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Abstract. Statistical prediction plays an important role in many decision processes, such as
university budgeting (depending on the number of students who will enroll), capital budget-
ing (depending on the remaining lifetime of a fleet of systems), the needed amount of cash re-
serves for warranty expenses (depending on the number of warranty returns), and whether a
product recall is needed (depending on the number of potentially life-threatening product
failures). In statistical inference, likelihood ratios have a long history of use for decision mak-
ing relating tomodel parameters (e.g., in evidence-basedmedicine and forensics).We propose
a general prediction method, based on a likelihood ratio (LR) involving both the data and a
future random variable. This general approach provides a way to identify prediction interval
methods that have excellent statistical properties. For example, if a prediction method can be
based on a pivotal quantity, our LR-based method will often identify it. For applications
where a pivotal quantity does not exist, the LR-based method provides a procedure with
good coverage properties for both continuous or discrete-data prediction applications.
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1. Introduction
1.1. Background
Prediction is a fundamental part of statistical inference.1

Prediction intervals are important for assessing the un-
certainty of future random variables and have applica-
tions in business, engineering, science, and other fields.
For example, manufacturers require prediction intervals
for the number of warranty claims to assure that there
are sufficient cash reserves and spare parts to make re-
pairs; engineers use historical data to compute predic-
tion intervals for the remaining lifetime of systems.

Suppose that the available data are denoted by Xn

and that we want to predict a random variable de-
noted by Y (also known as the predictand). We use a
parametric distribution to model the data and the pre-
dictand. Specifically, we consider the case where Xn �
{X1, : : : ,Xn} corresponds to a sample of n independent
and identically distributed random variables with
common density/mass function f (·;u). The density
f (·;u) depends on a vector u of unknown parameters.
The predictand Y is a scalar random variable with
conditional density g(· | xn;u), where Xn � xn is the

observed sample. If Y is independent of Xn, then
g(· | xn;u) � g(·;u); further, if Y has the same distribution
as the data, then g(·;u) � f (·;u). The goal is to obtain infor-
mation about the unknown parameters u from the data
Xn to construct a prediction interval for the predictand Y.

We use PI1−α(Xn) to denote a prediction interval for
Y with a nominal confidence level of 1−α. Letting
Pru(· | Xn) be the conditional probability given Xn, the
conditional coverage probability of PI1−α(Xn) is

CP[PI1−α(Xn) | Xn] � Pru[Y ∈ PI1−α(Xn) | Xn]:
We can obtain the unconditional coverage probabil-

ity by taking the expectation of the conditional cover-
age probability CP[PI1−α(Xn) | Xn]with respect to Xn,

CP[PI1−α(Xn)] � Pru[Y ∈ PI1−α(Xn)]
� Eu{CP[PI1−α(Xn) | Xn]}:

Unlike the conditional coverage probability, which is
a random variable, the unconditional coverage proba-
bility is a fixed property of a prediction interval proce-
dure. Hence, the unconditional coverage probability is
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used to evaluate a prediction interval method and the
term coverage probability is used to denote the uncon-
ditional coverage probability unless stated otherwise. If
CP[PI1−α(Xn)] � 1− α, we say the prediction method is
exact; if CP[PI1−α(Xn)] → 1−α as n→∞, we say the
prediction method is asymptotically correct.

1.2. Related Literature
Some prediction interval methods are based on a piv-
otal or an approximate pivotal quantity. The main
idea is to find a function of Xn and Y, say q(Xn,Y),
that has a distribution that is free of parameters u (or
approximately so for large samples). Then, the distri-
bution of q(Xn,Y) can be used to construct a 1− α pre-
diction region for Y as

P1−α(xn) � {y : q(xn,y) ≤ qn,1−α},
where Xn � xn denotes the observed value of sample
and qn,1−α is the 1− α quantile of q(Xn,Y) (i.e.,
Pru[q(Xn,Y) ≤ qn,1−α] � 1−α). If q(xn,y) is a monotone
function of y, then P1−α(xn) provides a one-sided pre-
diction bound; if −q(xn,y) is a unimodal function of y,
then P1−α(xn) becomes a (two-sided) prediction inter-
val. Relevant references of this pivotal method include
Cox (1975), Atwood (1984), Beran (1990), Barndorff-
Nielsen and Cox (1996), Nelson (2000), Lawless and
Fredette (2005), and Fonseca et al. (2012).

One implementation of the pivotal method is
through a hypothesis test. Cox (1975) and Cox and
Hinkley (1979) suggested to construct prediction in-
tervals by inverting a hypothesis test and gave exam-
ples with distributions having simple test statistics.
Suppose the data Xn and the predictand Y have densi-
ties f (xn;u) and g(y;u†) governed by real-valued u and
u†, respectively, and a hypothesis test can be found
for the null hypothesis u � u†. Let wα be a critical re-
gion for the test H0 : u � u† with size α. For critical re-
gion ωα, we have the probability statement

Pr[(Xn,Y) ∈ wα] � α:

Then for Xn � xn, a 1− α prediction region for Y can
be defined as

P1−α(xn) � {y : (xn,y) ∈ wα}: (1)

Thus, for the critical region defined in (1), we have
that for all u

Pru[Y ∈ P1−α(Xn)] � 1−α,

so that (1) defines an exact prediction procedure for Y.
In (1), one could also potentially use a critical region
wα ≡ wα,n having size α asymptotically (i.e., limn→∞
Prθ[(X, Y) ∈ wα] � α); then (1) becomes an asymptoti-
cally correct 1− α prediction region for Y.

Cox and Hinkley (1979) illustrated this test-based
prediction region (1) with the normal distribution.
Suppose Xn is an independent random sample from

Norm(µ,σ) and Y is a further independent random
variable with the same distribution. By assuming that
Xn ~N(µ1,σ) and Y ~N(µ2,σ), a test statistic for the
null hypothesis H0 : µ1 � µ2 is

t � Xn −Y

s
������������(n+ 1)=n√ ~ tn−1, (2)

where s2 �∑n
i�1 (Xi −Xn)2=(n− 1) and tn−1 denotes a t-

random variable with n – 1 degrees of freedom. This
corresponds to the form of a two-sample t-test that is of-
ten used for comparison of means. Then a 1− α equal-
tailed (i.e., equal probability of being outside either end-
point) prediction interval based on inverting the t-test is

PI1−α(Xn) �
[
Xn − tn−1,α=2s

������������(n+ 1)=n√
, Xn

+ tn−1,α=2s
������������(n+ 1)=n√ ]

,

where tn−1,α denotes the α quantile of a tn−1
distribution.

As a contrast to the pivotal prediction method,
Bjørnstad (1990) reviewed an alternative prediction
method called the predictive likelihood method. The
main idea of the predictive likelihood method is to ob-
tain an approximate density for Y by eliminating the
unknown parameters in the joint likelihood (or den-
sity) of the data and the predictand (Xn,Y). The result-
ing predictive likelihood then provides a type of dis-
tribution for computing a prediction interval for Y
given Xn � xn. For example, a Bayesian predictive dis-
tribution for Y involves steps of integrating out the
unknown parameters of a posterior distribution based
on the joint likelihood of the data and the predictand.

1.3. Motivations
As reviewed in Section 1.2, prediction intervals can be
constructed by inverting hypothesis tests for parame-
ters. However, the construction of such tests often needs
to be tailored to each problem, where the determination
of an appropriate hypothesis test is an essential step in
the construction of such prediction intervals. For exam-
ple, in the normal distribution example, we obtain the
prediction interval by inverting a t-test. However, in
many cases, there is no well-known or clear hypothesis
test, making it difficult to implement a test-based method
for obtaining prediction intervals. As a remedy, the pur-
pose of this paper is to propose a general prediction
method based on inverting a type of likelihood ratio (LR)
test. The advantage of the LR approach is that this princi-
ple applies broadly to different settings where prediction
intervals are needed—and particularly for cases where an
appropriate test statistic or pivotal quantity is not avail-
able or obvious for the need. In addition, we will demon-
strate that this general method has desirable statistical
properties.
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1.4. Overview
This paper is organized as follows. Sections 2–5 focus
on predictions with continuous data. Section 2 de-
scribes how to construct a prediction interval by
formulating a certain LR statistic. Section 3 discusses
situations where the proposed prediction method pro-
vides exact coverage, while Section 4 shows that,
more broadly, that the method is generally (under
weak conditions) guaranteed to provide asymptoti-
cally correct coverage (i.e., improving coverage
properties with increasing sample sizes). Section 5
discusses some further details about constructing a
suitable LR test. Section 6 focuses on applying the pro-
posed method to prediction problems involving dis-
crete data. Section 7 describes how the proposed LR
prediction method compares and differs from pre-
dictions based on predictive likelihood methods
(mentioned in Section 1.2). Section 8 concludes by de-
scribing potential areas for future research.

