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Abstract: Local Structure Graph Models (LSGMs) describe network data by mod-

eling, and thereby controlling, the local structure of networks in a direct and

interpretable manner. Specification of such models requires identifying three fac-

tors: a saturated, or maximally possible, graph; a neighborhood structure of

dependent potential edges; and, lastly, a model form prescribed by full condi-

tional binary distributions with appropriate “centering” steps and dependence

parameters. This last aspect particularly distinguishes LSGMs from other model

formulations for network data. In this article, we explore the expanded LSGM

structure to incorporate dependencies among edges that form potential triangles,

thus explicitly representing transitivity in the conditional probabilities that gov-

ern edge realization. Two networks previously examined in the literature, the

Faux Mesa High friendship network and the 2000 college football network, are

analyzed with such models, with a focus on assessing the manner in which terms

reflecting two-way and three-way dependencies among potential edges influence

the data structures generated by models that incorporate them. One conclusion

reached is that explicit modeling of three-way dependencies is not always needed

to reflect the observed level of transitivity in an actual graph. Another conclusion

is that understanding the manner in which a model represents a given problem is

enhanced by examining several aspects of model structure, not just the number

of some particular topological structure generated by a fitted model.
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1 Introduction

Transitivity, which is related to the number of realized triangles in a network, has drawn

a good deal of attention in network analysis. In computer science and statistical physics,

transitivity has been identified as one of three features that graph-generating algorithms

should attempt to recreate [Lancichinetti et al., 2008]. In the context of social networks,

transitivity can be heuristically be described as “friends of a common friend tend to also be

friends.” Although there is no single agreed upon quantification of this concept [Kolaczyk,

2009], indices of transitivity typically include ratios of the number of triangles to structures

that could be triangles with the addition of one edge, called two-stars.

In some discussions of social networks, the presence of moderate to high levels of transitiv-

ity seems to be almost pre-supposed as a ubiquitous feature of network data involving social

interactions [Snijders et al., 2006, Vasques Filho and O’Neale, 2020]. However, it also has

been demonstrated that certain explicit model terms for transitivity (e.g., triangles) in expo-

nential random graph models (ERGMs) can potentially promote a phenomenon called model

degeneracy [Robins et al., 2007], which has led to a number of modifications for modeling

transitivity [Hunter et al., 2008a, Hunter and Handcock, 2006, Snijders et al., 2006].

In this article, we examine the representation of transitivity by a class of random graph

models, called local structure graph models (LSGMs) [Casleton et al., 2017, 2020], for de-

scribing the incidence of graph edges. These models are formulated on binary Markov random

fields by using full conditional distributions with “centering” steps intended to separate the

effects of mean and dependence parameters. LSGMs, as well as ERGMs, are able to model

dependencies among potential edges, but LSGMs aim to directly do so in a certain type of

interpretable manner without parameter confounding among model terms. In connection to

this, LSGMs allow an investigator to exercise a degree of control over the modeling of edge
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dependencies through the specification of local neighborhoods for potential edges. While

ERGMs can, of course, also consider local dependencies [Morris et al., 2008], formulations of

ERGM do not traditionally attempt to avoid parameter confounding in an analogous manner

to LSGMs with centering [Wang et al., 2013, Section 4]. The effects of positive dependence in

a LSGM on realizing clusters of edges (or clusters of edge absence) have been demonstrated in

Casleton et al. [2017] under an assumption of pairwise-only dependence [Besag, 1974]. Here,

we examine the issue of triangle formation with models having pairwise-only dependence and

a more recent extension of LSGM to include three-way dependence terms [Casleton et al.,

2020].

The remainder of the article is organized as follows. Section 2 introduces two example net-

works that will be considered in the sequel and indicates how these examples have been used

in other contexts. A description of the LSGM approach will be presented in Section 3, and

three associated devices for modeling potential edges and their dependencies will be described

in Section 4 for the two example networks. The results of fitting a number of LSGMs to the

examples are presented in Section 5, and Section 6 discusses some of the implications of these

results for the representation of transitivity in networks. Additional theoretical results for

LSGMs are provided supplementary materials, establishing that the LSGMs considered here

belong to a type of curved exponential family and possess certain model stability properties

(i.e., so-called S-stability, Schweinberger [2011], Kaplan et al. [2020]) that some ERGMs lack.

2 Example Networks

The first dataset to be considered here is known as Goodreau’s Faux Mesa High friendship

network [Handcock et al., 2014]. The 205 nodes represent students in grades 7–12 from one

school district in rural, western United States. Undirected edges form between two nodes

if both students identified each other as a friend on an in-school survey, where students

were given a roster of all students and asked to list up to five of their closest male and five

closest female friends. This is known as a mutualized friendship network and is a common
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conceptualization of friendship in social network analysis [Hunter et al., 2008a].

The network is based on School 10 from the first wave of the Add Health longitudinal

study, though is simulated to preserve the confidentiality of the students. School 10 was

chosen by Hunter et al. [2008a] because its analysis was found to be similar to a simulta-

neous analysis of 59 schools. For more information on the Add Health survey of adolescent

behavior [Resnick et al., 1997], see http://www.cpc.unc.edu/addhealth/. Nodal attributes

of grade, sex and race were also collected [Hunter et al., 2008a, Handcock et al., 2014]. Stu-

dents who did not take the survey or were not on the roster were removed, and any missing

nodal attributes were imputed with random samples from a weighted distribution of known

attributes. An ERGM, having terms to account for density, attribute information and tran-

sitivity, was then fit to the complete data, and the Faux Mesa High network represents a

single simulation from the fitted ERGM [Goodreau et al., 2008]. These network data are

distributed in the ergm package for R [R Core Team, 2013, Handcock et al., 2014], and a vi-

sualization of this network, as it appears from plotting with the ergm package [Hunter et al.,

2008b], is shown in Figure 1.

Although the Faux Mesa High network is simulated, it has been argued to be a realistic

representation of an adolescent friendship network [Hunter et al., 2008a] and has been widely

used as an example network. Morris et al. [2008] and Bender-deMoll et al. [2008] have

applied this mutualized friendship network to demonstrate various aspects of ERGMs. By

also using the Faux Mesa High network, a method for mitigating a virus attack was tested

by Kashirin and Dijkstra [2013], a graph generation algorithm using hyperplane features

was demonstrated by Lunga and Kirshner [2011], and a visualization method for disease

transmission was considered by Lofgren [2012].

