of the
ROYAL ASTRONOMICAL SOCIETY

MNRAS 522, 5340-5357 (2023)
Advance Access publication 2023 May 04

https://doi.org/10.1093/mnras/stad 1287

The mass-loss rates of star clusters with stellar-mass black holes:
implications for the globular cluster mass function

Mark Gieles ' '* and Oleg Y. Gnedin >

VICREA, Pg. Liuis Companys 23, E-08010 Barcelona, Spain
2 Institut de Ciéncies del Cosmos (ICCUB), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E-08028 Barcelona, Spain
3 Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA

Accepted 2023 April 25. Received 2023 April 25; in original form 2023 March 7

ABSTRACT

Stellar-mass black holes (BHs) can be retained in globular clusters (GCs) until the present. Simulations of GC evolution find
that the relaxation driven mass-loss rate is elevated if BHs are present, especially near dissolution. We capture this behaviour
in a parametrized mass-loss rate, bench marked by results from N-body simulations, and use it to evolve an initial GC mass
function (GCMF), similar to that of young massive clusters in the Local Universe, to an age of 12 Gyr. Low-metallicity GCs
([Fe/H] < —1.5) have the highest mass-loss rates, because of their relatively high BH masses, which combined with their more
radial orbits and stronger tidal field in the past explains the high turnover mass of the GCMF (~ 10° Mg, ) at large Galactic radii
(2 10kpc ). The turnover mass at smaller Galactic radii is similar because of the upper mass truncation of the initial GCMF
and the lower mass-loss rate due to the higher metallicities. The density profile in the Galaxy of mass lost from massive GCs
(= 10° Mg, ) resembles that of nitrogen-rich stars in the halo, confirming that these stars originated from GCs. We conclude that
two-body relaxation is the dominant effect in shaping the GCMF from a universal initial GCMF, because including the effect of

BHs reduces the need for additional disruption mechanisms.

Key words: stars: black holes — globular clusters: general — galaxies: star clusters: general.

1 INTRODUCTION

Globular cluster (GC) systems in the Milky Way and external galaxies
have peaked logarithmic mass and luminosity functions, with a
typical luminosity My ~ —7.5 (for example, Harris 2001; Jordan
et al. 2007), corresponding to a peak mass ~ 2 x 10°Mgy and a
dispersion 0jog,,n = 0.5. This is markedly different from young
star clusters, which form with a power-law mass function with a
slope of about —2 (see Portegies Zwart, McMillan & Gieles 2010;
Krumholz, McKee & Bland-Hawthorn 2019, for reviews). Old GCs
may have formed with a similar mass function, because low-mass
clusters had time to dissolve as the result of various disruptive effects,
such as two-body relaxation, tidal shocks, and interaction with dense
molecular gas clouds. This disruption could turn over a power-law
initial GC mass function (GCMF) and impose a typical mass scale
of ~ 10° M, in the surviving GCs (for example, Okazaki & Tosa
1995; Fall & Zhang 2001; Prieto & Gnedin 2008; Elmegreen 2010;
Kruijssen 2015). Adopting the hypothesis that the physics of cluster
formation in giant molecular clouds is similar at all cosmic times
(Harris & Pudritz 1994; Elmegreen & Efremov 1997), several recent
studies have confirmed that massive star clusters formed in high-
redshift galaxies would evolve into old clusters matching the age—
metallicity distribution and the spatial and kinematic distributions
of observed GC systems (Choksi, Gnedin & Li 2018; Pfeffer et al.
2018; Kruijssen et al. 2019; Rodriguez et al. 2023). However, the
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resulting GCMF in these models tends to be skewed towards lower
masses compared to the observed GCMF. Reproducing the shape of
the GCMF is, therefore, one of the last remaining hurdles to confirm
that star cluster formation is a universal mechanism in all epochs and
environments.

