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Abstract
Efficient sample preparation and accurate disease diagnosis under field conditions are of great

importance for the early intervention of diseases in humans, animals, and plants. However, in-field
preparation of high-quality nucleic acids from various specimens for downstream analyses, such
as amplification and sequencing, is challenging. Thus, developing and adapting sample lysis and
nucleic acid extraction protocols suitable for portable formats have drawn significant attention.
Similarly, various nucleic acid amplification techniques and detection methods have also been
explored. Combining these functions in an integrated platform has resulted in emergent sample-
to-answer sensing systems that allow effective disease detection and analyses outside a laboratory.
Such devices have a vast potential to improve healthcare in resource-limited settings, low-cost and
distributed surveillance of diseases in food and agriculture industries, environmental monitoring,
and defense against biological warfare and terrorism. This paper reviews recent advances in
portable sample preparation technologies and facile detection methods that have been / or could
be adopted into novel sample-to-answer devices. In addition, recent developments and challenges
of commercial kits and devices targeting on-site diagnosis of various plant diseases are discussed.

1 Introduction

Point-of-care (POC) sensing system is a portable analytical device providing clinical indices
such as blood glucose level so patients and their care providers can take necessary actions
immediately. It can serve as a reliable diagnostic platform for those living in resource-limited
places and as daily care for urban populations in developed countries. An ideal POC sensing
system is accurate, rapid, economical, and easy to operate for health monitoring and disease testing
[1,2].

Infectious diseases caused by viruses, viroids, bacteria, and other microbes have resulted in a
significant loss of population and economy worldwide almost annually [3, 4]. Resource-limited


mailto:htsutsui@engr.ucr.edu

and remote regions such as small rural communities and most developing countries always take
the brunt of disease outbreaks without early warning and effective treatments when they happen.
Many living in these regions cannot effectively combat such circumstances due to the lack of
healthcare infrastructures and feasible diagnostic kits allowing quick disease screening [5]. The
worldwide COVID-19 pandemic has served as a timely reminder of the critical value of quick
disease diagnosis at an early stage [6]. Overwhelmed centralized diagnostic facilities in the
COVID-19 hotspots and the lack of access to such facilities in developing countries have
highlighted the need for portable sample-to-answer diagnostic devices.

A tremendous amount of infectious diseases in not only humans, but also animals and plants
can be analyzed based on detecting nucleic acids. The examples include, but are not limited to,
SARS-CoV-2, HINI, and H5N2 leading to severe diseases in humans, genetic biomarkers of
tumor cells, Salmonella spp, Noroviruses, and Toxoplasma gondii contaminating food and
drinking water, and huanglongbing (HLB) devastating citrus species [7-9]. Therefore, the ability
to acquire ready-to-detect nucleic acids under field conditions is critical for POC sensing and
sample-to-answer devices. Isolation of nucleic acids is implemented in two steps. First intracellular
contents, including host and pathogen genomes, organelles, and proteins are released through
various cellular lysis methods. Then, desired nucleic acids are separated from the resultant lysates
and further purified. Sample-to-answer sensing devices targeting a genetic marker(s) are composed
of three critical parts: (i) sample preparation, (ii) target amplification, and (iii) signal readout [2,
10, 11]. Ideally, such devices integrate necessary hardware and assay reagents onboard or in
cartridges to minimize user intervention and the risk of contamination [12].

This paper reviews various technologies having great potential to be integrated into portable
formats for sample-to-answer bioassays. First, it provides an overview of the in-field sample
preparation for humans, animals, plants, and microbes with different approaches. These include
sample lysis and nucleic acid purification. Next, it focuses on the nucleic acid amplification
methods conducted on a chip or in an integrated system, followed by built-in signal readout
principles (Fig. 1). Given the relative scarcity of reports focusing on in-field diagnosis of plant
diseases. This review briefly summarizes a variety of portable commercial kits targeting plant
diseases, highlighting the importance of this emerging field. Finally, the future perspectives of the
portable and sample-to-answer devices are discussed, highlighting unmet needs and promising
directions.
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Fig. 1. Overview of portable and sample-to-answer diagnosis composed of four major parts: cell
lysis, nucleic acid extraction, amplification, and signal readout.

2 Sample lysis methods

Preparation of biological specimens includes sample lysis and nucleic acid extraction. It is
vital for downstream molecular analyses and processing, including genotyping, sequencing,
CRISPR, drug screening, and disease diagnosis [13, 14]. Sample lysis breaks down cell walls and
membranes and releases plenty of nucleic acids from samples varying in composition and species
[15, 16]. However, it is a delicate process because excessive heat and forces resulting from
mechanical and physical lysis can degrade the quality of products such as DNA, RNA, and proteins.
Particularly, high throughput lysis of difficult-to-lyse samples (e.g., gram-positive bacteria, plant
materials) require extra care [15]. Combining multiple lysis modes (or the use of commercialized
kits) can alleviate these issues [17]. For in-field uses, sample lysis methods should be fast and easy
to operate and consume small amount of sample and energy. This section highlights various sample
lysis strategies including mechanical, physical, chemical, and biological approaches, as well as
their combinations within a microfluidic chip or an integrated device.

2.1 Human and animal specimens

Pathogenic nucleic acids and various biomarkers related to cancers and infectious diseases
among humans and animals are common analytical targets of disease diagnosis. Effective
liberation of these desired substances from human and animal samples is critical. Lysis of human
and animal cells and tissues is less demanding than plants due to the lack of fibrous cell walls. To
date, several sample-to-answer devices integrated chemical lysis to process a variety of clinical
samples, such as swab samples and bodily fluids (e.g., sputum, urine, and blood) [18-22]. For
example, lab-on-a-disk platform is one of the developments capable of automatically executing
sample-to-answer diagnoses by taking advantage of lysis buffers and varying rotation speed of the
disk (Fig. 2A) [18, 20]. These devices performed on-disk sample lysis and liquefication in a fully



automated manner for preparing pathogenic nucleic acids and downstream mass screening. In
addition to lab-on-a-disk platforms, a sample-to-answer cartridge capable of processing clinical
saliva and blood with lysis buffer was demonstrated [22]. The cartridge featured automated
transfer and mixing of bodily fluids and buffers performed by built-in pipettor, the plunge pump,
and two stepper motors. Chemical lysis can also be used for bacteria lysis in urine. Li et al.
integrated a conical-shaped focusing magnet, a self-locking solenoid, and a slip ring with an
electric field to manipulate magnetic beads to fully mix and extract bacteria lysate in bacteriuria
(Fig. 2B) [19]. In some cases (e.g., sticky samples such as sputum), chemical lysis will be used
together with heat to improve lysis efficiency [20].

Thermal lysis can also work perfectly by itself. Ye et al. lysed clinical vaginal and anal swab
samples for the diagnosis of Group B Streptococcus (GBS) using on-disk thermal lysis system
featuring a localized temperature module with disk rotation (Fig. 2C) [23].

Biological lysis, such as enzymes, also plays a critical role in sample lysis. Lafleur et al.
developed a swab-to-result platform comprised dried enzyme, achromopeptidase, in the swab
introduction inlet [24]. It allows rapid lysis of methicillin-resistant Staphylococcus aureus
collected from nasal swab at room temperature.

Another frequently used method, ultrasound sonication, was also incorporated into a MEMS-
fabricated piezoelectric microfluidic device [25]. With an oscillating microbubble array generated
by sonication with an input voltage of 144 Vpp, ~98 % lysis of MCF-7 cells was achieved within
60 s.

The microfluidic chips/disks combining with lysis buffers, enzymes, or localized heating
elements provide reliable platforms to process various clinical samples for rapid diagnosis under
challenging conditions.

2.2 Plant specimens

In conventional cell lysis of plant tissues, a mechanical method is normally required to
physically rupture fibrous cell walls, often with the help of liquid nitrogen or certain chemicals to
facilitate the lysis process [26]. However, performing plant cell lysis in a microfluidic chip or a
miniaturized device is challenging because mechanisms such as bead milling and high-pressure
homogenizer (HPH) are hard to be scaled down or integrated. Additionally, the resultant thermal
issues and degradation of cell products are critical [15].

Recently, physical lysis using miniaturized devices, such as microneedle patches, has drawn
significant attention for its rapid sample preparation from plant leaves. Paul et al. used a 10 x 10
mm? microneedle patch covered with 15 x 15 needle arrays made of polyvinyl alcohol (PVA) to
achieve rapid nucleic acid extraction simply by pressing the patch onto the leaf surface and rinsing
it (Fig. 2D) [27, 28]. The microneedle patches were later interfaced with smartphone and
demonstrated an in-field detection of tomato spotted wilt virus, providing a promising option for
sample-to-answer applications [29]. The microneedle patch avoids thermal issues which large-
scale physical lysis approaches suffer from. In addition, different formats of physical lysis methods
were also reported. Equipment-free cell lysis using a 1.5 ml Eppendorf tube with a plastic pestle



in the presence of lysis buffer was also demonstrated as efficient for grinding Arabidopsis thaliana
leaves [30]. The strategy was later adopted for sample preparation of tomato leaves and integrated
with isothermal amplification technology for the detection of Tomato chlorotic spot virus (TCSV)
[31]. Whatman FTA cards were also extensively utilized as a fast and simple strategy for cell lysis
and nucleic acid extraction from various plant tissues under field conditions. Pressing the plant
sample against the card realizes cell lysis and nucleic acids capture [32]. Although manual
operation is still inevitable in this method, FTA cards played an important role in the recent
advances of sample-to-answer devices [33]. Although studies on sample-to-answer platforms have
been reported for various plant diagnoses [34, 35], studies featuring automated sample lysis
modules are still rare [36, 37].

In addition to small-scale physical lysis, a strategy using magnetic ionic liquids (MILs) and
ionic liquids (ILs) was also reported to isolate plant genomic DNA directly from plant leaves (e.g.,
Arabidopsis thaliana) [38]. The process of cell disruption and the following DNA extraction is
expedited by statically incubating intact plant tissues with these chemicals. These chemical lysis
techniques are especially suitable for miniaturized devices or microfluidic chips as no complex
designs and external intervention are required. However, some critical pathogens, such as Citrus
tristeza virus and Huanglongbing, are phloem-limited and can only be found in hard-to-lyse tissues
such as barks, petioles, and midveins [39, 40]. It is still necessary to validate if these chemical lysis
techniques are also applicable for the aforementioned tissues.

