an order constant τ�,m ≡ (�/n)2α if m ≥ 2 and
τ�,m ≡ (�/n)min{1,2α}[logn]I (α=1/2) if m = 1; we suppress the dependence of τ�,m on n

and α for simplicity. Then the above expansion of 	� follows directly from Lemma 4 (i.e.,
	� = aατ�,1(1 + o(1)) if m = 1 and 	� = o(τ�,m) if m ≥ 2). For handling ��, Lemma 1 gives
that v1b,� = rn,α,m,mp +φα,mτ�,m(1+o(1)) when m ≥ 2 and v1b,� = rn,α,m,mp +o(τ�,m) when
m = 1. Combined with this, the expansion of �� then follows from Lemmas 2 and 3, which
respectively show that cb,� = o(τ�,m) and v2b,� = o(τ�,m) for any m ≥ 1. �

APPENDIX C: LEMMA 1 (DOMINANT FOURTH-ORDER CUMULANT TERMS)

In the proof of Theorem 3.2 (Appendix B), recall v1b,� from (16) represents a sum of
fourth-order cumulants from OL block averages, where the version with NOL blocks is
v1b,� ≡ b−1�2αm ∑b

k=−b(1 − |k|/b) cum(X̄0,�, X̄0,�, X̄k�,�, X̄k�,�). Lemma 1 provides an ex-
pansion of v1b,� under LRD, which is valid in either OL/NOL block case.

LEMMA 1. Suppose the assumptions of Theorem 3.2 (G has Hermite rank m ≥ 1 and
Hermite pair-rank m ≤ mp ≤ ∞) with positive constants φα,m, λα,mp there. Then

v1b,� = rn,α,m,mp +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
φα,m

(
�

n

)2α(
1 + o(1)

)
if m ≥ 2,

o

((
�

n

)min{1,2α}
[logn]I (α=1/2)

)
if m = 1,

where I (·) denotes an indicator function and rn,α,m,mp is from Theorem 3.2.

The proof of Lemma 1 involves a standard, but technical, graph-theoretic representation of
the fourth-order cumulant among Hermite polynomials Hk1(Y1), Hk2(Y2), Hk3(Y3), Hk4(Y4)

(k1, k2, k3, k4 ≥ 1) at a generic sequence (Y1, Y2, Y3, Y4) of marginally standard normal vari-
ables, with covariances EYiYj = rij = rji for 1 ≤ i < j ≤ 4. Namely, it holds that

cum
[
Hk1(Y1),Hk2(Y2),Hk3(Y3),Hk4(Y4)

] =
4∏

i=1

ki !
∑

A∈Ac(k1,k2,k3,k4)

g(A)r(A),

where above Ac(k1, k2, k3, k4) denotes the collection of all path-connected multigraphs
from a generic set of four points/vertices p1, p2, p3, p4, such that point pi has degree
ki for i = 1,2,3,4; in this definition, cum[Hk1(Y1),Hk2(Y2),Hk3(Y3),Hk4(Y4)] = 0 holds
whenever Ac(k1, k2, k3, k4) is empty. Each multigraph A ≡ (v12, v13, v14, v23, v24, v34) ∈
Ac(k1, k2, k3, k4) is defined by distinct counts vij = vji ≥ 0, interpreted as the number of
graph lines connecting points pi and pj , 1 ≤ i < j ≤ 4. Then g(A) ≡ 1/[∏1≤i<j≤4(vij !)]
represents a so-called multiplicity factor, while r(A) ≡ ∏

1≤i<j≤4 r
vij

ij represents a weighted
product of covariances among variables in (Y1, Y2, Y3, Y4) (cf. [50]). Membership A ∈
Ac(k1, k2, k3, k4) requires degrees ki = ∑

j :j 
=i vij for i = 1,2,3,4 (e.g., k2 = v12 + v23 +
v24) as well as a path connection in A between any two points pi and pj ; see, for example,
Figure 2.

With this background and using the Hermite expansion (2) for G ∈ G4(1), the sum v1b,�

of fourth-order cumulants from OL block averages (16) can be reduced to a weighted sum of
terms

ϑ�,n(A) ≡ �2αm−4

N

N∑
k=−N

(
1 − |k|

N

) �∑
t1=1

�∑
t2=1

k+�−1∑
t3=k

k+�−1∑
t4=k

∏
1≤i<j≤4

1

vij !
[
γZ(ti − tj )

]vij



3644 Q. ZHANG, S. N. LAHIRI AND D. J. NORDMAN

FIG. 2. An example of multigraph A ≡ (1,0,1,1,0,1) ∈Ac(m,m,m,m) for m = 2.

over all path-connected graphs A ≡ (v12, v13, v14, v23, v24, v34) with degrees k1, . . . , k4 ≥
m; above γZ(·) is the Gaussian covariance function from (1). The path-connected property
implies v13 +v14 +v23 +v24 ≥ 1. Combining ϑ�,n(A) over all such graphs A with v13 +v14 +
v23 + v24 = 1 determines rn,α,m,mp in Lemma 1. For m ≥ 2, contributions ϑ�,n(A) from two
graphs A ∈ Ac(m,m,m,m) with v13 + v14 + v23 + v24 = 2 yield φα,m(�/n)2α(1 + o(1))

in Lemma 1; Ac(m,m,m,m) is empty when m = 1. Remaining expressions in Lemma 1
follow from all other graph contributions ϑ�,n(A). See the Supplementary Material [55] for
more details.
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Proofs and other technical details (DOI: 10.1214/22-AOS2242SUPPA; .pdf). A supple-
ment [55] contains proofs and technical details along with further numerical results.

Code (DOI: 10.1214/22-AOS2242SUPPB; .zip). R code.
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