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ABSTRACT

The existence of globular clusters (GCs) in a few satellite galaxies, and their absence in majority of dwarf galaxies, present a
challenge for models attempting to understand the origins of GCs. In addition to GC presence appearing stochastic and difficult
to describe with average trends, in the smallest satellite galaxies GCs contribute a substantial fraction of total stellar mass.
We investigate the stochasticity and number of GCs in dwarf galaxies using an updated version of our model that links the
formation of GCs to the growth of the host galaxy mass. We find that more than 50 per cent of dwarf galaxies with stellar
mass M, <2 x 107 Mg, do not host GCs, whereas dwarfs with M, ~ 10% M, almost always contain some GCs, with a median
number ~10 at z = 0. These predictions are in agreement with the observations of the Local Volume dwarfs. We also confirm the
near-linear GC system mass—halo mass relation down to M;, ~ 103 My, under the assumption that GC formation and evolution
in galaxies of all mass can be described by the same physical model. A detailed case study of two model dwarfs that resemble
the Fornax dwarf spheroidal galaxy shows that observational samples can be notably biased by incompleteness below detection
limit and at large radii.
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1 INTRODUCTION

Observations show a tight near-linear relation between the mass of
a globular cluster (GC) system and the total mass of the host halo
(Spitler & Forbes 2009; Georgiev et al. 2010; Hudson, Harris &
Harris 2014; Harris, Harris & Hudson 2015; Forbes et al. 2018). For
example, Harris et al. (2015) find Mgc = 3.4 x 1075 M, for galaxies
with halo mass between 10'? and 10'* M, with a total scatter of 0.35
dex most of which can be contributed by measurement uncertainties.
Considering the complicated interplay of various non-linear baryonic
processes involved in the formation of GCs, such a simple relation
is quite remarkable.

Atahost mass My, ~ 10° Mg, the expected number of GCsis 1 or 0.
In such a regime the cluster formation must become very stochastic.
Therefore, it is particularly interesting to investigate how far the near-
linear Mgc—M,, relation holds. The main uncertainty is not the number
of GCs but the measurement of the total halo mass of dwarf galaxies.
Forbes et al. (2018) used stellar and HI gas kinematics to derive
dynamical mass measurements for dwarf galaxies in the Local Group
(LG) and isolated late-type dwarfs with detected GC systems. They
concluded that the number of GCs still correlates almost linearly with
the halo mass down to My < 10° Mg, although their derived halo
masses fall systematically lower than those predicted by empirical
stellar mass-halo mass (SMHM) relations such as those found by
Behroozi, Wechsler & Conroy (2013c¢) and Danieli et al. (2022, who
investigated this relation in nearby dwarf galaxies).

Another challenge to study the Mgc—M,, relation is small number
of GCs in dwarf galaxies. Therefore, measuring the number of GCs

* E-mail: ybchen@umich.edu

can be heavily affected by incompleteness and contamination in
surveys of dwarf galaxies. Fortunately, the Exploration of Local
VolumE Satellites Survey (ELVES, Carlsten et al. 2022a, b) has
extended the census of GC systems in a sample of 140 confirmed
early-type dwarf satellite galaxies with stellar mass between 10°> and
1033 My, These authors parameterized and optimized the number of
GCs as a function of stellar mass of the host galaxies M,. For the
low-mass regime where a significant fraction of galaxies do not host
GCs, they calculated the occupation fraction (the fraction of galaxies
hosting at least one GC) as a function of M,. They found that the
number of GCs increases monotonically with galaxy stellar mass,
and the occupation fraction rises rapidly from 0 to 1 for galaxies
with M, growing from 10° to 10 M,

The ELVES survey does not provide direct measurement of host
halo mass. Only a limited number of nearby dwarf galaxies have
independent measurements of both halo mass and GC mass/number.
This motivates the use of numerical methods to understand the
formation of GCs, such as applying a model of GC formation and
evolution to galaxy formation simulations such as the E-MOSAICS
project (Pfeffer et al. 2018; Kruijssen et al. 2019), EMP-Pathfinder
(Reina-Campos et al. 2022), the model presented by Doppel et al.
(2022), and our previous models (Muratov & Gnedin 2010; Li &
Gnedin 2014; Choksi, Gnedin & Li 2018; Chen & Gnedin 2022).
These works have successfully reproduced the near-linear Mgc—My,
relation in the mass range between My, ~ 102 and 104 Mg, without
explicitly linking GC formation to the halo mass of host galaxies.
However, Choksi et al. (2018) noticed a departure from linearity at
the low-mass end of M;, ~ 10" My, Bastian et al. (2020) further
extended the Mgc—-M,, relation relation down to Mj ~ 10" Mg
and found this relation to deviate downwards significantly below
My, ~ 5 x 10" M, in contrast to Forbes et al. (2018) who found
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Table 1. Important simulation parameters of the ICs employed in this work.
1C Box size Root cell size  # of particles Particle mass Qm My 1 My, 2 Qp h
T&L 35.2 Mpc 138 kpc 65,589,112  1.89 x 10°Mg 0266  1.09 x 102Mg (T) 0.94 x 102 Mg (1)  0.0449 0.71
R&J 34.0 Mpc 133 kpc 56,765,377  1.82 x 10° Mg 0.31 1.28 x 10"2Mg (R) 0.97 x 10"2Mg (3)  0.048 0.68

The lengths are given in comoving units and the particles mass refers to the particles in the zoom-in region. The z = 0 halo mass of the two main galaxies in

each IC are also given.

the near-linear correlation to be valid down to My ~ 108 M. The
causes of the deviation in numerical works are still unclear. Bastian
et al. (2020) argued that this is because of the highly non-linear and
uncertain SMHM relation at the low-mass end. Purely numerical
limitations, such as inadequate mass resolution for dwarf galaxies,
may also play a role.

Another caveat of numerical modelling is that most models cannot
correctly reproduce the present-day cluster mass function from the
assumed initial mass function, mainly because the treatment of tidal
disruption is problematic. Due to the limited mass resolution in
galaxy formation simulations, tidal disruption is normally modeled
via subgrid prescriptions, which are unavoidably over-simplified.
Moreover, the inadequate spatial resolution in simulations makes it
challenging to explicitly calculate the tidal field on a scale of the tidal
radius of GCs, 20-50 pc.

In this work, we apply our latest GC formation model presented
in Chen & Gnedin (2022) to a suite of higher resolution collisionless
simulations, which are specifically tuned to the LG environment.
The simulations have mass resolution of 2 x 10° M, enabling robust
modelling of even the smallest dwarf galaxies down to My, ~ 108 Mg,.
We modify the cluster sampling process in the model to make it work
with dark matter (DM) particles. Also, we update the prescription
for tidal disruption based on the most recent results of direct N-body
simulations. We find our results consistent with the ELVES survey
of the Local Volume (LV) GCs. We also investigate which aspects of
the model can be constrained by the observational data.

The paper is organized as follows. First, we recap the GC formation
model in Chen & Gnedin (2022) and introduce the modifications that
we make to the model in Section 2. Next, we present our main results
in Sections 3, 4, and 5. In Section 3, we analyse the GC occupation
fraction and the number/mass of GCs in the model galaxies with
different stellar/halo mass. Next, we perform a detailed case study
of the GC systems in two model galaxies that resemble the Fornax
dwarf spheroidal galaxy (Fornax dSph) in Section 4. In Section 5, we
investigate how different model settings influence the GC occupation
fraction and the number of GCs and constraint the models with
observational data. We summarize our key findings in Section 6.

2 MODEL SETUP

To investigate the formation of GCs in the LG dwarf galaxies, we
apply our model of GC formation on a suite of cosmological simu-
lations that resemble present-day properties of the LG environment.
In this section, we describe the simulations and the GC model.

2.1 Simulations of the LG

We use a suite of collisionless (‘DM only’) zoom-in simulations
with initial conditions (ICs) chosen to match the present-day LG.
Full galaxy formation runs with these ICs are presented in Brown &
Gnedin (2022). The simulations are performed with the Adaptive
Refinement Tree (ART) code (Kravtsov, Klypin & Khokhlov 1997).
The ICs are Thelma & Louise (in short, T&L) and Romeo &

Juliet (R&J). The modifications from the original version of
Garrison-Kimmel et al. (2014) include reducing the simulation box
sizes to ~35 comoving Mpc and improving the root grid resolution
(Brown & Gnedin 2021). The zoom-in region is around 10 comoving
Mpc across, and the particle mass in the zoom-in region is smaller
than 2 x 10° M. We summarize the key parameters for the two ICs
in Table 1.

We start the simulation at z >~ 100 and run it until the present. We
output simulation snapshots at approximately every 0.01 increment
of the scale factor a. Next, we generate halo catalogues at each
snapshot with the ROCKSTAR halo finder (Behroozi, Wechsler & Wu
2013a). The halo catalogues and simulation snapshots are then passed
to the CONSISTENT TREE code (Behroozi et al. 2013b) to generate
merger trees.

The mass assembly of the four main galaxies in the two ICs can
be split into two categories (see fig. 3 in Brown & Gnedin 2022 for
the mass growth histories). Louise, Romeo, and Juliet have
no major merger with a mass ratio less than 4:1 after z ~ 5, which
resembles the formation history of the Milky Way (MW; Hammer
et al. 2007). We therefore refer to the three galaxies as ‘MW-like’.
In contrast, the Thelma galaxy encounters more major mergers at
later times.

2.2 Modelling the formation and evolution of globular clusters

We apply a GC formation model on the simulation outputs to study
GC systems of the LG galaxies. Based on Chen & Gnedin (2022),
we describe GC formation and evolution via four steps: (1) cluster
formation, (2) cluster sampling, (3) particle assignment, and (4)
cluster evolution. In this section, we recap the GC model and describe
several modifications required to study dwarf galaxies.