2.3 Others — Microbial and fungal specimens

The lysis and the nucleic acids extraction from microbial, including bacteria, parasites, and
fungi, is also crucial and closely related to human health and quality of life [41]. Among the listed
technologies, physical lysis is still the major strategy dealing with hard-to-lyse samples. For
example, audio-powered device was proven to be an effective strategy to liberate nucleic acids
from Mycobacterium marinum and Staphylococcus epidermidis [42]. Simply driven by a
smartphone with low electrical power consumption, the electromechanical cell lysis platform
achieved 20 — 60 % of the efficiency of the benchtop bead beater within 10 min. Electric cell lysis
(ECL) technology is another strategy of physical lysis that combines a nano-spike array to form a
low-cost, high-power-density chip for effective cell lysis [43]. With local electric field
enhancement due to the spike array, cell lysis can be realized with low voltage input (2 V) within
12 ms.

To process bacteria with cell walls, biological lysis with enzymes can support physical lysis
to improve the lysis efficiency. For instance, Han et al. presented a self-contained cartridge with
pre-stored reagents and enzymes for automated cell lysis and DNA extraction (Fig. 2E) [44].
Reagents were transferred through a microfluidic chip using pressurized air stored inside the
cartridge followed by inserting the cartridge into the device for quick DNA extraction of
Escherichia coli (E. coli) in 3 min. In addition, Usvaliev et al. also proved that the lysis efficiency
of E. coli can be remotely enhanced by the oscillatory motion resulting from dopamine-
functionalized, rod-shaped magnetic nanoparticles under the influence of an external non-heating,



low-frequency magnetic field (68.5 mT) [45]. Due to the remote manipulability of magnetic
nanoparticles under an external field, it has a great potential to be incorporated into a portable
device for sample-to-answer diagnosis.

In addition to the platforms mentioned above, commercial cell lysis elements are potential
options that can be utilized independently or incorporated into an autonomous device for sample-
to-answer diagnosis in the field. A commercial kit from Lyse-It (Bel Air, MD), composed of two
deposited gold triangles with a “bow-tie” geometry was utilized in the presence of microwave
irradiation (450 Watts) for rapid sample preparation of Gram-negative bacteria within 60 s [46].
Similarly, a miniaturized bead-beating chamber, OmniLyse (Claremont BioSolutions, Upland,
CA), has been proven to effectively liberate nucleic acids not only from bacteria and spores but in
out-of-the-earth environments such as low-biomass synthetic Mars analog soils and microgravity
space for real-time and in-situ genetic analysis (e.g., nanopore sequencing) [47-50]. A variety of
sample lysis strategies (audio-powered, microwave, heating, electrical, mechanical lysis) have
been demonstrated with miniaturized and (semi-)automated assemblies, as summarized in Table
1.
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Fig. 2. Sample lysis approaches using portable and miniaturized systems. (A) Sample-to-answer
diagnosis of malaria using integrated lab-on-a-disk system. Adapted from [18] with permission
from Elsevier. (B) A self-contained fluidic system for multiplex detection of bacteriuria. A cassette
comprises a conical-shaped focusing magnet, a self-locking solenoid, and a slip ring with an
electric field for bacteria lysate extraction. Adapted from [19] with permission from The Royal
Society of Chemistry. (C) A lab-on-a-disk system for sample-to-answer diagnosis of Group B
Streptococcus (GBS) using clinical vaginal and anal swabs. Adapted with permission from [23].
Copyright 2020 American Chemical Society. (D) A microneedle patch for rapid extraction of plant
DNA. Adapted with permission from [27]. Copyright 2019 American Chemical Society. (E) The
machine is equipped with a disposable, pressure-driven, and self-contained cartridge for automatic



bacterial nucleic acid extraction. Adapted from [44] with permission from Elsevier.



Table 1. Comparison of portable cell lysis techniques for point-of-care diagnosis

Method Specimen Input ~ Target Species  Processing Time  Pros Cons Ref.
Bead beating  Cell suspension  Bacteria/ RNA 10 min Higher efficiency and ~ Necessary RNA [17]
+ lysis buffer  in broth yield compared to protecting reagents

mechanical or (RNAlater) impairs

chemical lysis only cell lysis, lysis buffer

inhibiting PCR
reaction
Lysis buffer  Artificial Ring-stage < 10 min Low cost and easy Low lysis efficiency, [18]
human blood parasite / DNA operation lysis buffer inhibiting
sample PCR reaction
Ultrasound Cell suspension  human breast Imin Extremely short lysis High input voltage [25]
sonication in PBS buffer cancer MCF-7 time and no lysis
cells / DNA buffer required

Microneedle  Plant leaves Bacteria / <1 min Short lysis time, easy ~ Fabrication of [27]
puncturing DNA operation, and no lysis  microneedle patch

buffer required required
Audio- Bacteria Bacteria / 50% lysis Low cost, low power Relatively low yield [42]
powered suspension in DNA efficiency input and no lysis with hard-to-lyse
bead-beating  TE buffer achieved within  buffer required bacteria

10 min
Electrical Cell suspension ~ HeLa cells / 120 ms Low power input, Fabrication of nano- [43]
lysis in PBS buffer DNA and extremely short lysis spikes chip required
RNA time, high lysis

efficiency, and no
lysis buffer required



3 Nucleic acid extraction

Extraction of high-quality nucleic acids is very critical for downstream molecular assays. It
involves basic steps such as denaturation of nucleoprotein, inactivation of enzymes (RNase, DNase,
etc.), removal of unwanted contaminants, nucleic acid collection, and resuspension [51, 52].
Processing time, recovery and purity of nucleic acids, ease, and safety of the procedure are usually
emphasized and significantly affect the downstream analyses such as PCR and sequencing [53,
54]. After the first time that DNA was successfully isolated from leukocytes by Friedrich Miescher
in the 1860s, better extraction techniques have been developed to satisfy the increasing demands
[52, 55]. Nowadays, many extraction methods have switched to non-toxic chemicals, such as non-
chaotropic and enzyme-based reagents, and solid-phase materials for safer applications due to their
flexibility in incorporating with point-of-care platforms [56, 57]. Solid-phase extractions using
auxiliaries such as silicon material-based membranes, cellulose matrices, and surface-modified
magnetic beads have been developed [55]. Proteins, tannic acid, and lipids, among others in
biological samples, can inhibit the amplification of nucleic acids. Nucleic acid extraction and
isolation procedures are especially critical for the success of downstream analyses such as
genotyping and sequencing. This section will focus on extraction strategies based on silicon
materials, cellulose fibers, or magnetic beads that have a good potential of being adopted for
sample-to-answer devices.

3.1 Silicon materials-based extraction

Nucleic acids are negatively charged and bind to silicon and silicon derivatives such as silica
gels, glass particles, and glass microfibers in the presence of chaotropic agents at high
concentrations in a low pH environment. The bound nucleic acids can be released from these
materials in a low-salt buffer at higher pH [55, 58, 59]. Chemical modification on a high surface-
to-volume ratio surface is a common strategy to increase capture affinity between silicon-based
materials and nucleic acids. For example, the amino-coated micro-pillar array offers a high
surface-to-volume ratio, and it has been proven capable of achieving up to 20% extraction
efficiency for low concentrations of RNAs within a microfluidic device [60]. A microfluidic
platform with a packed column of mesoporous silica beads was developed for effective isolation
and enrichment of pre-amplified rolling cyclic amplification (RCA) amplicons (Fig. 3A) [61].
They achieved a critical limit of detection with just 5 uL of a sample by optimizing silica beads
packing and sample flow rate. In another study, a silica membrane (Qiagen 69504) was employed
for rapid nucleic acid isolation, resulting in a high recovery rate (62 +24 %) at low pH with high
concentrations of chaotropic salts (Fig. 3B) [62].

Binding efficiency of the nucleic acids can be improved by modifying the surface chemistry
of silicon-based substrates. Han et al. used a non-chaotropic reagent, dimethyl adipimidate (DMA),
to covalently and reversibly bind to the amine groups of nucleic acids within a self-powered and
disposable microfluidic system [63]. DNA/DMA complexes were later captured onto 3-
Aminopropyltriethoxysilane (APTES)-treated slide glass via covalent binding between DMA and



amine groups of APTES. Bound DNA was then purified and collected in storage chambers by
slow buffer elution, where the entire process was completed within 10 min with the help of
switchable syringes and actuation elements.

Chitosan, a linear polysaccharide, is another frequently used material with biocompatibility,
negligible toxicity, and cost-effectiveness. It has long been applied as an adsorbent or a functional
coating in conjunction with silicon-based / cellulose-based materials in developing sample
preparation / nucleic acid extraction processes for POC diagnosis [64]. For instance, a rapid nucleic
acid extraction method (90 s) using chitosan-functionalized silicon dioxide capillaries was
demonstrated for the diagnosis of Zika virus [65]. Target nucleic acids in a complex biofluid
quickly bound to that functionalized surface at low pH (pH 5.5) and were later released into a PCR
mixture (pH 8.5) due to the charge-switched characteristic of chitosan. These silicon-based
materials offer effective and low-cost methods for nucleic acid extraction.

3.2 Cellulose fibers-based extraction

Cellulose-based matrices are other commonly used materials for nucleic acid extraction. Due
to the hydroxylated groups, cellular matrices possess inherent physical affinity
(electrostatic/hydrophilic forces, hydrogen bonding) and serve as the basis for additional surface
modifications [55, 66, 67]. Similar to silicon-based materials in the previous section, surface area
and chemical modifications are also important for cellulose-based matrices for nucleic acid
extraction and storage [30, 68].

Chitosan was incorporated into cellulose-based matrices such as Fusion 5 filter papers (GE
Healthcare, PA, USA) for on-chip extraction of nucleic acids from pretreated human whole blood
(Fig. 3C) [69]. Benefiting from the synergistic effect between physical entanglement within the
fiber matrix of filter paper and the electrostatic adsorption from chitosan, up to 98% and 95%
extraction efficiency for K562 human genomic DNA and bacteriophage A-DNA, respectively,
were achieved. The same combination was also adopted for quick, on-chip extraction of viral RNA
from pretreated human blood plasma for the serotype-specific detection of the dengue virus [70].
Chitosan and glutaraldehyde were also synergistically formed a membrane on Whatman
chromatography paper for quick DNA extraction of Chlamydia Trachomatis in a portable cartridge
[71].

In addition to chitosan, other polymeric materials such as 3-aminopropyl trimethoxysilane
(APTMS), polyethyleneimine (PEI), and polydiacetylenes (PDA) have been successfully utilized
to enhance the nucleic acid binding capacity of paper. It was also reported that nucleic acids were
retained after washing [30, 72]. Particularly, unmodified Whatman No.1 filter papers were not
only able to bind with DNA and RNA but enabled direct amplification from unmodified paper
disks in PCR reactions. Due to its unique chromatic property, PDA is frequently used as a
colorimetric indicator.