Some studies have suggested that GCs had a typical mass scale
imprinted at formation (for example, Peebles & Dicke 1968; Fall &
Rees 1985; Bromm & Clarke 2002; Kimm et al. 2016), and indeed
an initially peaked mass distribution would preserve its shape as
clusters lose mass (Vesperini 2000; Fall & Zhang 2001). However,
such scenarios rely on physical conditions in the galactic interstellar
medium that are unlikely to produce giant molecular clouds massive
and dense enough to host proto-GCs (e.g. Forbes et al. 2018). We
therefore prefer the hypothesis that the initial GCMF is universal
across cosmic time and that disruption is responsible for the current
shape of the GCMF.

The relative contribution of various disruption mechanisms is still
debated. Because of the high rate of close stellar encounters in GCs,
it is natural first to explore the effect of two-body relaxation in the
large-scale galactic tidal field (hereafter, ‘evaporation’). The mass-
loss rate due to evaporation depends on the strength of the tidal field
(for example, Lee & Ostriker 1987; Chernoff & Weinberg 1990;
Baumgardt & Makino 2003), and therefore it predicts an anticorrela-
tion between the turnover mass (M) and galactocentric radius (R)
for clusters in a static galactic potential and with constant velocity
anisotropy. In contrast, the observed Mt varies only mildly with R in
the Milky Way (see, for example, fig. 8 in McLaughlin & Fall 2008)
and is also remarkably constant across galactic environments (Jordan
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et al. 2007). We refer to this tension between model predictions and
the observed near-universality of the GCMF as ‘the GCMF problem’.

Various studies have attempted to resolve the GCMF problem by
either assuming a strong radially biased velocity anisotropy at large
Galactic radii (for example, Fall & Zhang 2001); invoking additional
universal disruptive effects, such as stellar evolution (Vesperini &
Zept 2003) and gas expulsion (Baumgardt, Kroupa & Parmentier
2008); or assuming that the mass-loss rate depends mainly on present-
day density (McLaughlin & Fall 2008). However, these assumptions
are all in tension with results from observations (Vesperini et al. 2003;
Vasiliev 2019), theory (Hénon 1961; Gieles, Heggie & Zhao 2011),
and numerical simulations of cluster evolution in tidal fields (Lee &
Ostriker 1987; Baumgardt & Makino 2003; Gieles & Baumgardt
2008).

In recent years, much attention has been given to the disruption
by tidal interactions with giant molecular clouds in the first ~ 1 Gyr
(Elmegreen 2010; Kruijssen 2015; Pfeffer et al. 2018). Tidal shocks
preferentially destroy low-density clusters (Spitzer 1958; Ostriker,
Spitzer & Chevalier 1972) and therefore not necessarily low-mass
clusters, but relaxation leads to an expansion of low-mass clusters,
reducing their densities, such that the combined effect of relaxation
and tidal perturbations leads to a mass-dependence of the disruption
time-scale that is similar to that of evaporation (Gieles & Renaud
2016).

Most cluster population studies mentioned above rely on pre-
scriptions for evaporation based on theory of equal-mass clusters by
Hénon (1961), or results of numerical N-body simulations of clusters
with a stellar mass function and stellar evolution (for example,
Baumgardt & Makino 2003), but without stellar-mass black holes
(BHs). However, BH candidates have been reported in several Milky
Way GCs (Strader et al. 2012; Chomiuk et al. 2013; Miller-Jones et al.
2015; Giesers et al. 2018; Kamann et al. 2020) and in extragalactic
clusters (Maccarone et al. 2007, 2011; Barnard, Garcia & Murray
2012; Saracino et al. 2022).

These discoveries of BHs in clusters led to various modelling
efforts of GCs with BHs, that showed that clusters in a tidal field
dissolve faster if they retain a significant fraction of their BHs after
natal kicks (Chatterjee, Rodriguez & Rasio 2017; Peuten et al. 2017;
Giersz et al. 2019; Kremer et al. 2020; Wang 2020; Gieles et al.
2021). Apart from shortening the total lifetime, the mass evolution
over time is also different, in the sense that the (absolute) mass-loss
rate increases towards dissolution. This is because tidally limited
clusters with a BH mass fraction at a critical value of a few per cent
will lose BH mass at the same rate as stellar mass and therefore
maintain that constant BH mass fraction (Breen & Heggie 2013). If
the mass fraction in BHs is higher (lower), the BH fraction continues
to increase (decrease) (Banerjee & Kroupa 2011; Gieles et al. 2021).
An increasing BH fraction with time leads to an increasing (absolute)
mass-loss rate and such an abrupt dissolution leads to a concave shape
of the mass evolution with time M(¢) (Giersz et al. 2019). In contrast,
for clusters without BHs the shape of M(7) is convex (Baumgardt
2001; Gieles & Baumgardt 2008). We will refer to the concave
and convex shapes of M(f) as ‘jumping’ and ‘skiing’, respectively,
following terminology from Contenta, Varri & Heggie (2015). In this
work we propose an analytical prescription for the mass-loss rate that
allows for different shapes of M(z), with a flexible dependence of the
total lifetime on the initial mass, informed by results of a grid of
direct N-body simulations. We then use it to model the evolution of
the GCMF in a Milky Way-like galaxy.