2.2.1 Cluster formation

In the cluster formation step, we trigger a GC formation event when
the specific mass accretion rate of the host galaxy exceeds a threshold
value, p3, which is an adjustable model parameter. The specific mass
accretion rate, Ry, is defined as the fractional change of galaxy mass
between two adjacent simulation snapshots,

Mnow - Mprog . 1
Mpmg

Ry = (€]

Thow — tprog ’
where #now and #o4 stand for the cosmic times of the current snapshot
and the progenitor snapshot, respectively. Similarly, the masses of
the current galaxy and the main progenitor galaxy are represented
by Muow and Mpg. Since the mass of DM particles in zoom-in
regions is around 2 x 10° Mg we only take into account halos with
M, > 10% M, to ensure that each halo contains at least 500 particles.
Halos smaller than that may be numerically under-resolved, but they
are very unlikely to host any massive star clusters.

When a cluster formation event is triggered, we analytically
calculate the stellar mass of a galaxy from its halo mass using the
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SMHM relation proposed by Behroozi et al. (2013c¢), with a redshift-
dependent scatter £(z) = 0.218 + 0.0203z/(1 + z). We then follow
Choksi et al. (2018) to evolve the stellar mass self-consistently. First,
we assign an initial stellar mass to the first progenitor along each
branch, M?, sampled from a Gaussian distribution, A (M?, &(z)).
The average value M refers to the raw stellar mass from SMHM
without scatter. Next, we evolve the stellar mass as

MY — P 4 (W _ MfreV) 107V O£ Gaow)

This method preserves some memory of the historical stellar mass,
so that a galaxy deviating from the mean SMHM at the beginning
tends to continue the trend.

Using the stellar mass, we calculate the cold gas mass via the gas
mass—stellar mass relation by Choksi et al. (2018),

M M* —npy(M,) 1 nz(z)
2 _ 035 x 327 12"
M, 10° M, 3

based on the observations of Lilly et al. (2013), Genzel et al. (2015),
Tacconi et al. (2018), and Wang et al. (2022). Here ny,(M, ) = 0.33 for
M, > 10° Mg and ny(M,) = 0.19 for M, < 10° M. The redshift
dependency is characterized by n,(z) = 1.4 for z > 2 and n,(z) =2.7
otherwise. When z > 3, following Li & Gnedin (2014) we adopt a
fixed upper limit: n(M,, z > 3) = n(M,, z = 3). An intrinsic scatter
of 0.3 dex is also added to this relation.

Another constraint on the gas mass of the host galaxy is that
sum of the gas fraction f, = My/M; and the stellar fraction f, =
M, /M,, cannot exceed the total accreted baryon fraction fi,, which is
limited by extragalactic UV background after reionization. Since this
condition is particularly important for dwarf galaxies, here we update
the expression for f, used in our previous models since Muratov &
Gnedin (2010). The new expression from Kravtsov & Manwadkar
(2022) takes the form

fin = fo s(Men(2)/ Mp, 2), 3

where f, = Q,/Q2, is the universal baryon fraction, s(x, y) = [1 +
(23 — 1x*173" is a soft step-function, and M, is the characteristic
mass scale at which f;, = 0.5f;,

exp(—0.63z)

n(M,,z) =

Mea(2) = 1.69 x 10° Mo 1= 2. ‘
0(2) = 1.69 x 10" Mo 7 + expl(z/B)] @
where

B = 2i [In (1.82 x 10° exp(—0.63z6) — 1)] /7. ©)

We adopt the reionization epoch at z,; = 6 and y = 15 as in
Kravtsov & Manwadkar (2022). If f, + f. > fin, We set fo = fin — f..
The new expression of fi, is similar to the one in our previous models
at z < 4, but gives significantly larger values at higher redshift. Such
a constraint is important for halos with M;, < 10° Mg, at z ~ 2 when
the formation of GCs is active.

The linear cluster mass—gas mass relation obtained from a simula-
tion by Kravtsov & Gnedin (2005) is employed to calculate the total
mass of a newly formed GC population,

Mo = 1.8 x 107 py M, 6)

where M, is the cold gas mass of the host galaxy, and p, is
another adjustable parameter.! This linear relation intuitively links
the intensity of cluster formation to the total gas mass of the host

!For consistency with previous work, we keep the notation of p, and p3 as in
Li & Gnedin (2014).
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galaxy, reflecting the fact that star clusters are formed in gas clouds
(Shu, Adams & Lizano 1987; Scoville & Good 1989; McKee &
Ostriker 2007; Krumholz, McKee & Bland-Hawthorn 2019). Similar
relation is also observed in elliptical galaxies by McLaughlin (1999),
who found that the ratio between cluster mass and baryon mass is
roughly a constant.

The metallicity of the newly formed cluster population is directly
drawn from the metallicity of the interstellar medium of the host
galaxy, which is given by

0.35
[Fe/H] = log [(M) a-+ 2)0‘9] )
10105 MO :

We follow Ma et al. (2016) to employ 0.35 slope for the stellar mass
dependency. The 0.9 slope of the redshift dependency is calculated
based on the observations of Lyman-break galaxies by Mannucci
et al. (2009), who found a 0.6 dex drop of [Fe/H] from z = 0 to ~4.
In addition, we apply a 0.3 dex intrinsic scatter to [Fe/H].

2.2.2 Cluster sampling

The next step is GC sampling, where we compute an initial mass of
each individual cluster. For each GC formation event with total mass
Mo, we sample the masses of individual clusters from a Schechter
(1976) initial cluster mass function (ICMF) with a power-law slope
of -2,

aw x M 2e™M/Me 8)
dmM

Following Choksi & Gnedin (2019a), we set M, = 10’ My. To
numerically draw clusters from the ICMF, we first calculate the
cumulative distribution function

M 4N
N<M) [y awdM

N(< Mmax) B fﬁi’ln?ax g%dM’

r(M) = )]

where M inmax are the minimum/maximum cluster mass. We will
specify the selection of Mpiymax later. The variable r(M) € [0, 1) is
a monotonic function for any M € [Min, Mmax), and thus r(M) is
invertible. Then, we draw a random number x € [0, 1) and convert x
to a cluster mass via M = r~'(x). We repeat the process until the total
mass of newly formed clusters, Mgc, just exceeds M,,. We drop the
last cluster (with mass M) with a probability P = (Mgc — Mio)/M.
Therefore, the expected value of Mgc is E(Mgc) = Mgc(1 — P) +
(MGC - M)P = Mq.

In a rare case of My, < My, we still randomly draw a cluster
from the ICMF with the above method. However, since the mass of
such a cluster, M, is greater than M, (and thus greater than M,,,), we
must stochastically determine whether to keep it to ensure that the
expected value of Mqc is still M,,. Therefore, we keep this cluster
with a probability P = M,/M, so that the expected value of Mgc
is E(Mgc) = MP = M,y. By employing these techniques, we can
guarantee that the expected value of Mqc is always M.

While in previous versions of our model we used the minimum
cluster mass of 10° My; here, we set My, = 10* My, so that we
can correctly model the masses of GCs even in the smallest halos
with My > 108 Mg. We show our motivation with an order-of-
magnitude calculation: plugging M, ~ fyMy 2 10’ Mg and p, ~
10 into equation (6), we get M, = 10* My Therefore, we expect
Myin > 10* Mg, to avoid the abnormal case of My, < My, However,
clusters with M < 10* Mg will be disrupted relatively quickly by
the tidal field: the estimated lifetime of 10* Mg cluster at 3 kpc
from the galactic centre of a MW-mass galaxy is less than 1 Gyr.
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Moreover, since we will mainly compare our results with the ELVES
survey (Carlsten et al. 2022a), which is magnitude-limited to M, <
—5.5, corresponding to M > 3 x 10* Mg, it is unnecessary to model
clusters less massive than 10* Mg . We thus set My, = 10* M. Note
that we adopted My, = 10° Mg, in Chen & Gnedin (2022) due to
the limited mass resolution in that work. Therefore, the p, values in
the two works are not directly comparable as a larger p, is needed
to maintain the same ICMF at the high-mass end if we reduce My,
from 10° Mg, to 10* Mg,

In Choksi & Gnedin (2019a) and Chen & Gnedin (2022), M . 18
set to match the deterministic constraint

_ / © N (10)

In other words, there is only one cluster with M = My, in
each GC formation event. Such cluster is drawn first in the list
of newly formed GCs. An alternative method is to set My.x —
oo and allow more massive clusters to form with a small but
non-zero probability. Numerically, we can set M, to be a large
enough number > 10’ My. These two methods produce similar
results for galaxies with M}, > 10° M. However, for galaxies with
M, ~ 10° M, the former method prevents the formation of massive
clusters (M ~ 10° My) as My, is too small, whereas the latter
method can still form massive clusters with nonzero probability.
This may lead to noticeable difference in the final GC abundances in
dwarf galaxies. In the rest of the work, we investigate both methods
but treat M,,x — 00 as the default.

2.2.3 Particle assignment

After determining the masses of individual GCs, we link the newly
formed clusters to collisionless particles in the simulation snapshots.
This step is different from our previous work (Chen & Gnedin 2022),
where we applied the model mostly on stellar particles in the Illustris
TNGS50 simulation. There we chose particles representing young
stellar populations, with age typically less than 10 Myr, that indicate
likely formation sites of giant molecular clouds within the galaxy. In
this work we have only DM particles from our new LG simulations,
and therefore we need to assign GCs to DM particles near possible
locations of giant molecular clouds. To try to find reasonable proxies
for the cloud location, we search for peaks of matter density. These
peaks may correspond to surviving dense cores of satellite galaxies
or other galactic structure with deep potential wells. Giant gas clouds
are more likely to be formed around such peaks than elsewhere, and
we therefore adopt these local density peaks to mimic the location
of giant clouds. We then identify local density peaks within 7, of the
galaxy centre, where r; is the scale radius of the best-fit Navarro—
Frenk—White (NFW) halo profile.We require the peak density to
be higher than the mass density of the 16 closest grid cells and
30 times the mean density enclosed within the r sphere. The first
criterion ensures that the peak is located at a local maximum, while
the second criterion excludes low-density peaks that are unlikely
to host massive star clusters. The factor 30 is chosen such that the
resulting radial number density profiles of model GCs can match the
observed profiles of both the MW and satellites.

