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Methods to Compute Prediction Intervals:
A Review and New Results
Qinglong Tian, Daniel J. Nordman and William Q. Meeker

Abstract. The purpose of this paper is to review both classic and modern
methods for constructing prediction intervals. We focus, primarily, on model-
based non-Bayesian methods for the prediction of a scalar random variable,
but we also include Bayesian methods with objective prior distributions. Our
review of non-Bayesian methods follows two lines: general methods based
on (approximate) pivotal quantities and methods based on non-Bayesian pre-
dictive distributions. The connection between these two types of methods is
described for distributions in the (log-)location-scale family. We also discuss
extending the general prediction methods to data with complicated depen-
dence structures as well as some nonparametric prediction methods (e.g.,
conformal prediction).

Key words and phrases: Bootstrap, calibration, coverage probability, pre-
diction interval, predictive distribution.

1. INTRODUCTION

1.1 Prediction: History and Notation

While most statistics textbooks and courses emphasize
the explanatory and descriptive roles of statistics, the topic
of statistical prediction often receives less attention, de-
spite its practical importance, as noted in recent commen-
taries (cf. Shmueli, 2010, and Harville, 2014). The goal of
this paper is to review important prediction interval meth-
ods and show some interesting connections. We start with
some history of statistical prediction.

1.1.1 Bayesian prediction. Bayesian prediction is ac-
complished via the Bayesian predictive distribution,
which is a conditional distribution of future random vari-
ables given the observed data. When the future random
variable Y is conditionally independent of the sample Xn

given θ , the Bayesian predictive distribution, in the form
of probability density function (pdf), is computed as

(1) p(y|xn) =
∫

p(y|θ)p(θ |xn) dθ,

where p(y|θ) is the pdf of Y conditional on θ and p(θ |xn)

is the posterior distribution of θ given the realized value
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xn of the random data Xn. Similar to a credible interval, a
100(1−α)% Bayesian prediction interval can be obtained
from the α/2 and 1 − α/2 quantiles of the Bayesian pre-
dictive distribution.

Bayesian prediction can be traced back to Laplace’s
1774 Memoir which contains a derivation of the Bayesian
predictive distribution for a binomial random variable
(cf. Stigler, 1986). The early work of de Finetti (e.g.,
de Finetti, 1937) is a cornerstone of Bayesian statistics
wherein the importance of the Bayesian predictive distri-
bution under de Finetti’s subjective viewpoint of probabil-
ity is emphasized. Geisser (1993) states that “The com-
pletely observabilistic view was brought particularly to
the attention of British and American statisticians with
the translation into English of the book of probability
authored by de Finetti (1975),” where the “completely
observabilistic view” refers to the principle of assigning
probability only to observable events. Fortini and Petrone
(2014) provide a review of the Bayesian predictive distri-
bution, noting that “In the predictive approach (also re-
ferred to as the generative model), the uncertainty is di-
rectly described through the predictive distributions.”

During the 1960s and 1970s, more work was done
to apply Bayesian prediction methods. For example,
Guttman and Tiao, 1964 use a Bayesian predictive dis-
tribution to solve “best population problems,” while
Thatcher (1964) revisits the binomial prediction problem
considered by Laplace and compares Bayesian and non-
Bayesian prediction methods. Aitchison and Dunsmore
(1975) and Geisser (1993) are books that describe meth-
ods for Bayesian prediction.
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Although Bayesian statistical methods are not con-
strained to specific models and distributions, they would
wait for the rediscovery of MCMC sampling methods in
the late 1980s to take advantage of that generality be-
yond special distributions that have conjugate prior dis-
tributions, such as distributions in the natural exponential
family (e.g., the normal, binomial, and Poisson distribu-
tions). Also, the large increase in computing power over
past decades and computer software like Stan have facil-
itated the application of Bayesian methods to more com-
plicated prediction problems.

1.1.2 Non-Bayesian prediction. Similar to the confi-
dence interval for parameters and functions of parameters,
prediction intervals provide a natural approach for quan-
tifying prediction uncertainty. Let Xn be the sample and
Y be the future random variable. An exact 100(1 − α)%
prediction interval method for Y , denoted by PI(Xn), sat-
isfies Pr θ [Y ∈ PI(Xn)] = 1 − α, where θ contains the
parameters that index the joint distribution of (Xn, Y ),
and 1 − α is called the nominal confidence level be-
cause not all prediction interval methods are exact. If
Pr θ [Y ∈ PI(Xn)] ≥ 1 − α the procedure is said to be con-
servative. If Pr θ [Y ∈ PI(Xn)] → 1−α as n → ∞, we say
the method is asymptotically correct. It is worth noting
that the terminology is different in some literature (espe-
cially in nonparametric literature), where the term “exact”
is used to indicate being conservative.

In one of the earliest works on non-Bayesian predic-
tion, Fisher (1935) uses a fiducial method to construct
a prediction interval for a new observation and a future
sample mean from a normal distribution, given a previ-
ous sample from the same distribution. Around the same
time, Baker (1935) considers predicting a future sample
mean and implicitly provides the correct frequentist in-
terpretation for Fisher’s interval. In a paper describing
sampling sizes for setting tolerance limits, Wilks (1941)
also gives Fisher’s formula and refers to it as limits that
will “. . . include on the average a proportion a of the uni-
verse between them. . . ,” which would later be called a β-
expectation tolerance interval (equivalent to a prediction
interval).

The first use of the term “prediction interval” seems
to have come somewhat later. Using a frequentist ap-
proach, Proschan (1953) derives the same interval as
Fisher and writes “such an interval might be called more
appropriately a prediction interval, since the term ‘confi-
dence interval’ generally refers to population parameters.”
Thatcher (1964) investigates binomial distribution predic-
tion but used “confidence limit for the prediction” to refer
to the prediction interval. As documented in Patel (1989),
starting in the late 1960s, numerous papers began appear-
ing in engineering and applied statistics journals present-
ing methods for many specific prediction problems and
using the term “prediction interval.”

In the following decades, statisticians began to develop
general methods to construct prediction intervals. These
include methods based on pivotal quantities, fiducial dis-
tributions, and non-Bayesian predictive distributions. Re-
cent developments with these approaches often involve
resampling and other simulation-based approximations.
These general methods will be described and illustrated
in the rest of this paper.

1.2 Overview

In this paper, we focus on constructing prediction inter-
vals for problems where the predictand Y is a scalar and
a parametric model (with unknown parameters) is used
to describe the distributions of Y and the data Xn. We
mainly consider the cases where Xn and Y are generated
through a random sampling process or a slight variant of
it. We describe general non-Bayesian methods for predic-
tion that have been proposed in this setting. We view pre-
diction and prediction interval methods from a frequen-
tist perspective where methods are evaluated, primarily,
on the basis of coverage probability, relative to a spec-
ified nominal confidence level. Although we assess pre-
diction methods using frequentist criteria, our review in-
cludes Bayesian methods with noninformative (or objec-
tive) prior distributions. In fact, Bayesian methods with
noninformative prior distributions provide an important
means of defining prediction methods for both compli-
cated and simple statistical models. Such Bayesian-based
methods have been shown to have good frequentist prop-
erties (i.e., coverage probability close to nominal; e.g.,
Hulting and Harville, 1991, Harville and Carriquiry, 1992,
and Section 5 of this paper).

The remainder of this paper is organized as follows.
Section 2 describes methods to construct a prediction in-
terval based on pivot-type relations. Section 3 discusses
the concept of a (non-Bayesian) predictive distribution as
an alternative but equivalent approach to prediction inter-
vals, and Section 4 outlines several methods to construct
predictive distributions. Section 5 applies some predic-
tion methods to the (log-)location-scale distribution fam-
ily and provides new results on connections among var-
ious prediction methods. Section 6 describes how to ap-
ply general prediction methods to other continuous distri-
butions and provides two illustrative examples. Section 7
describes several general methods that can be applied to
construct prediction intervals for discrete distributions.
While Sections 2–7 primarily focus on independent data
or data with a simple dependence structure, Section 8 dis-
cusses extensions involving prediction methods when Y

and Xn have a complicated dependence structure. Sec-
tion 9 discusses several model-free prediction methods.
Section 10 provides some concluding remarks.
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2. PREDICTION INTERVAL METHODS

2.1 Pivotal Methods

Cox (1975) describes the pivotal prediction method,
where the main idea is to find a scalar quantity q(Xn, Y )

that does not depend on any parameters. Then the 1 − α

prediction set of Y is given by

(2)
{
y : q(xn, y) ≤ qn,1−α

}
,

where qn,1−α is the 1 − α quantile of q(Xn, Y ). If
q(xn, y) is a monotone function of y, the prediction re-
gion (2) becomes a one-sided prediction bound. When
q(Xn, Y ) is continuous, the pivotal prediction method is
exact because Prθ [q(Xn, Y ) ≤ qn,1−α] = 1 − α for any
α ∈ (0,1). The rest of this section describes two special
types of pivotal methods.

2.1.1 Inverting a hypothesis test. Cox (1975) suggests
a prediction method based on inverting a hypothesis test.
Suppose Xn ∼ f (x; θ) and that Y ∼ f (y; θ†) is indepen-
dent of Xn. Let wα be a size α critical region for a similar-
ity test θ = θ†; that is, Pr θ=θ†[(Xn, Y ) ∈ wα] = α, where
Pr θ=θ†(·) denotes any probability function that belongs
to the subset {Pr(θ ,θ†) : θ = θ†}. Then a 1 − α prediction
region is defined as {y : (xn, y) /∈ wα}.