The second network of interest here is constructed from American football games played

between NCAA Division I universities during the 2000 season. Nodes represent the 115

schools with a Division I college football team during that season, and an edge exists between

two nodes if the teams competed against each other. Most college football programs are
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(a) Faux Mesa High network. Colors repre-
sent the grade and symbol shapes represent
sex, where males are squares and females are
circles. Figure adapted from Hunter et al.
[2008b].

(b) NCAA Football network. Color and shape of nodes represent the conference. In- and out-of-
conference edges are represented differently. Figure taken from Guo et al. [2013].

Figure 1: Visualizations of the (a) Faux Mesa High and (b) College Football networks.
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members of an athletic conference, or a group of teams who predominately compete against

each other. An exception are schools classified as Independent, who do not belong to any

conference. A plot of the nodes, with realized edges and conference designations, appears in

Figure 1 as obtained from Guo et al. [2013].

This Football network was compiled by Girvan and Newman [2002] and has been used

as a test bench to evaluate community detection techniques for uncovering the conference

structures from edge configurations in the network [Guo et al., 2013]. Our goal is not to

determine these features, but rather the conference structures will be considered as known

attributes for providing information toward modeling the presence of edges among nodes.

Edges will be categorized as either in-conference (for games between two schools from the

same conference) or out-of-conference (for games between schools in different conferences or

games involving an Independent school).

3 Conditionally Specified Models and Centering

Mathematically, we define a network (or random graph) by a fixed set of n nodes involving

m possible edges. Each of the m possible edges is assigned a binary random variable Y (si),

where an edge marker si = {ci, ri} indicates the two nodes, ci and ri, that an edge could

potentially join. Edge values are binary and designate the presence Y (si) = 1, or absence

Y (si) = 0, of an edge at a marker si. Covariate information on the nodes can also be

associated with the marker si and may be designated as a possible vector-valued x(si).

For examining the two example networks (Section 2), the random graph model used is a

local structure graph model (LSGM) approach. For each edge variable Y (si), this network

model involves specifying a full conditional distribution, given by P (Y (si) = y(si)|{y(sj) : j 6=

i}), y(si) ∈ {0, 1}, along with an associated set of dependent edges, known as a neighborhood

Ni ⊂ {sj}mj=1\{si}. A Markov dependence assumption simplifies the conditional distributions

P (Y (si) = y(si)|{y(sj) : j 6= i}) = P (Y (si) = y(si)|y(Ni)), i = 1, . . . ,m,
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so that these depend functionally only on the observed values y(Ni) ≡ {y(sj) : sj ∈ Ni}

of neighbors to the edge variable at si. The advantage of a conditional specification with

an explicit neighborhood definition is control over the interpretation of the local structures

in the network, particularly in combination with parameter centering to follow along with

neighborhood-size adjustments to dependence effects (e.g., (3)–(5)). The application of these

features to network analysis was introduced in Casleton et al. [2017] and extended to include

higher-order dependence in Casleton et al. [2020].

LSGMs can be interpreted as an alternate method of specifying another more common

class of random graphs known as exponential random graph models (ERGMs). In contrast

to LSGMs, traditional formulations of ERGMs specify a model for a network through a joint

distribution, often by identifying particular global topological graph features to be included

as statistics in the log-linear term of the joint distribution [Kolaczyk, 2009]. Effects frequently

included are edge density, transitivity, block effects or covariate effects. Sets of dependent

edge random variables and conditional distributions are induced by the terms included in a

ERGM, rather than explicitly specified as in a LSGM. Both the traditional formulations of

ERGMs and LSGMs have joint distributions in Gibbsian form [Casleton et al., 2020], but

these joint distributions are not central to the prescription of a LSGM here. However, the

joint distribution for a LSGM may be constructed, for example, from the set of specified full

conditional distributions under certain non-restrictive conditions [Kaiser and Cressie, 2000];

see the supplementary materials for more details on this joint distribution.

A LSGM involves an application of a binary Markov Random Field (MRF) model to the

graph edges. This model, originally referred to as the auto-logistic model, was introduced

in Besag [1974] and is commonly used to analyze spatially geo-referenced binary data due

to its ability to model dependence. Consider the conditional binary distribution written in

exponential family form as

Pr(Y (si) = y(si)|y(Ni)) = exp[y(si)Ai{y(Ni)} − Bi{y(Ni)}], y(si) = 0, 1,
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where Ai{y(Ni)} is referred to as the natural parameter function and where Bi{y(Ni)} is

a function of Ai, given as Bi{y(Ni)} = log[1 + exp(Ai{y(Ni)})] for an auto-logistic model.

The natural parameter function of Besag [1974] is given by

Ai{y(Ni)} = αi +
∑
sj∈Ni

ηijy(sj), i = 1, . . . ,m, (1)

where αi are leading constants and the ηij = ηji are dependence parameters between pairs

of random variables. This formula assumes pairwise-only dependence so that dependence is

only modeled between pairs of dependent edges.

Let S ≡ {s1, s2, . . . , sm} be the collection of all edge markers and let V denote any non-

empty subset of S. In order to incorporate higher-order dependence terms by explicitly

modeling dependence between sets of random variables of size greater than two, Lee et al.

[2001] presented a necessary form for the natural parameter function of binary conditional

distributions as

Ai{y(Ni)} = αi +
∑

V :si∈V

θV ∏
sj∈V \{si}

y(sj)

 , i = 1, . . . ,m, (2)

where αi are similar leading constants and where the θV represent dependence parameters

between sets of random variables that must be invariant to any permutation of the indices in

V . Although this allows for dependence to be modeled between any sized set of dependent

edges, all possible subsets of S are hardly ever considered. One reason is that the Hammersly-

Clifford Theorem [Cressie, 1993, p. 417] implies θV = 0 unless the edges in V represent a

clique. A clique is a single random variable or any set of random variables such that all

random variables in the set are neighbors of every other random variable in the set. Thus,

the neighborhood definitions specified for the edges of the network play a large role in which

terms of the natural parameter function are included.