To find all such density peaks, we start with the central peak
and search for the next highest density peak outside 1 kpc of the
first peak. We repeat the process to search for the remaining peaks
outside 1 kpc of all existing peaks. Every time we find a peak, we
assign one GC to the DM particle located near the centre of the peak
until we find all peaks satisfying the criteria or we have assigned all
GCs to peaks. If there are more GCs than the number of peaks, we

GC formation in dwarf galaxies — 5641

loop through the peaks again: first assign one GC to a random DM
particle within 500 pc of the first peak, then another GC to the second
peak, and so on. We repeat the process until we have assigned all
GC:s to the peaks. This guarantees that each peak has approximately
equal number of GCs. Benefited by the high mass resolution of the
simulations, we can always find sufficient number of DM particles
satisfying the above criteria even during the early epochs of galaxy
formation.

This particle assignment ensures that the GC profiles of the three
MW-like galaxies are consistent with the observed GC profile of the
MW. After calibration (described in Section 2.3), our model gives
the GC half number radius for Louise, Romeo, and Juliet to be
5.8, 4.1, and 4.3 kpc, respectively, in agreement with the observed
half number radius around 4.8 kpc. We also notice that the projected
GC profiles of the three MW-like galaxies have a flat core within the
central 1 kpc and follow a power-law function at R = 1-100 kpc, with
slopes varying from —2.3 to —2.5, being consistent with the —2.4
slope of the MW. In addition, the new assignment method allows
GCs to form farther away from the galactic centre. This assignment
typically selects DM particles 200-5000 kpc from the galactic centre
for My ~ 10'°M,, in agreement with Sameie et al. (2023), who
employed hydrodynamic simulations and suggested that clusters are
formed ~1000 pc to the galactic centre for M, ~ 10'" M.

2.2.4 Cluster evolution

The final step is to follow the trajectories of GC particles and model
the evolution of GC mass until the present. We take into account
two main processes of mass evolution: tidal disruption and stellar
evolution. The tidal disruption rate of a cluster with mass M can be
expressed as
dM(1) M(t)

dt  ta(M, 1)
where #,4 1s the tidal disruption time-scale. As suggested by Gieles &
Baumgardt (2008), the disruption time depends significantly on
the local tidal field strength, parametrized by the effective angular
frequency 2;4. In the previous versions of this model (Choksi et al.
2018; Chen & Gnedin 2022) we used the expression

Mo 7 Qo 17
2><105M@} {IOOGyr“} (12

an

tia(M, t) = IOGyI' |:

with y = 2/3 and the tidal frequency estimated as $3; =~
max(|Ai], |Az2], |A3])/3, where (A1, Ay, A3) are the three eigenvalues
of tidal tensor T(xy, #) sorted in descending order. This mass loss

rate can be rewritten as
dM(t M Mt T Qe
0 _ oMo 0) al) | 13
100 Gyr~!

d 7 Myr [2x 105M,

In this work, we apply a modified expression for the cluster mass
loss, motivated by a re-evaluation of direct N-body models of cluster
disruption by Gieles & Gnedin (2023),

M@ _ 0 Mo M, = Y
dr Myr |2 x 105 Mg M;

Qa (1)
x {150 Gyr*‘} 1

with potentially different scalings x and y. The main change here
is separating the overall normalization of the mass loss rate as a
function of initial cluster mass M; (via x) and the dependence on
current cluster mass M(#) (viay). We obtain the previous prescription
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Figure 1. Average GC mass functions of the three MW-like galaxies with
different prescriptions for tidal disruption, given by equation (14). Solid line
is for x = 2/3,y = 4/3, dotted line is for x = y = 2/3, and dashed line is for x =
y = 1. For comparison, the mass function of the MW GC system is overplotted
as diamonds with errorbars: vertical errorbars show the interquartile ranges
computed via bootstrap resampling, and horizontal errorbars correspond to
the bin width. We repeat bootstrap resampling until the estimated interquartile
ranges converge.

if x =y and M; cancels out. However, recent N-body models indicate
that the evolution slope y may deviate from the initial x depending
on cluster density and even exceed the value of 1.

To explore systematic variation of our results on the modeling of
tidal disruption, we consider three alternative models. The first is
the old version, x = y = 2/3. The second is a modified version with
x =y = 1, which should produce stronger disruption of low-mass
clusters. The third model has x = 2/3 but y = 4/3, which is preferred
by the new N-body models. This parametrization should also reduce
the fraction of low-mass clusters.

The present-day GC mass function depends noticeably on the
disruption models. In Fig. 1, we compare the average mass functions
of GCs in the three MW-like galaxies produced by the three models of
tidal disruption. The model parameters are calibrated as we describe
in Section 2.3. The mass function of the x = 2/3, y = 4/3 model
lies between the two other models for M > 3 x 10* M, and predicts
lower abundance of clusters below this mass, better matching the
observed mass function of the MW GCs. Therefore, we treat the x =
2/3, y = 4/3 prescription as the default, and the other versions as
alternates unless mentioned specifically.

We also use an updated expression for the tidal frequency Q4 via
the effective eigenvalue A . that takes into account the centrifugal,
Euler, and Coriolis forces (Renaud, Gieles & Boily 2011),

Q2> Ape A — As. (15)

Typically, A; > 0 and A3 < 0. This expression reflects the mass
loss more accurately than Q4. The resulting values of €2y are
systematically higher by a factor 1.2-2.1 at z = 2-5 when GC
formation is the most active, so that we updated the normalization
factor from 100 to 150 Gyr~! to maintain consistency with the
previous versions of the model.
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The tidal tensor is defined as

2
Ty, = ST 0 (16)
Xi 0x Jj
xX=Xx(

where i and j are the orthogonal directions in the Cartesian coordinate
system, and x, stands for the location of the cluster. Based on
numerical experiments, Pfeffer et al. (2018) suggested to use X .
>~ X — 0.5(A2 + A3). In spherical symmetry we have A, = A3, which
leads to the second equality in equation (15).

‘We numerically calculate the tidal tensor by placinga 3 x 3 x 3
cell cube centred on the GC particle, where the side length of the cell
is d. We approximate the diagonal terms of the tidal tensor via

T = —%[Cb(xo + &id) + P(xo — &;d) — 2P(xo)], an

where é; is the unit vector along the i direction. Similarly, the non-
diagonal terms are given by

1
—@[(D(X() +é,d + é]d) + <D(x() — é,d — éjd)

— Oxy + &id — ;) — D(xy — id +2;d)]. (18)

Ti'=

As in Chen & Gnedin (2022), we set d = 300 pc for best accuracy
in the regions containing most GCs. Although this value is still too
large compared to the tidal radius of GCs (20 — 50 pc) we cannot
adopt a lower d as we are limited by the spatial resolution of the
simulation. In addition, since we apply the model on collisionless
simulations, we cannot directly model the gravitational potential of
baryons, which may be different from that of DM. Ignoring baryonic
structure typically tends to underestimate the tidal force. However,
this effect is not obvious for dwarf galaxies M, < 108 My, which
are dominated by DM. To correct the underestimate of the tidal field
strength Q49 due to both aforementioned effects, we boost it by the
third adjustable model parameter «,

Q% = k(G — A3). (19)

The notation ; stands for the i-th eigenvalue of the tidal tensor
calculated by the finite differences in equations (17) and (18).

Using equation (14) we calculate the current mass of a GC at time
t after formation due to tidal disruption as M (f). Assuming the time-
scale of stellar evolution is much shorter than ¢4, the final mass of
the GC is given by

M) = M'(r) {l — /I Vee () dt’} , (20)
0

where v, is the mass loss rate due to stellar evolution by Prieto &
Gnedin (2008).

2.3 Selecting model parameters

The model has three adjustable parameters (p2, p3, k) controlling
the formation rate, formation timing, and disruption rate of GCs. To
obtain the values of these parameters that match best the three MW-
like galaxies (Louise, Romeo, and Juliet), we compare several
key properties of surviving clusters with the observational data of
MW GC system, including the number of clusters, mass function,
metallicity distribution, and radial profile. We calibrate the model
specifically for the MW because the observations of the MW GC
system are the most complete among all GC systems. This allows
comparison of the model GC systems with observations in many
different aspects, as we introduce below. Also, the mass assembly
history of the MW is understood better than any other galaxy of
similar masses, such as M31. Since the mass assembly history is one
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of the key inputs of the model, we are more confident that the three
MW-like galaxies should produce GC systems similar to the MW
GC system with the calibrated model parameters. The calibration is
done by minimizing the following merit function:

M=+ x2+Gu+Gz+Gp. Q1)
The first term is the reduced y 2 of the number of surviving clusters,
Nh

1 Z (log N,' — ]Og NMW)2

N ; (22)

2
o i=1 Olog
where Ny, = 3 is the number of MW-like galaxies in our simulations,
N; is the number of surviving clusters in the i-th simulated galaxy,
and Nyw = 150 in the observed number of GCs in the MW. We
adopt Poisson’s error of o1gy = 0.04.

Similarly, the second term is the reduced x> of the velocity
dispersion of surviving clusters. Here the velocity dispersion is
defined as the 3D dispersion, o = o + 0 + o7, for the MW and
its simulated analogues.