2.1.2 Using the probability integral transform. If
T (Xn) is a scalar statistic with a continuous cumula-
tive distribution function (cdf) F(·; θ), then F [T (Xn); θ ]
has a Uniform(0,1) distribution where F(·; θ) is the cdf
of T (Xn). The pivotal cdf method uses the probabil-
ity integral transform to compute confidence intervals
for a scalar parameter (e.g., Casella and Berger, 1990,
Chapter 9). When F(·; θ) is a monotone function of
θ , a 1 − α equal-sided confidence interval is given by
{θ : α/2 ≤ F [T (Xn; θ)] ≤ 1 − α/2}.

The pivotal cdf method can be extended to define
prediction interval methods. Let T (Xn) be a statistic
from data Xn and R(Xn, Y ) be a statistic from both
the data and the predictand. When the conditional cdf
of T (Xn) given R(Xn, Y ), say GT |R[t |R(xn, y)], does
not depend on any parameters and is continuous, then
GT |R[T (Xn)|R(Xn, Y )] has a Uniform(0,1) distribution.
If GT |R[t |R(xn, y)] is a nonincreasing function of y, then
1 − α lower and upper prediction bounds are defined as

Y˜1−α = inf
{
y : GT |R

[
T (xn)|R(xn, y)

]
< 1 − α

}
,

Ỹ1−α = sup
{
y : GT |R

[
T (xn)|R(xn, y)

]
> α

}
.

(3)

Because GT |R[T (Xn)|R(Xn, Y )] ∼ Uniform(0,1), we
have Pr(Y ≥ Y˜1−α) = Pr(Y ≤ Ỹ1−α) = 1 − α. When
GT |R[t |R(xn;y)] is nondecreasing in y, then

Y˜1−α = inf
{
y : GT |R

[
T (xn)|R(xn, y)

]
> α

}
,

Ỹ1−α = sup
{
y : GT |R

[
T (xn)|R(xn, y)

]
< 1 − α

}
.

Similar, but conservative, prediction methods can also be
formulated with discrete cdf’s. Section 7.1.1 describes
such applications to discrete distributions with a scalar pa-
rameter.

2.2 Approximate Pivotal Methods

Suppose q(Xn, Y ) (with cdf Qn(·; θ)) is a quantity that
converges in distribution to a pivotal quantity (with cdf
Q(·)). In the absence of a pivotal quantity, the approxi-
mate pivotal quantity q(Xn, Y ) can also be used to con-
struct a prediction interval.

Because G(Y |Xn; θ) is Uniform(0,1) distributed when
Y given Xn is continuous with conditional cdf G(·|Xn; θ),
an approximate pivotal quantity that is available in most
cases is Un ≡ G(Y |Xn; θ̂n), which converges in distri-
bution to Uniform(0,1) if θ̂n is a consistent estimator of
θ , usually the maximum likelihood (ML) estimator. Let-
ting un,1−α be the 1 − α quantile of Un, we have 1 −
α = Pr θ (Un ≤ un,1−α) = Pr θ [Y ≤ G−1(un,1−α|Xn; θ̂n)],
where G−1(·|Xn; θ) is the quantile function of Y given
Xn. Because un,1−α often depends on the unknown pa-
rameter θ , an estimate of un,1−α can be used instead.
The rest of this section describes three ways to estimate
un,1−α .

2.2.1 The plug-in method. The plug-in method, also
known as the naive or estimative method, is to use 1 − α

(i.e., the 1 − α quantile of the Uniform(0,1) distribu-
tion) to replace un,1−α . The plug-in 1 − α upper predic-
tion bound is defined as {y : y ≤ y1−α(̂θn,Xn)}, where
y1−α(̂θn,Xn) ≡ inf{y : G(y|Xn; θ̂n) ≥ 1 − α}. The 1 − α

lower bound can be defined as {y : y ≥ yα(̂θn,Xn)}. Op-
erationally, the plug-in method replaces the unknown pa-
rameters θ with a consistent estimator θ̂n in the quantile
y1−α(θ ,Xn) ≡ inf{y : G(y|Xn; θ) ≥ 1 − α}. The cover-
age probability of the plug-in method is typically differ-
ent from the nominal confidence level because the sam-
pling error in θ̂n is ignored. Under certain regularity con-
ditions, the error of the coverage probability of the plug-in
method is of order O(1/n) (cf. Cox, 1975, Beran, 1990,
Hall, Peng and Tajvidi, 1999).

2.2.2 Calibration-bootstrap method. To reduce the
plug-in coverage error, Beran (1990) proposes the calibra-
tion-bootstrap method. Instead of using 1 − α to estimate
un,1−α , a bootstrap re-creation of this quantile is used.
The cdf of Un = G(Y |Xn; θ̂n) is denoted by Hn(·; θ),
and H−1

n (1 − α; θ̂n) is used to estimate un,1−α , where
H−1

n (·; θ) is the quantile function of Un. Then the 1 − α

upper prediction bound using the calibration-bootstrap
method is given as y

H−1
n (1−α;̂θn)

(̂θn) = inf{y : G(y; θ̂n) ≥
H−1

n (1 − α; θ̂n)}. When a closed-form expression for
Hn(·; ·) is not available, the bootstrap method can be used
to approximate H−1

n (1 − α; θ̂n). The bootstrap procedure
is as follows:
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1. Generate a bootstrap sample x∗
n from the cdf F(·; θ̂n).

2. Compute a bootstrap estimate θ̂
∗
n of θ using the boot-

strap sample x∗
n.

3. Generate y∗, which is the bootstrap version of Y , from
the cdf G(·|x∗

n; θ̂n).
4. Compute u∗ = G(y∗|x∗

n; θ̂∗
n).

5. Repeat the above steps B times to obtain a collec-
tion {u∗

1, . . . , u
∗
B} and define ũ1−α as the 1 − α sample

quantile of these values.
6. The 1 − α upper calibration prediction bound is

G−1(ũ1−α|xn; θ̂n).

Beran (1990) proves that, under regularity conditions, the
error of coverage probability of the calibration-bootstrap
method is of order O(1/n2), which is faster than the plug-
in method rate O(1/n).

2.2.3 Calibration using an asymptotic expansion. An-
other method to improve on the plug-in method is to use
asymptotic expansion (cf., Cox, 1975, Barndorff-Nielsen
and Cox, 1996, Vidoni, 1998). To simplify the presenta-
tion, we illustrate this method under the assumption that
Xn are independent of Y . Let θ̂n be an estimator of θ that
satisfies

Eθ (̂θn) = θ + a(θ)/n + o

(
1

n

)
,

Varθ (̂θn) = b(θ)/n + o

(
1

n

)
.

Because Xn and Y are independent, we denote the 1 − α

quantile of Y by y1−α(θ) = inf{y : G(y; θ) ≥ 1 − α},
where G(·; θ) is the cdf of Y ; we further define κα,θ (̂θn) ≡
Pr θ {Y ≤ y1−α [̂θn(Xn)]}. Under smoothness conditions,
κα,θ (̂θn) can be approximated using a Taylor-series ex-
pansion around θ so that, upon taking expectations, the
coverage probability of the plug-in prediction bound can
be expressed as

Pr θ

[
Y ≤ y1−α(̂θn)

] = Eθ

{
κα,θ (̂θn)

}
= Eθ

{
κα,θ (θ) + (̂θn − θ)κ ′

α,θ (θ)

+ 1

2
(̂θn − θ)2κ ′′

α,θ (θ)

}
(4)

+ o

(
1

n

)
= 1 − α + c(θ)/n + o

(
1

n

)
,

for c(θ) ≡ a(θ)κ ′
α,θ (θ)+b(θ)κ ′′

α,θ (θ)/2 depending on the

bias and variance of θ̂n as well as the first derivative
κ ′
α,θ (θ) and second derivatives κ ′′

α,θ (θ) of κα,θ (θ). Letting
αc = α + c(θ)/n, then by replacing 1 − α with 1 − αc in

(4) we have

Pr θ

[
Y ≤ y1−αc (̂θn)

]
= Eθ

{
1 − αc + (̂θn − θ)κ ′

αc
(θ)

+ 1

2
(̂θn − θ)2κ ′′

αc
(θ)

}
+ o

(
1

n

)
= Eθ

{
1 − αc + (̂θn − θ)κ ′

α(θ) + 1

2
(̂θn − θ)2κ ′′

α(θ)

}
+ O

(
1

n2

)
+ o

(
1

n

)
= 1 − αc + c(θ)/n + o

(
1

n

)
= 1 − α + o

(
1

n

)
,

by expanding κ ′
αc

(θ) and κ ′′
αc

(θ) around α. In other words,
the error rate of 1 − α plug-in prediction bounds can
be improved from O(1/n) to o(1/n) by using an ad-
justed quantile y1−αc (̂θn), rather than the 1 − α quantile
y1−α(̂θn) directly, from plug-in cdf G(·; θ̂n) of Y . A sim-
ilar expansion can be obtained by replacing αc with an es-
timator α̂c = α + c(̂θn)/n. The drawback of this method
is usually a closed form for c(·) in (4) is not available.

2.2.4 Additional comments. In some special cases, Un

does not converge to Uniform(0,1) and has a limiting dis-
tribution function that depends on an unknown θ (exam-
ples include Tian et al., 2020). The plug-in method then
fails because using a Uniform(0,1) to calibrate the dis-
tribution of Un is no longer valid, even asymptotically.
Nevertheless, we can still use the calibration-bootstrap
method to construct asymptotically correct prediction in-
tervals based on the nonpivotal quantity Un. In fact, we
can use a broader notion of predictive root q(Xn, Y )

(cf. Beran, 1990) to include both (approximate) pivotal
and nonpivotal cases. Although using a nonpivotal pre-
dictive root q(Xn, Y ) usually leads to an asymptotically
correct prediction interval, it does not have the benefit of
being exact.