The parameterization of the natural parameter functions in (1) and (2) is often referred

to as the original, or uncentered, parameterization. This form has been shown to lead to
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confounding and interpretation issues with the parameters, particularly in separating the

large and small scale model structures (e.g., overall mean, αi vs. dependence effects, ηij in

(1)) and when attribute information is included in the model (e.g., covariates, x(si) in αi).

To allow a more uniform and separable interpretation of parameters across reasonable levels

of statistical dependence, Caragea and Kaiser [2009] proposed a centered parameterization

of the natural parameter function for binary conditional distributions. For simplicity, we

will assume common dependence parameters for each type of clique size and then adjust

(i.e., scale) to accommodate for potentially varying sizes among neighborhoods and other

dependence sets [Casleton et al., 2017]. The parameterization presented in Caragea and

Kaiser [2009], also assuming pairwise-only dependence, can be written as

Ai{y(Ni)} = log

(
κi

1− κi

)
+
∑
sj∈Ni

[
η2

|Ni|+ |Nj|

]
(y(sj)− κj), (3)

where the parameter κi ∈ (0, 1) represents the large scale structure, η2 is a real-valued

dependence parameter between pairs of edges, and |N`| denotes the size of the neighborhood

for the edge variable at s`. Hence, (3) is an important type of modification of (1) using

dependence parameters ηij = ηji = η2/(|Ni| + |Nj|) that allow the value of η2 to have

the same interpretation across neighborhoods of varying sizes and maintain invariance of

dependence parameters to permutation of their indices (analogously to the parameters θV

in (2)), which is one condition needed for the joint distribution to be identified through

use of the negpotential function [Kaiser and Cressie, 2000]. The centered parameterization

was extended by Casleton et al. [2020] to include cliques of size three with resulting natural

parameter function

Ai{y(Ni)} = log

(
κi

1− κi

)
+
∑
sj∈Ni

[
η2

|Ni|+ |Nj|

]
(y(sj)− κj)

+
∑

{sj ,sk}∈C3i

[
η3

|C3i |+ |C3j |+ |C3k |

]
(y(sj)y(sk)− κjκk), (4)
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where C3i ≡ {{sj, sk} : si, sj and sk are neighbors of each other} represents the collection

of all cliques of size three involving the random variable Y (si) and where |C3i | denotes the

cardinality. Note that (4), like (3), corresponds to a form of Ai{y(Ni)} as in (2). While the

LSGM framework does not directly use a joint data density, the joint implied by the centered

binary conditions (3)-(4) can be shown to belong to a class of curved ERGMs [Snijders et al.,

2006, Hunter, 2007] and possess features of model stability; the supplementary materials

provide a formal treatment of these properties.

By definition, a clique of size three is a set of three possible edges, at markers {si, sj, sk}

say, which are all mutual neighbors, i.e., su ∈ Nv ∩ Nw for u, v, w ∈ {i, j, k} with u 6= v, w.

Hence, potential cliques of size three are determined by the specification of neighborhoods. A

common neighborhood definition in network analysis is incidence, where two potential edges

are considered neighbors (i.e., si ∈ Nj and sj ∈ Ni) if they share a common node: markers

si ≡ {ci, ri} and sj ≡ {cj, rj} have a non-empty intersection with respect to some nodes

ci, ri, cj, rj. Configurations of edges, or subgraphs [Frank and Strauss, 1986], that lead to

cliques of size three under an incidence definition of dependence are 3-stars and triangles (see

Figure 2). The dependence term in (4) may be partitioned based on the type of subgraph,

or only a particular subgraph can be modeled. For example, if only cliques of size three

corresponding to triangles are considered, the natural parameter function can be written as

Ai{y(Ni)} = log

(
κi

1− κi

)
+
∑
sj∈Ni

[
η2

|Ni|+ |Nj|

]
(y(sj)− κj)

+
∑

{sj ,sk}∈Ti

[
η3

|Ti|+ |Tj|+ |Tk|

]
(y(sj)y(sk)− κjκk), (5)

where Ti ≡ {{sj, sk} : su ∩ sv 6= ∅ for u, v ∈ {i, j, k}} gives the set of all triangle-type cliques

involving the random variable Y (si), with corresponding size denoted as |Ti|.

Note that it is not necessary to include all lower order dependence terms in the natural

parameter functions (4) or (5). For example, a valid model will result when excluding the

pairwise dependence term (i.e., taking η2 = 0 there). Finally, we note that the large-scale
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Figure 2: Subgraphs corresponding to cliques of size 3 given an incidence definition of depen-
dence: a 3-star (left) and triangle (right). Note here that the 3-star and triangle subgraphs
visualize and represent relations of model dependence among potential edges, which follow
from neighborhood definitions. This aspect differs from the realization, or actual incidence,
of edges among nodes that may be observed in a random graph.

parameter κi ∈ (0, 1) appearing in a natural parameter function (3)–(5) for an edge Y (si)

could be further modeled based covariate information x(si) when available, e.g., using logit

link log(κi/(1−κi)) = β′x(si) with a regression parameter vector β (cf. Casleton et al. [2020]).

Alternatively, we might specify κi categorically, with each κi associated with a type or group

of other edges, e.g., κi = κG for all i ∈ G; the latter is considered in Section 5. For reasonable

levels of dependence (η2, η3) in the centered parameterizations (3)–(5), one would anticipate

a large scale parameter κi to approximately match the unconditional expectation E[Y (si)] or

marginal probability of an edge [Caragea and Kaiser, 2009, Kaiser et al., 2012a]. The extent

to which E[Y (si)] ≈ κi fails to hold, particularly across a common edge type κi = κG, may

be examined in simulation as one possible check on degeneracy or other inadequacies in fitted

models based on (3)–(5) (as illustrated in Section 5).