The remaining three terms in equation (21) are the ‘goodness’
of the mass function, metallicity distribution, and radial profile,
respectively. For example, Gy stands for the inverse of the fraction
of MW-like galaxies that can match the observed mass function of
surviving GCs. By performing the Kolmogorov—Smirnov (KS) test
on the model galaxies with observations, we define a galaxy to match
observation if the p-value of KS test exceeds 0.01. Similarly, G is
the inverse of the fraction of MW-like galaxies that can match the
observed distribution of [Fe/H], and Gy, is the inverse of the fraction
of MW-like galaxies that can match the observed radial profile, i.e.
the distribution of face-on projected distance between GCs and the
galaxy centre.

By minimizing the merit function, we find the best parameters to
be (p2, p3, k) = (14, 0.7 Gyr~!, 1.5) both for the default prescription
of tidal disruption, x = 2/3, y = 4/3, and for the case of x =y = 1. For
the old model with x = y = 2/3, the best parameters are (p,, p3, k) =
(14, 0.7Gyr™!, 2.5). It is worth emphasizing that these parameter
sets are calibrated specifically for the MW system. The results for
satellite galaxies are true predictions of the model.

2.4 Selecting dwarf galaxies

The main goal of this work is to investigate the formation of GCs
in dwarf galaxies, especially the satellite galaxies that are associated
with MW and M31. To achieve this, we select 10 satellite galaxies
with the highest maximum halo mass for either T&L and R&J,
yielding 20 satellite galaxies in total. We define satellite galaxy as
the galaxy located inside the virial radius of any of the main galaxies
at z = 0. The ‘highest maximum halo mass’ refers to the mass of the
historically most massive progenitor galaxy in the merger tree. We
apply the model on this halo sample and analyse the GC systems in
these galaxies throughout the paper.

Since most dwarf galaxies have only a few or even no GCs, the
model randomness can play an important role in shaping the GC
systems. The randomness includes the scatter in galactic scaling
relations and the stochasticity when sampling clusters from the
ICMF and when assigning clusters to simulation particles. To study
how much the resulting GC systems are influenced by the model
randomness, we rerun the model 25 times on each dwarf galaxy with
different random seeds. This allows us to present most results in
terms of the median values and interquartile (25 per cent—75 per cent)
ranges.

GC formation in dwarf galaxies — 5643
3 GLOBULAR CLUSTER SYSTEMS OF DWARF
GALAXIES

One of the most fundamental properties of observed GC systems in
dwarf galaxies is the number of GCs. Since a large fraction of dwarf
galaxies do not presently host any GCs, we divide the sample into
two categories: galaxies with GCs and without GCs, and analyse
them separately. We compare the model results with observations
including the ELVES survey of LV GCs, the GC systems in the MW
and MW/M31 satellites, and the catalogues of GC systems from
Harris, Harris & Alessi (2013), Harris, Blakeslee & Harris (2017),
and Forbes et al. (2018).

3.1 Observational data in the LV

We compare the predictions of our model with the observational data
from Carlsten et al. (2022a). These authors analysed GC systems in
the LV galaxies from the ELVES survey. This survey reviews satellite
galaxies inside 300 projected kpc of luminous host galaxies (My
< —22.1) out to 12 Mpc of Earth. They investigated GC systems
in a sample of 140 confirmed early-type dwarf satellite galaxies
with stellar mass between 103> and 1083 M, associated with 23 LV
hosts.

Carlsten et al. (2022a) obtained GC catalogues by identifying point
sources in the surroundings of each dwarf galaxy. To exclude red
sources that are unlikely to be GCs, they applied a colour selection
g1 € [0.1, 0.9] for dwarfs with g/r imaging or g-i € [0.2, 1.1] for
dwarfs with g/iimaging. Additionally, they also applied a magnitude
cut M, € (— 9.5, —5.5). They determined the total number of GCs by
counting GCs within twice of the dwarf’s effective radius (2r.) and
corrected the value for the incompleteness of faint GCs, GCs outside
2r., and the subtraction of background sources. They also applied an
alternate likelihood method taking into account the magnitude and
spatial distribution of candidate GCs. The magnitude distribution is
modeled by a two-parameter Gaussian distribution, and the spatial
distribution by a Plummer profile with a single parameter: r.. This
method models the dwarf galaxies as a mixture of systems without
GCs and with non-zero GCs. They parameterize the number of
GCs as a two-parameter power-law function of the stellar mass of
host galaxy, and the fraction of dwarfs with non-zero GCs as a
monotonically increasing function of stellar mass characterized by
values at five reference stellar masses. These accumulate to a total of
10 free parameters. The posterior distributions of the 10 parameters
are obtained via Markov chain Monte Carlo.

3.2 Occupation fraction

A measure of stellar mass of dwarf satellite galaxies can be more
easily obtained from observations than the total dynamical mass,
and therefore it is beneficial to investigate how the properties of
their GC systems scale with the stellar mass. On the other hand, our
model is based on the halo mass, and the information about stellar
mass comes only from applying the SMHM relation (Behroozi et al.
2013c). Note that this relation is poorly constrained at the low-mass
end, where the observed scatter is large and many physical processes
that can introduce additional systematic bias are not considered. For
example, applying this relation at z = 0 may underestimate the actual
stellar mass for satellite galaxies because of tidal truncation by the
host galaxy. This truncation is likely to strip a higher fraction of halo
mass than stellar mass, because stars are more compactly distributed
even in satellite galaxies. Therefore, M*=" is likely a lower limit
on the actual stellar mass of the satellite. An opposite limit can
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be obtained by assuming that no stellar mass is stripped from the
satellite. Then we could use the historical maximum value M,
which is the stellar mass resulting from applying the SMHM relation
at the time of its peak value (typically, around the time of accretion
onto the host). The true value of the satellite’s stellar mass must lie
between these two limits. Therefore, we treat the stellar mass of a
model galaxy i as obeying a continuous distribution between Mf_[:-O
and M.

We employ two distribution functions for M,. The first option is a
simple flat function in the base-10 logarithmic space, i.e.

constant, if M,7;=0 <M, < M

0, otherwise. (23)

pﬂat(log M*) = {
For visual clarity, with drop the 10 subscript in log;oM, for this
expression and hereafter. This function assumes that the probability
density for log M, being any value within that range is the same.

Alternatively, we may expect that the actual stellar mass is closer
to M since stars are more concentrated towards the satellite centre
and less likely to be tidally stripped than the dark matter. To account
for this, we introduce an alternate distribution which is a linear
function in the logarithmic space,

M. if pgz=0 :
log Tl it M= <M, < M

. (24)
0, otherwise.

piin(log M,) o {

This function places more emphasis near M. We will use both
priors to investigate how GC numbers depend on stellar mass, and
treat the difference in the results as systematic uncertainty associated
with measuring M,.

For example, when calculating the fraction of galaxies hosting at
least one GC (‘GC occupation fraction’ f,.) as a function of M,, we
take the weighted average value in bins using a kernel smoothing
method,

SO [ (log M) d log M.

Soce,j = - - .
occ, j Ze}ll galaxies fMH.l p,(lOg M*)dlog M,

i M;

(25)

The summation in the denominator is over all galaxies, while the
summation in the numerator is over galaxies with non-zero GCs.
We define the term ‘non-zero GCs’ as galaxies that contain at least
one cluster above a certain lower mass limit M,.,. We set a default
value M, = 3 x 10* M to mimic the M, < —5.5 magnitude cut
employed in the LV observations. Since f,.. can depend significantly
on M.y, we compare the results for different choices of Mo, in
Section 5.

We also require the GCs to be located inside a certain radius from
the galaxy centre. Here, we set this radius to be an estimate of the tidal
radius in an isothermal density potential, riq = dhost(Msat/2Mhos) .
Even though the actual tidal radius may not be used when identifying
satellite GCs in observations, it is a physically meaningful proxy to
use in the model.

The kernel function p;(log M,) in equation (25) is either pg, or
Diin: the distribution function of stellar mass for the i-th galaxy.
We obtain 25 values for j-th mass bin from the 25 random model
realizations. We present the final result as the median of the 25 values,
as well as the scatter represented by the interquartile range of the 25
values.

In Fig. 2, we show the occupation fraction as a function of stellar
mass of the satellite galaxy. We note that pg, and py;, produce similar
foce—M, relations, although the relation from py, is shifted slightly
to the high-mass end. For both distribution functions, the occupation
fraction is almost 1 for M, > 5 x 10" Mg, but drops to less than 0.2
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Figure 2. GC occupation fraction f,c. relation as a function of stellar mass
of host galaxy M,. The foc.—M, relations of model galaxies are shown as the
cyan and magenta curves, employing the flat and linear distribution functions
of M,, respectively. The grey curve represents observed relation from the LV
(Carlsten et al. 2022a) with Gaussian kernel smoothing. See the main text for
a detailed description of how we obtain these curves.

for M, < 10°Mg. At M, ~ 2 x 107 M, the occupation fraction is
approximately 0.5.

The observational f,..—M, relation is also shown in Fig. 2 for
comparison. The observed relation is computed via the kernel
smoothing method with a Gaussian kernel. The expression for the
Gaussian kernel smoothing method is also given by equation (25),
but replacing p; with a Gaussian function. Since the uncertainty of
stellar mass in the ELVES data is 2 0.1 dex (Carlsten et al. 2021),
we set the standard deviation of the Gaussian function to be oo =
0.2 dex. The number of GCs provided by the ELVES data (Nopbs)
is not necessarily an integer (or even positive) due to background
subtraction. Therefore, we round Ny to the nearest integer and
define fo.. as the fraction of galaxies hosting at least one GC (which
can be equivalently defined as the fraction of galaxies with Nyps >
0.5).