2. A General Method
In Section 2.1, we show how to construct general (not
necessarily equal-tailed) two-sided prediction inter-
vals with an LR statistic. Section 2.2 describes how to
construct one-sided prediction intervals by using an
LR and how this method can also be applied to cali-
brate equal-tailed two-sided prediction intervals. In
this section, we assume that both the data Xn and the
predictand Y are continuous. For clarity in the exposi-
tion and ease of presentation, we further assume that
Y ~ g(·;u) is independent of Xn ~ f (·;u) and has the
same distribution/density (i.e., g(·;u) � f (·;u)).

2.1. Prediction Intervals Based on an LR Test
Nelson (2000) proposed a prediction interval method
for predicting the number of failures in a future in-
spection of a sample of units, based on a likelihood ra-
tio test in combination with the Wilks’ theorem.
Although Nelson (2000) only considered a specific
prediction problem, we extend the principle of
LR-based prediction interval statistics to a more gen-
eral setting. The approach may also be viewed as a
generalization of test-based prediction intervals ex-
plained in Cox and Hinkley (1979), using an LR in the
role of the test statistic.

2.1.1. Reduced and Full Models. Recalling its tradi-
tional use for parametric inference, the LR test pro-
vides a general approach for comparing two nested
models for data (or parameter configurations) based
on the observed data Xn � xn. The null hypothesis
about the parameters corresponds to a reduced
model, which is nested within a larger full model (i.e.,
a parameter subset of the full model). Let Ln(u;xn) be
the likelihood function for the full model having a

parameter space Θ and suppose that the reduced
model (corresponding to the null hypothesis) has a
constrained parameter space Θ0 ⊂Θ. The LR for test-
ing the null hypothesis H0 : u ∈Θ0 is then

Λn �
supu∈Θ0

Ln(u;xn)
supu∈ΘLn(u;xn) ,

and the log-LR statistic is −2logΛn. Generally, the dis-
tribution of Λn or −2logΛn needs to be determined, ei-
ther analytically, through approximate large-sample
distributional results, or through Monte Carlo simula-
tion. Then, such a distribution can be used to deter-
mine the critical region for the LR test of the null
hypothesis or relatedly a confidence interval/region
for parameters. For example, if the reduced model is
true, and if Wilks’ theorem (Wilks 1938) applies (as it
does under particular regularity conditions), the as-
ymptotic distribution of the log-LR statistic is given
by −2logΛn→d χ2

d as the sample size n→∞, where χ2
d

denotes a chi-square random variable with d degrees
of freedom and where d is the difference in the lengths
of Θ and Θ0. The latter large sample chi-square distri-
bution approximation is often used to calibrate the
critical region of an LR test.

As we describe next, a log-LR statistic for model pa-
rameters can be modified to provide a log-LR statistic
for a future random variable Y in a general manner,
which in turn can be used to construct prediction in-
tervals for Y. To outline the approach, suppose the
available Xn represents an independent and identi-
cally distribution (iid) sample with common density
f (·;u) and Y denotes a future random variable with
the same density f (·;u) (Y is again independent of Xn

here). A log-LR statistic for Y can then be broadly
framed as a type of parameter u comparison involving
full versus reduced models for the joint distribution
(Xn,Y). Although f (·;u) denotes the true marginal
density for both the data Xn and the predictand Y
(with parameter space u ∈Θ), the main idea is to de-
fine a hypothesis test regarding an enlarged (and fic-
tional) parameter space ΘE ≡ {(u,uy)}, where the data
Xn have a common density f (·;u), where the predic-
tand Y has a density f (·;uy), say, and where u and uy
differ in exactly one preselected component when
(u,uy) ∈ΘE. For example, supposing u � (θ1, : : : ,θk) ∈
Θ consists of k ≥ 1 components, then we choose ex-
actly one parameter component, say θℓ, from among
{θ1, : : : ,θk} to vary and subsequently define uy ∈Θ to
match u ∈Θ, except for the component ℓ, which is θ
for u but θ,y say in uy. This framework sets up a com-
parison of a contrived full model (Xn ~ f (·;u) margin-
ally and Y ~ f (·;uy) for (u,uy) ∈ΘE) versus a reduced
model (uy � u ∈Θ), where the parameter space of the
reduced model is nested withinΘE with the constraint
u � uy.
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The purpose of this contrived LR test is not to con-
duct hypothesis tests of parameters—as we already
know that the reduced model is a true model—but to
construct a predictive root (i.e., a test statistic con-
taining Xn and Y), which will be used to predict Y.
In particular, the extra degree of freedom between
the parameter spaces of the full model and the re-
duced model is used to identify the predictand Y
when formulating a log-LR statistic for u � uy. For
example, in the case of data from a normal dis-
tribution Xn,Y ~Norm(µ,σ), we may define a full
model as Xn ~Norm(µ,σ) and Y ~Norm(µy,σ) for
parameters u � (µ,σ) and uy � (µy,σ) ∈ R × (0,∞),
where the reduced model uy � u corresponds to the
true underlying model Xn,Y ~Norm(µ,σ) in
prediction.

Let the joint likelihood function for (Xn,Y) be

L(u,uy;xn,y) � f (y;uy)
∏n
i�1

f (xi;u)
under the full model and suppose the maximum
likelihood (ML) estimators of (u,uy) are estimable
under both the reduced (u � uy) and the full
((u,uy) ∈ΘE) models. Then the joint LR statistic
based on (Xn,Y) is

Λn(Xn,Y) �
supu�uy∈ΘL(u,uy;Xn,Y)
sup(u,uy)∈ΘE

L(u,uy;Xn,Y) (3)

for the test of u � uy. The LR statistic in (3) and its dis-
tribution can then be applied to obtain prediction in-
tervals for the future predictand Y based on observed
data values Xn � xn. Note that the construction (3) de-
pends on which parameter from u is selected to vary
in defining uy. Typically, this selected parameter will
be a mean-type parameter for purposes of identifying
Y in the LR statistic (3); more details about this selec-
tion are given in Section 5.

2.1.2. Determining the Distribution of the LR. The
next step is to determine a critical region as in (1) so
that we can compute the prediction region for Y, based
on the LR statistic Λn(Xn,Y) from (3). This, however,
requires the distribution of Λn(Xn,Y) (or −2 logΛn
(Xn,Y)). There are three potential approaches for
determining or approximating the distribution of
−2 logΛn (Xn,Y).

The first approach is to obtain the distribution of
−2logΛn(Xn,Y) analytically. For illustration, consider
the situation with an iid sample Xn ~Norm(θ,σ)
where σ is known and the future random variable Y is
from the same distribution. Here there is one parame-
ter θ ≡ µ where the full model is Xn ~Norm(µ,σ) and
Y ~Norm(µy,σ) for (µ,µy) ∈ R

2 in the LR construction

of (3); the corresponding log-LR statistic for Y based
on Xn is then

−2 logΛn(Xn,Y) � n
n+ 1

Y−Xn

σ

( )2
~ χ2

1:

Then, a 1− α prediction region for Y given Xn � xn is

P1−α(xn) � {y : −2 logΛn(xn,y) ≤ χ2
1,1−α}

� y : xn − σ

���������������
n+ 1
n

χ2
1,1−α

√
≤ y ≤ xn + σ

���������������
n+ 1
n

χ2
1,1−α

√{ }

� y : xn − z1−α=2σ
�������
n+ 1
n

√
≤ y ≤ xn + z1−α=2σ

�������
n+ 1
n

√{ }

where χ2
1,1−α is the 1−α quantile of χ2

1 and z1−α=2 ���������
χ2
1,1−α

√
is the 1− α=2 quantile of a standard normal var-

iable. In this example, because −2 logΛn(Xn,Y) is a un-
imodal function of Y, the prediction region P1−α(xn)
leads to a prediction interval and the LR prediction
method has exact coverage probability because the log-
LR statistic is a pivotal quantity (i.e., χ2

1-distributed).
The second approach for approximating the distri-

bution of −2 logΛn(Xn,Y), when applicable, is to use
Wilks’ theorem. Under the conditions given in Wilks

(1938), the LR statistic −2logΛn(Xn,Y)→d χ2
d, where d is

the difference in the dimensions of the full and re-
duced models (d � 1 in our prediction interval con-
struction). Similarly, the 1− α prediction region based
on Wilks’ theorem is

P1−α(xn) � {y : −2logΛn(xn,y) ≤ χ2
d,1−α}:

Wilks’ theorem, however, does not apply in all predic-
tion problems. There exist important cases, particularly
with discrete data, where the Wilks’ result is valid for
the log-LR statistic −2logΛn(Xn,Y) in prediction and
the chi-square-calibrated prediction region above is
then appropriate; this is described in Section 6. When
Wilks’ theorem does not apply, an alternative limiting
distribution may still exist as illustrated in Section 4.

The third approach, which is themost general one, is to
use parametric bootstrap. If λ1−α is the 1−α quantile of
Λn(Xn,Y), thenwehave the following prediction region

P1−α(xn) � {y : −2logΛn(xn,y) ≤ λ1−α}:
The idea of this approach is to use a parametric

bootstrap recreation of the data (X∗
n,Y

∗), which leads
to a distribution for a bootstrap version −2logΛn
(X∗

n,Y
∗) of the log-LR statistic. Then, the 1− α quantile

of the bootstrap distribution, say λ∗
1−α, is used to ap-

proximate the unknown quantile λ1−α of the true
sampling distribution of −2logΛn(Xn,Y). Then the re-
sulting parametric bootstrap prediction region is

P1−α(xn) � {y : −2logΛn(xn,y) ≤ λ∗
1−α}: (4)
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An algorithm for implementing a Monte Carlo (i.e.,
simulation-based) approximation of the parametric
bootstrap is as follows.