4 Graph Structure in LSGM

There are three remaining factors involved in the formulation of a LSGM that influence

the overall random network allowed by the model in a problem. In this section, we describe

those factors briefly in turn (Sections 4.1-4.3) as well as their specification for the two network

examples (Section 4.4).
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4.1 The Saturated Graph

Although not required, specification of a saturated graph, or a maximally allowable graph in

terms of edges, can influence the overall potential density of a graph, reduce the computa-

tional burden, and keep the magnitude of estimated parameters in more easily interpretable

ranges. In a graph with n nodes, a saturated graph arises from restricting the edges with

positive probability to a meaningful subset of the n(n − 1)/2 possible pairs of nodes. Such

restrictions are intuitive for situations that involve physically impossible edges, but can also

be used to focus an analysis on types of edges that are of primary interest. For exam-

ple, in a graph for which nodes are morphological variants or subspecies of a given type of

salamander and edges represent inter-breeding, we might allow potential edges only among

those subspecies that overlap substantially in a geographical range. This does not mean that

individuals of two subspecies with disjunct ranges may never inter-breed, just that such an

occurrence would be a rarity, and inclusion of all possible edges of this type would not benefit

the analysis.

4.2 Neighborhood Specification

While the use of a saturated graph that contains less than n(n − 1)/2 potential edges in-

fluences global, or large-scale, aspects of graph topology, the specification of neighborhoods

directly influences local graph structure. The use of neighborhoods to model the conditional

probability that potential edges are realized is, in fact, the origin of local structure in a LSGM.

There are few, if any, general principles that guide the specification of neighborhood

structures in a LSGM, and the process is highly specific to whatever substantive problem is

under consideration. This is similar to the specification of neighborhoods in spatial appli-

cations of MRF models. There, default neighborhood specifications on regular lattices are

often taken to be either four-nearest or eight-nearest structures. In a similar vein, if one

is concerned with triangle realizations and transitivity exhibited in a graph, neighborhoods

defined by incidence (cf. Section 3) are a reasonable default specification, and one we will
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use in the following analyses. Regarding neighborhood specification, other related notions

of local dependence have traditionally existed in the ERGM literature [Frank and Strauss,

1986, Snijders et al., 2006, Morris et al., 2008, Wang et al., 2013] which can also be suggestive

of neighborhood structures, as discussed further in Section 4.4.

4.3 Clique Sizes (Parameters) Included in Model

The final factor that exerts an influence over the manner in which a LSGM represents graph

topologies is specification of the clique sizes included in modeling the natural parameter

functions of conditional binary distributions for potential edges. In the models considered

here, the choice is between (3) and (4). The former model addresses dependence only among

pairs of neighboring potential edges, while the latter model includes dependence among

cliques of three potential edges, that is, among triples of edges that are all neighbors of each

other. Relative to the phenomenon of transitivity, cliques of size three contain edges that

form potential triangles.

Note that inclusion of the last term in (4) differs from the common practice with MRF

models of partitioning an overall neighborhood to deal with, for example, directional spatial

dependencies. Here, the last right hand term in (4) is not mutually exclusive of the pairwise-

dependence term in the first right hand sum. In fact, each clique of size three will result in

two terms being included in the first right hand sum and one term in the second right hand

sum of (4). Ultimately, there are four specific models that arise from (4). An independence

model results from restricting η2 = η3 = 0; a model with pairwise-only dependence results

from restricting η3 = 0; a model with no pairwise dependence but dependence among triples

results from η2 = 0; and a model with both pairwise and three-way dependencies results from

not restricting either η2 or η3. All of these models will, in fact, generate some triangles in a

random network realization. The question becomes which model might be more in concert

with a given network.
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4.4 Specifications for Example Networks

Possible and realized topological features and dependence structures are next contrasted

between the Faux Mesa High and Football networks, particularly in light of the specification

of saturated graphs and neighborhood assignments discussed in previous sections.

For the Faux Mesa High friendship network, a saturated graph will be specified that

allows edges to form only between two students (nodes) in the same grade. More than 80%

of all realized edges in the network are captured by this saturated graph, but the number of

potential edges to model is reduced from 20, 910 for an unrestricted situation to only 4, 174

under this definition of a saturated graph. The neighborhood definition for the Faux Mesa

High network models involves both incidence and homophily, so that two potential edges are

neighbors if they share a node and connect two nodes of the same sex and race. For example,

the neighborhood of an edge which potentially connects student A to student B, where both

students are female and Native American, consists of all edges which either connect student A

to other Native American females or student B to other Native American females. See Figure

3 for an illustration of edge neighbors and non-neighbors. Node characteristics, including

particularly homophily, have been shown to be important in predicting edge formation in

social networks [Hunter et al., 2008a], and the general notion of limiting dependence based

on attribute information is also common with ERGMs [Morris et al., 2008]. Note that edges

may still form between nodes that do not exhibit the same sex and race, this neighborhood

definition only affects the amount of dependence in the models. The resulting dependence

structure is summarized in Table 1. Edges have between 0 and 38 neighbors, with an average

of 18.95. The number of potential cliques of size three is 162, 229; on average an edge is a

member of 116.60 cliques of size three. Regarding triangle-type subgraphs of dependence,

the number of cliques of size three that are triangles is 3,093, so only 2% of cliques of size

three resulting from this neighborhood definition are triangles. In a network realization from

a model however, note that triangles may form between sets of nodes that do not constitute a

clique of size three, even in models that incorporate dependence among such cliques explicitly.
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Figure 3: Some example edges for the Faux Mesa High School network to illustrate neighbor
relations. Two edges are neighbors if the nodes which they connect are incident and share
the same race and sex. Thus, for the focal edge connecting two Native American females,
neighbors include the two potential edges connecting the nodes to another Native American
female. The dotted lines are not neighbors because they do not share both the race and sex
attributes of the focal edge.

In the Football network, no restrictions will be placed on the saturated graph so that,

with 115 nodes (teams), there are 6, 555 potential edges. Neighborhoods in this example

will be defined by any potential edges that are both incident and join two nodes within

the same conference; this reflects a notion of local dependence within a block structure as

in Guo et al. [2013], Wang et al. [2013], Schweinberger and Handcock [2012]. A result of

this specification is that 6, 066 of the possible edges will have no neighbors. Table 1 displays

resulting neighborhood statistics for those edges that have at least one neighbor (i.e., positive

neighborhood sizes), where the average neighborhood size is then 17.12. For the Football

network, the definition of neighborhoods leads to 12, 507 possible cliques of size three, 1, 395

of which are triangle-subgraphs but, again, this does not necessarily constrain the number of

possibly observable triangles.