However, it can also facilitate the binding of nucleic acids within a micropatterned paper
device by exploiting the ionic affinity between the negatively-charged phosphate backbone of
dsDNA and the positively-charged PDA vesicles [72, 73]. FTA cards also contain chemicals that



lyse cells, denature proteins, and protect nucleic acids. They are suitable for collecting and
purifying nucleic acids lysed from a wide range of biological samples. Being capable of capturing
and concentrating directly from liquid (whole blood, bio-suspensions) and solid (plants) specimens,
FTA cards can be integrated with portable sample-to-answer devices [74]. All the above reports
demonstrated successful extraction of nucleic acids from various clinical samples and the
feasibility in incorporating cellulose-based materials with on-chip molecular assays. Thus,
cellulose-based matrices are a promising alternative to silicon-based counterparts at low cost.

3.3 Magnetic beads-based extraction

Magnetic beads/powders have been extensively used to capture and manipulate nucleic acids
within miniaturized systems due to the easy operation and high recovery of nucleic acids [75].
Recently, magnetic bead manipulation, aliquoting, and pumping have been successfully integrated
into autonomous formats, such as lab-on-a-disk systems, for sample-to-answer diagnoses [76, 77].
For example, Li et al. developed a centrifugal microfluidic platform enabling automatic serum
separation, nucleic acid extraction and hepatitis B virus detection using human whole blood (Fig.
3D) [78]. Integrated with frequency-tunable double rotation axes system and optimized chamber
design, pre-stored buffers and magnetic beads were properly delivered and mixed with target fluids,
resulting in high DNA recovery (~ 90%) and low beads loss (6.3 + 0.47%) within 15 min. A fluidic
handling system was developed for sample-to-answer detection of influenza A virus from clinical
swab samples (Fig. 3E) [79]. Automatic transport, mixing, and extraction were achieved by using
commercial magnetic beads in conjunction with a series of mechanical control elements resulting
in quick preparation of PCR-ready nucleic acids in 5 min. Many other systems used magnetic
beads for highly effective extraction through complex mechatronic manipulations to achieve
sample-to-answer detection of bacteriuria and influenza A viruses [19, 80].

Chitosan has been routinely used to improve nucleic acid capturing. For instance, chitosan-
modified magnetic microspheres were utilized for pH-induced human DNA extraction and release
on a microfluidic chip for a sample-to-answer LAMP assays (Fig. 3F) [81]. Similar mechanism
was employed in detecting circulating antibodies in human blood with ELISA [82]. Surface
grafting of specific oligonucleotide sequences is another common strategy. Tripathy et al.
demonstrated a sensitive SARS-CoV-2 nucleic acid detection with in situ LAMP, assisted by
sequence-specific magnetocapture [83]. Use of magnetic beads modified with an oligonucleotide
complementary to the target nucleic acid resulted in selective extraction and a sample-to-answer
diagnosis with a sensitivity down to 2.5 copies/uL. Tsai et al. adopted a similar strategy for
diagnosing SARS-CoV-2 with an integrated microfluidic platform [84]. Magnetic beads
functionalized with specific RNA probes complementary to three target genes enabled highly
accurate detection of SARS-CoV-2 RNA.

Magnetic beads-based extraction techniques have drawn significant attention owing to their
flexibility in surface modification, convenient beads manipulation, and high efficiency for nucleic
acid extraction. They can be readily integrated with automated, sample-to-answer microfluidic
devices. Nucleic acid extraction strategies reviewed in this section are summarized in Table 2.
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Fig. 3. Nucleic acid extraction approaches using portable and miniaturized systems. (A) A silica
bead-based microfluidic platform enabling an on-chip and size-selective trapping of amplification
products. Adapted from [61] with permission from Elsevier. (B) An assembly of multifunctional
3D printed reactor array for point-of-care molecular diagnostics. 3D printed parts are packed with
silica membranes (Qiagen 69504) for rapid nucleic acid isolation. Adapted from with [62]
permission from Elsevier. (C) Chitosan-modified Fusion 5 filter paper demonstrated highly
efficient extraction of nucleic acids from K562 human genomic DNA and bacteriophage A-DNA.
Adapted with permission from [69]. Copyright 2017 American Chemical Society. (D) A
centrifugal microfluidic platform for sample-to-answer hepatitis B virus detection from blood. The
platform contains extraction chambers wherein magnetic beads, extraction reagents, and lysis
buffer are prestored. Adapted with permission from [78]. Copyright 2019 American Chemical
Society. (E) A sample-to-answer microfluidic device capable of automated transporting, mixing,
and washing with commercialized magnetic beads for quick nucleic acid extraction. Adapted from
[79] with permission from Elsevier. (F) A sample-to-answer microfluidic chip using chitosan-



modified magnetic microspheres for pH-induced nucleic acid extraction. Cell lysis, nucleic acid
extraction, and the LAMP assays were all accomplished on chip. Adapted from [81] with
permission from Elsevier.



Table 2. Comparison of portable extraction techniques for point-of-care diagnosis

Method Target Species Processing Time  Elution Buffer Recovery Efficiency / Sample Ref.
yield
Cellulose filter Plant, animal, and 3s—1min PCR or LAMP Not applicable [30]
paper microbial samples / reaction buffers
DNA, RNA
Silicon Extracellular vesicles / ~42 min RNase-free water 20% RNA binding efficiency [60]
micropillars RNA
Silica P. Falciparum and Not available LAMP reaction 62 + 24% nucleic acid yield [62]
membrane Neisseria meningitidis / buffer
DNA
Chitosan- Zika virus / RNA ~25 min PCR reaction Up to 240-280 ng RNA [65]
functionalized buffer adsorption for single capillary
silicon dioxide
capillaries
Chitosan- K562 human genomic 5 min No elution buffer  98% capture efficiency for K562 [69]
modified filter DNA, bacteriophage A- required (in situ human genomic DNA, and 95%
paper DNA PCR) capture efficiency for
bacteriophage A-DNA

Magnetic beads  Hepatitis B virus/ DNA 6 min Elution buffer Not applicable [78]

from a

commercial kit
RNA- SARS-CoV-2 /RNA 10 min LAMP reaction Not applicable [84]
conjugated buffer

magnetic beads



4 Nucleic acid amplification

Nucleic acid amplification is essential in detecting nucleic acids from a wide range of species,
especially with low-titer samples. There are some key factors that determine the amplification
outcomes: (i) primer efficacy; (ii) reaction temperature control; and (iii) concentration and species
of reactants. A successful outcome should exhibit significant amplification, a wide dynamic range,
and a low detection limit [85-88]. In this section, major amplification strategies integrated into
portable, sample-to-answer devices are investigated and classified in terms of isothermal, non-
isothermal, and digital amplification methods.

4.1 Non-isothermal nucleic acid amplification

Polymerase chain reaction (PCR) and quantitative PCR (qPCR) are powerful tools for nucleic
acid amplification and detection. Replacing tissue culture and serology, PCR has been the gold
standard in laboratories conducting molecular biology, environmental monitoring, and clinical
diagnosis due to their reliability and reproducibility [89-91]. Over the past decades, portable and
cost-effective microfluidic devices with built-in temperature control elements have been
developed to realize multiple POC diagnoses, such as cell capture, cell lysis, isolation, and
amplification [92].

Zai et al. demonstrated a sample-to-answer platform featuring a closed, single-use
microfluidic cartridge that enables sample lysis and direct gPCR amplification of viral templates
collected from swab specimens (Fig. 4A) [93]. The core technique of the heating module relies on
a thermoelectric unit (i.e., a Peltier device) and thermal conductive block located below the PCR
chamber. A PID controller with a sensor was placed on the PCR heat block for precise control of
heating and cooling processes for PCR amplification. The optimized temperature module enabled
a rapid PCR protocol with 35 cycles completed in < 20 min.

PCR technology has also been extensively integrated with other portable platforms, such as
lab-on-a-disk systems, for the rapid diagnoses of various pathogens. For instance, “RespiDisk,”
enabled a fully automated reverse transcriptase PCR (RT-PCR) assays for multiplex detection of
up to 19 respiratory tract infection pathogens in a single run [94]. Featuring a centrifugal
microfluidic platform and advanced liquid control technology, this air-heated RespiDisk
automated all procedures by executing predefined protocols and achieved high throughput
diagnosis (36 samples x 19 assays) in 200 min. Such “lab-on-a-disk” platforms can be easily
customized to meet specific requirements and run on the player with predefined protocols for
sample-to-answer applications [95].

Some chemicals, such as calcium oxide, were used as power-free heating sources, providing
an economic strategy for portable amplification [96]. In this device, calcium oxide mixture served
as a heat source where the temperature was regulated by a phase change material (water). An
embedded aluminum thermal waveguide and a capillary tube with properly designed geometry
enabled a fixed temperature at the bottom and a stable temperature gradient within the PCR
chamber.

In another system, preheated liquid was utilized for realizing ultrafast PCR in a microfluidic



device (Fig. 4B) [97]. Relying on diffusion and ultrafast flow switches in the device, circulation
of preheated liquids quickly thermalized the PCR chamber and achieved 30-cycle thermal cycling
in 2 min.

Surface acoustic wave (SAW) technology has emerged as an alternative method for a wide
range of biomedicine applications, including on-chip nucleic acid amplification [98, 99]. The SAW
energy can be converted to generate different functions (e.g., pumping, mixing, and heating of
droplets) to the liquid droplet in contact with patterned piezoelectric (PZT) substrate on a
microfluidic chip for POC diagnosis [100, 101]. Vernon et al. developed an interdigitated
transducers (IDT)-patterned PZT microfluidic chip to realize rapid and precise temperature control
using Raspberry Pi and PID control for PCR applications [102].

A photothermal mechanism has provided another strategy for ultrafast thermal cycling on
portable devices. Recently, an ultrafast on-chip PCR platform featuring a nanoplasmonic pillar
array (NPA) was reported for rapid and precise molecular diagnostics (Fig. 4C) [103].
Photothermal heating based on dense electromagnetic hotspots enabled ultrafast PCR cycling,
taking only 3.5 min for 30 cycles between 98 and 60 °C. This mechanism has also been exploited
in combination with different particle geometries (dendritic nanoforests, nanoislands, triangular
nanoparticles, etc.) [104-106]. Plasmonic photothermal effect demonstrates exceptional efficiency
and has a great potential for rapid and high-throughput POC diagnostics. PCR-based
amplifications have been successfully miniaturized and integrated with portable devices. However,
relatively complex designs and fabrications, the problems of the lag phase in heating-cooling steps,
and the inhomogeneous temperature profile remain to be improved.