1. Compute an estimate corresponding to a consis-
tent estimator of u (usually the ML estimate) using ob-
served data Xn � xn, denoted by ûn (recall the data
model is that theXn are iid f (·;u)).

2. Generate a bootstrap sample x∗n and y∗ as iid obser-
vations drawn from f (·; û).

3. Evaluate the LR in (3) using bootstrap pair (x∗n,y∗)
to get λ∗ ≡ −2logΛn(x∗n,y∗).

4. Repeat steps 2–3 B times to obtain B realizations of
λ∗ as {λ∗

b}Bb�1.
5. Use the 1−α sample quantile of {λ∗

b}Bb�1 as λ∗
1−α in

(4) and compute the prediction region.
The prediction region P1−α(xn) in (4) is a prediction

interval when Λn(xn,y) is a unimodal function of y for
a given data set Xn � xn.

Such prediction intervals generally do not have
equal-tail probabilities. In many applications, how-
ever, the cost of the predictand being greater than the
upper bound is different than having it being less
than the lower bound. In such cases, it is better to
have a prediction interval with equal-tail probabilities.
This can be achieved by calibrating separately the
lower and upper one-sided 1−α=2 prediction bounds
and putting them together to provide a two-sided
1− α equal-tail-probability prediction interval. The
next section shows how to construct a one-sided pre-
diction bound using the LR in (3).

2.2. Constructing One-Sided Prediction Bounds
Suppose that the LR Λn(xn,y) is a unimodal function
of y based on observed data Xn � xn. This is a common
property (holding with probability one) in most
prediction problems. Note that a two-sided prediction
interval (4) for Y based on Xn � xn is defined by a hori-
zontal line drawn through the curve of −2logΛn(xn,y)
(as a function of y) at an appropriate threshold λ1−α,
as shown in Figure 1.

Here we describe a method for calibrating one-
sided bounds directly, without resorting to (4) by ad-
justing the log-LR curve so that it becomes a mono-
tone function. For a given data set Xn � xn, let y0 ≡
y0(xn) denote the value of y that maximizes Λn(xn,y),
where Λn(xn,y0) � 1 at y0. Define a signed log-LR sta-
tistic ζn(xn,y) based on (3) as

ζn(xn,y) ≡ (−1)I(y≤y0)[−2logΛn(xn,y)]
�
{
2logΛn(xn,y) ∈ (−∞, 0] y ≤ y0
−2logΛn(xn,y) ∈ [0,∞) y ≥ y0,

(5)

where I(·) denotes the indicator function. That is,
(−1)I(y≤y0)[−2logΛn(xn,y)] is a signed version of the
log-LR statistic −2logΛn(xn,y), which, unlike the latter
statistic, is an increasing function of y and is negative

when y < y0 (but positive when y > y0). Hence, to set a
one-sided bound for Y, we calibrate the signed log-LR
statistic ζn(xn,y), which has a one-to-one correspon-
dence to y-values when Λn(xn,y) is unimodal (unlike
Λn(xn,y) itself). Note that if the 1−α quantile of
the distribution of ζn(Xn,Y), denoted by ζ1−α, were
known, we could set a 1−α upper prediction bound
for Y given Xn � xn as

ỹ1−α(xn) ≡ sup{y ∈ R : ζn(xn,y) ≤ ζ1−α}: (6)

Figure 2 provides a graphical illustration of (6), illus-
trating the resulting prediction region. Similar to the
third approach in Section 2.1.2, we can approximate
the quantile ζ∗1−α using the 1−α quantile of ζn(X∗

n,Y
∗),

which is the bootstrap version of the signed log-LR
statistic. Then, a bootstrap prediction bound is ob-
tained by replacing ζ1−α with ζ∗1−α in (6), and the 1− α
upper prediction bound ỹ1−α(xn) is defined as

ỹ1−α(xn) � sup
y∈R

{y : ζn(xn,y) ≤ ζ∗1−α}: (7)

Constructing the 1− α lower prediction bound

˜
y1−α(xn) is similar, and the 1− α lower prediction
bound is

˜
y1−α(xn) � sup

y∈R
{y : ζn(xn,y) ≤ ζ∗α}: (8)

The following algorithm describes how to compute
the 1− α upper (and lower) prediction bound ỹ1−α(xn)
(and

˜
yα(xn)) using a Monte Carlo approximation of

the bootstrap distribution ζn(X∗
n,Y

∗) and the bootstrap
quantile ζ∗1−α (and ζ∗α).

1. Compute ûn using the observed dataXn � xn.
2. Simulate a sample x∗n using a parametric bootstrap

with ûn and compute y0(x∗n).
3. Simulate y∗ from distribution f (·; ûn) and compute

ζ∗ ≡ ζn(x∗n,y∗) � (−1)I[y∗≤y0(x∗n)][−2logΛn(x∗n,y∗)]:
4. Repeat steps 2–3 B times to obtain B realizations of

ζ∗ as {ζ∗i}Bi�1.
5. Use the 1−α (or α) sample quantile from {ζ∗i}Bi�1 as

ζ∗1−α (or ζ
∗
α) in (7) (or (8)) to compute the 1− α upper (or

lower) prediction bound.
Note that, in the algorithm for one-side bounds, one

can simultaneously keep track of bootstrap statistics
λ∗ � |ξ∗ | for computing the two-sided bounds in (4)
(i.e., the same resamples can be used).

3. Exact Results
The LR-based prediction method can often uncover
and exploit pivotal quantities involving the data Xn

and the predictand Y when these exist. In these cases,
the LR statistic is pivotal, often emerging as a function
of another pivotal quantity from (Xn,Y). Conse-
quently, in these cases, prediction intervals or bounds
for Y based on the LR-statistic (3) will have exact
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coverage, when either based on the direct distribution
of LR statistic (when available analytically) or more
broadly when based on a bootstrap. In this section, we
provide more explanation about when the LR predic-
tion method is exact, beginning with some illustrative
examples.

3.1. Exponential Distribution
Suppose the data X1, : : : ,Xn and future predictand
Y are iid Exp(θ) with mean θ > 0. Letting θ̂xn,y ≡
(∑n

i�1 xi + y)=(n+ 1), and θ̂xn ≡∑n
i�1 xi=n based on data

Xn � xn and a given value y > 0 of Y, then the LR
statistic (3) is

Λn(xn,y) �
θ̂
−n−1
xn,y exp −

∑n
i�1 xi +y

θ̂xn,y

[ ]
θ̂
−n
xn exp −

∑n
i�1 xi
θ̂xn

[ ]
y−1exp − y

y

( ) � yθ̂
n
xn

θ̂
n+1
xn,y

�
xn
y

( )n
n

n+ 1
xn
y
+ 1
n+ 1

[ ]n+1 ,

Figure 1. Example of Log-LR Statistic (as a Function of y) for Given Data xn, Which Is an Illustration of the Prediction Interval
Procedure in (4)

Figure 2. An Illustration of the One-Sided Prediction Bound Procedure in (6)
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which is a function of the pivotal quantity Xn=Y and a
unimodal function of y. Thus, the LR prediction
method is exact (when based on the F-distribution of
Xn=Y ~ Fn,1 or the bootstrap as in (4)), and the predic-
tion region becomes a prediction interval.

3.2. Normal Distribution
Let X1, : : : ,Xn,Y ~Norm(µ,σ), where both µ ∈ R

and σ > 0 are unknown. We construct the full model
by allowing the predictand Y to have a different
location parameter µ: X1: : : ,Xn ~Norm(µ,σ) and Y ~
Norm(µy,σ) (i.e., u � (µ,σ) and uy � (µy,σ)). Then for
the full model, the ML estimators are

µ̂ � Xn, µ̂y � Y, σ̂ �
��������������������∑n

i�1 (Xi −Xn)2
n+ 1

√
,

whereas for the reduced model θ � θy, the ML estima-
tors are

µ̂ �
∑n

i�1Xi +Y
n+ 1

, σ̂ �
��������������������������������∑n

i�1 (Xi − µ̂)2 + (Y− µ̂)2
n+ 1

√
:

Then the resulting LR statistic (3) is

Λn(Xn,Y) � 1 + n2 + 1
n2 − 1

t2

n

( )−(n+1)=2
, (9)

where

t ≡ Xn − Y
s

�������
n

n + 1

√
,

and s2 ≡∑n
i�1 (Xi −Xn)2=(n− 1). Here, t ~ tn−1 has the

same t-test statistic form as in (2). Hence, the LR is
pivotal and also Λn(xn,y) is a unimodal function of y.
Thus, the resulting prediction interval procedure has
exact coverage probability when based on the boot-
strap as in (4) (or using the tn−1 distribution here).