Notice the distinction between these two examples in their uses of saturated graphs and

neighborhood specifications. In the Faux Mesa High network, the number of potential edges

have been reduced through the specification of a saturated graph, and edge neighborhoods

have been defined to include pairs of edges that may lead to triangle-cliques and also sat-

isfy other similarity constraints. In models that incorporate these specifications, positive

dependence promotes transitivity and homophily. A lack of dependence, on the other hand,
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Table 1: Comparison of the modeled dependence of the Faux Mesa High and football networks
Football Faux Mesa High

# nodes 115 205
Result of Saturated Graph:

# potential edges 6555 4174
Result of Neighborhood Definition:

Number of neighbor-less edges 6066 21
Average neighborhood size 17.12* 18.95
Average number of triangles 8.56* 11.13*
Number of cliques of size 3 12,507 162,229
Number of triangles 1395 3093
Number of unique 2-stars 4185 39,546

*Average of only the positive values.

suggests these phenomena are not major factors in determining graph topology. In the Foot-

ball network, the full set of potential edges are allowed. The neighborhood definition again

involves edges that are incident, but implicitly captures only edges that could reasonably

be expected to result in triangle-type cliques, given the uneven number of games each team

plays against in-conference versus out-of-conference opponents.

5 Analysis

The remaining factor in a LSGM that determines the structure of networks under the model

is parameter specification, i.e., the manner in which the κi are modeled in (4) and how de-

pendence parameters (η2, η3 or both) are included. We fit three models to each of the Faux

Mesa High and Football networks. Within each example, all models treated the large-scale

parameters (the κi) in the same manner, where each κi ∈ (0, 1) in the centered parameter-

izations of (3)-(4) intends to reflect the marginal/overall probability of an edge Y (si) = 1,
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often varying by edge type. Consequently, for the Faux Mesa High network, we used

κi =


κFF for Female-Female edges

κMM for Male-Male edges

κFM for Female-Male or Male-Female edges.

For the Football network, these large-scale parameters were specified as

κi =

 κIn for intra-conference games

κOut for inter-conference games.

The difference between the three models within each example was in how the small-scale,

or dependence, structure was represented. Model 1 assumed pairwise-only dependence, with

natural parameter function Ai{y(Ni)} from (3) or, equivalently, (4) with η3 = 0. Dependence

between both pairs and triples of dependent edges were included in Model 3 (i.e., η2, η3). For

the Football network, the Model 3 natural parameter function Ai{y(Ni)} corresponded to

(4); for the Faux Mesa High network, triangle-subgraphs were instead the only cliques of size

three used so that the Model 3 natural parameter function was that of (5). Finally, what we

will call Model 2 for each network was the same as Model 3, but with η2 = 0 in each case.

5.1 Fitted Models and Large-Scale Parameters

5.1.1 Parameter Estimation

Parameter estimates were obtained by maximizing the log-pseudolikelihood, which for a

LSGM is

log PL =
∑
i

{y(si) log[pi(Ni)] + (1− y(si)) log[1− pi(Ni)]},

where pi(Ni) ≡ P (Y (si) = 1|y(Ni)) = exp(Ai{y(Ni)})/[1 + exp(Ai{y(Ni)})] is the con-

ditional probability of an edge at si and Ai{y(Ni)} is the corresponding natural parame-
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Table 2: Parameter estimates and 90% percentile parametric bootstrap confidence intervals
for three models fit to the Faux Mesa High network.

Parameter Model 1 Model 2 Model 3
κFF 0.063 (0.049, 0.078) 0.063 (0.048, 0.079) 0.060 (0.043, 0.078)
κFM 0.025 (0.020, 0.031) 0.027 (0.021, 0.033) 0.026 (0.020, 0.032)
κMM 0.033 (0.024, 0.043) 0.033 (0.023, 0.044) 0.032 (0.020, 0.044)
η2 8.40 (4.155, 10.732) – 7.15 (0.093, 10.273)
η3 – 36.51 (29.10, 51.16) 24.19 (18.076, 42.028)

ter function. This fitting approach is particularly numerically tractable given the centered

conditional specifications and the locally adjusted dependence parameters in (3)–(5), and

pseudo-likelihood estimation can be shown to be consistent here under mild assumptions,

similarly to spatial data contexts (cf. Besag [1974, 1975], Guyon [1995])

Confidence intervals were obtained through a percentile parametric bootstrap procedure.

For each model, 1000 simulations were obtained from a Gibbs Sampling algorithm using a

burn-in and thinning of 10,000 networks. Point estimates and confidence intervals for the

Faux Mesa High are displayed in Table 2. All 1,000 simulations are represented in the con-

fidence intervals of Model 1; however, the estimation algorithm failed to produce estimates

for 14 simulations from Model 2 and 33 from Model 3 so that the intervals of Table 2 for

these models are based on 986 and 967 simulations, respectively. The estimates for the κ

parameters are relatively close to the overall proportions in the data (by edge type), with

confidence intervals that are fairly narrow. That is, the κ parameter estimates do not change

dramatically over Models 1-3 incorporating different dependence types, which is intended

by centered parameterizations (3)–(5). None of the confidence intervals for dependence pa-

rameters contain zero, indicating a substantial amount of dependence between both pairs of

neighboring edges as well as triples of neighboring edges that include triangles.

Estimates of the parameters for the three models fit to the Football network are displayed

in Table 3, where again (due to centering) κ parameter estimates are stable over the Models

1-3 though dependence parameter estimates vary greatly. Confidence intervals are again

computed using percentile parametric bootstrap, using 1, 000 simulated data sets. For Model
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Table 3: Parameter estimates and 90% percentile parametric bootstrap confidence intervals
for three models fit to the football network.

Parameter Model 1 Model 2 Model 3
κout 0.034 (0.031, 0.038) 0.034 (0.031, 0.038) 0.034 (0.030, 0.038)
κin 0.830 (0.796, 0.863) 0.831 (0.794, 0.873) 0.832 (0.801, 0.861)
η2 3.54 (-3.299, 7.354) – -142.23 (-209.16, 2.23)
η3 – 3.97 ( -1.75, 7.79) 127.79 (-1.75, 186.45)

3, 161 of those data sets failed to produce estimation convergence and so the confidence

intervals for Model 3 are based on 839 simulated networks. Again, the estimates for the

large-scale parameters are in concert with the realized data proportions in the network, and

confidence intervals appear to be symmetric and narrow around the estimates. In contrast

with the Faux Mesa High example, confidence intervals for the dependence parameters do

not indicate strongly significant dependence and are not as symmetric, particularly those for

Model 3. In fact, it appears that this network is dominated by the proportion of within-

conference games played by each team (related to κin) and this alone is largely responsible

for the structure of the realized graph.