3. THE PREDICTIVE DISTRIBUTION CONCEPT

3.1 Bayesian and Non-Bayesian Predictive
Distributions

The concept of a predictive distribution (free of un-
known parameters) originated in Bayesian statistics, but
efforts have been made to extend the predictive distribu-
tion idea to the non-Bayesian world. Non-Bayesian pre-
dictive distributions have been implemented using terms
including “predictive distribution,” “predictive density,”
“predictive likelihood,” and “prediction function.” Al-
though terminology varies, they have the same goal to
“express the relative credibility of the possible outcomes
of a future experiment, in the light of a performed experi-
ment” (Mathiasen, 1979).
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Although they may have similar forms, the Bayesian
predictive distribution, however, is fundamentally differ-
ent from these non-Bayesian predictive distributions. The
Bayesian predictive distribution always represents a type
of conditional distribution of Y given Xn = xn, but this
is not the case for the non-Bayesian predictive distribu-
tion. When discussing non-Bayesian predictive distribu-
tions (in the form of a cdf), Lawless and Fredette (2005)
say “In a loose sense these are conditional distributions
F̃p(y|x) that provide probability statement about the fu-
ture random variable Y , given X = x. However, their
properties are generally considered by treating them as
estimators of the distribution function of Y given X = x,”
where “these” means non-Bayesian predictive distribu-
tions in the form of a cdf.

Because our focus is on non-Bayesian methods and for
the sake of simplicity, we refer to the non-Bayesian pre-
dictive distributions as “predictive distributions” in the
rest of the paper. When discussing the Bayesian method,
we still use the term “Bayesian predictive distribution.”
The predictive distribution comes in three forms: the pre-
dictive cdf, pdf, and likelihood. These three forms are
closely related. One can obtain a predictive cdf by inte-
grating the corresponding predictive pdf and obtain a pre-
dictive pdf by normalizing the corresponding predictive
likelihood. We use Fp(y;xn), fp(y;xn), and Lp(y;xn),
respectively, to denote the predictive cdf, pdf, and likeli-
hood. The notational purpose of using a semicolon instead
of a vertical bar is because the predictive distribution is
not the conditional distribution of Y given Xn.

3.2 Prediction Interval Methods and Predictive
Distributions

For any prediction interval method, we can construct a
predictive distribution for Y by treating the endpoint of
the 1 − α upper prediction bound as the 1 − α quantile
of such distribution. Specifically, there is a correspond-
ing predictive distribution for any given prediction inter-
val method.

For the pivotal and approximate pivotal calibration
methods described in Section 2, Lawless and Fredette
(2005) give the formulas for finding the associated pre-
dictive cdf. If a pivotal quantity q(Xn, Y ) exists and has
cdf Qn(·), with the further assumption that q(xn, y) is a
monotone function of y, then the corresponding predic-
tive cdf for the pivotal method based on q(xn, y) is given
by Fp(y;xn) = Qn[q(xn, y)]. Similarly, if q(Xn, Y ) is an
approximate pivotal quantity with cdf Qn(·; θ), the cor-
responding predictive cdf is Fp(y;xn) = Q̃n[q(xn, y)],
where Q̃n(·) is an estimate of Qn(·; θ) (e.g., Q̃n(·) =
limn→∞ Qn(·; θ)).

For the calibration-bootstrap method, Hn(·; θ̂n) is used
to approximate Hn(·; θ), where the latter is the cdf of
Un = G(Y |Xn; θ̂n); thus the associated predictive cdf is

(5) Fp(y;xn) = H
[
G(y|xn; θ̂n); θ̂n

]
.

When an explicit form of H(·; ·) is not available, Fonseca,
Giummolè and Vidoni (2014) propose a formula to com-
pute (5) using bootstrap

Fp(y;xn)

= Eθ̂n

(
G
{
G−1[G(y|xn; θ̂n)|X∗

n, θ̂
∗
n

]|X∗
n, θ̂n

})
(6)

≈ 1

B

B∑
b=1

G
{
G−1[G(y|xn; θ̂n)|x∗

n,b, θ̂
∗
n,b

]|x∗
n,b, θ̂n

}
,

where Eθ̂n
is the expectation with respect to the bootstrap

sample X∗
n and the corresponding bootstrap estimate θ̂

∗
n;

the second expression in (6) represents a Monte Carlo ap-
proximation based on the bootstrap estimates θ̂

∗
n,b from

independently generated bootstrap samples b = 1, . . . ,B

for some B . However, for values of y where G(y|xn; θ̂n)

is close to one, the approximation formula in (6) will fail
due to limited precision of floating-point computations.

4. PREDICTIVE DISTRIBUTION METHODS

4.1 An Overview

In Section 3.2, we describe finding the associated pre-
dictive distribution for prediction interval methods. Con-
versely, given a predictive distribution, we can obtain the
corresponding prediction intervals using the quantiles of
that predictive distribution. So, the development of a pre-
dictive distribution can be useful for formulating a predic-
tion method.

Bjørnstad (1990) summarizes three types of predictive
likelihood methods (equivalently, predictive distribution
methods): maximization-based, conditioning-based, and
integration-based. In addition to the methods discussed in
Bjørnstad (1990), Barndorff-Nielsen and Cox (1996) pro-
pose a predictive density that generally yields prediction
intervals that have a coverage probability that is close to
the nominal confidence level. Komaki (1996) considers
constructing predictive distributions from the viewpoint
of optimizing the Kullback–Leibler divergence between
the true distribution of Y and the predictive distribution
of Y . But this idea of constructing non-Bayesian predic-
tive distribution is not without difficulty as Hall, Peng and
Tajvidi (1999) point out that many of the predictive distri-
bution methods “do not reduce coverage error by an order
of magnitude, relative to the ‘naive’ or ‘estimative’ ap-
proach to prediction.” They further use bootstrap calibra-
tion to improve the coverage. In our review, we focus on
the integration-based methods, where more research has
been done since the review paper by Bjørnstad (1990).

4.2 Integration-Based Predictive Distributions

The construction of an integration-based predictive dis-
tribution is similar to that of the Bayesian predictive dis-
tribution in (1). The idea is to assign a data-based distribu-
tion to the nonrandom parameter θ and use this distribu-
tion to marginalize out the parameters in the distribution



COMPUTING PREDICTION INTERVALS 585

function G(y|xn; θ) of Y . The resulting predictive cdf has
the form

(7) Fp(y;xn) =
∫

G(y|xn; θ)p(θ;xn) dθ ,

where p(θ;xn) is a data-based pdf assigned to θ . More
generally, we do not strictly require a pdf p(θ;xn) for
purposes of defining an integral of G(y|xn; θ) over θ in
(7). Technically, any data-based distribution over the pa-
rameter space can be used to integrate G(y|xn; θ) (al-
though not all of them have a practical meaning) and,
in practice, Fp(y;xn) is often evaluated through a Monte
Carlo approximation as

Fp(y;xn) ≈ 1

B

B∑
b=1

G
(
y|xn; θ (b))

using a set of independent draws θ (1), . . . , θ (B) from the
chosen distribution over the parameter space that is de-
termined from the data xn. In the rest of this section, we
discuss three types of integration-based predictive distri-
butions.

4.2.1 Using a bootstrap distribution. Harris (1989)
proposes a bootstrap predictive distribution obtained by
integrating (7) using a bootstrap distribution of θ̂n in
the role of p(θ;xn) and shows that the proposed predic-
tive distribution is asymptotically superior to the plug-in
method in terms of average Kullback–Leibler divergence
for the natural exponential family. Although bootstrap
samples are used, the coverage probability of this method
can be shown, under assumptions similar to the plug-
in method, to exhibit a coverage error of order O(1/n),
which is the same error rate as the plug-in method in (4);
formal details are given in Section A of the Supplemen-
tary Material (Tian, Nordman and Meeker, 2022). We call
this method the “direct-bootstrap” method because the
bootstrap draws are used directly to compute the predic-
tive distribution. In Section 5.1, we introduce the gener-
alized pivotal quantity (GPQ) bootstrap method, a variant
of this method.

4.2.2 Using a fiducial distribution. Fiducial inference
was first introduced by R. A. Fisher and applies concepts
of transferring randomness from the data to the param-
eters to produce a fiducial distribution on the parameter
space. The resulting fiducial distribution is similar to a
Bayesian posterior but does not require a prior distribu-
tion. We use an illustrative example to demonstrate the
fiducial idea. Suppose X ∼ Norm(μ,1), then a structural
equation for linking the data to the parameter is given by
X = μ + Z where Z ∼ Norm(0,1). For a realized X = x,
this equation is solved for μ as μ = x − Z and thus the
fiducial distribution for μ is Norm(x,1). The construction
of a fiducial distribution may not be unique. More details
about fiducial and generalized fiducial inference can be

found in Hannig et al. (2016). When the data Xn and Y

are independent (i.e., G(y|xn; θ) = G(y; θ)), the fiducial
predictive cdf has the same form as (7), where p(θ;xn)

is the fiducial distribution of θ . A detailed discussion of
the fiducial prediction, including the case that Xn and Y

are dependent, can be found in Wang, Hannig and Iyer
(2012).

4.2.3 Using a confidence distribution. Shen, Liu and
Xie (2018) propose a prediction framework based on the
notion of confidence distribution (CD) and prove that the
corresponding prediction interval is asymptotically cor-
rect for a scalar parameter. The idea is to replace p(θ;xn)

in (7) with a real-valued confidence distribution. But as
stated in Xie and Singh (2013), the definition of confi-
dence distribution for a parameter vector with more than
one element remains an open question, and the theoreti-
cal properties of CD-based predictive distributions in this
more general setting require further development.