This method is different from the likelihood method employed
in Carlsten et al. (2022a), who enforced f,.. to be a monotonically
increasing function of M,. In contrast, we find the observational
relation to be non-monotonic as f.. has a spike at M, ~ 3 x 100 Mg.
We do not investigate the origin of this spike in depth, as it is not the
main focus of this work. Despite the spike, the observed occupation
fraction is around 1 for M, > 3 x 103 Mg, and also drops to less
than 0.2 for M, < 10°Mg. At M, ~ 3 x 10’ Mg, the occupation
fraction is about 0.5. The model relation generally agrees with the
observations except that the transition from f,.. = 1 to 0 is steeper
than the observed relation. It is surprising that our model shows good
agreement with the observed satellite galaxies even if the model
parameters are only calibrated for the three MW-like central galaxies
with the MW GCs, suggesting that GC formation and evolution in
satellite galaxies can be described by the same physical processes as
the central galaxy.
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Figure 3. Number of GCs Ngc as a function of stellar mass of host galaxy
M,. We plot the Ngc—M, relation from Gaussian kernel smoothing for the
LV dwarf galaxies (Carlsten et al. 2022a) as the grey curve. Satellites of the
MW and M31 are shown as grey symbols.

3.3 Number of globular clusters

For the dwarf galaxies with non-zero GCs, we further investigate the
relation between Ngc and stellar mass of the galaxy. We calculate
this relation in a similar fashion to the occupation fraction. After
splitting M, into bins, we compute the weighted average of the j-th
bin using a kernel smoothing method,

Z?on-zero GCs f[%/ﬂ Ngc,i pi(log M,)dlog M,
Z]_mn-zero GCs fMHI pi(logM,)dlog M,

i M;

(26)

Noc,j =

where Ngc,; stands for the number of clusters of the i-th galaxy.
Again, we define Ngc to be the number of clusters with mass above
M, which is set by default to 3 x 10* Mg to mimic the observed
magnitude cut. Here, both summations are over galaxies with non-
zero GCs.

In Fig. 3, we show the Ngc—M, relation for model galaxies and
compare it with the observed relation for the LV dwarf galaxies
with Gaussian kernel smoothing similar to the calculation of the
occupation fraction. In addition to the LV dwarf galaxies, we also
compare our results with several satellites of the MW and M31
systems, including the Sagittarius dwarf spheroidal galaxy (SgrdSph;
Law & Majewski 2010), Fornax dSph galaxy (Pace et al. 2021),
NGC 205 (Da Costa & Mould 1988), NGC 185 (Veljanoski et al.
2013), and NGC 147 (Veljanoski et al. 2013). The observed number
of GCs is very uncertain for some satellites. For example, Law &
Majewski (2010) suggested that Sgr dSph hosts eight GCs, whereas
Minniti et al. (2021) almost tripled this number to 23. However, this
does not affect qualitatively the comparison with observations since
we are interested in a general trend of the Ngc—M, relation rather
than reproducing the exact number of GCs in a particular observed
galaxy.

We find that the Ngc—M, relations obtained with pg, and py, are
consistent with each other. Both relations show that the number of
GCs is around 10 at M, = 108 M, and decreases monotonically to
less than 2 at M, < 10" Mg, (note that Ngc is always greater than
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0 since we only analyse here galaxies with non-zero GCs). The
modeled Ngc continue to drop to around 1 at M, < 5 X 106 Mg. We
do not plot the observed relation below M, = 5 x 10° M, because
Ngc from the ELVES survey may be influenced by numerical bias
at small M,: the numbers of GCs in LV dwarf galaxies provided by
Carlsten et al. (2022a) are corrected for GCs outside 2r. annulus
by dividing the GC counts by a factor of 0.646. Additionally, they
apply a small factor to correct for GCs below the detection limit.
Such corrections boost GC counts by a factor of around 1.6, leading
to numerical bias in the low-mass end where the lowest non-zero
GC count is 1. Therefore, Ngc of LV galaxies drops to a minimum
value > 1.6 instead of 1 at M, <5 x 10° M. It is meaningless to
compare the model and observed relations in this regime. Despite
this region, our model predicts the Ngc—M, relation in consistency
with observations from 5 x 10° to 3 x 10° My. We emphasize
that the model is only calibrated for the MW-like galaxies with
M, > 10'" M, the good agreement at such a low-mass range is not
a trivial outcome of tuning the model parameters. Instead, it implies
that physical processes controlling GC formation and evolution
may be universal for both central and satellite galaxies. We also
note that the model relations have significant scatter at all masses,
which increases the uncertainty when trying to apply the Ngc—M,
relation to estimate the stellar mass and number of GCs of a dwarf
galaxy.

3.4 Scaling with stellar mass

In this section, we extend our comparison with observations to a
broader stellar mass range. In Fig. 4, we show the Ngc/Mgc—M,
relations, where Mgc stands for the total mass of the GC system. For
clarity we show only relations using the py;, distribution function,
since the two distribution functions pg, and py, give consistent
results. Different from the above analysis, we also include dwarfs
with zero GCs in the calculation of Ngc. That is, the summations
in equation (26) are over all galaxies instead of galaxies with non-
zero GCs only. This setting allows Ngc to drop below 1 for the
lowest-mass galaxies. The model Ngc behaves similarly to Fig. 3
for M, > 10" M, where most galaxies have at least one GC, and
continues to drop to ~0.1 at M, = 10° M, since a large fraction of
dwarf galaxies do not actually host any cluster (see, Carlsten et al.
2022a, and relevant discussion in Section 3.2). We notice that Ngc
drops significantly at M, = (1 — 3) x 10’ M. However, we have no
evidence that such an abrupt decline is physically real since only two
galaxies lie in this range. The poor statistics in this narrow range is
unreliable. Therefore, we only focus on the scaling relations across
a wider mass range (=1 order of magnitude) which includes more
galaxies (~10). The Mgc—M, relation has a similar trend. Starting
from Mgc ~ 10° Mg at M, = 10 Mg, Mgc drops to ~ 10* Mg at
M, = 10°M,, i.e. ~ 1 per cent of the total stellar mass resides in
surviving GCs. For comparison, 5 — 40 per cent of total stellar mass
was originally formed in GCs (with initial mass > 10* My). At z
25, this fraction approaches (even slightly exceeds) 100 per cent,
indicating that star formation is dominated by cluster formation at
early epochs. The slight excess of cluster formation rate may be
due to the potentially underestimated star formation rate by the
Behroozi et al. (2013c) SMHM, which is poorly constrained at the
low mass end and at high redshift. The subsequent tidal disruption
significantly reduces the fraction of stars in clusters to its present-day
value ~ 1 per cent.

For comparison, we plot the observed GC systems in the MW
(stellar mass from Licquia & Newman 2015) and Large Magellanic
Cloud (LMC) as well as the catalogues of GC systems from the
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Figure 4. Number of GCs (left-hand panel) and total mass of GCs (right-hand panel) vs the stellar mass of host galaxy. Red shaded region shows the interquartile
range of the present model, blue shaded region shows the interquartile range of the model from Choksi & Gnedin (2019b). We plot the observational data from
(Harris et al. 2013) as grey circles with errorbars, the data from Forbes et al. (2018) as open triangles, and the data from the LV (Carlsten et al. 2022a) as
diamonds with errorbars. We also plot the four main galaxies in the simulations as the red symbols, with the MW and LMC shown as the grey diamond and

square for comparison.

LV survey, the catalogues by Harris et al. (2013) and Forbes et al.
(2018). The latter catalogue focuses on GC systems in the LG dwarf
galaxies down to stellar mass < 10° M. Note that the Harris et al.
(2013) catalogue does not list M, directly. Instead, it provides K-
band magnitude Mx. We convert Mg to M, using a fixed stellar
mass-to-light ratio log (M,/Lx) = —0.3 (estimated from fig. 20 in
Bell et al. 2003). Moreover, the LV data do not provide the total
mass of GC systems. To estimate Mgc from Ngc, we fit the mean GC
mass in Forbes et al. (2018) as a power-law function of M,: log M =
2.3 + 0.351og M,, and compute the total GC mass as Mgc = NgcM.

We also overplot in Fig. 3 the Ngc/Mgc—M, relations from a
previous version of our model (Choksi & Gnedin 2019a), which suc-
cessfully matches the observational trend for 10°> < M, < 10" Mg,
However, that model deviates from observations at M, < 10°3 Mg,
Compared to the scaling of Ngc, the deviation is more significant
for Mgc. This is partly because the previous model has inefficient
disruption of low-mass clusters (the y = 2/3 case in Section 2.2.4).
Therefore, such a prescription predicts a GC mass function peaked
at lower mass, and thus tends to underestimate the mean mass
of surviving clusters, as shown in Fig. 1. Our updated model
attempts to solve the deviation by following the formation of less
massive clusters (down to 10* Mg) in low-mass galaxies (down
to M, = 108 My). In addition, the current model applies a more
realistic tidal disruption prescription taking into account the local
environment of clusters. The resulting Ngc/Mgc of the new model
can match the observed relations at a mass range where most galaxies
have non-zero GCs, M, > 3 x 107 M. Below this mass, the model
Ngc continues to drop below 1, while the observational data on
dwarfs from Forbes et al. (2018) only consider galaxies with non-zero
clusters, leading to the observed Ngc—M,, relation bending upwards
at the low-mass end. It is therefore meaningless to compare the
Noc/Mge—M, relations at M, < 3 x 10" M. We still need better
observations of dwarf galaxies to further test the validity of our
model.
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3.5 Scaling with halo mass

After investigating the dependence of Ngc/Mgc on stellar mass and
showing that it is consistent with observations, we can turn to the
dependence on the satellite halo mass. In the left-hand panel of Fig. 5,
we present the model Ngc—M), relation via the kernel smoothing
method with an Epanechnikov (1969) kernel: K(u) = 0.75(1 — u?)
for |u| <1 and K(u) = 0 otherwise. The bandwidth is set to 0.5 dex.
We find that different bandwidths from 0.4 to 1 dex do not alter the
relation significantly (however, a bandwidth < 0.4 dex is insufficient
to cover all gaps between neighbouring data points).