In fact, the results for the normal distribution can be
generalized to the (log-)location-scale family, which
contains many other important distributions. Theo-
rem 1 says that, by allowing the location parameter of
the predictand to be different from that of the data to
create a full versus reduced model comparison, the re-
sulting LR statistic (3) is a pivotal quantity so that the
prediction method is exact.

Theorem 1.
i. Suppose the LR-statistic (3) is a pivotal quantity. Then,

the corresponding 1−α prediction region (4) for Y based on
the parametric bootstrap will have exact coverage. That is,

Pr[Y ∈ P1−α(Xn)] � 1− α:

ii. Suppose also that both the data X1, : : : ,Xn and Y are
from a location-scale distribution with density f (·;µ,σ) �
φ[(x−µ)=σ] with parameters u � (µ,σ) ∈ R × (0,∞). In
the LR construction (3), suppose the full model involves
parameters u � (µ,σ) and uy � (µy,σ) (i.e., X1, : : : ,Xn ~

f (·;µ,σ) and Y ~ f (·;µy,σ)). Then the LR statistic
Λn(Xn,Y) (or −2logΛn(Xn,Y)) is a pivotal quantity and
the result of Theorem 1(i) holds.

The proof is given in Section A of the online supple-
mentary material.

Remark 1. If the LR statistic Λn(xn,y) is a unimodal
function of y ∈ R with probability one (as determined
by Xn) and if the signed LR-statistic ζn(Xn,Y) is a piv-
otal quantity, then the Theorem 1(i) result (i.e., exact
coverage) also applies for one-sided prediction
bounds based on the parametric bootstrap. For (log-)
location-scale distributions as in Theorem 1(ii), the
signed LR-statistic ζn(Xn,Y) is a pivot.
We next provide some illustrative examples.

3.3. Simple Regression
We consider the simple linear regression model Y ~
Norm(β0 + β1x,σ) with given x and data Y1, : : : ,Yn that
satisfy Yi ~Norm(β0 + β1xi,σ) where xi, i � 1, : : : ,n.
Similar to the normal distribution example, it is natu-
ral to choose β0 + β1x to construct the “full” model. In
fact, choosing β0 or β1 gives the same log-LR statistic
as β0 + β1x, which is given by

(n+ 1) log 1+ 1
n− 2

T2
( )

,

where T matches the standard statistic for normal
theory predictions (i.e., a studentized version of
Y− β̂0 − β̂1x) having a t-distribution with n – 2 degrees
of freedom.

3.4. Two-Parameter Exponential Distribution
Suppose X1, : : : ,Xn,Y are independent observations
from a two-parameter exponential distribution Exp(µ,β).
That is, (Xi −µ)=β ~ Exp(1) with location and scale pa-
rameters as u � (µ,β). Hence, under Theorem 1, the LR
Λn(Xn,Y) is a pivotal quantity and bootstrap-calibrated
prediction regions for Y are exact. In fact, an exact form
of the LR-statistic may be determined as

Λn(xn,y) �
∑n

i�1xi + y− (n+ 1)min{x(1), y}∑n
i�1xi − nx(1)

[ ]n+1
based on given positive data xn � (x1, : : : ,xn) where
x(1) denotes the first order statistic. Note that Λn(xn,y)
is a unimodal function of y givenXn � xn (with probabil-
ity one); hence, one-sided prediction bounds for Y based
on a parametric bootstrap will also have exact coverage
by Remark 1. Replacing xn and ywith corresponding ran-
domvariablesXn andY in (3) gives

Λn(Xn,Y)�d
∑n

i�1Ei +T − (n+ 1)min{E(1) , T}∑n
i�1Ei − nE(1)

[ ]n+1
,

where E1, : : : ,En,T denote iid Exp(1) random variables
and E(1) is the first order statistic of E1, : : : ,En; this
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verifies that Λn(Xn,Y) is indeed a pivotal quantity for
the exponential data case, as claimed in Theorem 1.
Thus, this prediction interval procedure is exact when
the parametric bootstrap is used to obtain the distribu-
tion of Λn(Xn,Y).

3.5. Uniform Distribution
Suppose X1, : : : ,Xn,Y are iid Unif(0,θ), which is a one-
parameter scale family. The LR statistic (3) has a form

Λn(xn,y) � (x(n)=y)n
[max(x(n)=y, 1)]n+1

, (10)

where x(n) denotes the maximum of {x1, : : : ,xn}.
Hence, λn(xn,y) is a unimodal function y given Xn �
xn (with probability one) and Λn(Xn,Y) can also be
seen to be a pivotal quantity as

X(n)
Y

� X(n)=θ
Y=θ

�d max{U1, : : : ,Un}
U0

,

where U0,U1, : : : ,Un denote iid Unif(0, 1) variables.
Hence, by Theorem 1(i) and Remark 1, both the two-
sided prediction interval procedure (4) as well as the
one-sided bound procedures (7)–(8) based on boot-
strap have exact coverage. That is, bootstrap simula-
tion provides an effective and unified means for
estimating the distribution of Λn(xn,y) and construct-
ing prediction intervals.

4. General Results
Section 3 discusses cases where the LR prediction
method is exact, particularly when the construction
(3) results in a pivotal quantity. For some prediction
problems, however, the LR statistic may not be a piv-
otal quantity, as the next example illustrates.

4.1. Gamma Distribution
Let X1, : : : ,Xn,Y denote iid random variables from a
gamma density f (x;α,β) � β−αxα−1exp(−x=β)=Γ(α), x >
0, with scale β > 0 and shape α > 0 parameters. In the
LR construction (3) with parameters u � (β,α),
suppose the full model involves parameters u
and uy � (βy,α) or X1, : : : ,Xn ~Gamma(α,β) and
Y ~Gamma(α,βy). The LR statistic is then given by

Λn(xn,y)

� supα [Γ(α)]−n[(nxn + y)=(n+ 1)]−α(n+1) y∏n
i�1 xi

( )α−1
supα [Γ(α)]−n[nxn]−αn(y=α)−α y

∏n
i�1 xi

( )α−1 :

Unlike the previous examples, the LR statistic is no
longer a pivotal quantity. However, we can use the
bootstrap method to approximate the distribution for
Λn(Xn,Y). A small simulation study was conducted to
investigate the coverage probability of the LR predic-
tion method. Figure 3 shows the coverage probability
of 90% and 95% one-sided prediction bounds for a

future gamma variate based on the LR prediction
method (i.e., (7) and (8)), and compares the LR predic-
tion method with other methods. Sample size values
n � 4, 5, 6, 7, 8, 9, 10,30,50,70, 90,100 were used. With-
out loss of generality, the scale parameter was set to β
� 1, and the shape parameter values α � 1, 2, 3 were
used. We used n � 2,000 Monte Carlo samples to
compute the coverage probability, and B � 2,000 boot-
strap samples were used to approximate the distribu-
tion of the signed log-LR statistic. The simulation
results show that the calibration-bootstrap method
has the best coverage, whereas the LR prediction and
the approximate fiducial (or the generalized pivotal
quantity (GPQ)) methods also work well. When n � 4,
the difference between the true coverage of the LR
prediction method and the nominal level (combined
with Monte Carlo error) is less than 2%. When the
sample size n increases, the discrepancy quickly
shrinks. This illustrates that even when the LR statistic
has a complicated and nonpivotal distribution, using
parametric bootstrap can be effective and useful.

Theorem 2, given next, shows that the LR prediction
method, combined with bootstrap calibration, is as-
ymptotically correct for continuous prediction prob-
lems under general conditions. The theorem consists
of two parts: the first part establishes that the log-LR
statistic −2logΛn(Xn,Y) has a limit distribution as
n→∞. However, this limit distribution will some-
times not be chi-square as in Wilks’ theorem and may
even depend on one or more of the parameters. Nev-
ertheless, the second part of Theorem 2 establishes
that the bootstrap version of the log-LR statistic
−2logΛn(X∗

n,Y
∗) can capture the distribution of

−2logΛn(Xn,Y). Consequently, 1− α bootstrap-based
prediction regions (4) for Y will have coverage proba-
bilities that converge to the correct coverage level 1−
α as the sample size n increases.

Theorem 2. Suppose a random sample Xn of size n and a
predictand Y (independent of Xn) have a common density
f (·;u), and that the LR construction (3) is used with u �
(θ,u′) and uy � (θy,u′) having common parameters u′
(and real-valued parameters θ,θy that may differ). Then,
under mild regularity conditions (detailed in the online
supplementary material),

1.As n→∞,

−2logΛn(Xn,Y)→d −2 log f (Y;u0)
supθy

f (Y;θy,u′0)

[ ]
,

where u0 � (θ0,u′0) denotes the true value of the parameter
vector u.