5.1.2 Checks of Degeneracy and Large-Scale Parameter Effects

An important consideration when fitting network models is the issue of model degeneracy.

This phenomenon occurs when a model places all or most of its probability on only a few

possible network realizations that often do not resemble the network of interest. This model

failure has been widely studied in the network analysis literature for ERGMs [Handcock,

2003, Schweinberger, 2011], has been recognized in a more general class of models for inter-

active systems [Strauss, 1986], and is associated with long-range dependence in Ising models

[Snijders, 2002]. To identify model degeneracy, Kaiser et al. [2012a] suggest simulating from

the fitted model and verifying that proportions of realized edges, among different types of

edges in a simulated network, are reasonably in concert with those from the original network

19



data 1. If not in concert, this may also suggest other model inadequacies regarding the fitted

model being unable to account for large-scale (mean) effects in combination with the fitted

dependence parameters [Caragea and Kaiser, 2009].

It should be noted that there are three related aspects to what is often called model

degeneracy. First is what might be considered absolute degeneracy, in which a given model

contains only a few points of non-negligible probability in its joint support. A second related

concept of model stability [Schweinberger, 2011] concerns dramatic changes in probability

among joint configurations differing in only one or a small number of data points. Finally,

and largely unrecognized, is a connection with the lack of a unique decomposition between

large-scale and small-scale structures in models. All models considered here can be shown

to be stable (see supplementary materials) so that artifacts related to degeneracy are caused

by excessive magnitude of dependence parameters [Kaiser et al., 2012a]. But poor repre-

sentations of large-scale (mean) data structure can also result from the combined effects of

large-scale (κi) and small-scale (η1, η2, η3) model parameters and this is, again, exacerbated

when an (estimated) dependence parameter becomes overly large. Unfortunately, what overly

large means is not easily determined and depends on many factors such as the sizes of neigh-

borhoods and values of other dependence parameters that may be present in a model, among

others.

For both example networks, Figure 4 displays overall and category-wise proportions of

edges found in each of 1,000 (bootstrap) network simulations from the three fitted models

per network example; each set of 1,000 proportions from simulation appears in a Normal

quantile-quantile plot. A dashed horizontal line represents an edge proportion as realized in

the corresponding original network example.

1The binary conditionals with centered parameterizations in (3)–(5) induce a curved exponential joint
distribution for the LSGMs here and simulations from models fit by pseudo-likelihood (or maximum like-
lihood) estimation may not produce proportions of realized edges that match, on average, those from the
original data. Due to the curved exponential form, the natural parameter space of these LSGMs is also not
of the same dimension as the true parameter space; for the Faux Mesa High network, Models 1,2,3 have
4,4,5 parameters, respectively, while the dimensions of a full rank minimally sufficient statistic are 7,10,14
in these models. See the supplementary materials for more details on these joint distributions and minimal
sufficiency.
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The first row of Figure 4 summarizes simulations of the Faux Mesa High network obtained

from the three fitted models. Note that the saturated graph determines the total number

of possible edges, so the denominator for each proportion. Simulations from Models 2 and

3 overestimate both the overall and same gender proportions of edges. This feature is not

necessarily indicative of model degeneracy, as model degeneracy occurs when the simulations

result in only a few possible networks. Rather, the overestimation indicates that these models

are not adequately describing a feature of the network. That is, Models 2-3 fail to re-create

these gender proportions observed in the data (relating to large-scale/mean behavior), even

though estimates of large-scale parameters (κ’s in Table 2) are close to these observed sam-

ple proportions, which suggests issues in how these models are attempting to incorporate

dependence structure. However, all three models are able to recreate the distribution of

Female–Male edge proportions with the value realized from the original network near the

center of all distributions. Note, though, that the realized proportion of Female-Male edges

in the data was quite small. The interesting implication of Figure 4 for the Faux Mesa High

network is that the model with pair-wise only dependence (Model 1) was able to capture the

overall proportion of each type of edge, while models that included a dependence term for

cliques of size three, either in addition (Model 3) or alone (Model 2), vitiated this perfor-

mance. This illustrates the aforementioned interaction between large-scale and small-scale

model parameters in determining model behavior, as the large-scale parameters were nearly

the same for all three models.

The second row of Figure 4 displays the simulated edge proportions from the three models

fit to the Football network. Out-of-conference edges form independently under all three

models, and thus the simulated proportions are nearly identical regardless of the model fit.

Proportions are also similar between the three models for the in-conference edge proportions

(and thus for the overall proportions as well), with the middle of the distributions aligning

with the realized proportions. Thus, none of the models raise concerns of model degeneracy

or inadequacy, even though the estimates from Model 3 do not seem intuitive.
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Faux Mesa High network

Football network

Figure 4: Normal quantile-quantile plots of the edge proportions (by different edge types)
found in each of 1,000 simulated networks from three fitted models, per network example.
The first row represents simulations from the models fit to the Faux Mesa High network and
the second row to the Football network. Dashed horizontal lines represent edge proportions
from the original network data. A vertical line at the theoretical quantile of zero has been
drawn for reference.
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5.2 Fitted Models and Dependence Effects

5.2.1 Examining Conditional Probability Structures

To further investigate the behavior of these models, estimated conditional probabilities

P (Y (si) = 1|y(Ni)) = E(Y (si)|y(Ni)) of edges (or, equivalently, conditional expectations)

were explored. Estimated conditional and marginal probabilities are displayed for Models 1

and 3 fit to the Faux Mesa High network in Table 4. Results of Models 2 and 3 are similar,

thus values for Model 2 are not included. Because conditional probabilities depend on the

values and number of neighboring edges, these probabilities will be computed for a focal

edge, represented as a dashed line, for the neighborhood configurations displayed in Figure

5. Although these particular configurations are not necessarily common in the Faux Mesa

High network, these are used for purposes of illustration due to their simplicity to visualize.