5. NEW RESULTS FOR LOCATION-SCALE
DISTRIBUTIONS

This section presents some particular results for pre-
dicting an independent future random variable from a
(log-)location-scale distribution given data from the same
distribution. These families of distribution include the
most widely used probability distributions, such as the
normal, lognormal, logistic, loglogistic, Weibull, Fréchet,
and some extreme value distributions. Consider a sam-
ple Xn consisting of n i.i.d. observations from a mem-
ber of the location-scale distribution family with cdf
F(x;μ,σ) = �[(x − μ)/σ ] depending on parameters
μ ∈ R and σ > 0 and where �(·) is a given continu-
ous cdf with no unknown parameters. The correspond-
ing pdf is then f (x;μ,σ) = σ−1φ[(y − μ)/σ ], where
φ(z) = d�(z)/dz. The predictand Y is an independent
random variable from the same distribution. Suppose that
the data Xn can be observed under three different situa-
tions: complete Xn, time (Type-I) censored XI

n, or fail-
ure (Type-II) censored XII

n . For time-to-event data, Type-
I censoring means that observation stops at a fixed cen-
soring time, while Type-II censoring means that observa-
tion stops once a predetermined number of events have
occurred.

5.1 The Calibration-Bootstrap Method and Its
Predictive Distribution

This section shows that (i) the calibration-bootstrap
method (cf. Section 2.2.2) is equivalent to a predictive dis-
tribution based on integrating out the parameters with the
distribution of the GPQ and (ii) the calibration-bootstrap
method is also shown to be equivalent to a pivotal method
(cf. Section 2.1) for complete or Type-II censored data,
thus having exact coverage probability.
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By applying (6) to the location-scale distribution, the
predictive cdf of the calibration-bootstrap method is

Fp(y;xn) = Eθ̂n

(
F
{
F−1[F(z; μ̂, σ̂ ); μ̂∗, σ̂ ∗]; μ̂, σ̂

})
(8)

= Eθ̂n
�

{
y − [μ̂ + σ̂

σ̂ ∗ (μ̂ − μ̂∗)]
σ̂ σ̂

σ̂ ∗

}
;

here (μ̂, σ̂ ) are the ML estimators of (μ, σ ) and Eθ̂n
de-

notes expectation with respect to the bootstrap distribu-
tion of (μ̂∗, σ̂ ∗), which is a version of (μ̂, σ̂ ) found from
(parametric) bootstrap samples.

We define two new quantities (μ̂∗∗, σ̂ ∗∗) using (μ̂, σ̂ )
and (μ̂∗, σ̂ ∗) as

(9) μ̂∗∗ ≡ μ̂ + σ̂
μ̂ − μ̂∗

σ̂ ∗ , σ̂ ∗∗ ≡ σ̂
σ̂

σ̂ ∗ .

Then (8) can be written in the form of (7), where the pa-
rameters (μ,σ ) in the cdf F(y;μ,σ) = �[(y − μ)/σ ]
of the predictand Y are integrated out with respect to the
joint distribution of (μ̂∗∗, σ̂ ∗∗) as

Fp(y;xn) = Eθ̂n
�

(
y − μ̂∗∗

σ̂ ∗∗
)

=
∫

�

(
y − μ̂∗∗

σ̂ ∗∗
)

Pr θ̂n

(
dμ̂∗∗, dσ̂ ∗∗)

≈ 1

B

B∑
b=1

�

(
y − μ̂∗∗

b

σ̂ ∗∗
b

)
,

(10)

where (μ̂∗∗
b , σ̂ ∗∗

b ) are realized values of (μ̂∗∗, σ̂ ∗∗) over
independently generated bootstrap samples b = 1, . . . ,B .
This equivalence shows that the calibration-bootstrap
method coincides with a predictive distribution con-
structed via an integration method.

Next, we introduce the definition of GPQ and illustrate
the connection between the calibration-bootstrap method
and GPQs. Here we use the definition given in Hannig,
Iyer and Patterson (2006). Let S ∈ R

k denote a random
vector and S

∗ is an independent copy of S. The distri-
bution of S is indexed by θ . Suppose we would like to
estimate a function of θ (possibly a vector) ξ ≡ π(θ). A
GPQ for ξ , denoted by Rξ , is a function (S,S∗, θ) with
the following properties:

1. The distribution of Rξ , conditional on S = s, is free of
ξ .

2. For every allowable s ∈ R
k , Rξ depends on θ only

through ξ .

We can use GPQs, for example, to construct confidence
intervals for parameters of interest.

Interestingly, for complete data Xn or Type-II censored
data XII

n , the pair (μ̂∗∗, σ̂ ∗∗) defined in (9) has the same
distribution as the GPQ (μ∗∗, σ ∗∗), defined as

(11) μ∗∗ = μ̂ +
(

μ − μ̂S

σ̂ S

)
σ̂ , σ ∗∗ =

(
σ

σ̂ S

)
σ̂ ,

where S denotes an independent copy of the sample Xn

(or XII
n ), and (μ̂, σ̂ ) and (μ̂S, σ̂ S) denote the ML estima-

tors of (μ,σ ) computed from Xn (or XII
n ) and S, respec-

tively. The pair (μ∗∗, σ ∗∗) is called the GPQ of (μ,σ )

for location-scale distribution (cf. Krishnamoorthy and
Mathew, 2009, Page 17). Because (11) are also fiducial
quantities, (8) is a fiducial predictive cdf (details are given
in Section B of the Supplementary Material).

Because the pair (μ̂∗∗, σ̂ ∗∗) is available for any (log-)
location-scale distribution and because this pair is opera-
tionally computed from the bootstrap samples (μ̂∗, σ̂ ∗)
(i.e., compare (9) to (11)), the prediction method in
(10) is called the “GPQ-bootstrap” method in contrast to
the “direct-bootstrap” method where the bootstrap pair
(μ̂∗, σ̂ ∗) is used directly. Note that under Type-I or ran-
dom censoring, (μ̂∗∗, σ̂ ∗∗) are no longer GPQs; however,
we can still use the prediction method in (10) the resulting
prediction intervals are still asymptotically correct.

Note also that the calibration-bootstrap samples are
used to approximate the quantity

U = G(Y ; μ̂, σ̂ ) = �

(
Y − μ̂

σ̂

)
= �

[
(Y − μ)/σ − (μ̂ − μ)/σ

σ̂ /σ

]
,

which is a pivotal quantity under complete or Type-II cen-
sored data and its bootstrap re-creation also has the same
distribution for such data. This implies that, for com-
plete or Type-II censored data, the calibration-bootstrap
method has exact coverage probability and so does the
GPQ-bootstrap method (i.e., due to producing the same
prediction intervals from matching predictive distribu-
tions in (8) and (10)). We provide illustrative numerical
examples in Sections E.1–4 of the Supplementary Mate-
rial.

5.2 Properties of the Bayesian Predictive Distribution

For location-scale distributions and complete or Type-
II censored data, the exact probability matching prior is
π(μ,σ) = σ−1 (and this is also known as the modified
Jeffreys prior), which implies that using this prior leads
to credible intervals that have exact frequentist cover-
age for either μ or σ (cf. Peers, 1965, Lawless, 1972,
DiCiccio, Kuffner and Young, 2017) and certain func-
tions of these parameters (e.g., quantiles and tail proba-
bilities). The purpose of this section is to show that (i) the
prediction interval procedure based on the Bayesian pre-
dictive distribution using the prior π(μ,σ) = σ−1 is ex-
act and (ii) the Bayesian predictive distribution using the
prior π(μ,σ) = σ−1 is equivalent to a predictive distribu-
tion based on the generalized fiducial distribution (GFD)
derived from the user-friendly formula in Section 2 of
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Hannig et al. (2016). The latter GFD for (μ,σ ) has a den-
sity that is proportional to

r(μ,σ ;xn) ∝ J (xn;μ,σ)

σn

n∏
i=1

φ

(
xi − μ

σ

)
,

by Theorem 1 of Hannig et al. (2016), where the function
J (xn;μ,σ) is

J (xn;μ,σ) = ∑
1≤i<j≤n

∣∣∣∣∣∣det

⎛⎝⎡⎣ 1 1
xi − μ

σ

xj − μ

σ

⎤⎦⎞⎠∣∣∣∣∣∣
= 1

σ

∑
1≤i<j≤n

|xi − xj |.

THEOREM 1. Under a complete sample Xn or a
Type-II censored sample XII

n from a location-scale dis-
tribution with location parameter μ and scale parame-
ter σ , suppose that the ML estimators are μ̂ and σ̂ , Y is
an independent random variable from the same distribu-
tion as Xn, and that the quantity (U1,U2) is defined as
((μ̂ − μ)/σ̂ , σ̂ /σ ). Then:

1. The joint posterior distribution of (U1,U2) using prior
π(μ,σ) ∝ σ−1 is the same as the frequentist condi-
tional distribution of (U1,U2) conditioned on ancil-
lary statistic A = ((X1 − μ̂)/σ̂ , . . . , (Xn−2 − μ̂)/σ̂ ).

2. The 1 − α Bayesian upper prediction bound, which is
defined as

Ỹ
Bayes
1−α

≡ inf
{
y :

∫
(μ,σ )∈�

F(y|μ,σ)

× p(μ,σ |Xn) dμdσ ≥ 1 − α

}
,

(12)

has exact coverage probability, that is,

Pr
(
Y ≤ Ỹ

Bayes
1−α

) = 1 − α,

where p(μ,σ |Xn = xn) is the joint posterior distribu-
tion using prior π(μ,σ) = σ−1.

3. The GFD for (μ,σ ) is the same as the Bayesian poste-
rior distribution for (μ,σ ) using the prior π(μ,σ) =
σ−1, and application of this GFD in (7) produces a
predictive distribution∫

(μ,σ )
F (y;μ,σ)p(μ,σ |Xn) dμdσ

and bounds Ỹ
Bayes
1−α that match the corresponding

Bayesian analogs in (12).