4.2 Isothermal nucleic acid amplification

Despite the efforts to develop a miniaturized PCR module, the lag phase in the heating—
cooling cycle and nonuniform temperature distribution within the reaction chamber remained
challenging. Miniaturized isothermal amplification methods integrated with portable devices were
investigated to avoid these problems. These include modified PCR-based methods (ion-mediated
PCR (IM-PCR) and convective PCR (CPCR)) and some typical isothermal amplifications such as
strand displacement amplification (SDA), helicase-dependent amplification (HDA), recombinase
polymerase amplification (RPA), rolling circle amplification (RCA), nucleic acid sequence-based
amplification (NASBA), multiple displacement amplification (MDA), and loop-mediated
isothermal amplification (LAMP) and so forth [107].

Some PCR-based methods, such as IM-PCR and CPCR, can be conducted at a constant
temperature throughout the amplification. In IM-PCR, switching electrical potential triggered
buffer ionization and changed the pH value at a constant temperature, resulting in a favorable
environment for DNA denaturation/annealing/extension. An alkaline condition promotes
denaturation of dsSDNA, whereas the neutral pH reforms dsDNA from the denatured ssDNA [108].
Another study reported that selectivity and specificity of DNA amplification were improved due
to the selective function of quantum biological electron transfer (QBET) between DNA bases and
metal ions (valence 1+~ 3+) [109].



In the so-called CPCR method, an enclosed reactor drove reagents cyclically for melting,
annealing, and extending steps through the Rayleigh-Bénard convection generated by spatially
distributed heat sources and achieved quick nucleic acid amplification [110]. A sample-to-answer
and real-time CPCR system was demonstrated combining the FTA membrane and a capillary tube
loaded with PCR mix for the quick detection of influenza A virus [111]. Efficient thermal cycling
introduced by thermal convection and in-tube centrifugation enabled rapid PCR (< 30 min) with
good sensitivity (1.0 TCIDso/mL). CPCR powered by solar energy or combining reactors with
different geometries (e.g., closed-loop reactor, and disk reactor) was also adopted for a variety of
POC diagnosis [112-114].

SDA can restrictively nick unmodified strands using specialized restriction enzymes (e.g.,
Hincll, N.BstNBI) within the temperature range from 37°C to 65°C. With strand displacement
enzyme (e.g., Bst polymerase), the nicking site is regenerated after each displacement step for
repeated cycles of nicking and extension. The downstream strands are then displaced and free to
anneal to primers for the subsequent exponential amplification [115, 116]. An integrated
microfluidic platform with a lateral flow assay and isothermal SDA (iISDA) method was developed
for methicillin-resistant Staphylococcus aureus (MRSA) detection [24]. Without the initial
denaturation step, ten target copies of Achromopeptidase (ACP)-lysed samples were detected at
50°C within 30 min throughout the amplification. Zeng et al. reported an ultrasensitive
photoelectrochemical sensing protocol that uses target-triggered palindromic molecular beacon
(PMB) reaction accompanying SDA and demonstrated ultralow detection limit (29 fM) of
kanamycin [117].

HDA, another isothermal amplification method, performs the separation of complementary
strands of dsDNA by exploiting the activity of a DNA helicase in a temperature range from 45°C
to 65°C. Without delicate temperature cycling, the method enables an isothermal production of
single-stranded templates for the following hybridization and extension using DNA polymerase
[118, 119]. Horst et al. developed a low-cost paper microfluidic device integrated with sample
lysis from patient swabs, nucleic acid extraction, thermophilic HDA (tHDA), and visual detection
of Neisseria gonorrhoeae [120]. Combining on-chip DNA precipitation, washing, amplification,
and detection, the amplification was completed in 45 min at 65°C on a heat block, resulting in a
low detection limit (10 cells per device).

The RPA-based method is useful for rapid, specific, and cost-effective identification of
molecular diagnosis due to its minimal requirements in sample preparation and low reaction
temperature (25 — 42°C) [121]. Olazarra et al. presented an RPA-based POC platform featuring
multiplexed and qualitative genotyping of four single nucleotide polymorphisms (SNPs) directly
from saliva [122]. By exploiting on-chip heating resistor networks regulated by a PID control
system, RPA (37°C) was automatically achieved in 25 min, where the amplicons were then
introduced to the surface of the giant magnetoresistive nanosensor for hybridization. Recently, a
power-free RPA biosensor was demonstrated for the ultrasensitive detection of SARS-CoV-2
[123]. Human body temperature was successfully utilized for rapid amplification (< 20 min) on a
skin patch-like sensor with a multi-microelectrode array.



RCA-based amplification has emerged as a simple isothermal amplification technique having
high tolerance against interferents without the requirements of extensive assay optimization [124].
Soares et al. demonstrated a microfluidic device combining pre-amplified RCA amplicons and a
miniaturized amplicon trapping area with silica beads [61]. Beginning with padlock probe ligation,
purified nucleic acids were isothermally amplified with @29 DNA polymerase buffer mix followed
by subsequent circle-to-circle amplification and beads resuspension procedures for 30 min at 37°C.
Integrated with miniaturized p-i-n a-Si:H photodiodes, the critical limit of detection (< 0.5 M)
was achieved within the portable device.

NASBA-based method emerged as an isothermal and transcription-based amplification
particularly suited for amplifying RNAs such as rRNA, tmRNA, mRNA, and genomic RNA, or
DNA subjected to a denaturation step. Standard NASBA protocol includes denaturation at 65°C
to remove secondary structures from RNAs, followed by incubation with enzymes for specific
amplification at 41°C [119, 125]. Chung et al. developed a microfluidic platform for the detection
of murine norovirus in oysters [126]. Combining surface-modified microbeads and NASBA
(41°C), the chip carried out concentration and on-chip amplification with a critical limit of
detection (100 pfu). NASBA was also broadly adopted for the detection of SARS-CoV-2 with the
use of a commercialized kit (ID NOW, Abbott, IL, USA) and saliva / nasopharyngeal swabs as
sample input [127-129].

Capable of the whole genome amplification (WGA), the MDA-based isothermal method
includes the binding of random hexamers to single-stranded DNA isothermally operated with
strand displacement reaction using ®29 DNA polymerase [130]. Exploiting the high activities and
low error rate of ® 29 DNA polymerase, MDA enables a great number of the DNA fragments up
to 70 kb without sequence bias and is thus well-suited for SNP testing and genotyping. [131-133].
To date, many MDA-based microfluidic platforms enabling whole-genome sequencing and
analysis of single cells on a nanoliter scale have been developed to address the need for precision
medicine for cancers and other diseases [134, 135].

LAMP, first reported by Notomi et al. in 2000, has emerged as the most commonly used
isothermal method for sensitive and rapid diagnosis [136]. Combining Bst DNA polymerase and
two pairs of primers (inner and outer primers) recognizing six regions on the target sequence,
LAMP enables an isothermal amplification (63-65°C) with up to 10°-fold within an hour [137].
This method can be easily modified for RNA-based detection by adding reverse transcriptase and
is especially suited for early diagnosis in resource-limited settings [138]. Liu et al. developed a
fully integrated microfluidic disk capable of automatically conducting sample preparation (cell
lysis and nucleic acid extraction), target amplification (LAMP), and signal readout (built-in color
sensor) for the diagnosis of foodborne bacteria [139]. The device enabled multiplex and
simultaneous detection of 5 types of bacteria in 70 min with a detection limit down to 10 copies/ul.
More recently, Jankelow et al. reported a fully integrated system comprising a 2-stage microfluidic
cartridge for rapid sample-to-answer detection of Zika virus in a droplet of whole blood [140].
Using a battery-powered thermoelectric heater, the RT-LAMP assay was completed in 22 min with
a sensitivity as low as 2.7 x 10% copies/pL.



Considering the portability of the whole system and easy operability, isothermal nucleic acid
amplification conducted with simple heating elements provides great potential to develop low-cost,
sample-to-answer devices for clinical diagnosis under critical conditions.

4.3 Digital nucleic acid amplification

Digital amplification assay is a technique where the sample is partitioned into several small
compartments containing a discrete unit of the whole biological system for subsequent
amplification and analysis [141]. The sensitivity and precision of digital amplifications are
significantly constrained by the sparse partitioning and high volume (uL) of individual partitions.
The digital strategy incorporated with isothermal amplification was extensively studied for
absolute quantification and single-cell gene expression analysis due to its high sensitivity,
quantification precision, and unambiguous signal outcomes (Fig. 4D) [142, 143]. With microwell
arrays or droplet generators for single-cell compartmentalization, nucleic acid amplification such
as PCR, LAMP, and RPA can be carried out individually with molecular beacon probes, resulting
in clear and accurate readout. This is a powerful and reliable technique for the molecular analysis,
especially for the early effects of carcinogens and cellular mutations in a diluted and small volume
of samples [107, 144].

In digital non-isothermal amplification, two general approaches are used for massive cell
partitioning. One is a microarray composed of physically separated chambers (cdPCR), and the
other is droplet-based emulsions (ddPCR). In the latter, chemicals and target nucleic acids are
encapsulated in water droplets and separated by an oil-based continuous phase. Both methods can
provide compartmentalized entities with down to femtoliter scale [141].

In the chamber-based digital assay, Yin et al. recently presented a self-priming digital PCR
chip featuring 48,192 wells of 0.2 nL well volume for direct and multiplex diagnosis of epidermal
growth factor receptor (EGFR) mutation through screening of circulating tumor DNA (ctDNA)
[145]. Requiring no DNA extraction, the chip enabled the direct introduction of plasma for
simultaneous detection of four targets using single fluorescence with LoD of 5 copies/uL. This
strategy greatly streamlined the process and reduced the cost of multiplex sensing. Similarly, Ning
et al. demonstrated a low-cost self-digitization PCR chip with 10,000 picoliter-scale chambers for
the absolute quantification with a dynamic range of 10* copies of EGFR genomic DNA [146].
Utilizing two glass slides and a micropatterned PDMS film to form a vacuum “accumulator” and
a hydration “reservoir”, the integrated void served as a power-free vacuum source for high-
throughput sample loading and partitioning without significant liquid loss.

More platforms with chamber arrays on different scales can be fabricated by exploiting
similar microfabrication techniques such as micro-molding of flexible elastomer and thermoplastic
polymers [147], nanoimprint lithography [148], and soft lithography [149].