Marginal probabilities are approximately the estimate of the corresponding κ (because of the

centered parameterization) and only depend on the sex of the two nodes prescribing the focal

edge in Figure 5. The neighbor configuration on the left of Figure 5 is used to compute the

conditional probabilities of an edge connecting nodes of the same sex. Due to the incidence-

homophily neighborhood structure (cf. Section 4.4), a potential Female–Male edge cannot

similarly belong to a triangle-type clique so that a comparable neighborhood configuration

is displayed on the right of Figure 5, where the focal edge has four neighbors.

For both Models 1 and 3 and for each type of edge, as the number of neighbors real-

ized increases so does the conditional probability of edge occurrence. When zero, one or

two neighbors that do not form a triangle-clique (in Model 3) are realized, the conditional

probabilities for same-sex edges are similar between the two models. However, for same-sex

edges, if there are two realized neighboring edges where the subsequent occurrence of the fo-

cal edge would realize a triangle in the network, then the probability of a same-sex focal edge

forming is nearly unity under Model 3. The modeling implication for same-sex edges is that

triangles in the network appear under Model 1 simply through the increase in clusters caused

by dependence among pairs of potential edges (i.e., three and four positive neighbors), while
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Figure 5: Neighborhood configurations used to compute the conditional probabilities for
Female–Female and Male–Male (left) and Female–Male (right) in Table 4. The focal edge,
for which the conditional probability is computed, appears as the dashed line in both.

under Model 3 triangles are realized almost whenever they are possible, with two, three or

four positive neighbors. For Female–Male edges, the two models result in similar conditional

probabilities among all possible outcomes of neighboring values.

To compare the fit of the three models to the Football network, the conditional proba-

bilities of a typical in-conference edge are computed. These conditional probabilities depend

on the number of neighbors and also, for Models 2 and 3, on the resulting number of cliques

of size three. Twenty is the most common number of neighbors in these network models,

so that the denominator of the pairwise dependence η2 term will be 2 × 20 in (3) or (4) for

purposes of computing conditional probabilities. Similarly, edges commonly belong to about

100 cliques of size three in Models 2-3, so that the denominator of the three-way depen-

dence η3 term will be treated as 3 × 100 in (4) for determining conditional probability. The

resulting conditional probabilities for all three models are plotted in Figure 6 against the

possible number of positive/realized neighboring edges, {0, 1, . . . , 20} here, along with the

approximate marginal probability from each model as a dashed, horizontal line.

The conditional probabilities for Model 1 increase monotonically with the number of pos-

itive neighboring edges. Because Models 2 and 3 also include the dependence from triples

of edges, there are multiple conditional probabilities possible for edge occurrence based on a

given number of positive neighbors, as depicted in Figure 6 (e.g., Model 1 shows one proba-
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Female–Female Male–Male Female–Male
Model 1

Marginal Prob, P (Y (si) = 1) ≈ κi 0.063 0.033 0.025
Conditional Prob, P (Y (si) = 1|x(si),y(Ni))

0 neighbors realized 0.047 0.029 0.023
1 neighbor realized 0.142 0.089 0.071
2 neighbors realized 0.354 0.245 0.203
3 neighbors realized 0.645 0.519 0.458
4 neighbors realized 0.858 0.781 0.737

Model 3
Marginal Prob, P (Y (si) = 1) ≈ κi 0.060 0.032 0.026
Conditional Prob, P (Y (si) = 1|x(si),y(Ni))

0 neighbors realized 0.046 0.028 0.023
1 neighbor realized 0.117 0.074 0.072
2 neighbors realized 0.203

From same potential triangle 0.994 0.989
From different potential triangle 0.269 0.180

3 neighbors realized 0.998 0.996 0.456
4 neighbors realized 1 1 0.734

Table 4: Marginal and conditional probabilities for edges with the neighborhood configuration
shown in Figure 5.
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Figure 6: Conditional expectations/probabilities under the three fitted models as a func-
tion of the number of positive neighbors (1, . . . , 20). The approximate marginal expecta-
tion/probability for each model is plotted as a gray, dashed horizontal line.

bility for a given number of positive neighbors, while Models 2-3 show several probabilities).

For example, if three neighbors are positive, then the occurrence of a focal edge may result

in all positive edges among either 1, 2 or 3 cliques of size three. Conditional probabilities for

Models 1 and 2 are similar in Figure 6, particularly once the number of positive neighbors is

at least 7, possibly due to the similarity of the estimates of η2 and η3 in each model.

The pattern of conditional probabilities from Model 3 in Figure 6 is not intuitive, as this

value is almost 1 even when few neighbors are realized and then this probability decreases

once half of the neighbors are realized. This aspect is due to the fact that the estimate of η2

is negative for this model and, as the number of positive neighbors increases, the number of

two-stars increases more rapidly than does the number of cliques of size three. Thus, as the

number of positive neighbors grows, the influence of η2 on conditional probabilities becomes

greater than the influence of η3.

5.2.2 Further Examinations of Estimated Dependence

Lastly, the three fitted models were examined as to how well they are able to recreate two-

stars and triangles realized in the actual networks. We consider these features only with

26



regard to those model edges included in at least one neighborhood, as these are the edges for

which the models explicitly prescribe dependence. Based on repeated network simulations

from the three fitted models, Figure 7 demonstrates the proportions of realized two-stars and

dependent triples of edges (found in each simulated network) among those possible under

the models. The top two plots show the results from the models fit to the Faux Mesa High

network. Simulations from the fitted Models 2 and 3 result in too many two-stars and

triangles, which is intuitive as edges from these models were over simulated in general (see

Figure 4). Model 1 does not include a term that explicitly describes transitivity, but was most

able to recreate the number of realized triangles among edges included in the dependence

terms of Models 2-3. The use of a saturated graph and the particular neighborhood definition

in the Faux Mesa High network results in 3,093 possible triangles, where 6 (or 0.2%) are

actually realized. For comparison, an unrestricted saturated graph for the Faux Mesa High

network would entail
(
205
2

)
= 20, 910 potential edges with 4, 244, 730 two-star neighbors and

1, 414, 910 triangle-type neighbors. Among the latter, there are 62 realized triangles in the

actual data, or 0.004% of such triangles. It is not the use of a restricted saturated model that

drives the results of the Faux Mesa High network but, rather, the low level of transitivity

exhibited by the data.