We show the observational data from Harris et al. (2017) and
Forbes et al. (2018) for comparison. The first catalogue covers
galaxies with halo mass between 10%> — 10'*> M, and the second
catalogue focuses on LG dwarf galaxies with M;, = 108 — 10! M.
We fit the two data sets jointly with a power-law,

log Ngc = a +blog My, + ¢ @7

where My, is the halo mass M, in unit of 10> My. The intrinsic
scatter is represented by a random variable € following a Gaussian
distribution AV (0, 6yy,). We perform the fit by maximizing the likeli-
hood,

1 1 82
L= exp|—z—5——5 |, (28)
H 0/ 27 ( 201%)gN,i +Uiit>
where §; = logNgc,; — a — blog My, ; is the vertical deviation,

with the subscript i denoting the i-th data point. In addition, ojog, ;
is set to the observed uncertainty of log Ngc,; if provided or 0.3
dex otherwise. We apply bootstrap resampling 1000 times until all
fitting parameters converge to estimate the mean values and standard
deviations of a, b, and o ;,;. Maximizing the likelihood L yields

log Ngc = (2.20 £ 0.03) + (0.77 £ 0.03) log My12 (29)

with an intrinsic scatter oy, = (0.34 4= 0.03) dex.
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Figure 5. Number of GCs (left-hand panel) and total mass of GCs (right-hand panel) vs the total mass of host galaxy. Red shaded region shows the interquartile
range of the present model, blue shaded region shows the interquartile range of the model from Choksi & Gnedin (2019b). We plot the observational data from
(Harris et al. 2017) as grey circles with errorbars, and data from Forbes et al. (2018) as open triangles. The long grey region shows the jointly fitted power-law
relation of the two observational data sets with intrinsic scatter. The power-law dependence from Zaritsky (2022, Ngc M}?‘gz) is shown as the grey line in the
left-hand panel, with the estimated scatter 0.5 dex plotted as the short grey region. The grey shaded region shows the power-law fit of the observational data, see

the main text for more details.

Again, we show in Fig. 5 the Ngc—M,, relation from Choksi &
Gnedin (2019a). This model successfully matches the observational
trend for 102 < M;, < 10'4M@. Like the Ngc—M, relation, this
model underestimates Ngc at the low-mass end My, ~ 10'' M. In the
contrast, although the new model still falls systematically below the
observed Ngc in the dwarf galaxy range we study here, it is within
a factor of ~2 of the average trend. Moreover, the observational
trend may be biased upwards as the data of dwarfs from Forbes
et al. (2018) only consider galaxies with non-zero clusters, and they
measured halo mass systematically below the derived values from
the majority of SMHM relations. A more appropriate comparison
in the lowest-mass end is with Zaritsky (2022), who revisited the
observational data by Forbes et al. (2020) and Carlsten et al. (2022a).
These two data sets both provide information about galaxies hosting
zero GCs. Forbes et al. (2020) studied the GC systems in the Coma
cluster ultra-diffuse galaxies (UDGs). Zaritsky (2022) reconciled
the number of GCs in Forbes et al. (2020) by multiplying a factor
of 0.27, taking into account a more precise constraints on GC
luminosity function and radial distribution (Saifollahi et al. 2022).
Zaritsky (2022) also derived total mass of galaxies from the two
existing catalogues using an extension of the fundamental plane
formalism. This method uses empirically calibrated relations to
estimate the mass-to-light ratio within the half-light radius and
the enclosed mass. The author then fit an NFW profile to the
DM components inside the half-light radius to obtain the total
mass of the galaxy. The author discovered a near-linear Ngc—M),
relation for both Forbes et al. (2020) and Carlsten et al. (2022a)
samples: Ngc Ml(l).gzio.os' By plotting this relation in Fig. 5, we
find that it is consistent with the observed power-law relation from
Harris et al. (2017) and Forbes et al. (2018). The model relation
shows a similar slope but lies ~0.3 dex below. Considering the
large scatter of the Ngc—M,, relation found by Zaritsky (2022), at
least ~0.5 dex, our model still makes predictions consistent with
observations.

However, it is worth noting that Forbes et al. (2020) studied GCs
in UDGs instead of satellite galaxies as analysed in this work and in
Carlsten et al. (2022a). These UDGs normally have more GCs than
the dwarfs of the same stellar mass, indicating that these galaxies
have greater total mass than the predictions from typical SMHM.
Although Zaritsky (2022) suggested that the Ngc—M|, relation from
UDG:s is consistent with the relation from the LV satellites, the two
categories of galaxies may follow different formation scenarios and
are not directly comparable.

In addition to the Ngc—M,, relation, we also investigate the Mgc—
M,, relation from the model. This relation follows an interesting
near-linear scaling across a broad mass range (Spitler & Forbes 2009;
Georgiev et al. 2010; Hudson et al. 2014; Harris et al. 2015; Forbes
et al. 2018). However, this scaling is only confirmed for galaxies
with My > 10'° Mg since it is challenging to determine the halo
mass of dwarf galaxies directly. With the observational data from
Forbes et al. (2018), we attempt to extend the relation to low-mass
galaxies. Similarly to the Ngc—M,, relation, we fit the observational
data from Harris et al. (2017) and Forbes et al. (2018) jointly and
obtain a power-law relation,

log Mgc = (7.45 £0.03) + (0.93 £ 0.03) log My1» (30)

with an intrinsic scatter o, = (0.39 £ 0.04) dex. The slope of
0.93 £ 0.03 is very close to unity, meaning that we can extend
the near-linear relation down to My ~ 108 Mg. In the right-hand
panel of Fig. 5, we compare the model Mgc—M,, relation with this
observational relation. Compared to the Ngc—Mj, relation, Mg from
the Choksi & Gnedin (2019a) model deviates even more from the
observations at My, ~ 10'! M, because it underestimates the mean
mass of surviving clusters (see the discussion in Section 3.4). In
contrast, the new model is in good agreement with observations as
the model relation mostly overlaps the observed Mgc in dwarfs. It
is remarkable that our model can match the observational relation
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Figure 6. Time evolution of halo mass My, (upper left), stellar mass M, (lower left), number of GCs Ngc (upper right), and the distance to the host galaxy
dnost (in comoving kpc, lower right) of the two Fornax-like dwarf galaxies in the R&J run. We plot them as solid curves until the epoch when we consider these
two galaxies to be the most similar to the Fornax dSph. After that, we plot the curves in dotted style. We also plot with thin lines the mass histories of their
own satellites that contribute at least one surviving cluster to the present-day GC population. We mark the historical maximum of M, as intersections of the
vertical and horizontal lines in the lower left-hand panel. In the upper right-hand panel, The time evolution of Ngc is shown as solid curves with shaded regions,
representing the median value and the interquartile range from the 25 random realizations. The Fornax dSph galaxy is represented by grey stars in each panel.
Since different works predict vastly different halo masses for Fornax, ranging from Mj, ~ 10° Mg (Forbes et al. 2018) to My, ~ 10'! M, (obtained from the
SMHM relation by Danieli et al. 2022), we show the two extreme halo masses in the upper left-hand panel for completeness.

down to M;, ~ 108 Mg, extending this near-linear correlation to ~6
orders of magnitude of halo mass even considering the complicated
interplay of multiple non-linear processes in GC formation.

However, we emphasize that the SMHM relation, which is widely
used to convert observed stellar mass to halo mass, and simulated halo
mass to stellar mass, is not well constrained at the low-mass end. This
is due to the scarcity of independent measurements of halo mass for
dwarf galaxies. Also, the scatter of SMHM may be underestimated
in the Behroozi et al. (2013c¢) relation, which assumes a constant
scatter for all masses. More detailed observations are needed to better
constrain the SMHM in the dwarf range and that may change our
current knowledge of the Ngc/Mgc—M, relation.

4 DETAILED EXAMPLE: ANALOGUE OF
FORNAX DSPH GALAXY

In this section we show a detailed example of how GC systems
in satellite galaxies evolve over cosmic time. We focus on the most
massive satellite of the Romeo (or R2) and Juliet (or J2) galaxies
in the R&J simulation. These two satellites resemble the Fornax dSph
galaxy in many aspects. In Fig. 6 we show the time evolution of the
halo mass M, stellar mass M,, number of clusters Ngc, and the
distance to the host galaxy dpos. J2 is 140 kpc away from the host
galaxy at present, in close agreement with the Fornax dSph which
is also about 140 kpc away from the MW centre. We compute the
tidal radius of J2 to be 24 kpc. The other satellite (R2) is closer
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(~70 kpc) to the host galaxy as it is near the pericentre. However,
the properties of this satellite agree better with those of Fornax dSph
if we look back for 1 Gyr, when this satellite is near its apocentre
about 110 kpc away from the host galaxy, with a corresponding tidal
radius being 17 kpc. Therefore, we consider fipokpack = 1 Gyr as the
‘present-day’ for R2 and only focus on the properties at/before this
epoch when referring to this galaxy. In addition, we find that the two
satellites have present-day stellar mass (1-2) x 107, consistent with
the observed stellar mass of Fornax dSph, 2 x 10’ M. Our model
predicts the median of seven and six GCs with M > 3 x 10* Mg,
with the interquartile ranges spanning Ngc = 5-9 and 4-8 for R2
and J2, respectively. These values match the observations of six GCs
in Fornax dSph (Pace et al. 2021).

The masses (both halo and stellar) of the two satellite galaxies
grow rapidly over the first 3 Gyr. During this period, the R2 galaxy
has a smoother mass growth history compared to J2, which has more
discrete jumps indicating more frequent major mergers. To show this,
we plot in Fig. 6 the mass growth histories of their own satellites’
that contribute at least one surviving cluster to the present-day GC
population. The R2 galaxy has encountered two major mergers both
with peak mass M}, < 10'° Mg, whereas J2 galaxy has four major
mergers, and one of them has peak mass greater than 10'° M.