This paper is organized as follows. In Section 2, we analyse the
mass-loss rate in N-body simulations of star clusters with BHs. In
Section 3, we parametrize the mass-loss rate guided by the N-body
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simulations. We present a model for the evolution of the GCMF
in Section 4, present the results in Section 5, and then discuss
broader implications of our results in Section 6. Our conclusions
are summarized in Section 7.

2 INSIGHT FROM N-BODY MODELS

2.1 Description of the models

To quantify the effect of BHs on the mass-loss rate (M) of star
clusters, we use the N-body models presented in Gieles et al. (2021)
that were performed with NBODY6++GPU (Aarseth 2003; Wang et al.
2015). The grid of models in that work was intended to find the initial
conditions of the Milky Way GC Palomar 5 (Pal 5, hereafter), hence
all clusters are on the same orbit in a three-component Milky Way
potential, with an apocentre distance ~ 15.5kpc and a pericentre
distance &~ 6.5 kpc (implying an orbital eccentricity € >~ 0.41). We
use the first 11 models from their table 1, which is a grid of models
with different initial density within the half-mass radius (74, 0) of
Pho = 3M0/(871r}?_0) = {30, 100, 300, 1000} M, pc—> and number
of stars N = {0.5, 1, 2} x 103, which for the adopted Kroupa (2001)
stellar initial mass function (IMF) in the range 0.1 — 100 M, corre-
sponds to initial cluster masses My = {0.32, 0.64, 1.28} x 10° M.
The models adopt the rapid supernova mechanism (Fryer et al. 2012)
with the natal kicks lowered by the amount of fallback such that
momentum is conserved. As a result, 63 per cent (73 per cent) of the
number (mass) of BHs do not receive a natal kick for the adopted IMF
and the metallicity of Z = 0.0006 ([Fe/H] >~ —1.4, using Z, = 0.014
for the solar metallicity; Asplund, Amarsi & Grevesse 2021). The
model with py, g = 103 Mg pc™ and N =2 x 10° was not run for that
study, and we run it here with the same settings as the other models.
We also run here two additional models with higher metallicity: Z =
0.006 ([Fe/H] >~ —0.4) and Z = 0.017 ([Fe/H] =~ 0), both with N =
10° and py, o = 300 Mg pc>.

We compare the mass-loss rates of these models to the frequently-
cited N-body models of Baumgardt & Makino (2003). These models
consider a galactic tidal field due to a singular isothermal sphere
(SIS) with circular velocity V., = 220kms~!, the effects of stellar
evolution, and a stellar IMF truncated at 15Mg such that no
BHs form. Their mass-loss rates can be approximated as (Lamers,
Baumgardt & Gieles 2013; Choksi et al. 2018)

M P Qu
2 x 10° Mg 0.32Myr™ !

The influence of the tidal field is captured by €24, which depends
on the tidal and centrifugal forces. For circular orbits, it can be
expressed through the first and third eigenvalues of the tidal tensor
as Qg = ~/A1 — A3 (Renaud, Gieles & Boily 2011; Chen & Gnedin
2023). For the SIS A} = —A3 = VCZ/R2 such that Qg = \f2VC/R.
For eccentric orbits we use Qg = V2 V. / Regr, Where Reg is the radius
of the circular orbit with the same lifetime. Baumgardt & Makino
(2003) show that for relaxation driven mass-loss of clusters in an SIS
this effective radius is Rer = Ry(1 + €) = Ry(1 — €), where R;, and
R, are the pericentre and apocentre distance of the orbit, respectively
(see also Cai et al. 2016). We normalize €24 to a value corresponding
to V. = 220kms~! and R = 1kpc.