2. The bootstrap provides an asymptotically consistent
estimator of the distribution of the log-LR statistic; that is,

sup
λ∈R

|Pr∗(−2logΛ∗
n ≤ λ) − Pr(−2logΛn ≤ λ) | →p 0,
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where Pr∗ is the bootstrap induced probability and
Λ∗

n ≡ Λn(X∗
n,Y

∗).
Remark 2. Similar to Remark 1, if Λn(Xn,y) is a unim-
odal function of y (with probability one or with proba-
bility approaching one as n→∞), then the signed
log-LR statistic converges as well

(−1)I[Y≤y0(Xn)][−2logΛn(Xn,Y)]

→d
2 log

f (Y;u0)
sup
θy

f (Y;θy,u′0)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, Y ≤m0,

−2 log f (Y;u0)
sup
θy

f (Y;θy,u′0)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, Y >m0:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
where m0 is the maximizer of f (y;u0)=supθy

f (y;θy,u′0)
over y. The bootstrap approximation for the signed
log-LR statistic is also valid asymptotically. The proof

is described in the online supplementary material
along with a proof of Theorem 2.

We use two examples to illustrate Theorem 2. In the
uniform example of Section 3, if θ0 > 0 denotes the true
parameter value (i.e., Y ~Unif(0,θ0)), then the limit dis-
tribution in Theorem 2(i) for the log-LR statistic is

−2logΛn(Xn,Y)→d −2 log Y
θ0

( )
, (11)

which has a χ2
2 distribution. This result can be alterna-

tively verified by using the LR in (10) to determine that

Λn(Xn,Y) � (X(n)=Y)n
[max(X(n)=Y,1)]n+1

� Y
X(n)

(X(n)=Y)n+1
[max(X(n)=Y,1)]n+1→

d
Unif(0, 1)

from which −2logΛn(Xn,Y)→d χ2
2 follows. Although

Λn(Xn,Y) is a pivotal quantity for any n ≥ 1 (so that
bootstrap calibration is exact by Theorem 1), Theorem

Figure 3. (Color online) Coverage Probabilities for Predicting a Gamma RandomVariable vs. the Sample Size n for the 90% and
95% One-Sided Prediction Bounds: Approximate Fiducial Prediction (AFP) (Chen and Ye 2017), Calibration Bootstrap (CB)
(Beran 1990), Direct-Bootstrap (DB) (Harris 1989), Likelihood Ratio Prediction ((7) and (8)); Plug-in (PL) Methods
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2 shows that the bootstrap also captures the limiting
distribution of the log-LR statistic χ2

2 in (11).
To consider a distribution with more than one pa-

rameter, we revisit the gamma distribution example
in this section. Using Theorem 2, the limit distribution
is

−2logΛn(Xn,Y)→d −2log f (Y; β0,α0)
sup
β

f (Y; β,α0)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� −2log Y

β0

( )α0

exp − Y
β0

+ α0

( )[ ]

� 2(Z − α0) − 2α0log(Z), (12)

where Z ≡ Y=β0 ~Gamma(α0, 1). Even though the log-
LR statistic (3) depends on the shape parameter α0 in
this example, a bootstrap approximation for the distri-
bution of the log-LR statistic is asymptotically correct
by Theorem 2. This is demonstrated numerically
through the coverage behavior of Figure 3.

In addition to the bootstrap (Theorem 2(ii)), the
limit distribution of the log-LR statistic in Theorem
2(i) (as well as that of the signed log-LR statistic ζn
from Remark 2) may also be used as an alternative ap-
proach to construct prediction intervals. That is, we
may use the 1− α quantile of the limit distribution in
Theorem 2(i) to replace the quantile λ1−α in (4) (corre-
sponding to the finite sampling distribution of the
log-LR statistic). For example, in the uniform predic-
tion example above, the limit distribution is χ2

2 from
(11) and an approximate 1− α prediction region for Y
would be {y : −2logΛn(xn,y) ≤ χ2

2,1−α}, which has as-
ymptotically correct coverage by Theorem 2(i). As an-
other example from the gamma prediction case, we
can use the 1−α quantile of the limit distribution in
(12) to replace λ1−α in (4). This limit distribution, how-
ever, depends on the unknown shape parameter α0 in
(12), which differs from the uniform case where the
log-LR statistic has a limit distribution in (11) that is
free of unknown parameters. However, in prediction
cases such as the gamma distribution, where the limit
distribution of the log-LR statistic from Theorem 2(i)
does depend on unknown parameters, we can still ap-
proximate and use the limit distribution by replacing
any unknown parameters with consistent estimators.
To illustrate with gamma predictions, we may esti-
mate the unknown shape parameter α0 in (12) with
the ML estimate α̂ from the data Xn � xn and compute
the 1−α quantile of the plug-in version of the limit
distribution 2(Z− α̂) − 2α̂log(Z). Such use of the limit
distribution of the log-ratio statistic (Theorem 2(i)),
possibly with plug-in estimation, can be computation-
ally simpler than parametric bootstrap and may have

advantages for large sample sizes or when the numer-
ical costs of repeated ML estimation (i.e., as in boot-
strap) are prohibitive.

5. How to Choose the Full Model
When u is a parameter vector, construction of the LR
statistic depends on which parameter component in u
is varied to create uy in a full model, where (u,uy)
again differ in exactly one component. Our recom-
mendation is to choose a parameter that is most read-
ily identifiable from a single observation. In other
words, we can envision maximizing f (y | u), the den-
sity of one observation, with respect to a single un-
known parameter of our choice, with all remaining
parameters fixed at arbitrary values; the parameter
that represents the simplest single maximization step
of f (y | u) corresponds to a good parameter choice in
the LR construction, and choosing such a parameter
can simplify computation. Under some one-to-one
reparameterization, if necessary, such a parameter is
often given by the mean or the median of the model
density f (y | u) that can naturally be identified through
a single observation Y. This approach is also sup-
ported by Theorem 2 where the limiting distribution
of the LR statistic is determined by a single-parameter
maximization. We provide some examples in the rest
of this section.

5.1. Normal Distribution
For Norm(µ,σ) with unknown µ,σ, consider maximiz-
ing the normal density f (y;µ,σ) of a single observation
Y with respect to one parameter while the other pa-
rameter is fixed. If choosing µ, then we can estimate µ
simply as µ̂y � y. However, if choosing σ, we have

σ̂
2
y � (y−µ)2, which is less simple. More technically,

the LR construction for the normal model then
eventually involves a complicated estimation of the
remaining parameter µ (from a full model sample
x1, : : : ,xn,y) as the maximizer of −2log |y−µ|
−nlog [∑n

i�1 (xi −µ)2], which can exhibit numerical
sensitivity in the value of y. We have seen in Section 3
that choosing the mean parameter µ gives a LR statis-
tic with a nice form and coverage properties, but
choosing σ results in a much less tractable LR statistic.

5.2. Gamma Distribution
For a gamma distribution with shape α and scale β,
we select the parameter that most easily maximizes a
single gamma density f (y;α,β) when the other param-
eter is fixed. Choosing β is simpler than choosing α be-
cause the maximizer of the gamma probability density
function (pdf) with respect to β is β̂ � α=y, whereas
choosing α does not yield a closed-form maximizer.
Also, choosing α leads to a more complicated LR

Tian, Nordman, and Meeker: Likelihood Ratio Based Prediction Intervals
72 INFORMS Journal on Data Science, 2022, vol. 1, no. 1, pp. 63–80, © 2022 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

52
.1

17
.1

04
.2

22
] o

n 
26

 O
ct

ob
er

 2
02

3,
 a

t 1
7:

01
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



statistic and a less tractable limit distribution, from
Theorem 2. Alternatively, to more closely align pa-
rameter choice in the gamma distribution with parame-
ter identification from one observation, we use another
parameterization (αβ,α) and choose the mean αβ (i.e.,
estimated as y analogously to the normal case). This
choice will produce the same LR statistic as choosing β
in the parameterization (β,α). Hence, choosing a pa-
rameter with the simplest stand-alone maximization
step in a parameterization and choosing a parameter
based on identifiability considerations (e.g., means) in a
second parameterization are related concepts.

5.3. Generalized Gamma Distribution
The (extended) generalized gamma distribution, using
the Farewell and Prentice (1977) parameterization (see
also section 4.13 of Meeker et al. 2022) has (on the log
scale) a location µ, a scale σ, and a shape parameter λ
with a pdf given by

f (y;µ,σ,λ) �
|λ |
σy

φlg[λω + log(λ−2);λ−2] if λ ≠ 0

1
σy

φnorm(ω) if λ � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
where y > 0, ω � [log(y) −µ]=σ, −∞ < µ <∞, −∞ <
λ <∞, σ > 0, φnorm(·) is the pdf of Norm(0, 1) and
φlg(z;κ) � exp[κz− exp(z)]=Γ(κ). When considering
the maximization of a single density f (y;µ,σ,λ) for
one of the three parameters (with others fixed), the

ML estimator of µ has the simplest form as µ̂ � log(y).
Hence, we choose µ to construct the full model. A
small simulation study was done to investigate the
coverage probability of one-sided prediction bounds.
Fixing the location parameter at µ � 0 and the scale
parameter at σ � 1 without loss of generality, we con-
sider four different levels for the shape parameter
λ � 0:5, 1, 1:5, 2. The Monte Carlo sample size was set
as n � 2,000; the bootstrap sample size was set as B �
2,000. The data sample sizes are n � 30,35, 40,45,50,
55,60, 70,80,90,100. Figure 4 shows the coverage
probabilities for the LR prediction method and for the
plug-in method (where the unknown parameters
are replaced with the ML estimates) versus the sample
size. We can see that the LR method has good coverage
probability and consistently outperforms the plug-in
method. Also, the coverage probability of the LR
method, if not close to the nominal confidence level, is
conservative. The plug-in method, however, is always
anticonservative in this simulation study.