The second partitioning strategy for digital assays utilizes water-phase droplet generation in
a continuous oil phase. The cross-junction design on the microfluidic chip was extensively used
for the generation of reaction droplets [150]. The cross-junction enables an aqueous stream being
squeezed by ambilateral oil streams to form monodisperse droplets with reactive cores



encapsulated by inertia shells [151]. The number of cross-junction can be properly adjusted and
integrated with alginate, Ca-EDTA, and oil to construct water—water—oil double emulsions to fit
specific needs (e.g., 3D liver model) [152]. Unlike ddPCR requiring nearly identical droplet size,
Yen et al. have proposed a statistical analysis of nonuniform droplet distributions based on the
Poisson distribution of analytes in droplets [153]. This method benefits ddPCR users without
standard lab settings because no microchip fabrication and cross-junction is required for bulk
emulsification. Instead, general shaking or stirring works for a rapid and nonuniform droplet
partitioning.

In addition to digital PCR, the digital assay has been widely integrated with other isothermal
amplification methods, including LAMP, RPA, and MDA, for absolute quantification and single-
molecule analysis [154-156]. Such isothermal protocols are of great interest while operating in
resource-limited settings, as no delicate thermal cycling and robust control are needed. Digitization
strategies for sample partitioning and subsequent amplification include the generation of droplets
within emulsions [157, 158], the SlipChip platform [159, 160], and microvalve-based arrays of
multi-layered structure enabling rapid and high throughput analysis using LAMP and RPA [161].
Recently, Ruan et al. developed a digital-MDA microfluidic chip enabling parallel and highly-
performance whole-genome sequencing of single cells [154]. Exceptional identification of single-
nucleotide variations with an allele dropout rate of 5.2% and copy number variants with the
smallest bin of 150 kb was performed. Kreutz et al. demonstrated a self-digitization (SD) LAMP
platform for the quantitative detection of human papillomavirus (HPV) genes [162]. The proposed
microfluidic chip achieved automatic and large-scale loading and partitioning, covering 640 ~
10,240 microchambers with down to 0.05 nL of chamber volume. Utilizing the intrinsic
viscoelastic property driven by the geometry of chip channels and chambers, the technique
provided simultaneous self-digitization without the need for precise lab-based instrumentations.
In addition, a novel digitation strategy was developed using commercial track-etched
polycarbonate (PCTE) membrane to effectively form droplets with a facile peel-off process due to
embedded pores [163]. To date, digital amplification strategies have combined automatic sample
emulsification/partitioning, miniaturized heating elements, and signal readout modules within
portable systems enabling sample-to-answer and high-throughput assays. For instance, Wan et al.
demonstrated a handheld digital LAMP platform for the detection of Trypanosoma brucei in
human blood [164]. The device combining droplet manipulation techniques using electrowetting
force and real-time temperature control systems detected 40 copies in 2 uL droplets without any
bulky instrumentations. A similar digital-LAMP platform combining smartphone-based image
analysis was demonstrated for sensitive diagnosis of EGFR L858R gene mutation directly from
spiked plasma samples [165]. Another sample-to-answer digital-LAMP chip integrated with rapid
nucleic acid extraction based on “immiscible phase filtration assisted by surface tension” was
developed for the detection of low-abundance ctDNA and mutations [166]. Spiral mixing channel
and cross-junction design were exploited for droplet generation and the sample mixing and
partitioning under negative pressure, whereas a smartphone-based microdroplet imaging device
was demonstrated for portable applications.



These methods provide reliable alternatives for point-of-care diagnosis with their simple, cost-
effective, and high throughput features, which are especially suited for applications in rural
places without standard digitation settings. A number of nucleic amplification strategies have
been demonstrated with miniaturized and (semi-)automated assemblies, as summarized in Table

3. They have the potential to be integrated into various platforms for sample-to-answer diagnosis
in the field.
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Fig. 4. Nucleic acid amplification approaches using portable and miniaturized systems. (A)
Sample-to-answer system comprising single-use microfluidic cartridge for sample lysis, nucleic
acid extraction, and direct JPCR amplification for the detection of viruses. Adapted from [93] with
permission from The Royal Society of Chemistry. (B) A microfluidic thermalization chamber
consisting of an alternative injecting assembly enables an ultrafast flow switch of preheated liquids.
Adapted from [97] with permission from The Royal Society of Chemistry. (C) An ultrafast on-
chip PCR platform featuring the nanoplasmonic pillar array (NPA) and LED light sources as a
light-to-heat converter. Adapted with permission from [103]. Copyright 2020 American Chemical
Society. (D) A self-priming compartmentalization chip with a great number of microwells
connected to the main channel enables on-chip single-cell digital PCR. Reprinted from [142] with
permission from AIP Publishing.



Table 3. Comparison of portable amplification techniques for point-of-care diagnosis.

Method Sample type Target nucleic ~ Heating/cooling Incubation Time Reaction Limit of Detection / Ref.
acids Elements Temperature Dynamic range
Close-loop Bacteria culture  S. aureus / Ceramic heating  11-25 min, Denaturation: 95 °C  Linear dynamic range  [114]
CPCR ? DNA plate w/ PID depends on Annealing and 10'~10° copies/uL
controller and a target copies extension: 60—85°C  Limit of Detection: 1
stainless-steel copy/uL
loop
RPA® Saliva Human saliva/  Heating resistor 25 min 37°C 33 ng/uL of genomic  [122]
DNA networks w/ PID DNA demonstrated.
controller Ideal range: 2-200
ng/pL
NASBA ¢ Glands of Murine Not available <4h 41 °C 100 CFU per oyster [126]
infected oysters norovirus /
RNA
LAMP ¢ Bacteria culture S. aureus, An aluminum ~50 min 65 °C Sau and Sal samples: [139]
Salmonella, plate w/ a 10? copies/uL
Shigella, polyimide Sty, Pae, and Eco
enterotoxigenic  heating samples: 10!
E. coli, and P. membrane copies/uL
aeruginosa
bacterial /
DNA
Digital PCR Cell culture EGFR genomic  Mastercycler 77 min Potential DNA Dynamic range: [146]
DNA of lung nexus flat, PCR contamination 10! to 10* copies/uL

cancer cell

apparatus

digesting: 50 °C



Digital LAMP Human
erythroblast

leukemia cell
line (HEL)

Digital RPA Spiked milk

Digital LAMP  Spiked toilet
wastewater

Digital LAMP Blood of
infected mice

@ CPCR, convective polymerase chain reaction. ® RPA, recombinase polymerase amplification,  NASBA, nucleic acid sequence-based
amplification. ¢ LAMP, loop-mediated isothermal amplification.

JAK2 V617F
DNA

E. coli
0O157:H7,
Listeria
monocytogenes
and Salmonella
enterica DNA

E. coli, E.
faecalis, and
Salmonella
Typhi /
genomic DNA

Trypanosoma
brucei /
genomic DNA

A hot plate

A hot plate

A hot plate

Positive-
temperature-
coefficient
(PTC) heater

lh

30 min

40 min

lh

Taq DNA
polymerase
activation: 95 °C
95 °C-60 °C *45
cycles

63°C

39°C

65 °C

65 °C

Dynamic range: 10!
to 10* copies/uL

10 cells/10 pL milk
samples

Dynamic range: 11 to
1.1 x 10° copies/pL

20 copies/puL
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[161]

[163]

[164]



5 Signal readout

A signal transducer is responsible for recognizing target and reporting measurable signal.
Colorimetric, fluorescent, electrochemical, acoustic, magnetic, or other signal outputs are
generated in sample-to-answer microfluidic devices, enabling the sensitive detection of various
biological targets [92]. These signals can be quantitative or qualitative and allow end users to read
through naked eyes, miniaturized optical detection instrumentations, piezo-electric modules,
mobile phones, distance-based readout, or other techniques.

5.1 Optical signal

Optical signal outputs, such as colorimetric [139], fluorescence [167], surface plasmon
resonance (SPR) [168], and surface-enhanced infrared absorption spectroscopy assays (SEIRAS)
[169], are extensively used in sensitive detection of various targets. With the high sensitivity and
flexibility of being integrated into portable point-of-care systems, a variety of optical sensing
strategies have been proposed. In this section, recent advances in optical sensing techniques
integrated with sample-to-answer systems are reviewed.

In dye-based colorimetric assays, calcein and hydroxynaphthol blue (HNB) are frequently
utilized as metal ion indicators for POC colorimetric detections [16, 170, 171]. They allow
smartphone-based detection and are especially suitable in combination with LAMP assays due to
the rapid accumulation of Mg?" [172, 173]. For example, Ma et al. demonstrated an HNB-based
LAMP platform enabling sample-to-answer detection of the HIN1 virus and MRSA bacteria via
smartphone interface with wireless connectivity (Fig. 5A) [172]. Tetrabromophenol blue (TBPB)
is another dye frequently used in conjunction with ethanol for equipment-free protein tests such as
kidney function test and protein to creatinine ratio in urine due to color change resulting from
nonspecific binding of TBPB to proteins [174-176]. SYBR green I specifically binds to double-
stranded DNA and is commonly used as an indicator in nucleic acid quantification due to the high
signal-to-noise ratio, short response time, and enhanced sensitivity [107, 177]. Many smartphone-
based platforms for ultrasensitive POC diagnosis exploit SYBR green I [178-180].

Gold nanoparticle (AuNP) is another option usually used for sensitive detection of nucleic
acid targets due to its significant color change resulting from the extent of particle aggregation
[181, 182]. Combining surface modification of AuNP for specific binding, such as single-stranded
DNA hybridization, avidin-biotin binding, and antibody-antigen pair, with lateral flow assay or
smartphone-based image analysis are common strategies for self-contained POC diagnosis [183,
184]. Fluorescent nanoparticles combined with particle diffusometry analysis are an emerging
technique for such assays [185, 186].