2Since R2 and J2 are satellites of the main galaxies, these satellite galaxies
are satellites of satellites.
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Figure 7. GC number density profiles of the two Fornax-like dwarf galaxies
in the R&J run. The projected radii of the six Fornax GCs (Fornax 1-6) to
the centre of the Fornax dSph are shown as stars. We also show the number
density profile of Fornax GCs as the grey curve. The portions with number
density below one GC per bandwidth are shown as dashed curves.

Around 5 percent and 20 percent of surviving GCs are accreted
onto R2 and J2 via mergers, respectively. Although this ratio is
small compared to that of MW-size galaxies (Chen & Gnedin 2022),
different merger histories can significantly alter the radial distribution
of GCs as we show later.

The two satellite galaxies stop growing mass at a lookback time
around 10 Gyr when they accrete onto the central galaxy. The
formation of GCs in the two satellites is also quenched at this epoch.
After that, the satellite galaxies lose a significant fraction of their
halo mass until the present-day. The number of GCs also drops by
a factor around 5 compared to the peak value as a result of tidal
disruption.

We show the GC number density profiles of the two satellites in
Fig. 7. The profiles are obtained via kernel density estimation with
the Epanechnikov (1969) kernel. The bandwidth of the kernel is 0.3
dex; varying the bandwidth between 0.2 and 0.5 dex does not change
the profiles significantly. We also take the observed coordinates of
the six Fornax GCs from Mackey & Gilmore (2003; Fornax 1-5) and
Pace et al. (2021; Fornax 6) to compute the projected distances from
the centre of the Fornax dSph. The R2 galaxy can match the observed
profile in the radius range where the Fornax GCs are present, R <
1.6 kpc. Different from the centrally concentrated GC system of
Fornax, R2 still hosts GCs out to R 2 5 kpc. These GCs raise the
half-number radius of R2, 1.3 kpc, to be greater than that of the
Fornax dSph, 0.8 kpc. Note that the half-light radius of Fornax is
only ~0.8 kpc (Wang et al. 2019), and a cluster at R 2 5 kpc may not
be identified as a member of the galaxy in observations. If we take
this selection effect into account and apply a smaller search radius
for R2, we can obtain a radial distribution more similar to the Fornax
system.

The GC distribution in the more merger-dominated J2 galaxy is
even more extended, with the half-number radius of 3.2 kpc. J2
has lower GC number density than R2 for R < 5 kpc, but higher
in the outside. The J2 galaxy has GC number density lower than
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the statistical significance level (one GC per bandwidth) within the
central 1 kpc, whereas it can host GCs out to R 2 10 kpc. The
GC system in J2 is extended likely because major mergers can
add kinetic energy to GCs and bring them outwards. It is notable
that although R2 and J2 have similar properties in many aspects,
such as the halo mass, stellar mass, and distance to the central
galaxies, the GC number density profiles of the two galaxies still
differ significantly. If we apply a smaller search radius, the distinct
GC distributions in the two galaxies can lead to a notable difference
in Ngc. For example, a smaller search radius of 5 kpc does not change
Ngc for R2 (recall that the default search radius is the tidal radius
~20 kpc), but reduces that for J2 to Ngc = 2-5.

As mentioned before, both observations and the model show
large scatter in Ngc when scaled with M, or M,. Here, we suggest
that ‘hidden variables’ like the merger history can also alter the
observed number of GCs. Although different merger histories do
not directly change the number of GCs as mergers only contribute
5 —20 per cent of surviving GCs to the two model galaxies, in
agreement with the findings that the formation of dwarf galaxies is
not dominated by hierarchical assembly (Fitts et al. 2018; Martin
et al. 2020), a more merger-rich assembly history may lead to a more
extended GC spatial distribution and hence a smaller Ng¢ within a
fixed search radius.

5 CONSTRAINING MODEL VARIANTS

In this section, we compare three alternate model variants to
investigate their influences on the f,..—M, and Ngc—M, relations.
The first alternate model setting employs different lower mass limits
Mo, when counting GCs. By default, we set Mo, = 3 x 10* Mg, to
mimic the M, < —5.5 magnitude cut employed in the observations
of LV dwarf galaxies (Carlsten et al. 2022a). Here, we introduce
a lower mass limit of My, = 10* Mg and a higher mass limit of
My, = 10° M, to study selection effects due to the cut in GC mass.

Next, we employ an alternate method when sampling cluster mass
from the ICMF. As mentioned in Section 2.2.2, by default we sample
GC mass from M, = 10* Mg to M., — 00, i.e. there is no higher
mass constraint when forming GCs. We thus refer to this setting
as ‘without Mp,,’ in the subsequent text. In contrast, the previous
versions of the model (Choksi & Gnedin 2019a; Chen & Gnedin
2022) set M, to be a finite value, which is selected to match the
deterministic constraint in equation (10). In this setting, a galaxy with
mass M, ~ 10° Mg has My ~ 10° Mg. Therefore, the formation
of high mass clusters with M > 10° Mg, is strictly prohibited in
low-mass galaxies. We refer to such a setting as ‘with Mp,,’ in the
following description.

The third variant explores dependence of the tidal disruption rate
on cluster mass, which still remains uncertain. This motivates us to
examine the performance of different prescriptions of tidal disruption
during GC evolution. The default prescription, as mentioned in
Section 2.2.4 and equation (14), sets x = 2/3 and y = 4/3. Addi-
tionally, this prescription approximates the angular frequency €24 in
equation (12) by Qtzid >~ Ale & A] — A3, wWhere Aj . is the effective
tidal strength. We also employ a boost parameter « to account for
numerical bias when estimating the tidal tensor: we multiply the
derived Q2 by «. By comparing the three MW-like galaxies in the
simulations with the observed MW GC system, in Section 2.3 we
calibrate « as well as two other model parameters to be (p3, p3, k) =
(14, 0.7 Gyr™!, 1.5). Here, we test two additional prescriptions with
x =y =2/3 and x = y = 1. The first of them was applied in our
previous work (Chen & Gnedin 2022). In order to properly compare
the three prescriptions, we re-calibrate the model parameters for the
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Figure 8. GC occupation fraction f,cc as a function of stellar mass of host
galaxy M, for different model settings. We show the default model (Mjow =
3 x 10* Mg, without Mmyax, x = 2/3, y = 4/3) as red solid curve with
the shaded region representing the interquartile range, in consistency with
Fig. 2. Other models are shown in curves with different styles and colours as
described in the legend. The Ngc—M, relation for the LV dwarf galaxies is
over-plotted as the grey curve as in Fig. 2.

alternative prescriptions as in Section 2.3. After re-calibration, we
find (p,, p3, k) = (14, 0.7 Gyr~!, 2.5) for the x = y = 2/3 prescription
and (p3, p3, ) = (14, 0.7Gyr™!, 1.5) for x = y = 1. The latter
parameter set is the same as our fiducial.

In Fig. 8, we compare the occupation fraction predicted by the
different model variants. We use the same kernel smoothing method
as in Section 3 to make the fo..—M, curves. For clarity we show only
the fo.c—M, relations using the py, distribution function, since the
two distribution functions pg,; and py, give consistent results.

We find that f,.. varies significantly with the lower mass cut
M,,,. Greater My, can significantly reduce f,.. in a broad mass
range of satellite galaxies from M, = 5 x 10° to 5 x 10’ M. The
occupation fractions from the Mo, = 10*Mg and 10° Mg cases
differ by around 0.3 at M, = 10’ M. We would expect fi.. to be
invariant of M, if the galaxies host at least one cluster that is
more massive than any of the M., employed here. In contrast, such
a strong variation suggests that a large fraction of dwarf galaxies
can only host GCs less massive than < 10° Mg. In fact, among the
20 x 25 = 500 model satellites (satellites from different realizations
are treated as independent galaxies), only 25 per cent can host GCs
more massive than 10° Mg, 38 per cent can host GCs more massive
than 3 x 10* M, and 50 per cent can host GCs more massive than
10* Mg,

We also find that the occupation fraction in the model with My is
significantly lower than that in the model without M,,,y, for galaxies
with M, <5 x 107 Mg. This is because the model with M, strictly
prevents the formation of massive clusters with M > 10° My, in
dwarf galaxies with M} < 10° M. Clusters initially less massive
than 10° M, are unlikely to survive tidal disruption to the present-
day. However, the model without M,,x has a small but non-zero
probability of forming such massive clusters. In our cluster formation
scenario, a galaxy may experience multiple cluster formation events.
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The cumulative probability of forming at least one massive cluster
becomes significant for the model without My, and thus leads to
the noticeable difference between the two models. This effect is
less important for galaxies with M, > 5 x 10" Mg as M,,x becomes
large enough to enable the formation of massive clusters. The model
with M.« predicts the occupation fraction very similar to that in the
model with a higher minimum cluster mass My, = 10° M,

Finally, the alternate prescriptions of tidal disruption do not change
the fo.c.—M, relation noticeably. The occupation fractions from the
two alternate prescriptions are always within the interquartile range
of the default model.

To quantitatively evaluate which model agrees better with the
observations, we compute the RMSdifference between the model and
LV satellite galaxies,

i ,
\/NJ.Z( model _ fobs )’ 31)
J

where index j stands for the j-th mass bin, and N; is the number of
bins. The mass bins are equally spaced in the log M, space from
M, = 10°3 to 103> My. We take the bin width to be 0.5 dex, in
consistency with the fo..—M, curves for model galaxies in Fig. 2.
The occupation fraction within a bin is calculated with the kernel
smoothing method given by equation (25). For the default model
setting (Miow = 3 X 104 Mg, without My, x = 2/3, y = 4/3),
the RMSdeviation is 0.164. For the alternate settings, we find the
RMsdeviation to be 0.139 for M, = 10* Mg, 0.268 for Moy =
10° Mg, 0.249 for the sampling method with finite M., 0.187 for
the disruption method of x = y = 2/3, and 0.157 for x =y = 1,
suggesting that the lower mass limit model with My, = 10* M and
the disruption model with x = y = 1 can match the observed fo..—
M, relation slightly better than the default model. However, as we
show later, the two models perform worse than the default model in
matching the Ngc—M, relation.