6. Discrete Distributions
Prediction methods for discrete distributions are less
well developed when compared with those for contin-
uous distributions. Many methods (e.g., the
calibration-bootstrap method proposed by Beran
1990) that generally work in continuous settings are
not applicable for certain discrete data models. This
section presents three prediction applications based

Figure 4. (Color online) Coverage Probabilities of 95% Upper Bounds Using LR PredictionMethod (LR) and Naive Plug-in
Method (PL) vs. the Sample Size n
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on discrete distributions and shows that the LR pre-
diction method not only works for discrete distribu-
tions but also has performance comparable to existing
methods that were especially tailored to these particu-
lar discrete prediction problems. Because the LR pre-
diction method is a generally applicable method for
prediction, the good performance of the method
against specialized alternatives in these discrete cases
is also suggestive that the LR approach may apply
well in other prediction problems.

6.1. Binomial Distribution
We consider the prediction problem where there are
two independent binomial samples with the same
probability p. The initial sample X has a distribution
Binom(n,p), and the predictand Y has a distribution
Binom(m,p). Both n and m are known; and note here
that the data and predictand have related, though not
identical, distributions (unlike predictions in Sections
3–4 with continuous Y). The goal is to construct a pre-
diction interval for Y given observed data X � x.

Using the fact that the conditional distribution of X
given the sum X + Y does not depend on the parame-
ter p, Thatcher (1964) proposed a prediction method
based on the cumulative distribution function (cdf) of
the hypergeometric distribution. Faulkenberry (1973)
proposed a similar method using the conditional distri-
bution of Y given the sum X + Y, which is also free of
the parameter p. Nelson (1982) proposed a different ap-
proach using the asymptotic normality of an approxi-
mate pivotal statistic. However, numerical studies in
Wang (2008) and Krishnamoorthy and Peng (2011)
showed that Nelson’s method has poor coverage proba-
bility and proposed alternative prediction methods us-
ing asymptotic normality (e.g., based on inverting a
score-like statistic instead of a Wald-like statistic).

To construct prediction intervals using the LR pre-
diction method, the reduced model is that X and Y
have the same parameter p, whereas the full model al-
lows X and Y to have a different p in the construction
(3). The LR statistic is then

Λn,m(x, y) �
dbinom(x,n, p̂xy) × dbinom(y,m, p̂xy)
dbinom(x, n, p̂x) × dbinom(y,m, p̂y)

� (̂pxy)x+y(1 − p̂xy)n+m−x−y

(̂px)x(1 − p̂x)n−x(̂py)y(1 − p̂y)m−y ,

where dbinom is the binomial probability mass func-
tion (pmf), p̂x � x=n, p̂y � y=m, and p̂xy � (x+ y)=
(n+m). The asymptotic distribution of the log-LR sta-
tistic is −2logΛn,m (X,Y)→d χ2

1 as n→∞ and m→∞;
this theoretical result is explained further in Section 6.4
for discrete data. The prediction region is defined as

P1−α(x) � {y : −2logΛn,m(x,y) ≤ χ2
1,1−α}, (13)

which gives an approximate 1− α prediction in-
terval procedure that has, asymptotically, equal-tail
probabilities.

Because of the discrete nature of data here, we can
further refine the LR prediction method by making a
continuity correction at the extreme values x � 0 or x �
n and y � 0 or y � m. We first define x′ ≡ x+ 0:5Ix�0 −
0:5Ix�n and y′ ≡ y+ 0:5Iy�0 − 0:5Iy�m and further define
p̂′x ≡ x′=n, p̂′y ≡ y′=m and p̂′xy ≡ (x′ + y′)=(n+m). The
corrected LR statistic is then

Λ′
n,m(x,y) �

(̂p′xy)x
′+y′ (1− p̂′xy)n+m−x′−y′

(̂p′x)x′(1− p̂′x)n−x
′ (̂p′y)y′(1− p̂′y)m−y′ :

A numerical study was done to investigate the cov-
erage probability of the LR prediction methods, and
we also used the joint sampling prediction method as
a benchmark for comparison because of its good cov-
erage probability (Krishnamoorthy and Peng 2011).
The results in Figure 5 show that the original LR pre-
diction method can have poor coverage for small
sample sizes (e.g., n � 15) when p is near zero or one.
However, with the continuity correction, the cover-
age probability of the corrected LR prediction
method is comparable to that of the joint sampling
prediction method. Unlike the joint sampling predic-
tion method though, the LR prediction method is a
general approach, which applies outside binomial
prediction problems and has not been specifically
designed for this purpose. The numerical results
here aim to provide evidence that the LR prediction
method can be a generally effective procedure for
prediction.

6.2. Poisson Distribution
Suppose X ~ Poi(nλ) and Y ~ Poi(mλ), where n and m
are known positive integers and λ > 0 is unknown.
The goal is to construct prediction intervals for Y
based on data X � x. Similar to the binomial example,
one can construct prediction intervals using the
fact that the conditional distribution of X or Y given
X + Y is binomial, whereas Nelson (1982) and
Krishnamoorthy and Peng (2011) proposed alternative
methods using aWald-like approximate pivotal quantity.

To construct prediction intervals using the LR pre-
diction method, the reduced model for the LR statistic
(3) is that X and Y have the same λ parameter,
whereas for the full model, X and Y may not have the
same λ parameter. The LR statistic is given by

Λn,m(x, y) � dpois(x, nλ̂xy) × dpois(y,mλ̂xy)
dpois(x,nλ̂x) × dpois(y,mλ̂y)

� exp[−(n +m)λ̂xy](nλ̂xy)x(mλ̂xy)y
exp(−nλ̂x −mλ̂y)(nλ̂x)x(mλ̂y)y

,
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where λ̂xy � (x+ y)=(n+m), λ̂x � x=n, λ̂y � y=m, and
dpois is the Poisson pmf. The prediction interval can
be obtained using the same procedure in (13); see Sec-
tion 6.4 for justification. We can also refine the LR
prediction method with a continuity correction at the
extremes x � 0 or y � 0 by letting x′ ≡ x+ 0:5Ix�0 and

y′ ≡ y+ 0:5Iy�0. Then define λ̂
′
xy ≡ (x′ + y′)=(n+m),

λ̂
′
x ≡ x′=n, and λ̂

′
y ≡ y′=m so that the corrected LR sta-

tistic is

Λ′
n,m(x,y) �

exp
[
− (n+m)λ̂′

xy

]
(nλ̂′

xy)x
′(mλ̂

′
xy)y

′

exp(−nλ̂′
x −mλ̂

′
y)(nλ̂

′
x)x

′(mλ̂
′
y)y

′ :

A numerical study was done to investigate the cov-
erage probability of the proposed methods. Similar to
the binomial example, the joint sampling method
from Krishnamoorthy and Peng (2011) was used for
comparison because of its good coverage properties.
Figure 6 shows that the continuity correction improves

Figure 5. (Color online) Coverage Probabilities of 95% Lower and Upper Prediction Bounds Using Corrected LR Prediction
Method (c-LR), Joint Sample Prediction Method (JS), and LR PredictionMethod (LR) as a Function of p
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the poor coverage of the LR prediction method when λ
is small. The coverage probability of the corrected LR
prediction method is comparable to that of the
joint sampling method. In the bottom-right subplot of
Figure 6, the corrected method has better performance
than the joint sampling method. Again, unlike the joint
sampling prediction method, the LR prediction method
is general and not specifically designed for Poisson
predictions.

6.3. Predicting the Number of Future Events
Suppose n units start service at time t � 0 and that the
lifetime of each unit has a continuous parametric dis-
tribution with cdf F(t;u) and density f (t;u). At a data
freeze date, the unfailed units have accrued tc time
units of service (e.g., hours or months in service),
whereas rn failures have occurred and the failure
times (all less than tc) are known. A prediction interval
for the number of failures that will occur in the

Figure 6. (Color online) Coverage Probabilities of 95% Poisson Lower and Upper Prediction Bounds Using the Corrected LR
PredictionMethod (c-LR), Joint Sample PredictionMethod (JS), and LR PredictionMethod (LR) as a Function of λ
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interval (tc, tw] (tw > tc, ) is required. This problem is
called within sample prediction because the predic-
tand and the observed Type-I censored data are from
the same sample. The within-sample prediction and
related problems have been studied in Escobar and
Meeker (1999) using a calibration method. Similar
problems have been studied in Nelson (2000) and
Nordman and Meeker (2002) based on an LR statistic
without calibration. Tian et al. (2021) showed that
the simple plug-in method (where ML estimates re-
place the unknown parameters in the distribution of
the predictand and the α=2 and 1− α=2 quantiles of
the resulting distribution define an approximate 1− α
prediction interval procedure) is not asymptotically
correct and proposed three alternative methods, based
on parametric bootstrap samples, that are asymptoti-
cally correct. In this paper, we propose another solu-
tion based on an LR statistic that does not require
bootstrap samples.