In chemiluminescence (CL)-based detection, polydiacetylene (PDA) is a powerful and unique
group of polymers frequently used in nucleic acid-based detection due to its low cost, short
response time, and biomimetic structure [187]. Most proposed PDA-based sensors were
demonstrated in the form of a vesicle dispersed in aqueous solutions to impart fluidity to PDA film
or a layered deposition coating onto the rigid material surfaces, enabling enhanced color shifting
and better detection limit [188, 189]. To date, low-cost and equipment-free sensing platforms



combining smartphone-based detection and analysis have been developed for a variety of POC
diagnoses, such as HIN1 and SARS-CoV-2 [190, 191]. Featuring its intrinsic chromatic properties
involving a color shifting from blue to red towards various concentrations of targets, PDA can
form a visible color change that can be captured and analyzed through a developed smartphone
app wirelessly. In addition, the combination of hydrogen peroxide and luminol catalyzed by
horseradish peroxidase (HRP) is another widely-use mechanism in CL [192]. Smartphone-based
microfluidic platforms integrated with this strategy have recently been developed to realize a fully
autonomous POC diagnosis [193]. Electro-chemiluminescence (ECL)-based optical signal is
generated when applying an electrical potential onto the electrode where electro-sensitive
chemicals are excited, resulting in the conjugation of the chemicals and nucleic acids [107]. ECL
technique has also been successfully applied to cloth-based materials for the development of low-
cost and ultra-flexible microfluidic devices where the colorimetric results can be collected via a
portable CCD-based sensing system to realize POC testing [194-196].

Optical signals for nucleic acid assays can also be obtained using the SPR approach. Nguyen
et al. demonstrated an SPR-based all-in-one platform enabling a rapid and non-labeled PCR
amplification of Salmonella spp. within 30 min [197]. The Ag/Al coated optical fiber can detect
the interaction between the evanescent wave and the bacterial nucleic acids leading to the power
change of SPR fiber output. The SPR sensor signal increased along with the PCR cycle number
because the refractive index of the amplicon is smaller compared to the sum of the component
dNTP molecules. SPR (or localized SPR) has later been widely coupled with other smartphone-
based platforms, enabling ultrasensitive POC diagnosis (Fig. 5B) [198-200].

Significant efforts have been made to make colorimetric assay more portable and accurate by
integrating it with mobile device imaging and analysis. Although the consideration of the cost and
accessibility may trade off critical capabilities such as sensitivity and specificity, the colorimetric
strategy 1is still a great candidate as colorimetric transducers can be readily integrated into
microfluidic devices within sample-to-answer systems [201].

5.2 Distance-based signal

Inspired by the design of thermometers, distance-based signal readout has been extensively
integrated with microfluidic systems. In this sensing strategy, the detection results manifest as
distance-based signals such as wicking color bands on paper or particle accumulation in an on-
chip reservoir [202]. Distance-based readout within devices enables direct counting for endpoint
quantification of nucleic acids without the need for cumbersome instrumentations [203].

By integrating a redox-coupled indicator system (HRP / H>O) with a paper strip, the distance-
based detection platforms were first developed in the 1990s for the visualized quantification of
high-density lipoprotein (HDL) cholesterol and its similar derivatives in human whole blood [204,
205]. These self-contained sensing platforms consolidate the separation of whole blood and
sensitive HDL detection into one step, creating a new paradigm. Many more distance-based
platforms have been developed with improved portability and robustness for sensing visualization
and quantification. Herein, recent advances in distance-based sensing techniques integrated into



portable systems for POC diagnosis are reviewed.

The distance-based approach is especially suitable for paper-based microfluidic platforms to
realize equipment-free and visualized quantification. They have drawn great attention in POC
diagnosis due to their ubiquitous, disposable, and low-cost features [206]. Chemical reactions
leading to cumulable colored participates deposited onto paper microfluidics is one of the common
strategies. Abate et al. exploited cascade enzymatic reactions involving immunoglobulin G (IgG)-
specific antibody, glucose oxidase (GOx), HRP, and 3,3’-diaminobenzidine (DAB) to develop a
paper-based IgG sensor [207]. During the reaction, alkaline phosphatase-conjugated antibodies
converted glucose-1-phosphate into glucose. Consequently, generated glucose turned colorless
DAB into visible brown poly-DAB with the help of GOx and HRP pre-deposited in paper channels.
The growing-colored poly-DAB stripe, which is proportional to IgG concentration, can be easily
measured using the printed ruler on the device. A similar mechanism producing cumulable colored
complexes was widely applied to the detection of compounds related to chronic diseases (e.g.,
glucose and glutathione), antioxidants in food, bacteria (e.g., Salmonella typhimurium), and metal
ions (e.g., nickel, copper, iron, mercury and potassium ions) [208-215].

Sensing platforms combining particle aggregation and on-chip nucleic acid amplification
with fluorescein have also been extensively developed for visualization and direct quantification
of target nucleic acids [216]. Wang et al. developed a paper-based platform featuring a
smartphone-controlled portable thermal cycler and on-chip PCR [217]. It allowed direct and
sensitive quantification of soil-transmitted helminth (1 aM — 1 fM) by measuring the rising
distance resulting from SYBR green-intercalated double-stranded DNA (dsDNA). Instead of using
intercalating dye for nucleic acid quantification, Kalish et al. developed a paper-based scale bar
exploiting the hybridization between target DNA and surface-functionalized colored microspheres
for quantification [218]. The colored microspheres were modified by conjugating short single-
stranded DNA (ssDNA) partially complementary to the targets and formed measurable color bands
inversely proportional to the concentration of target DNA. Aggregation strategies exploiting
complementary ssDNA or DNA aptamer is especially suitable for POC applications as the
sequences can be customized and adopted for a wide range of sensing targets as needed [219, 220].

Silicon-based microfluidics allows for more complex processes and has been extensively
integrated with many distance-based sensing techniques [220]. Wu et al. demonstrated a
microfluidic chip featuring a synergistic effect among hairpin complex HIH2 and GR-5
DNAzyme in the presence of magnetic microparticles (MMPs) and polystyrene microparticles
(PMPs) for visualized quantification of lead ions (Pb?") [221]. A catalytic assembly was triggered
by Pb?', leading to the generation of an MMPs-HIH2-PMPs complex that can be magnetically
trapped. Consequently, the remaining free PMPs relevant to the amount of Pb?* then flowed along
the microchannel and accumulated at a particle dam. A similar mechanism was implemented and
proved effective earlier in the detection of specific target oligonucleotides by the same group [222].
A novel sensing mechanism in combination with photothermal (PT) effects and antibody-
conjugated Fe3O4 nanoparticles (NPs) was also proposed to enable a visual quantification of
prostate-specific antigen (PSA) in human whole blood (Fig. 5C) [223]. By converting Fe;O4 NPs



into Prussian blue (PB) NPs, stronger PT effects were then induced under the exposure of near-
infrared (NIR) radiation. Resulting heat generated a powerful driving force to push PSA-antibody-
PB NPs in the microchannel to form a colored bar proportional to PSA concentration. Additionally,
platinum nanoparticles (PtNPs)/H20: pair were employed for the efficient generation of Oa. [224].
Working as a pneumatic pump, O> pushes ink/colored mixtures through the microchannels of
distance-based platforms for visual quantification. This strategy has been successfully applied in
conjunction with hydrogel and aptamers and integrated into a microfluidic platform for a wide
range of POC diagnoses such as S. enterica, E. coli, L. monocytogenes and Aflatoxin B [225-227].
Qin’s group was one of the pioneers of a similar “air-push” strategy for the detection of target
proteins and DNAs with the integration of immunoassay and H>Ox/catalase pair [228, 229].

Distance-based sensing approach has advantages such as signal clear visualization and non-
instrumented analysis, which is less susceptible to the variation of user interpretation and is
suitable for point-of-care diagnosis in resource-limited settings. However, some inherent problems,
such as the assay reproducibility and instability of catalysts, still need to be addressed.

5.3 Electrochemical signal

In developing an effective electrochemical sensor, the affinity of target recognition elements
and the chemical mechanism to generate electrical signals play a critical role [230]. This approach
provides low sample consumption, rapid signal response, and flexibility to fit in miniaturized
modules for fully automatic diagnosis. It also allows multiplex and label-free detection if designed
properly [231]. Portable POC devices integrated with the electrochemical method have been
extensively developed for sensitive diagnosis targeting multiple diseases, including cancers [230].
Additionally, these platforms were interfaced with mobile devices (e.g., smartphones) connecting
with wireless communication to realize remote control and smartphone-based analysis (Fig. 5D)
[232]. In this section, the mechanism and performance of electrochemical strategies in recent
portable/smartphone-based POC diagnosis are reviewed.

Researchers have tried various target recognition elements, including aptamers,
complementary ssDNA, and antibodies. For example, Low et al. exploited specific ssDNA for a
smartphone-based detection of circulating microRNA-21 (miR-21) in saliva [233]. The
ultrasensitive diagnosis was achieved (LoD: 1 pM) with modified electrodes and an autonomous
circuit board where no benchtop instruments (e.g., laptop, electrochemical workstation) were
involved. Antibodies were frequently used in combination with smartphone-based analysis for
sensitive detection of different protein biomarkers (e.g., cancer antigen 125, serum-derived
exosomes, breast cancer biomarker HER2, and SARS-CoV-2 nucleocapsid protein) [234-237].
This robust electrochemical technology has also been combined with an aptamer-functionalized
interface to extend its clinical applications [238]. For example, Chakraborty et al. modified ZnO
nanorods with DNA aptamers against carcinoembryonic antigen (CEA) to realize a label-free
sensing platform [239]. With a smartphone-based potentiostat, a detection limit down to 1 fg/ml
in human serum was demonstrated. Although the recognition layer is critical for detection
specificity, it is not always necessary for the detection of some targets, such as metal ions, due to



their unique and differentiable redox properties [240, 241]. These recognition components
performed well on a paper-based substrate for multiplexed and ultrasensitive detections targeting
biomarkers of clinical significance, although they have not been fully automated without benchtop
machines [242-246].

Apart from the recognition layer, chemical modification on electrodes is another powerful
strategy to boost detection sensitivity. Screen-printed carbon electrodes (SPCE) became one of the
most commonly used electrodes for this purpose because of its low cost, materials properties, and
the ease of modification with chemicals [233, 241, 247, 248]. SPCE has been functionalized with
various components, such as gold/silver/platinum nanoparticles, graphene, reduced graphene
oxide, carbon nanotubes, to improve electrode performances [233, 237, 241, 247-249]. In addition,
electrodes modified with nanohybrids comprising carbon-based nanomaterials, metal oxides (e.g.,
Sn0Oz, NiO, ZnO), and polymers (e.g., polyethylenimine, polypyrrole) demonstrated extraordinary
performance in electrical conduction [241, 247, 248, 250]. These nanocomposites can be printed
onto paper-based POC devices using screen printing for a continuous electrochemical interrogation
[243, 244, 251, 252]. Electrochemical performance can be boosted in a flexible and tubular
membrane-like sensor due to enhanced electron hopping and tunneling effects resulting from an
enhanced electrical field and its particular geometry [253].