Next, we show in Fig. 9 the number of GCs as a function of M,
for different model variants. Before going deep into the analysis, we
emphasize that it is meaningless to look at the Ngc—M, relation below
M, ~ 5 x 10° M, because these low-mass galaxies normally host at
most 1 GC, and usually none. Since we analyse here galaxies with
non-zero GCs, the Ngc value is almost always 1 regardless of model
settings. It is therefore more meaningful to look at the occupation
fraction mentioned before for galaxies below M, ~ 5 x 10° Mg,

We note that Ngc is sensitive to Mi,,. As M, increases from
10* to 10° M, the number of GCs in a galaxy can drop by a factor
of 3 at M, ~ 108 M. In contrast, Ngc is not greatly affected by
the alternate sampling model with M,.x, except for a more wiggled
Noc—M, relation, although this model predicts significantly lower
foce at M, =5 x 10° — 5 x 10’ Mg. This is because the ‘without
M’ and ‘with My,,,’ models become equivalent when the galaxy
is massive enough to host at least one massive cluster that can survive
to the present-day. Finally, the Ngc—M, relation is almost unchanged
with the alternate disruption prescriptions.

Again, we quantitatively evaluate model agreement with obser-
vations by computing the RMSdeviation between the model and LV
Nac,

2
1 G- [ Nk - N,
Dl Carl (32
J

- oN
j sJ

Here we include the denominator o y to account for the uncertainties
in the number of GCs. We set oy ; = Ng,%i,. as the Poisson’s

error when counting GCs. The mass bins are equally spaced in the
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Figure 9. Number of GCs Ngc as a function of stellar mass of host galaxy
M, for different model settings. We show the default model (Mo = 3 X 10*
Mg, without Mmyax, x = 2/3, y = 4/3) as red solid curve with the shaded
region representing the interquartile range, in consistency with Fig. 3. Other
models are shown in curves with different styles and colours as described in
the legend. The Ngc—M, relation for the LV dwarf galaxies is over-plotted as
the grey curve as in Fig. 3.

log M, space from M, = 10% to 1033 Mg For the default model
setting the RMSdeviation is 0.725. For the alternate settings, we
find the RMS deviation to be 1.702 for Mo, = 10* My, 0.955 for
Moy = 10° Mg, 0.806 for the sampling method with finite My,
0.434 for the disruption method of x = y = 2/3, and 0.940 for
x =y = 1. Only the x = y = 2/3 model performs better than
our default model in matching the occupation fraction. Although
the My, = 10* M, case can match the occupation fraction slightly
better, it significantly overestimates the number of GCs. The alternate
disruption prescriptions have similar performance to the default
model: the x = y = 2/3 model gives a better match for Ngc but
a worse match for f,.., while the x = y = 1 model gives a better
match for f,.. but a worse match for Ngc. Since the default setting
x = 2/3, y = 4/3 can better match the observed GC mass function of
the MW (see Fig. 1), we favour the default setting over the alternate
disruption models.

6 SUMMARY AND DISCUSSION

In this work, we tested the performance of the GC formation
and evolution model in the dwarf galaxy regime (M, < 10'' My)
resembling the LG environment. The model is based on our previous
work (Chen & Gnedin 2022) with four stages: cluster formation,
cluster sampling, particle assignment, and cluster evolution. We use
empirical scaling relations to calculate the total mass of GCs from the
halo merger history, and stochastically sample the mass of individual
clusters. We have removed the deterministic setting of maximum
GC mass in the previous sampling method to allow the formation
of massive clusters (M > 10° M) in low-mass galaxies (M}, <
10° M) with a small but non-zero probability. Such stochasticity
is important for correctly reproducing the observed GC occupation
fraction in dwarf galaxies. Different from our previous work, where
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we preferentially assign GCs to stellar particles, here we assign GCs
to DM particles restricted to local density peaks because we use
collisionless simulations of the LG environment with sufficiently
high mass resolution to capture all relevant dwarfs. We additionally
require all GCs to form within the scale radius of the host galaxy.
These settings ensure resulting radial number density profiles of
model GCs can match the observed profiles of both the MW and
satellites. We also employ a new prescription of tidal disruption that
produces stronger disruption of low-mass clusters and can better
match the observed GC mass function.

Despite these minor adjustments, the overall structure of the model
remain unchanged: the model still has three adjustable parameters
that control the formation rate, formation timing, and disruption rate
of GCs. It is worth noting that although the main focus of this work
is the LG dwarf satellites, we only calibrate the model parameters
by comparing key properties of the GC systems in the three central
MW-like galaxies from the simulations to the observed properties of
the MW GC system. Therefore, any consistency with observations
of dwarf GC systems is a true prediction of the model rather than an
outcome of fitting the data.

We run the calibrated model on 20 satellite galaxies in the
simulated LG systems and repeat 25 times with different random
seeds to study how much the resulting GC systems are influenced by
the model randomness. Since the central galaxy may tidally strip GCs
from the host satellite if the GCs are too distant from the satellite,
we only count GCs within the tidal radius of the satellite galaxy. Our
model performs surprisingly well in matching the occupation fraction
and number of GCs in the dwarf regime with the LV observations by
Carlsten et al. (2022a); see Figs 2, 3, and 4. This consistency implies
that the physics of GC formation and evolution may be universal for
both central and satellite galaxies.

Dwarf galaxies in this study can only host a few or even no GCs.
Small number statistics becomes important as a minor change in
any physical process that is relevant to GC formation or evolution
may introduce significant variance in the number of GCs. In an even
lower-mass regime M, < 10" Mg, most galaxies host less than 2
GCs, with cluster mass < 10° M. The ability to match the observed
number of GCs and the occupation fraction in such a regime is a
very strict test of the model implementation of cluster formation and
disruption mechanisms.

We also test different model settings to study their influence on
the observable results. We find that the occupation fraction statistic
primarily constrains the low-mass cut when counting GCs, M),y, and
the potential existence of maximum GC mass, My« (Fig. 8). Since
most dwarf galaxies in this study can only host clusters with mass <
10° Mg, Moy varying from 10* to 10° Mg, can cause the occupation
fraction to differ by ~0.3. In addition, the ‘with M, model strictly
prevents the formation of massive clusters (M > 10° M) in low-
mass galaxies (M, < 10° M) by setting a deterministic upper mass
limit. Although this setting is not very different from the default
‘without M,,,,” model in massive galaxies (M}, > 10° M), it predicts
amuch lower occupation fraction in the low-mass end where majority
of clusters are tidally disrupted.

On the other hand, the GC number statistic sets strong constraints
on M, but is not sensitive to My, (Fig. 9). As M., increases
from 10* to 10° M, Ngc drops by a factor of ~3 at M, ~ 10° M.
Since the average GC mass in low-mass galaxies is typically lower
than in the MW-size galaxies, it is important to correct for the
observational incompleteness below the detection limit in dwarf GC
systems. In contrast, the ‘with M,,,x’ model predicts a similar Ngc—
M, relation compared to the default ‘without M.’ model since
the two models become equivalent when the galaxy is massive
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enough to host massive clusters that can survive to the present-
day.

We also investigate the near-linear Mgc—Mj, relation in a wide mass
range across six orders of magnitude (Fig. 5). By jointly fitting the
observational data from Harris et al. (2017) and Forbes et al. (2018)
we obtain Ngc Ml?'77i0'03 and Mgc « Ml?'%iom with a significant
intrinsic scatter of 0.3 — 0.4 dex. The latter relation is very close to
linearity, and has been reliably confirmed for M, = 10'° — 10'> M.
Since independently measuring the halo mass is challenging below
M;, ~ 10'° M, only a limited number of works attempted to study
the relation in the low-mass end. Our model predicts an Mgc—My
relation in agreement with the observational relation in the low-mass
end down to M;, ~ 108 M. We emphasize that since our model is
only calibrated for the central galaxies, such an agreement indicates
that the near-linear Mgc—M, relation is an evidence for universal
physical processes governing GC formation and evolution in galaxies
of all size, from dwarfs to giants.

We discuss a specific example of two satellite GC systems similar
to that of Fornax dSph, which previously remained unexplained. We
find the systems could have contained up to 30-50 GCs in the past but
have stopped GC formation after accretion onto the central galaxies
~10 Gyr ago (Fig. 6). There are two mechanisms that reduce the
number of satellite GCs: tidal disruption and tidal stripping by the
central galaxy. We find that our two example galaxies have already
had peri-galactic encounters prior to the present. Only 4-9 GCs in
the two galaxies can survive and remain inside the tidal radius.

We note that GCs in the two Fornax-like galaxies are located out
to 5-10 kpc (Fig. 7), which is much larger than the effective radius
of Fornax dSph, 0.8 kpc. Observationally, these GCs are unlikely to
be identified as members of the galaxy since they are too distant. To
avoid the biased measurement of Ngc observations must employ a
large enough search radius (2 ryiq). However, this is challenging as the
background GCs may be indistinguishable from the GCs belonging
to the satellite at such a large radius.

Moreover, different merger history can also alter the radial distri-
bution of GCs: the more merger-dominated satellite has an even more
extended GC system. The satellite with fewer major mergers better
matches the GC number density profile in the Fornax dSph. Although
different merger histories may not directly change the number of
GCs, a more merger-rich assembly history leads to a more extended
GC spatial distribution and hence a smaller Ngc within a fixed search
radius. This is one of the ‘hidden variables’ that contributes to the
scatter in the Ngc—M, and Ngc—M,, relations.
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