The proof of Theorem 1 is provided in Section C of
the Supplementary Material. Although the term “fiducial”
is used both here and in Section 5.1 (in the context of
(μ̂∗∗, σ̂ ∗∗) there), the GFD for (μ,σ ) in Point 3 of The-
orem 1 is generally different from (but close to) the dis-
tribution of the GPQ pair (μ̂∗∗, σ̂ ∗∗) from (9). This is be-
cause the GPQs (μ̂∗∗, σ̂ ∗∗) are based on the unconditional

distribution of (U1,U2) = ((μ̂ − μ)/σ̂ , σ̂ /σ ) while GFD
is determined by the conditional distribution of (U1,U2)

given the ancillary statistics A = (A1, . . . ,An−2) (or
(A1, . . . ,Ar−2) for Type-II censoring); the latter follows
from Points 1 and 3 of Theorem 1. The one exception is
for the normal distribution, where the distribution of the
GPQ pair (μ̂∗∗, σ̂ ∗∗) will match the GFD for (μ,σ ) (for
which Basu’s theorem gives that (U1,U2) is independent
of A).

6. OTHER CONTINUOUS DISTRIBUTIONS

This section describes and illustrates prediction meth-
ods for two continuous distributions that are not in the
(log-)location-scale family.

6.1 The Gamma Distribution

The data Xn and the predictand Y are independent sam-
ples from a gamma distribution with pdf f (x;α,λ) =
λαxα−1 exp(−λx)/�(α). A small-scale simulation study
was done to compare: (i) the plug-in method; (ii) the
calibration-bootstrap method; (iii) the direct-bootstrap
method; and (iv) the fiducial predictive distribution (cf.
Section 4.2). Because the gamma distribution does not be-
long to the (log-)location-scale family, the GPQ-bootstrap
is not applicable. To implement methods (i), (ii), and
(iii), the ML estimates were computed using the egamma
function in R package EnvStats. For method (iv), two
ways of constructing the fiducial distribution were used.

The first is an approximate method proposed by Chen
and Ye (2017). From a gamma sample Xn, define a scaled
chi-square random variable W(α) as

W(α) ≡ 2nα log
(

X̄n∏n
i=1 X

1/n
i

)
∼ cχ2

v ,

where c and v can be calculated as v = 2E2(W(α))/

Var(W(α)) and c = E(W(α))/v. Here the expectation and
variance of W(α) are

Eθ

(
W(α)

) = 2nαE(S1),

Varθ
(
W(α)

) = 4n2α2 Varθ (S1),

where E(S1) = − logn + ψ(αn) − ψ(α), Var(S1) =
−ψ1(αn) + ψ1(α)/n, ψ(·) is the digamma function, and
ψ1(·) is the trigamma function. Chen and Ye (2017) sug-
gested using a consistent estimator α̂ of α to compute ĉ

and v̂. Then the approximate marginal fiducial distribu-
tion of α is defined by the distribution of a quantity αb

where

(13) αb ∼ ĉχ2
v̂

2n log( x̄n∏n
i=1 x

1/n
i

)
.

Given a fiducial draw αb sampled as (13), the fidu-
cial draw for λ, denoted by λb, can be sampled as
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χ2
2nαb

/(2
∑n

i=1 xi) using the fact that 2λ
∑n

i=1 Xi ∼ χ2
2nα .

Then the fiducial pairs (αb, λb), b = 1, . . . ,B can be used
to compute the fiducial predictive distribution for Y via
(7).

The second approach is from Wang, Hannig and Iyer
(2012) based on the user-friendly formula in Hannig et al.
(2016). The fiducial distribution of (α,λ) is given by a
density proportional to

r(α,λ;xn)

∝ λnα−1 exp[−λ
∑n

i=1 xi + (α − 1)
∑n

i=1 logxi]
α�(α)n

× ∑
1≤i<j≤n

xixj

∣∣∣∣�(α + 1) ∂
∂α

Vα,1(λxi)

(λxi)α exp(−λxi)

− �(α + 1) ∂
∂α

Vα,1(λxj )

(λxj )α exp(−λxj )

∣∣∣∣,

(14)

where Vα,1(·) is the cdf of a Gamma(α,1). Wang, Hannig
and Iyer (2012) used an importance sampling algorithm
to generate fiducial draws of (α,λ) from (14).

We used simulation to compare these methods men-
tioned above, and results are given in Section E.5 of
the Supplementary Material. The calibration-bootstrap
method has the best performance and the estimated cov-
erage probability is close to the nominal confidence
level, even when n is small. Two fiducial methods also
have good coverage probabilities but not as good as the
calibration-bootstrap method when n is small. The direct-
bootstrap method has poor coverage probability and does
not improve on the plug-in method. As described in Sec-
tion 4.2.1, it can be shown that prediction bounds from di-
rect bootstrap often share a close correspondence to plug-
in prediction bounds. General theory, along with numeri-
cal illustrations for the gamma case, appear in Section A
of the Supplementary Material. Consequently, the plug-
in and direct-bootstrap methods perform very similarly
to each other, but not as well as the calibration-bootstrap
approach.

6.2 The Inverse Gaussian Distribution

The sample Xn and predictand Y are independent sam-
ples from an inverse Gaussian distribution with pdf

f (x;μ,λ) =
√

λ

2πx3 exp
[
−λ(x − μ)2

2μ2x

]
.

As in Section 6.1, a small scale simulation study was done
to compare several methods: (i) plug-in; (ii) calibration-
bootstrap; (iii) direct-bootstrap; (iv) fiducial predictive
distribution methods.

For methods (i),(ii), and (iii), the ML estimators are
μ̂ = X̄n and λ̂ = n/

∑n
i=1(X

−1
i − X̄−1

n ). For method

(iv), Nájera and O’Reilly (2017) proposed a method to
sample from the fiducial distribution for (μ,λ). Because∑n

i=1(X
−1
i − X̄−1

n ) ∼ χ2
n−1/λ, the marginal fiducial dis-

tribution of λ is given as

λ ∼ χ2
n−1∑n

i=1(x
−1
i − x̄−1

n )
.

Then given λb, which is sampled as above, a fiducial draw
μb for μ can be obtained using the following steps:

1. Generate ub from Uniform(0,1).
2. Compute the quantile q+∞,λb

(ub) ≡ qinvgauss(ub,

μ = +∞, λ = λb).
3. If x̄n/λb ≥ q+∞,λb

(ub), μb = +∞. If x̄n/λb <

q+∞,λb
(ub), μb is obtained by solving the equation

pinvgauss(ub,μb,n) = x̄n/λb.

The inverse Gaussian quantile function qinvgauss and cdf
function pinvgauss are available in R package statmod.

The inverse Gaussian simulation (given in Section E.6
of the Supplementary Material) gives results that are sim-
ilar to those for the gamma simulation. Use of the direct-
bootstrap method does not improve on the plug-in method
in terms of coverage probability. The fiducial method has
good coverage probability but, as shown in the examples,
sampling from a given fiducial distribution is often non-
trivial. Both theoretical results (cf. Section 2.2.2) and sim-
ulations have shown that the calibration-bootstrap method
has the best coverage for several continuous distributions
and it is also easy to implement.

7. PREDICTION METHODS FOR DISCRETE
DISTRIBUTIONS

Previous sections in this paper considered prediction
from a continuous distribution, and those methods can be
applied to a wide variety of continuous distributions (e.g.,
see Section E in the Supplementary Material). This sec-
tion focuses on prediction methods for discrete distribu-
tions. Following the two prediction principles discussed
in the previous sections (i.e., (approximate) pivotal meth-
ods and (Bayesian and non-Bayesian) predictive distribu-
tion methods), this section first discusses some general
methods and then implements these methods for the bi-
nomial and Poisson distributions. Additionally, we give
some cautionary remarks on using the plug-in method for
discrete distributions.

7.1 Some General Methods

7.1.1 The pivotal conditional cdf method. Let Xn be
the data, Y be the predictand, and T (Xn) be a statis-
tic whose conditional distribution given a function of Xn

and Y , say R(Xn, Y ), is a discrete function that does not
depend on any unknown parameters. The pivotal con-
ditional cdf method described in Section 2.1.2 cannot
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be used directly because GT |R[T (Xn)|R(Xn, Y )] is no
longer Uniform(0,1) distributed. Nevertheless, because
GT |R[T (Xn)|R(Xn, Y )] is stochastically ordered with re-
spect to the Uniform(0,1) distribution (see Section D
of the Supplementary Material), the pivotal conditional
cdf method can be extended to discrete distributions with
slight modifications as long as GT |R[T (xn)|R(xn, y)] is
a monotone function of y. Without loss of generality, sup-
pose that GT |R[T (xn)|R(xn, y)] is a nonincreasing func-
tion of y, the 1−α lower and upper prediction bounds are
defined as

Y˜1−α = inf
{
y : 1 − GT |R

[
T (xn) − 1|

R
(
T (xn), y

)]
> α

}
,

Ỹ1−α = sup
{
y : GT |R

[
T (xn)|R(

T (xn), y
)]

> α
}
.

(15)

We call (15) the conservative method because the predic-
tion bounds are guaranteed to have a coverage probability
that is greater or equal to the nominal confidence level
(details are given in Section D of the Supplementary Ma-
terial).

There are other constructions of the pivotal (condi-
tional) cdf method. Suppose the conditional distribution
of Y given R(Xn, Y ) does not depend on any parameters
and the conditional cdf is G[y|R(xn, y)]. Faulkenberry
(1973) proposes the conditional method by defining the
1 − α lower and upper bounds as

Y˜1−α = sup
{
y : GY |R

[
y − 1|R(x, y)

] ≤ α
}
,

Ỹ1−α = inf
{
y : GY |R

[
y|R(x, y)

] ≥ 1 − α
}
.