Smartphone-based POC platforms combining nucleic acid amplification and an
electrochemical-based approach are of great interest. [230, 254]. Recently, Li et al. demonstrated
a smartphone-based sensing platform combining LAMP and real-time electrochemical monitoring,
enabling home-testing of SARS-CoV-2 (Fig. 5E) [255]. Covering Nafion film on the polyaniline-
based electrode, this sensor demonstrated an excellent potentiometric response to pH change due
to accumulated pyrophosphate. Combining on-chip thermolysis and Bluetooth module, this plug-
and-play potentiometric pH sensor allowed a rapid and ultrasensitive outcome (2 x 10? copies per
test within 25 min) in both endpoint detection and real-time pH monitoring on a smartphone at
home. Paper-based POC devices with similar technology were also developed, consisting of on-
chip sample preparation, LAMP, and electrochemical analysis [251, 256]. However, relatively
bulky potentiostat and external heating devices have not yet been integrated into a one-piece
package and interfaced with smartphones in these studies.

5.4 Magnetic signal

Magnetic signal readout offers good stability, high signal-to-noise ratio, and simplified
procedures of magnetic nanobeads (MNBs) and has been applied to the detection of a variety of
biomolecules, including pathogens [257, 258], proteins [259-261], and small molecules [262, 263].
Biorecognitions including the antibody-antigen interaction, aptamer-target recognition, and
molecularly imprinting polymers-based recognition, play a critical role in MNBs-based sensing
methods such as nuclear magnetic resonance (NMR), magnetorotation, optomagnetic approach,
giant magnetoresistive effect (GMR) and so on [264]. Some notable MNBs-based approaches
integrated with portable systems for POC diagnosis are discussed here.

The interaction between the target analytes and the bioreceptors forms agglutination in



various volumes/geometries leading to a property change in the dynamics of the MNB [264].
Based on the rotational dynamics of the aggregates responding to an external oscillating magnetic
field, the number of target molecules can be quantified [265]. Sharma et al. developed a magnetic
tunneling junction (MTJ)-based platform comprising specialized portable electronic and
microfluidic setups, enabling nM-level sensing of bacteria and viruses [266]. This platform
optimized hybridization and magnetic labeling of natural DNA, resulting in highly selective and
specific detection and genotyping. A similar MTJ-based strategy was previously exploited for
sensing magnetic particles at low concentrations by measuring their Brownian relaxation
frequency [267], optimization of DNA hybridization, and magnetoresistive biorecognition [268-
270].

NMR is another technique frequently integrated into miniaturized devices for POC testing. A
miniaturized system combining UNMR and targeted magnetic nanoparticles was developed for
measuring multiple cancer biomarkers in both circulating tumor cells (CTC) and fine needle
biopsies of solid epithelial cancers (Fig. 5F) [271]. Collected fresh samples were labeled with
antibodies and selectively targeted by tetrazine-nanoparticles for quantifying epithelial cellular
adhesion molecule (EpCAM), EGFR, human epidermal growth factor receptor 2 (HER-2), and
vimentin by the uNMR system. Other miniaturized platforms using NMR-based techniques have
been reported for the identification of drug-resistant Mycobacterium tuberculosis (MTB) strains
[272], the detection of Salmonella in milk [273], and phenotyping of 13 bacterial species [274].

In agglutination assays, the formation of magnetic bead clusters due to the specific binding
of biomarkers have been studied and exploited for ultrasensitive optomagnetic detection [275].
Uddin et al. demonstrated a rotational disk platform for the detection of thrombin using aptamer-
coated magnetic nanobeads and microbeads (MNBs and MMBs) [276]. With the magnetic field
excitation, an increasing optomagnetic signal can be detected, indicating a gradual formation of
MNB agglutination over time due to the increasing amount of thrombin. In addition, strong
magnetic field pulses facilitated particle agglutination (i.e., magnetic incubation), enabling a low
detection limit of 25 pM with 15.5 min of reaction. A similar mechanism integrated with the disk
platform was exploited in the detection of C-reactive protein and peripheral blood mononuclear
cells in whole blood [277] and prostate-specific antigen in a 50% serum [278].

Tian et al. demonstrated a microfluidic platform combining self-assembled magnetic
nanoparticle and graphene oxide (MNP-GO) nanotags for optomagnetic detection of E. coli 16S
rDNA sequence [279]. The aggregation of target RCA amplicons and MNP-GO nanotags led to
an enhanced optomagnetic signal due to high shape anisotropy related to aggregation size and the
number of target amplicons. The proposed platform enabled an ultrasensitive detection of E. coli
16S rDNA sequence (2 pM) within 90 min, indicating an extraordinary optomagnetic property of
MNP-GO nanocomposite. Furthermore, microfluidic-based optomagnetic approaches combining
various nucleic acid amplifications were reported in recent publications including the detection of
synthetic DNA strands targeting type B-influenza virus [280, 281], tuberculosis [282] using RCA,
and Newcastle disease virus and dengue serotype 2 virus using LAMP [283, 284].

The magnetic technology is versatile and applicable to a variety of purposes beyond sensing



assays, such as a highly accurate cytometer for the quantification of pancreatic cancer cells [285].
The magnetic-based thermometer is one of the novel inventions regarded as “Next-Generation
Optomagnetic Devices” [286]. Due to their biological inertness, physical stability, and lack of
interferring magnetic signals in biomaterials, MNBs-based platforms would be favorable for
developing a more efficient POC diagnosis.
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Fig. 5. Nucleic acid amplification approaches using portable and miniaturized systems. (A) An
HNB-based LAMP platform enabling sample-to-answer detection of HINI virus and MRSA
bacteria via smartphone interface with wireless connection. Adapted from [172] with permission
from The Royal Society of Chemistry. (B) A cost-effective 3D-printed unibody microfluidic SPR
chip integrated into with smartphone-based iSPR system. Adapted from [200] with permission
from Elsevier. (C) Nanomaterial-mediated bar-chart microfluidic chip exploiting photothermal




effect for visual quantification. Adapted with permission from [223]. Copyright 2021 American
Chemical Society. (D) A smartphone-based electrochemical sensing platform integrated with
open-Source potentiostat enables wireless detection. Adapted with permission from [232].
Copyright 2018 American Chemical Society. (E) A smartphone-based sensing platform combining
LAMP and real-time electrochemical monitoring for ultrasensitive diagnosis of SARS-CoV-2.
Adapted from [255] with permission from Elsevier. (F) A portable platform combining uNMR
strategy and magnetic nanoparticle labeling to detect and characterize tumor cells and metastatic
tumor. Adapted from [271] with permission from Elsevier.



Table 4. Comparison of portable and integrated devices for point-of-care diagnosis of nucleic-acid targets

Amplificatio Sample type Target Signal type Reaction mechanism Sensing system Limit of Ref.
n method Detection /
Time-to-result
RT-LAMP  Spiked SARS-CoV-2 Fluorescence Byproduct of RT- LED light source, 2 copies per [167]
oropharyngeal  /armored LAMP, magnesium fluorescence filter, reaction /
swab RNA pyrophosphate, objective lens, Sample-to-
particles activating fluorescence  electric autofocus answer time:
of Calcein dye system and a ~ 70 min
CMOS camera
RT-LAMP  Spiked whole HIV-1/RNA Visible test Amplicons, containing ~ Visual detection 2.3 x 107 [183]
blood bands FAM- and biotin- based on test and copies/mL of
tagged loop primers, control bands whole blood /
captured by anti-FAM ~ 90 min for
antibody and visualized visual
by streptavidin- interpretation
conjugated gold of results
nanoparticles on the
test line
PCR Bacteria culture  Salmonella  Surface Amplicons reducing Output power Detection [197]
spp. / DNA  plasmon refractive index on the measured by an limit: Not
resonance SPR fiber sensor optical power meter  applicable /
surface DNA
amplification
time ~ 30 min
RT-LAMP  Human blood Hepatitis C ~ Electrochemical = Byproduct of RT- Ion-sensitive field 10 copies/mL  [254]
virus / RNA LAMP, magnesium effect transistor /30 min
pyrophosphate, sensing released
reducing pH protons
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The change of
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a uUNMR electronics

2x 10?
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6 Commercial sample-to-answer Kits for plant disease diagnosis and their challenges
Human societies have heavily relied on plants as indispensable resources for food, medicine,

lumber, landscaping, carbon storage, and many more [287-289]. Particularly, food crops are
essential for meeting the food demands of the rising world population [290, 291]. However, the
threat of various plant diseases to agricultural industries has been increasing in the recent years.
For instance, citrus greening disease (also called Huanglongbing) once caused a huge disaster to
Florida’s citrus industry, with an estimated economic loss of up to $4.5 billion within five years
[292]. To our knowledge, reports specifically reviewing commercial kits for in-field diagnosis of
plant diseases are still rare, especially when compared with those targeting human diseases, which
increased in the past few years due to the outbreak of COVID-19 [293-296]. Thus, this section
focuses on in-field plant disease detection and relevant commercial kits, including their
applicability and cost.

Many commercial tools have been designed and utilized to address the key bottleneck of in-
field plant disease diagnosis in a sample-to-answer manner. These tools enable quick screening of
diseases in the field without lab instruments and well-trained personnel involved, leading to more
cost-effective disease management. As shown in Table 5, a variety of commercially available kits
for plant disease detection are listed based on the key factors that matter in actual on-site diagnoses,
such as time to result, ease of use, and cost per assay. Examples in this section include the ones
detecting non-nucleic acid targets, as these are extensively used in plant diagnosis.

Lateral flow immunoassay (LFIA) is one of the most extensively used approaches in the field,
featuring simple operation and rapid response. The principle is based on antibody/antigen binding,
where antibodies are designed to recognize specific antigens from pathogens of interest. The
antigens in extracted saps are captured by antibodies deposited on test strips. A dye (e.g., colloidal
gold) then enables the captured antigen to be visualized [297]. Kits usually come with a tool for
physically mashing the sample, a specialized buffer for dilution and reaction enhancement, and an
LFIA test strip/cassette with specific antibodies for yes / no response. Pocket Diagnostic
(Abingdon Health, York, UK) developed a series of LFIA tests for detecting Erwinia amylovora,
potato virus Y, Ralstonia solanacearum, and Phytophthora. With these kits, plant samples are
manually pulverized by shaking the buffer bottle with grinding balls inside. The resulting saps are
ready for the LFIA test [298-301]. Another common product is Agdia ImmunoStrip (Agdia, IN,
USA). Unlike the Pocket Diagnostic’s kits, it features buffer-filled mesh bags for crushing samples
with a blunt object. Agdia has extended the application to more than 40 viral diseases, covering
many plants such as tomato, citrus, and tobacco [302-304]. Other companies also developed
similar products to target a wide range of pathogens, including bacteria and fungi [301, 305, 306].