In the Football network, the capacity of the three models to reproduce realized edges

among subgroups of two-stars and triples of dependent edges is indicated in the second row

of Figure 7. Again, all three models behave similarly. Simulated networks from the fitted

models tend to over recreate edges among two-stars and cliques of size three, on average,

compared to those found in the actual network. Thus, it may be that the strength of the

dependence between pairs and triples of dependent edges is slightly overestimated in all three

models.

These results for the Football network suggest that inclusion of both η2 and η3 in Model 3

may be redundant. This is further supported by the plot of estimated values of these param-

eters in Figure 8 which have a correlation of −0.997. Estimated values in this plot are found
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Faux Mesa High network

Football network

Figure 7: Normal quantile-quantile plots which demonstrate the ability of the three fitted
models to recreate realized proportions of two-stars and triples of dependent edges among
those modeled in each of the Faux Mesa High and Football networks; one network simula-
tion from a fitted model results in a proportion indicated above. Horizontal, dashed lines
correspond to the actual proportions in these networks.
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Figure 8: Scatterplot of the estimates of η2 against η3 from 839 (bootstrap) network simula-
tions from the fitted Model 3 for the Football network.

from the bootstrap samples used to compute interval estimates in Table 3. A choice between

Model 1 and Model 2 to describe this example (both as reductions of Model 3) may depend

on factors not considered in this article.

6 Discussion

We described features associated with the use of a LSGM to account for structural com-

ponents of realized networks. The use of specified neighborhoods for potential edges is the

distinguishing characteristic of the LSGM approach. While ERGM specifications imply cer-

tain conditioning sets of edges in the full conditional distributions, a joint or global model

specification may offer little guidance about how to control the structure of those neigh-

borhoods or how to tailor neighborhood structures to particular problems. Given that full

conditional distributions are explicitly formulated in a LSGM, an investigator has the addi-

tional flexibility of including pairwise-only or higher order interactions among edges in the

model.

All of the controlling factors in a LSGM can impact the manner in which a model repre-

sents the phenomenon of transitivity in networks, which has been the focus of this article. We
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have relied on two well-known example networks which exhibit marked differences in overall

topology. The Faux Mesa High friendship network is sparse, with only minimal topological

features of interest. The representation of this network using pairwise-only dependence on

a restricted saturated graph, and with neighborhoods chosen to exploit homophily, is ade-

quate for describing this network. Model terms explicitly targeted at increasing the level of

triangles (e.g., relative to open two-stars) not only fail to offer improvement in this example,

but actually prove detrimental to adequate representation of the observed data. Our con-

clusions for this example differ from those of Hunter et al. [2008a], who used a traditional

ERGM structure and found that there was a need to include a host of parameters for effects

of grade, sex, and race, as well as a highly contrived term constructed to reflect transitivity

(geometrically weighted edge-wise shared partner) in order to adequately represent this same

measure in the actual data.

In contrast, the Football network is characterized by a large overall degree among the

predominant edge category (in-conference contests), leading to many two-stars and triangles.

But, contrary to what one might anticipate, inclusion of modeling terms to explicitly account

for these features, namely the inclusion of cliques of size three in natural parameter func-

tions, offers no improvement in description of the network over a pairwise-only dependence

model. Here, however, the cause is quite different than in the Faux Mesa High example. In

the Football network, models with parameters for both pairwise and group interactions are

essentially modeling the same structure twice. One could use a model with only cliques of

size three or one could use a model with only cliques of size two (pairwise-only dependence),

but using both leads to uninterpretable parameter estimates. In fact, if one is guided solely

by non-simultaneous interval estimates, the possibility that an independence model might

be reasonable suggests itself. In their analysis of the same network, Guo et al. [2013] found

the that a hierarchical block model with a parameter for in-conference contests for larger

(more than 9 team) conferences and a separate parameter for smaller conferences was the

most appropriate fit to the data. The dependence structure of the LSGM is able to capture
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this feature of the Football network more intuitively, without delineating in-conference games

based on conference size.

Consideration of the two example networks used in this article also provides a caution-

ary tale to fitting network models without adequate examination. After fitting the model

with the most dependence terms (Model 3) to the Faux Mesa High network, if only the pa-

rameter estimates and resulting bootstrap confidence intervals had been examined, then the

adequacy of the model would most likely not have been questioned. It is when simulations

from this model are examined and compared to the actual network that it becomes clear

that the model is not adequately describing features of interest (e.g., occurrence proportions

among types of edges). Similarly, an adequate model fit might have been declared for the

Football network if Model 3 alone had been fit and if only simulation of network features

had been examined, without regard to the behavior of parameter estimates and conditional

probabilities. Interval estimates of parameters and estimated conditional expectations indi-

cate a non-intuitive model fit for this network example, further verified by the strong linear

relationship in estimated dependence parameters η2 and η3 among bootstrap samples from

the fitted model.

The use of a LSGM to examine the structure of networks involves choices in model

formulation that will impact conclusions made on the basis of statistical analysis. These

choices are the most defensible when made on the basis of scientific understanding of the

network under study. Absent that, however, there are procedures that the investigator can

use to determine how parts of the overall model structure interact with parts of the overall

data structure. We suggest that such procedures include assessment of both marginal graph

features (number of topological features generated by a fitted model) and conditional features

(conditional probabilities of edge realization under specific neighborhood configurations).

The conditional formulation of LSGMs may also be useful for potentially new types of

goodness-of-fit assessments for network models. For example, Kaiser et al. [2012b] proposed

a general testing procedure for spatial Markov random field models based on the notion of
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concliques (groups of non-neighboring observations) and certain generalized residuals defined

on such concliques. Extension of this procedure to binary models, and LSGMs in particular,

has the potential to produce new perspectives to formal model assessments for network data.

Additionally, formal assessments of neighborhood structure in networks may also be possible

based on the development of conditional moment tests, such as those in Kaiser and Nordman

[2012] for spatial data.
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