(16)

As noted by Dunsmore (1976), however, the prediction
bounds in (16) may not exist in some situations (i.e., the
set may be empty).

7.1.2 Approximate pivotal methods. Similar to the idea
in Section 2.2, we can construct prediction intervals using

approximate pivotal quantities. Suppose q(Xn, Y, θ)
d−→

U , where U does not depend on any parameters. Then, if
θ is known, a 1 − α prediction interval (or bound) can be
defined by {y : q(xn, y, θ) ≤ un,1−α}, where un,1−α is the
1 − α quantile of U . When θ is unknown one can replace
θ with a consistent estimator θ̂n, such as θ̂n(Xn), which is
the ML estimator of θ from the data Xn. Another choice
is to use θ̂n(Xn, Y ), which is the estimator from both the
data and the predictand (Xn, Y ). After replacing θ with
an estimator θ̂n, we can construct a prediction interval for
Y by solving {y : q(xn, y, θ̂n) ≤ un,1−α}, for integer y, as
illustrated in Sections 7.2 and 7.3.

7.1.3 Methods based on integration. Using an objec-
tive prior (e.g., a Jeffreys prior), a Bayesian predictive
distribution can be used to construct prediction intervals,
which may have good frequentist coverage probability, as
illustrated in the rest of this section. Similarly, the fidu-
cial method also works when an (approximate) fiducial

distribution is available. The conditioning-based predic-
tive likelihood (cf. Bjørnstad, 1990) can also be used, as
illustrated in Sections 7.2 and 7.3.

7.2 The Binomial Distribution

Let X ∼ Binom(n,p) and Y ∼ Binom(m,p), where
p ∈ (0,1) is unknown and n, m are given positive in-
tegers. The goal is to construct prediction bounds for Y

based on the observed value of X = x. When X = 0 or
X = n, the ML estimate is p̂ = 0 or p̂ = 1 so that predic-
tion methods based on ML estimators (including plug-in,
calibration-bootstrap, and direct-bootstrap methods) can-
not be used directly; this is because estimated distribu-
tions used for prediction are degenerate for the extreme
values of X. Several prediction methods for the binomial
case are described below. A numerical study was done to
compare some of the methods and the results are given in
Section E of the Supplementary Material.

7.2.1 The conservative method. Thatcher (1964) notes
that a prediction interval can be obtained by using the
conditional cdf of X given X + Y and proposes this
method, which is an implementation of the method de-
scribed in Section 7.1.1. Suppose there are n + m balls
and R = X + Y are red balls. Then X is the number of
red balls out of n balls, which has a hypergeometric dis-
tribution Hyper(X + Y,n,n + m) with cdf phyper(·;X +
Y,n,n + m). After observing X = x, the 1 − α lower and
upper prediction bounds using the conservative method
are

Y˜1−α = inf
{
y : 1 − phyper(x − 1;x + y,n,n + m) > α

}
,

Ỹ1−α = sup
{
y : phyper(x;x + y,n,n + m) > α

}
.

7.2.2 Methods based on approximate pivots. The
methods discussed in this section are implementations of
the general method described in Section 7.1.2. By the cen-
tral limit theorem (CLT), both X and Y have normal limits
(as m,n → ∞) in that

ZX = X/n − p√
(1 − p)p/n

d−→ Norm(0,1),

ZY = Y/m − p√
(1 − p)p/m

d−→ Norm(0,1).

Because X and Y are independent and by standardizing√
nZY − √

mZX (as approximately Norm(0, n + m)), it
also holds (as m,n → ∞) that

√
nZY − √

mZX√
Var(

√
nZY − √

mZX)

= Y − mX/n√
(n + m)(m/n)p(1 − p)

d−→ Norm(0,1).

(17)
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As mentioned in Section 7.1.2, we need to replace the pa-
rameter (p above) with an estimator to construct predic-
tion intervals.

Nelson (1982) proposes replacing p in (17) with
p̂x = X/n. But numerical studies in Wang (2008) and
Krishnamoorthy and Peng (2011) show that this method
has poor coverage probability, even for large samples. In-
stead of using p̂x , Krishnamoorthy and Peng (2011) pro-
pose replacing p with p̂xy = (X+Y )/(n+m) (along with
a continuity adjustment: if x = 0, use x = 0.5; if x = n,
use x = n− 0.5). Inspired by the Wilson score confidence
interval (cf. Wilson, 1927), Wang (2010) proposes another
method where p̂ = (X + Y + z2

1−α/2)/(n + m + z2
1−α) is

used to replace p in (17).

7.2.3 Methods based on integration. For the Binom(n,

p), the Jeffreys prior is πJ (p) ∝ p−1/2(1 − p)−1/2 (i.e.,
πJ (p) ∼ Beta(0.5,0.5)). The 1 − α lower and upper Jef-
freys (Bayesian) prediction bounds are

˜Y 1−α = qbetabinom(α;m,x + 0.5, n − x + 0.5),

Ỹ1−α = qbetabinom(1 − α;m,x + 0.5, n − x + 0.5),

where qbetabinom(p;n,a, b) is the p quantile of the
beta-binomial distribution with a sample-size parameter
n and shape parameters a and b. Compared with the
method proposed by Krishnamoorthy and Peng (2011),
this Jeffreys prediction method is slightly more conserva-
tive (cf. Meeker, Hahn and Escobar, 2017, Chapter 6).

A fiducial quantity for parameter p based on observa-
tion X = x has the form

Rp = U(x) + D(U(x+1) − U(x)),

where U(x) is the xth smallest value out of n independent
Uniform(0,1) random variables (U(0) = 0, U(n+1) = 1)
and D ∼ Uniform(0,1). Integrating out the parameter p

in the Binom(m,p) cdf using the density function of Rp ,
say r(p|X = x), gives the fiducial predictive distribution
for Y via (7). The prediction bounds are defined using the
appropriate quantiles of the fiducial predictive distribu-
tion.

7.2.4 The hinkley predictive likelihood. Hinkley
(1979) proposes a conditioning-based predictive likeli-
hood, which is based on the fact that the conditional dis-
tribution of X (or Y ) given X + Y has a hypergeomet-
ric distribution. However, unlike the pivotal conditional
cdf method (cf. Section 7.1.1), this method is invariant to
whether the conditional cdf of X or Y is chosen because
the predictive likelihood of Y is

Lp(y;x) =
(n
x

)(m
y

)
(n+m
x+y

) , y ∈ {0, . . . ,m},

where x and y are interchangeable. The predictive cdf
is obtained by normalizing the predictive likelihood as

Fp(y;x) = ∑y
j=0 Lp(j ;x)/

∑m
i=0 Lp(i;x). The 1 − α

lower and upper prediction bounds are defined as

Y˜1−α = sup
{
y : Fp(y − 1;x) ≤ α

}
,

Ỹ1−α = inf
{
y : Fp(y;x) ≥ 1 − α

}
.

Although both the conservative method in (15) and the
Hinkley predictive likelihood method are based on the
conditional distribution of X given X + Y , they lead to
different prediction intervals.

7.3 The Poisson Distribution

Suppose X ∼ Poi(nλ) and Y ∼ Poi(mλ), where λ > 0
is unknown, n and m are known positive real values, and
Y is independent of X. The goal is to construct a pre-
diction interval for Y based on the observation X = x.
Methods similar to those used in Section 7.2 are used for
Poisson prediction.

7.3.1 The conservative method. Because the condi-
tional distribution of X given X + Y is Binom(x +
y,n/(n + m)), we can use the general method described
in Section 7.1.1. The 1 − α lower and upper prediction
bounds using the conservative method are

Y˜1−α

= inf
{
y : 1 − pbinom

(
x − 1;x + y,n/(n + m)

)
> α

}
,

Ỹ1−α = sup
{
y : pbinom

(
x;x + y,n/(n + m)

)
> α

}
.

7.3.2 Methods based on approximate pivots. This sec-
tion implements the methods proposed in Section 7.1.2.
By the CLT, both X and Y have normal limits (as m,n →
∞) given by

ZX = X − nλ√
nλ

d−→ Norm(0,1),

ZY = Y − mλ√
mλ

d−→ Norm(0,1).

Because X and Y are independent,
√

nZY − √
mZX has

approximately a normal distribution with mean 0 and vari-
ance (n + m). Thus, it holds (as m,n → ∞) that

√
nZY − √

mZX√
Var(

√
nZY − √

mZX)
= Y − mX/n√

(m + m2/n)λ

d−→ Norm(0,1).

Nelson (1982) replaces the unknown λ with λ̂x = X/n

and Krishnamoorthy and Peng (2011) replace λ with
λ̂xy = (X + Y )/(n + m) (along with a continuity adjust-
ment: if x = 0, use x = 0.5). Krishnamoorthy and Peng
show that their method has better coverage probability
properties than Nelson’s method.
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7.3.3 Methods based on integration. The Jeffreys prior
for the Poisson rate parameter is πJ (λ) = √

1/λ,
λ > 0, and the corresponding posterior distribution is
gamma(x + 1/2, n) with density p(λ|x) ∝ λx−1/2 ×
exp(−nλ), for λ > 0. Using this posterior, the Bayesian
predictive density for the Poisson distribution is

p(y|x)

= �(y + x + 1/2)

�(x + 1/2)�(y + 1)

(
n

n + m

)x+1/2

×
(

1 − n

n + m

)y

,

(18)

which is a negative-binomial distribution NB(x + 0.5,

n/(n + m)). The Jeffreys Bayesian prediction method
tends to be more conservative than the method proposed
by Krishnamoorthy and Peng (2011), especially when
the ratio m/n is small (i.e., the expected value of nλ

of the data X greatly exceeds that λm of the predictand
Y ), but is less conservative than the conservative method
(cf. Meeker, Hahn and Escobar, 2017, Chapter 7).