Electronic nose (e-nose) is a powerful alternative that offers non-invasive plant inspection by
analyzing volatile organic compounds (VOCs) emitted by the plants. Over the past few decades,
e-nose devices have been developed and applied in various industries requiring precise monitoring
and analysis of VOC (e.g., food and agricultural industry) [307]. Currently, a number of e-nose
devices serving plant diagnosis purposes are commercially available (Table 5). For example,



Bloodhound ST214 and Cyranose 320 are early e-nose products capable of differentiating VOC
profiles emitted by healthy and diseased cucumber, pepper, onion, tomato, and blueberries [308-
310]. Models that are more portable and functional, such as Portable Electronic Nose 3 (PEN3)
and zNose (Model 4300), have been adopted for a wide range of applications in the fields (e.g.,
botany, forestry, and agriculture) where fungal, bacterial infections and pest infestations cause
problems [308, 311-314].

Commercial molecular assay kits have been developed and applied to on-site diagnosis of
plant diseases (Table 5). In these kits, amplification and analysis of nucleic acids are simplified
and integrated into a single instrument to facilitate in-field applications. An early product from
Cepheid (Sunnyvale, CA, USA), the SmartCycler system allowed multiplex testing and was
previously used for in-field detection of Pierce’s disease of grapes without extraction of DNA by
performing PCR with sap. The same model was later applied to citrus Mal secco disease and
dieback of Parrotia persica [315-317]. More recently, SmartCycler was deployed to the field trials
evaluating penicillin’s therapeutic effect in huanglongbing (HLB)-affected citrus [318]. Cepheid’s
other product, the GeneXpert system, was considered an improved version of the sample-to-
answer PCR device. Known for its multitasking cartridge with pre-loaded reagents and built-in
fluidics, nucleic acid extraction, thermal cycling, and interpretation of the results are integrated
and automatically executed with minimal human intervention [319, 320]. OptiGene Genie [, II &
IIT integrated isothermal amplification (e.g., LAMP) in a handheld, battery-powered device. With
the isothermal technology, these models are specifically suitable for outdoor use and have been
utilized for on-site diagnosis of various plant diseases such as Erwinia amylovora, Pepper chat
fruit viroid, Phytophthora infestans, Sweet potato feathery mottle virus, Sweet potato chlorotic
stunt virus [321-324]. Despite the portability and diagnostic efficiency, commercialization of
LAMP-based sample-to-answer devices has been limited and not as popular as seen on their PCR-
based counterparts in the past few decades due to licensing required from the inventors [138].

Sample-to-answer devices featuring PCR-based detection (e.g., Palm PCR, Biofire Filmarray,
Luminex ARIES System, 3M Integrated Cycler, and Roche cobas Liat) are commercially available
for on-site applications [325-329]. However, these devices are predominantly used for human
disease diagnosis. This is probably due to the increasing threat of human infectious diseases caused
by fatal viruses such as SARS-CoV-2 and Ebola Virus Disease (EVD) [330-332].

On-site plant disease diagnosis still depends on off-device sample preparation prior to the
assays such as the production of crude saps and purification of nucleic acids where human
intervention is required. Although some of the kits mentioned above are designed to have a higher
tolerance to inhibitors in test samples, quality of the inputs that one can prepare in the field is still
the key factor dominating detection sensitivity and accuracy. The same requirement applies to
portable devices with PCR-based technologies. Without an automatic and hand-free sample
preparation of difficult-to-lyse plants, the applicability of these devices to field settings could be
limited. To overcome the bottleneck and reduce the cost of plant disease management, cellulose
paper is considered a suitable medium featuring affordability and easy-to-fabricate/modify. It has
long been reported that paper can quickly retain, dry, and store nucleic acids and reagents, which



facilitates the extraction process and makes it possible for distant transportation without a cold
chain [75]. In addition, the usability of paper can always be expanded by treating it with functional
chemicals (e.g., Chitosan) or DNA for enhancing extraction efficiency (e.g., electrostatic
attraction) or other purposes (e.g., selective binding) [75, 333].

In the future, sample-to-answer devices should integrate with sequencing technologies such
as next-generation sequencing (NGS) and third-generation sequencing (TGS) [334]. Although
more challenges (e.g., stability of nucleic acids, data acquisition, and analysis of complex
genomes) can emerge while trying to make this happen, such capability would revolutionize on-
site diagnosis processes and advance the low-cost and high-throughput disease management [309,
334].



Table 5. Comparison of commercial sample-to-answer kits and devices for plant disease diagnosis

Product Test type Key components ~ Sample input Pathogens/Diseases ~ Time to Costper  Ref.
result/Respons  assay ?
e time

Pocket Lateral flow A buffer bottle Crude lysate of  Erwinia amylovora <10 min ~$6-11 [298-
Diagnostic immunoassay  with milling plant tissue Phytophthora spp. 301]
Lateral Flow beads, a pipette, Ralstonia
Test and a test solanacearum

cassette Potato virus Y
Agdia Lateral flow A buffer-filled Crude lysate of 41 plant viruses 5-30 min ~$6-15 [302-
ImmunoStri  immunoassay mesh bag and a plant tissue 7 plant bacteria and 304]
p test strip 2 fungi
Bioreba Lateral flow An extraction Crude lysate of 16 plant viruses 10-15 min ~$5° [306]
AgriStrip immunoassay bag, an plant tissue 3 plant bacteria and

extraction buffer, 1 fugus

a cuvette and a

test strip
PlantMedia  Lateral flow  Not available Crude lysate of  Phytophthora spp. <5 min ~$27-33  [305]
ALERT-LF  immunoassay plant tissue Pythium spp.

Rhizoctonia spp.
Botrytis spp.

LOEWE Lateral flow A test cassette,a  Crude lysate of 20 plant viruses 5-10 min ~$5 [301]
FAST Kits immunoassay  single-use pipette  plant tissue 9 plant bacteria and

and a pre-filled

fungi



Bloodhound  E-nose
ST214

Cyranose E-nose
320
PEN3 E-nose

sample buffer
tube

A medium size
benchtop
machine
featuring 14
organic polymer
sensor arrays

A handheld
terminal
featuring a
composite sensor
array with 32
electrodes and
conducting
nanoparticles

A portable

device featuring
a 10-fold array of
thick film metal
oxide gas sensors

Top air
(headspace
sampling)

Top air
(headspace
sampling)

Top air
(headspace
sampling)

Oidium
neolycopersici

Burkholderia
cepacia,
Botrytis cinerea,
Colletotrichum,
gloeosporioides,
Alternaria sp.,
grey mould,
anthracnose,
Alternaria rot

F. Culmorum
Erwinia amylovora
Pseudomonas
syringae pv
Agrobacterium vitis
Botrytis sp.
Penicillium sp.
Rhizopus sp.

Not available - [308-
310]

2 min - [308-
310]

<1 min - [308,
311-
313]



zNose 4300  E-nose
SmartCycler Real Time

PCR
OptiGene Isothermal
Genie 11 & amplification
I

A portable
device featuring
surface acoustic
wave (SAW)
sensor and ultra-
fast gas
chromatography

(GC) capabilities

[-CORE: Fan +
Circuitry +
Heating plates +
Optical blocks

Ceramic
substrate with
resistive coating
High-precision
thermistor
Block with 4-

zone independent

digital PID and
heated lid

Top air
(headspace
sampling)

Crude lysate of
plant tissue,
extracted
nucleic acids

Crude lysate of
plant tissue,
extracted
nucleic acids

Oidium
neolycopersici

<1 min -

Xylella fastidiosa 20-40 min
Phytophthora

ramorum

Phoma

tracheiphila

Erwinia amylovora  30-45 min
Pepper chat fruit

viroid

Phytophthora

infestans

Sweet potato

feathery mottle

virus

Sweet potato

chlorotic stunt virus

2 Calculated based on the companies’ website information in March 2023. ® Adapted from Bioreba Price list 2019.

[314]

[315-
318]

[321-
324]



7  Future outlook and conclusion

In this review, recent advances of microfluidic devices and point-of-care testing are studied.
These portable systems are composed of several functions, including sample preparation, nucleic
acid amplification, and resultant signal readouts. Most devices perform each process within the
microfluidic platform from crude samples, such as saliva and whole blood, without additional user
intervention. Additionally, there are a number of strategies to improve performances of each
function. For sample lysis, on-chip lysis methods such as enzymatic and chemical lysis are enabled
by specific enzymes or chemicals. A heating element or external electrical field deployed can
further facilitate the lysis reactions, shortening reaction time. Magnetic beads, silicon-based
materials, or cellulose fiber materials are frequently used for assisting nucleic acid extraction in
portable systems due to their unique analyte-binding properties. Reports on an automated or one-
step protocols for the detection of plant diseases are limited, compared to those for biomedical
applications. In fact, automatic sample preparation of plant samples in microfluidic chips or
handheld devices is challenging due to the solid cell walls, and general on-chip sample lysis
strategies have minimal effects on plant cells. Therefore, developing a plant sample preparation
unit is of great interest. For nucleic acid amplification methods, PCR has been successfully
demonstrated using either a precise temperature control module or others such as Rayleigh-Bénard
thermal convection. Although these approaches work reliably, heat dissipation issues within
microfluidics elements are still challenging. Instead, LAMP-based strategies are simpler, require
less energy, and need no thermocycler during the heating steps. LAMP can be implemented in
portable systems with a smaller footprint and cost, suitable for resource-limited settings.

A fully automated sample-to-answer device with minimal user intervention, a simple user
interface, and good network connectivity, is highly desired for many applications. Such a device
would find widespread uses in places outside of laboratories, where lack of instrument resources
and the need for extensive user training and knowledge have precluded its adaptation. Additionally,
high price of most commercial devices is another bottleneck for their deployment beyond large
institutions such as hospitals, research laboratories, government agencies, and food and
agricultural industries. Recent advance in 3D printers will likely facilitate designing and
prototyping of key components, reducing the development cost and time. Use of cellulose-based
membranes for nucleic acid extraction and LAMP for amplification and signal readout will also
help simplify the device design and reduce its cost. The authors hope this review will encourage
further exploration and progress toward the development of user-friendly, fully automated, and
portable sample-to-answer technology for in-field disease diagnosis of human, animal, and plants.
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