Suppose that a random sample T1, : : : ,Tn ~ F(t;u) is
observed under Type-I censoring with rn �∑n

i�1 I(Ti ≤ tc) censored units (failures). The predictand is
the number Y �∑n

i�1 I(tc ≤ Ti ≤ tw) of events occurring
in the future interval (tc, tw]. For the n− rn units sur-
viving at tc, the conditional probability of each unit
to fail in (tc, tw], given that the unit survived to tc, is
given by

p ≡ Pr(tc < T1 ≤ tw | T1 > tc): (14)

6.3.1. Implementing the LR Prediction Method. To im-
plement the LR prediction method, we specify a re-
duced model versus full model comparison in order
to construct an LR statistic analogous to (3). Such
models will be formulated in terms of the value (14)
of the conditional probability p for the interval (tc, tw],
recalling that the predictand Y is the number of fail-
ures (out of n− rn possible) that will occur in this in-
terval. For the reduced model, we assume that the
time-to-failure process is governed by F(t;u) in the in-
terval (0, tw] and that the conditional probability (14)
of a failure in (tc, tw] is

p � F(tw;u) − F(tc;u)
1− F(tc;u) :

The likelihood function for the reduced model is

L1(u; tn, y) � n − rn
y

( )∏r
i�1

f (t(i); u)[F(tw;u)

−F(tc;u)]y[1 − F(tw; u)]n−y−rn : (15)

For the full model, F(t;u) will still be the time-to-
failure distribution in the interval (0, tc] but not (tc, tw],
so that the value (14) of the conditional probability p ∈

(0, 1] becomes one additional parameter. The likeli-
hood function for the full model is

L2(u,p; tn,y) � n− rn
y

( )∏r
i�1

f (t(i);u)py(1− p)n−y−rn : (16)

By maximizing the likelihood functions in (15) and
(16), the LR statistic is

Λn(tn, y) � supu L1(u; tn, y)
supu,p L2(u, p; tn, y)

:

The asymptotic (as n→∞) distribution of −2logΛn

(Tn,Y) is χ2
1, because the full model has one more

parameter than the reduced model and standard
regularity conditions hold (see also Section 6.4). An
approximate 1− α prediction region is defined as

{y : −2logΛn(tn,y) ≤ χ2
1,1−α}, (17)

where χ2
1,1−α is the 1− α quantile of the χ2

1 distribution.
Because Λn(tn,y) is a unimodal function of y, the pre-
diction region in (17) provides the desired approxi-
mate prediction interval.

6.3.2. A Simulation Study. A simulation study was
done to examine the coverage probability of the LR
prediction method for the within-sample prediction
problem. We simulated Type-I censored data with
censoring time tc using the Weibull distribution

F(t; β, η) � 1 − exp − t
η

( )β[ ]
, t > 0:

Then we constructed prediction intervals for the
number of failures in the future time interval (tc, tw] using
several methods: plug-in, LR, direct-bootstrap, GPQ-
bootstrap, and calibration-bootstrap methods. As men-
tioned earlier, the plug-in method, which replaces the
unknown parameter u � (β,η) with a consistent estimate
ûn, fails to provide asymptotically correct prediction inter-
vals (Tian et al. 2021). The last threemethods are fromTian
et al. (2021) andhave been established to be asymptotically
correct. The factors for this simulation study include

1. The probability that a unit fails before the censor-
ing time tc: pf1 � F(tc;β,η).

2. The expected number of failures at the censoring
time tc: E(r) � npf1.

3. The probability of a unit fails in the future time in-
terval (tc, tw]: d ≡ pf2 − pf1, where pf2 � F(tw;β,η).

4. TheWeibull shape parameter: β.
We set the Weibull scale parameter as η � 1; for other

factors, we use the following factor levels: (i)
pf1 � 0:05, 0:1, 0:2; (ii) E(r) � 5, 15, 25, 35, 45; (iii) d � 0:1,
0:2; (iv) β � 0:8, 1, 2, 4. For the methods that involve boot-
strap simulation, the bootstrap sample size is B � 5,000.
The unconditional coverage probability is computed by
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averaging n � 5,000 conditional coverage probabilities
(i.e., the Monte Carlo sample size is n � 5,000).

Figure 7 compares the coverage probabilities for the
plug-in, direct-bootstrap, GPQ-bootstrap, calibration-
bootstrap, and LR prediction methods when d � 0.1
and β � 2. We can see that the LR, direct-bootstrap,
and GPQ-bootstrap prediction method have similar
coverage probabilities for within-sample prediction,
where the latter two methods rely on bootstrap and
the LR interval does not. That is, the LR prediction
method based on chi-square calibration has the ad-
vantage of being computationally easier than the
direct-bootstrap or GPQ-bootstrap methods for this
prediction problem, while providing comparable per-
formance. This pattern is consistent in the simulation
results of other factor combinations (given in the on-
line supplementary material). Although we have con-
sidered the LR prediction method for within-sample
prediction for illustration and comparison, the LR pre-
diction method is again general and not specific to
within-sample prediction.

6.4. Validating the Asymptotic Distribution
In Sections 6.1–6.3, we construct the prediction inter-
vals for certain discrete predictands Y using the fact
that the log-LR statistic has a chi-square limit with one

degree of freedom in these prediction problems. This
section provides justification for these asymptotic
results.

The prediction problems in Sections 6.1 and 6.2 are
similar in that the predictand Y (as a Binom(m,p) or
Pois(mλ) random variable) can be seen to have the
same distribution as a sum of iid variables in both
cases (i.e., m iid Bern(p) or Pois(λ) random variables).
As a consequence, the log-LR statistic from Section
6.1, constructed on the basis of using X ~ Binom(n,p)
to predict Y ~ Binom(m,p), is the same as the log-LR
statistic given in Theorem 3 based on the X1, : : : ,Xn
and Y1, : : : ,Ym being iid Binom(1,p). A similar state-
ment holds for the Poisson prediction problem from
Section 6.2. Hence, the chi-square limit for the log-LR
statistic in Sections 6.1 and 6.2 follows from Theorem
3 below. We provide Theorem 3 as a general result
with standard regularity conditions given in the
online supplementary material. For the prediction
problem in Section 6.3, the proof is similar to that of
Theorem 3. See Section A.3 of the online supplemen-
tary material for details.

Theorem 3. Suppose X1, : : : ,Xn are iid random vari-
ables with common density f (·;θ1) and, independently,
Y1, : : : ,Ym are iid random variables with a common density
f (·;θ2), where θ1,θ2 ∈Θ denote real-valued parameters.

Figure 7. (Color online) Coverage Probabilities vs. ExpectedNumber of Events (Failures) for the Direct-Bootstrap (DB), GPQ-
Bootstrap (GPQ), Calibration-Bootstrap (CB), LR, and Plug-in (PL) MethodsWhen d � 0.1 and β � 2
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Suppose further that mild regularity conditions hold (as de-
scribed in Section A.2 of the online supplementary material).
Then, if θ1 � θ2, the log-LR statistic for testing θ1 � θ2
has a limiting chi-square distribution with one degree of
freedom as n,m→∞; that is,

−2log supθ[
∏n

i�1 f (xi;θ)∏m
j�1 f (yi;θ)]

[supθ1

∏n
i�1 f (xi;θ1)][supθ2

∏m
i�1 f (yi;θ2)]

{ }
→d χ2

1:

7. Comparison with the Predictive
Likelihood Methods

The predictive likelihood method, introduced in Sec-
tion 1.2, is an important prediction method. Although
having similar-sounding names, the LR prediction
method for prediction is different than the predictive
likelihood method. The LR prediction method may be
classified as a type of test-based method (Section 1.2)
for prediction intervals that also share connections to
approximate pivotal quantities (though technically,
the LR statistic may not always be pivotal, even
asymptotically, as shown in Section 4, although its
limiting distribution may then be estimated by boot-
strap). This section describes two specific types of
predictive likelihood methods. However, these
predictive likelihood methods can fail to provide
desirable prediction intervals in some prediction
problems, where the LR prediction method emerges
as having better properties.

7.1. Profile Predictive Likelihood Method
The profile predictive likelihood L̃p(xn,y) function for
y given data values Xn � xn is obtained by maximizing
out the parameters in the joint likelihood function,

L̃p(xn,y) ≡ sup
u

f (y;u)∏n
i�1

f (xi;u):

Then, the predictive likelihood is normalized to give a
predictive density function for Y,

fp(y; xn) � L̃p(xn, y)∫ ∞

−∞
L̃p(xn, y)dy

,

which is viewed as univariate distribution depending
on Xn � xn for calibrating prediction intervals for Y.
Note that L̃(xn,y) is the numerator of the LR statistic
in (3) so that the process of obtaining the profile pre-
dictive likelihood may be viewed as a step in con-
structing LR-based prediction intervals. However, in
some prediction problems, discussed next, the profile
predictive likelihood does not lead to an exact predic-
tion interval for the predictand Y when the LR predic-
tion method does.