An approximate fiducial quantity for λ given observa-
tion X = x has a distribution of a scaled chi-square vari-
able χ2

2x+1/2n (cf. Dempster, 2008, Krishnamoorthy and
Lee, 2010). Using this approximate fiducial distribution
in place of the (gamma) posterior p(λ|x) in (18) leads to
a fiducial predictive distribution for a Poisson predictand.

7.3.4 The Hinkley predictive likelihood. Using the fact
that the conditional distribution of X given X + Y has a
binomial distribution, the Hinkley predictive likelihood is
as follows:

Lp(y;x) = f (X = x,Y = y)

f (X + Y = x + y)

= (x + y)!
x!y!

(
m

n + m

)y( n

n + m

)x

, y ≥ 0.

Often, the predictive distribution obtained by normalizing
the predictive likelihood has no closed form, but in this
example the predictive pmf for Y induced by Lp(y;x)

has a negative-binomial mass function

fp(y;x) =fp

(
y;x + 1, n/(n + m)

)
=

(
x + y

x

)[
m/(n + m)

]x[
n/(n + m)

]y
for y = 0,1,2, . . . ; thus, the prediction bounds can be ob-
tained by using the appropriate quantiles of the negative-
binomial distribution.

7.4 Cautionary Comments About the Plug-in Method

The plug-in method generally works only when the fol-
lowing holds:

(19) sup
y∈R

∣∣G(y|Xn; θ0) − G(y|Xn; θ̂n)
∣∣ p−→ 0

as n → ∞. Here G(·|xn; θ0) is the conditional distribu-
tion function of Y given Xn. The convergence (19) im-
plies that the “plug-in” version of the cdf approaches the
true cdf as n → ∞. This convergence, however, does not
always hold.

Tian et al. (2020) discuss a particular type of within-
sample prediction problem, where a Type-I censored
time-to-event dataset is given to predict the number of fu-
ture events during a time period after the censoring time.
They show that (19) does not hold in this within-sample
prediction problem. Thus, for this situation, the plug-in
method is not asymptotically correct, which means, no
matter how large the sample size n is, the true coverage
probability is generally different from the nominal confi-
dence level. Note that, for the within-sample prediction,
the sample size of the data is n while the scalar predic-
tand is a summary statistic of n − r Bernoulli random
variables, where r is the number of events observed in the
data. The plug-in method is invalid for a case where the
predictand sample size n−r is potentially large compared
to the data sample size n. Alternatively, Tian et al. (2020)
propose three bootstrap-based methods that are asymptot-
ically correct.

Relatedly, for the discrete new-sample prediction prob-
lems in Sections 7.2 and 7.3, both the data X and the pre-
dictand Y may be generally viewed as counts that summa-
rize two samples: one sample of size n for X and another
sample of size m for Y . We emphasize that the plug-in
prediction method requires cautious consideration of the
relative sizes of n and m. Importantly, the plug-in method
will similarly fail for the binomial and Poisson prediction
cases of Sections 7.2 and 7.3 more broadly, unless m is
appropriately small relatively to n (that is, asymptotically,
success for the plug-in method requires m/n → 0 imply-
ing that the data sample size n dominates the predictand
sample size m). Without this condition, the Binom(m,p)

or Poi(mλ) distribution of a predictand Y cannot be con-
sistently approximated by the plug-in prediction method
(i.e., by substituting X/n for p or λ). For this reason,
plug-in prediction is not included in Section 7.2 or 7.3.
The other prediction methods in these sections, however,
are valid without restrictions on the relative sizes of m, n.
That is, for any ratio m/n, these other prediction methods
are asymptotically correct.

8. OVERVIEW OF PREDICTION METHODS FOR
DEPENDENT DATA

In this section, “dependent data” refers to data with
a complicated dependence structure. Common examples
include time series, spatial data, and random networks,
where the strength of dependence among observations of-
ten depends on proximity. Other examples include mixed-
effects models, longitudinal data, and small area estima-
tion where correlation exists among observations sharing
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random effects or repeated measures. In such examples,
distributional models for predictands often share nontriv-
ial connections to data models through dependence con-
ditions. See Clarke and Clarke (2018) for descriptions of
other prediction applications with dependent data.

While the literature for predictions with independent
data is more extensive, similar prediction methods ex-
ist for dependent data along the lines of the plug-in,
calibration-bootstrap, and (integration-based) predictive
distribution methods. This section discusses prediction in-
terval methods for dependent data.

Similar to previous sections, the prediction problems
considered here are based on a parametric model for the
data and the predictand, although the dependence among
and between these quantities can create complications.
Providing a challenge with model formulation and predic-
tion under dependence, both the data structure and the na-
ture of possible dependence in samples can vary greatly.

A further challenge in prediction with dependent data
is that prediction strategies developed for independent ob-
servations may fail if directly applied to dependent data,
so that caution may be required. As a simple example,
the plug-in method provides consistent prediction bounds
for many problems with independent data but fails for
the within-sample prediction problem described in Sec-
tion 7.4 where, despite arising from a random sample,
the predictand and the observed data are dependent. Ad-
ditionally, several prediction methods from previous sec-
tions involve bootstrap sampling (under independence),
where data simulation and the generation of bootstrap
samples is more complicated when data are dependent.

Before describing prediction methods, we mention
that there exists a variety of ways to generate bootstrap
samples under dependence, particularly for time series.
For the latter, common formulations of bootstrap in-
clude model-residual-based bootstraps (e.g., AR(p) mod-
els, cf. Pan and Politis, 2016), transformation-based boot-
straps aiming to weaken dependence (e.g., Kreiss, Papar-
oditis and Politis, 2011, Jentsch and Politis, 2015), and
block-based bootstraps that use data blocks to reconstruct
time series (Gregory, Lahiri and Nordman, 2018). These
bootstrap methods differ in their mechanics as well as in
the amount of time series structure presumed by the boot-
strap. For reviews of bootstrap methods with time series
and other dependent data, see Politis (2003), Lahiri (2006)
and Kreiss and Lahiri (2012).

For parametric-model based predictions from depen-
dent data, Sections 8.1, 8.2, and 8.3 respectively describe
plug-in, calibration-bootstrap, and integration-based pre-
dictive methods. The bootstrap, when employed, is para-
metric. These procedures have been largely studied and
justified in the context of Gaussian process models, where
Gaussian assumptions also facilitate generation of boot-
strap samples needed for the calibration-bootstrap. More

development is needed to extend these approaches to pre-
dictions with non-Gaussian dependent data, with some
possibilities suggested in Section 8.4.

8.1 The Plug-in Method

Beran (1990) and Hall, Peng and Tajvidi (1999) con-
sider the plug-in prediction method for some specially
structured dependent data models with independent addi-
tive errors (e.g., regression models, and the AR(1) model).
To set an h-step ahead prediction interval, given a realiza-
tion of time series data from an ARMA process, for exam-
ple, Brockwell and Davis (2016, Chapter 3) suggest using
a normality assumption along with an approximation for
the best linear predictor found by replacing unknown pa-
rameters with consistent estimates. Similarly, by assum-
ing a stationary Gaussian process, the plug-in prediction
interval has been suggested in spatial applications based
on using a normal approximation with kriging predic-
tors, where unknown parameters are replaced with consis-
tent estimates (cf. Cressie, 2015, Chapter 3). With such a
Gaussian process, the coverage probability of the plug-in
method typically has an error of O(1/n) (cf. Sjöstedt-de
Luna and Young, 2003, Vidoni, 2004). However, it is not
generally clear when the plug-in method is asymptotically
correct for dependent data, particularly for more com-
plicated and potentially non-Gaussian dependence struc-
tures.

8.2 The Calibration Method

Using the calibration-bootstrap method (described in
Section 2.2.2), Sjöstedt-de Luna and Young (2003) im-
prove plug-in kriging prediction intervals for a stationary
Gaussian process while De Oliveira and Kone (2015a)
establish similar findings for predicting spatial averages
from these processes, and Hall and Maiti (2006) use
calibration-bootstrap for small area prediction. Similar to
the method described in Section 2.2.3, Giummolè and Vi-
doni (2010) calibrate the plug-in method using an asymp-
totic expansion for a general class of Gaussian models,
including time-series, Gaussian state-space models, and
Gaussian Markov random fields. Under regularity condi-
tions with certain dependent Gaussian processes, the cali-
bration methods reduce the error of the coverage probabil-
ity to o(1/n) compared to O(1/n) for the plug-in method
(cf. Sjöstedt-de Luna and Young, 2003, Giummolè and
Vidoni, 2010).

8.3 Bayesian and Fiducial Predictive Distributions

The fiducial method can be potentially extended to de-
pendent data, but requires the development of an appro-
priate fiducial distribution under dependence, as described
in Wang, Hannig and Iyer (2012). The Bayesian method
has been studied extensively for dependent data for pre-
diction. For example, West and Harrison (1997) discuss
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Bayesian prediction in dynamic linear models for time
series; recent work includes Aktekin, Polson and Soyer
(2018), McAlinn and West (2019), and Berry and West
(2020). Handcock and Stein (1993) propose a best linear
unbiased prediction procedure within a Bayesian frame-
work for Gaussian random fields and De Oliveira, Ke-
dem and Short (1997) present prediction methods for
some types of non-Gaussian random fields. See Hulting
and Harville (1991), Harville and Carriquiry (1992) and
Christensen and Waagepetersen (2002) for related results
in the context of linear mixed models or generalized
mixed models.

8.4 Extensions to Non-Gaussian Dependent Data

As described in Sections 8.1-8.2, many of the existing
formal treatments of model-based predictions for depen-
dent data have largely focused on types of Gaussian pro-
cesses. This simply indicates that the prediction methods
based on the plug-in or bootstrap methods rely heavily
on tractable forms for the distribution of the dependent
data. One option for model-based predictions with non-
Gaussian data is to use a Gaussian model in conjunc-
tion with a suitable data transformation; for example, De
Oliveira and Rui (2009) develop plug-in and bootstrap
calibration for log-Gaussian fields. Beyond normal data
cases, we mention another general model class for devel-
oping predictions could potentially involve Markov ran-
dom field (MRF) structures. This approach for modeling
dependent data involves specifying a full conditional dis-
tribution for each observation on the basis of an underly-
ing MRF (cf. Besag, 1974). Model formulation in a condi-
tional, componentwise fashion provides an alternative to
direct specification of a full joint distribution for the data.
Additionally, such conditional distributions often depend
functionally on small subsets of “neighboring” observa-
tions, which is a property that may be useful for extending
the plug-in and calibration-bootstrap prediction methods
to MRF models. The supplement describes more details
about this prediction problem, along with a numerical il-
lustration (see Section F of the Supplementary Material).
For implementing parametric bootstrap without assump-
tions of Gaussianity, an attractive feature of MRF models
is that data may be simulated rapidly from specified full
conditional distributions through Gibbs sampling (Kaplan
et al., 2020). Note that MRF models have applications to
both continuous and discrete dependent data (cf. Cressie,
2015, Kaiser and Cressie, 2000, and Casleton, Nordman
and Kaiser, 2017).

Regarding the calibration-bootstrap of Section 8.2, the
bootstrap for dependent data can be difficult to establish
through the prescription in Section 2.2, which requires an
analytic form for the conditional distribution of a predic-
tand Y given the data Xn. By ignoring this distribution, an
alternative strategy for predictions based on bootstrap is to

approximate the distribution of a prediction error |Y − Ŷ |,
where Ŷ denotes a statistic based on data Xn. See, for ex-
ample, Politis (2013) and Pan and Politis (2016) for illus-
trations with time series, and also De Oliveira and Kone
(2015b) for similar bootstrap predictions with spatial data.

9. NONPARAMETRIC PREDICTION METHODS

Up to this point, we have considered prediction prob-
lems based on parametric models. Given a sufficient
amount of data, however, nonparametric methods are
available to construct prediction intervals. In this section,
we discuss two types of nonparametric prediction meth-
ods.

9.1 Prediction Intervals Based on Order Statistics

Let X1, . . . ,Xn be a random sample from some con-
tinuous distribution function F(x), then (X(r),X(s)) is a
100[(s − r)/(n + 1)]% prediction interval for an inde-
pendent future random variable Y from the same distri-
bution, where 1 ≤ r < s ≤ n. The coverage probability
of this prediction interval method is exact and it does not
depend on the form of the underlying continuous distri-
bution (i.e., the method is distribution-free). For a desired
nominal coverage probability that cannot be obtained in
the form of [(s − r)/(n + 1)], Beran and Hall (1993) sug-
gest interpolation to construct nonparametric prediction
intervals to approximate the desired coverage probability.
Also proposing methods based on order statistics, Fligner
and Wolfe (1976) consider constructing distribution-free
prediction intervals that contain at least k of m future ran-
dom variables and prediction intervals for any particular
order statistic of a future sample. Meeker, Hahn and Esco-
bar (2017, Chapter 5 and Appendix G) describe compu-
tational details and illustrate the use of these distribution-
free methods. Frey (2013) proposes a shortest nonpara-
metric prediction interval, as opposed to methods that
have approximately equal one-sided coverage probabili-
ties.

9.2 Conformal Prediction

Conformal prediction has been gaining popularity re-
cently because it applies to many prediction problems in
the area of supervised learning, including regression and
classification problems. Conformal prediction has often
been presented in the form of an algorithm (e.g., Vovk,
Gammerman and Shafer, 2005, Shafer and Vovk, 2008).
Here we describe the conformal prediction through sam-
pling distributions in order to connect with the pivotal cdf
methods described in Section 2.1.2.

Suppose the data sample Xn = {X1, . . . ,Xn} and the
predictand Y ≡ Xn+1 are i.i.d. (or a weaker exchangeable
assumption). Conformal prediction intervals are based on
a choice of distance statistic d(Xn, Y ) (or nonconformity
measure). One example is d(Xn, Y ) = |X̄n − Y |, which
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is the distance between a new observation Y and the
data sample mean X̄n. Denote the cdf of d(Xn, Y ) by
G(t) = Pr[d(Xn, Y ) ≤ t], t ∈ R, and write the left limit
of the cdf as G(t−) = Pr[d(Xn, Y ) < t] = limx↑t G(t),
t ∈ R. The conformal prediction uses the probability in-
tegral transform in combination with the quantile 1 − α

of a Uniform(0,1) (i.e., 1 − α) to calibrate prediction re-
gions (similar to the approach used in Section 2.1.2), after
an initial step of estimating the cdf G with an empirical
distribution Ĝy .

Let Xn+1 ≡ {X1, . . . ,Xn,Xn+1}. Then a 1 − α confor-
mal prediction region for Y is given as

(20)
{
y ∈R : Ĝy

[
d(Xn, y)−]

< 1 − α
}
,

where Ĝy is given by

ĜY (t) = 1

n + 1

n+1∑
i=1

I
(
d
(
Xn+1\{Xi},Xi

) ≤ t
)
, t ∈R

which is the empirical cdf of distances d(Xn+1\{Xi},Xi),
i = 1, . . . , n+1, found by separating point Xi from Xn+1.
Note that ĜY (·) depends on the unobserved value Xn+1 =
Y , so that Ĝy(·) ≡ ĜY=y(·) is computed provisionally us-
ing a potential value of Y = y in (20). Furthermore, in
(20), the estimated cdf Ĝy(t) at t = d(Xn, y) is techni-
cally replaced with a left limit Ĝy(d(Xn, y)−) as a type
of adjustment to Ĝy (i.e., as the latter always jumps by
1/(n + 1) at the argument t = d(Xn, y)). For perspective,
in other prediction problems based on cdf transforms, a
switch from cdf’s to left limits of cdf’s is known to be
helpful for correcting issues of discreteness in data, with
the effect of ensuring coverage probabilities are conser-
vative. Jump points of Ĝy(t) can also be randomized,
for example, replace Ĝy(t−) with Ĝy(t−) + U [Ĝy(t) −
Ĝy(t−)] in (20) for a Uniform(0,1) draw U , which then
blends the two prediction regions given by using either
Ĝy(t) or Ĝy(t−) alone. The conformal prediction method
is conservative, but if a randomization scheme is used
(whereby the realized prediction interval would depend
on the outcome of a random draw) the method can be
made to be exact (cf. Vovk, Gammerman and Shafer,
2005).

Conformal prediction can be used in the supervised
learning setting (i.e., predicting the response given the
features as well as labeled training data). Some recent
work includes applying conformal prediction to regres-
sion (cf. Lei et al., 2018), quantile regression (cf. Romano,
Patterson and Candes, 2019), and lasso regression (cf. Lei,
2019).

10. DISCUSSION

This paper discusses two major types of methods to
construct frequentist prediction intervals. One is based on
an (approximate) pivotal quantity and the other is based

on a predictive distribution (or likelihood). The extensions
of these prediction methods to dependent data are briefly
discussed. Here is a summary of our important conclu-
sions.

• Exact prediction methods are available for (log-)loca-
tion-scale distributions under complete and Type II
censoring and good approximations are available for
Type I censoring.

• For (log-)location-scale distributions, there are several
equivalent methods for computing exact intervals. The
GPQ predictive distribution method (GPQ-bootstrap)
has strong appeal due to its ease of implementation.

• For other continuous distributions, the direct-bootstrap
method performs no better than the naive plug-in ap-
proach and should be avoided (i.e., due to the increased
computational costs versus no performance gain over
the plug-in method). The calibration-bootstrap method,
however, has good coverage probability properties,
even with moderate to small sample sizes. Another po-
tentially useful method is to use a (generalized) fiducial
predictive distribution.

• For discrete distributions, we discussed and illustrated
the use of three general methods: pivotal cdf (i.e.,
the conservative method), approximate normal statis-
tics (e.g., based on a Wald-like or a score-like statistic),
and integration methods (e.g., a Bayesian method with
an objective prior).

• When the prediction problems involve dependent data,
the development of prediction intervals, particularly
based on parametric bootstrap, requires more investi-
gation for non-Gaussian dependent data.

This paper focuses on prediction intervals and coverage
probability while in most of the statistical learning (also
known as machine learning) literature, the focus is on al-
gorithms for point prediction, which are evaluated with
metrics like mean squared error using cross-validation.
However, even with contemporary (nonparametric) pre-
diction algorithms, such as neural networks, boosting,
support vector machines, and random forests (cf. Clarke
and Clarke, 2018), there is increasing interest in develop-
ing prediction intervals. In addition to the conformal pre-
diction, for example, prediction intervals based on ran-
dom forests (cf. Zhang et al., 2020) may be formulated
by estimating a distribution of prediction errors (via left
out or “out-of-bag” observations), similar to the approach
described in Section 9.2. Ultimately, the development of
prediction interval procedures from statistical learning al-
gorithms relates to bridging prediction and estimation, as
outlined in the recent overview of Efron (2020). As our
focus in this paper has been on prediction intervals, we
have not covered the important area of multivariate pre-
diction. Recently, some work has been done on multi-
variate prediction, especially for Gaussian sequence mod-
els (cf. George, Liang and Xu, 2012, and Mukherjee and
Johnstone, 2015).
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