To illustrate this, consider a sample Xn from a nor-
mal distribution, and consider constructing prediction

intervals for a future random variable Y from the
same distribution. From Lejeune and Faulkenberry
(1982), the profile predictive likelihood for Y given
data Xn � xn (i.e., the distribution to be used for pre-
dicting Y, as implied by the profile predictive likeli-
hood density) is given by the distribution of

xn + s

��������
n2 − 1
n2

√
T,

where xn is the sample mean, s2 is the sample vari-
ance, and T is an independent random variable
having a t-distribution with n degrees of freedom.
However, in order for the profile predictive likelihood
method to produce an exact prediction interval for Y,
the degrees of freedom for the t-distribution of T
above should be n – 1 instead of n (see (2)). Conse-
quently, the profile predictive likelihood method is
not exact in this example. The LR prediction method,
however, has exact coverage for this prediction prob-
lem, as shown in Section 3.

7.2. Approximate Predictive Likelihood Method
Davison (1986) proposed an approximate predictive
likelihood method that involves maximizing likeli-
hood functions. Let û be the maximizer of L(u;xn),
which is the likelihood function for data xn alone and
ûy be the maximizer of the joint likelihood function
for Xn and Y, say L(u;xn,y). Then the approximate
predictive likelihood is defined as

L̃(xn,y) � L(̂uy;xn,y) |J1(̂u)|1=2
L(̂u;xn) |J2(̂uy)|1=2

,

where J1(u) is the minus Hessian of logL(u;xn), J2(u),
is the minus Hessian of logL(u;xn,y), and | · | is the
determinant.

Suppose that Xn and Y are mutually independent
with a common exponential distribution. From Davi-
son (1986), the approximate predictive likelihood for
Y is

L̃(xn,y) ∝
(∑n
i�1

xi

)n−1(∑n
i�1

xi + y

)−n
:

Then prediction intervals for Y are computed from
density on y ∈ (0,∞), which is obtained by normaliz-
ing L̃(xn,y) with respect to y. Moreover, as noted by
Hall et al. (1999), the approximate predictive likeli-
hood method is not exact here and has a coverage
probability error of order O(1=n). For the LR predic-
tion method, however, the LR statistic (3) is

Λn(xn,y) � nxn + y
xn

( )n nxn + y
y

,

which, in this case, is a function of a pivotal quantity
Y=Xn. This implies that the LR prediction method,
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based on bootstrap calibration, for example, has exact
coverage probability, according to Theorem 1 (see also
Section 3).

8. Concluding Remarks
In this paper, we propose a general prediction proce-
dure based on inverting an LR test. The construction
of the LR test requires enlarging the parameter space
to create a quasi full model. To compute prediction in-
tervals, we need to find the distribution of the LR sta-
tistic. Apart from finding the distribution of the LR
statistic analytically when possible, we may use chi-
square distribution to calibrate its distribution when
Wilks’ theorem is applicable; we have demonstrated
this for predictions involving discrete random varia-
bles. Furthermore, we can use a parametric bootstrap
as a general approach to approximate the distribution
of the LR statistic, particularly in those cases where
Wilks’ theorem does not apply. The proposed method
will generally discover a pivotal quantity if one exists.
In such cases, the procedure will have exact coverage
probability. When a pivotal quantity is not available,
we have shown that the LR method is asymptotically
correct. When the LR statistic is unimodal (as a func-
tion of y), then the proposed prediction region will
correspond to an interval. Relatedly, when the LR sta-
tistic is again unimodal, we provide an approach in
Section 2.2 to compute one-sided bounds in a compu-
tationally efficient manner (which is related to, but
simpler than, working directly from the two-sided in-
tervals in Section 2.1 in determining the endpoint for
a one-sided bound). Although not encountered in any
work for this paper, when the LR statistic is not unim-
odal, the prediction regions in Section 2.1 are still
valid; but these regions may be a union of several dis-
connected intervals, and the algorithm of Section 2.2
for finding one-sided bounds will not be applicable;
one-sided bounds then need to be determined from
the prediction regions of Section 2.1.

We see several potential future research topics and
list three: (a) We only consider scalar random varia-
bles for prediction in this paper, but the proposed
LR prediction framework could be extended to con-
struct two-dimensional (or even higher dimensional)
prediction regions using the same method as in (4).
The main change is that Y in the joint likelihood
function L(Xn,Y) becomes a random vector. (b) The
proposed prediction framework could be applied to
problems involving complicated data with regres-
sors. Examples include data with different types of
censoring, mixed linear models, and generalized lin-
ear model structures. (c) The LR prediction method
could also be extended to dependent data. We dis-
cuss an example involving dependence in Section 6.3.

But in future research, we might apply the LR predic-
tion method to problems with nontrivial dependence
structure, such as time series or Markov Random
Fields.

Acknowledgments
The authors thank the anonymous reviewers and the edi-
tor, Galit Shmueli, who provided comments and sugges-
tions that improved their paper.

References
Atwood CL (1984) Approximate tolerance intervals, based on maxi-

mum likelihood estimates. J. Amer. Statist. Assoc. 79(386):459–465.
Barndorff-Nielsen OE, Cox DR (1996) Prediction and asymptotics.

Bernoulli 2(4):319–340.
Beran R (1990) Calibrating prediction regions. J. Amer. Statist. Assoc.

85(411):715–723.
Bjørnstad JF (1990) Predictive likelihood: A review. Statist. Sci. 5(2):

262–265.
Chen P, Ye Z-S (2017) Approximate statistical limits for a gamma

distribution. J. Quality Tech. 49(1):64–77.
Cox DR (1975) Prediction intervals and empirical Bayes confidence

intervals. J. Appl. Probab. 12(S1):47–55.
Cox DR, Hinkley DV (1979) Theoretical Statistics (CRC Press, Boca

Raton, FL).
Davison AC (1986) Approximate predictive likelihood. Biometrika

73(2):323–332.
Escobar LA, Meeker WQ (1999) Statistical prediction based on cen-

sored life data. Technometrics 41(2):113–124.
Farewell VT, Prentice RL (1977) A study of distributional shape in

life testing. Technometrics 19(1):69–75.
Faulkenberry GD (1973) A method of obtaining prediction intervals.

J. Amer. Statist. Assoc. 68(342):433–435.
Fonseca G, Giummolè F, Vidoni P (2012) Calibrating predictive dis-

tributions. J. Statist. Comput. Simulation 84(2):373–383.
Hall P, Peng L, Tajvidi N (1999) On prediction intervals based on pre-

dictive likelihood or bootstrap methods. Biometrika 86(4):871–880.
Harris IR (1989) Predictive fit for natural exponential families. Bio-

metrika 76(4):675–684.
Krishnamoorthy K, Peng J (2011) Improved closed-form prediction

intervals for binomial and Poisson distributions. J. Statist. Plan-
ning Inference 141(5):1709–1718.

Lawless JF, Fredette M (2005) Frequentist prediction intervals and
predictive distributions. Biometrika 92(3):529–542.

Lejeune M, Faulkenberry GD (1982) A simple predictive density
function. J. Amer. Statist. Assoc. 77(379):654–657.

Meeker WQ, Escobar LA, Pascual FG (2022) Statistical Methods for
Reliability Data, 2nd ed. (Wiley, New York).

Nelson W (1982) Applied Life Data Analysis (Wiley, New York).
Nelson W (2000) Weibull prediction of a future number of failures.

Quality Reliability Engrg. Internat. 16(1):23–26.
Nordman DJ, Meeker WQ (2002) Weibull prediction intervals for a

future number of failures. Technometrics 44(1):15–23.
Thatcher AR (1964) Relationships between Bayesian and confidence

limits for predictions. J. Roy. Statist. Soc. B 26(2):176–192.
Tian Q, Meng F, Nordman D, Meeker W (2021) Predicting the num-

ber of future events. J. Amer. Statist. Assoc., ePub ahead of print
January 14, https://doi.org/10.1080/01621459.2020.1850461.

Wang H (2008) Coverage probability of prediction intervals for dis-
crete random variables. Comput. Statist. Data Anal. 53(1):17–26.

Wilks SS (1938) The large-sample distribution of the likelihood ratio
for testing composite hypotheses. Ann. Math. Statist. 9(1):60–62.

Tian, Nordman, and Meeker: Likelihood Ratio Based Prediction Intervals
80 INFORMS Journal on Data Science, 2022, vol. 1, no. 1, pp. 63–80, © 2022 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

52
.1

17
.1

04
.2

22
] o

n 
26

 O
ct

ob
er

 2
02

3,
 a

t 1
7:

01
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 

https://doi.org/10.1080/01621459.2020.1850461

	s1
	s1A
	s1B
	s1C
	s1D
	s2
	s2A
	s2A1
	s2A2
	s2B
	s3
	s3A
	s3B
	s3C
	s3D
	s3E
	s4
	s4A
	s5
	s5A
	s5B
	s5C
	s6
	s6A
	s6B
	s6C
	s6C1
	s6C2
	s6D
	s7
	s7A
	s7B
	s8