For clarity, in this work we also adopt the SIS to approximate the
Galaxy potential. The Pal 5 models did not evolve in an SIS, but in
a more realistic three-component Milky Way, so we can use those
results as an anchor point from which we extrapolate to larger and
smaller R.i by using the simple analytic properties of the SIS. For
the Pal 5 models R >~ 9.15 kpc and therefore Qg 2~ 0.035 Myr’l.

(€]

M ~ —30Mg Myr™! (
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Table 1. Parameters of the N-body models shown in Fig. 1. For each initial
density, models with N = {0.5, 1, 2} x 10 5 stars were run, corresponding
to initial masses of My ~ {0.32, 0.64, 1.28} x 10° M. All models adopt a
metallicity of Z = 0.0006 ([Fe/H] ~ —1.4) and two additional models with
higher metallicity were run for R = 29. The parameters Myt and y in the
last two columns are used to approximate M (M, M) (equation 4) in Fig. 2
(dashed line, top row).

Ph,0 Th,0

Ph, 0 Ro=—— Mier y
Ph.f ¥y eff .
(Mg pe™?) (Me Myr™)
30 2.9 0.10 —95 2
100 9.5 0.068 —60 1.75
300 29 0.047 —45 1.33
1000 95 0.032 —-30 0.67
48"} " no BHs 1
- Ro=100 L
- &l i
a6l Ro =30 g X ]
B Ry=10 td‘iﬁ,.r"ﬂ“
i
® Ry=3 -
T 447 ° e 1
= > o
2420 1
o+~ -
82’ . |
= 40+ . 1
A ¢
3.8 L
3.6 o ]
4.4 4.6 4.8 5.0 5.2
l0g10 Mo [Mo]

Figure 1. Disruption times (#4i5) for different My and Rg (see Table 1) of
all 12 N-body models on the orbit of Pal 5 from Gieles et al. (2021). The
dashed line shows the expected z4;s for models without BHs, as derived from
equation (1), see the text for detail. The densest N-body models (Ro = 100)
have similar #4i because they eject all their BHs dynamically (Section 2.2).
Lower density clusters dynamically retain a BH population until dissolution
and disrupt up to 4.5 times faster.

The density within the effective Jacobi radius (ry, .s) for an SIS is
given by py e = 3/(2m G)Qﬁd, where G is the gravitational constant.
For the models on the orbit of Pal 5 it is p; . 2 0.064 Mg, pc‘3.

To describe the dependence of our results on the initial cluster
density, we introduce a dimension-less parameter R = pn/pn. s,
where oy, ¢ is the half-mass density of a Roche-filling cluster. Roche
filling in the context of clusters is ill-defined, but here we take
it as a cluster that has r/r; = 0.145, which is the filling factor
in the tidally limited cluster on a circular orbit of Hénon (1961).
The Pal 5 models have pp s = 0.5 x 0.14573 py op = 10.5Mgpc ™.
The relation between density and filling factor in terms of radius is
/1t = 0.145R ™13, Table 1 relates py, ¢ of the N-body models to
these more physically relevant quantities.

In Fig. 1 we show the disruption times (4;5) of all 12 N-body
models with low metallicity. We define 745 as the time needed for
the mass to reach zero, although in the N-body models we only
determine the time when the cluster reaches a low enough mass of
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300Mg. The dashed line shows 24 following from M for models
without BHs (equation 1), which for this mass dependence of M is
tais(My) = 1.5Mi/|M(Mi)| (Lamers et al. 2005), where

Mi = MsevMO (2)

is the initial mass after (most) stellar evolution related mass-loss
has occurred. From hereon we make the simplifying assumption that
stellar evolution happens independently from evaporation, which is
justified by the different time-scales on which they operate (several
10 Myr for most stellar evolution mass-loss to occur versus several
Gyr for evaporation). Here jis.y 2 0.55 is the remaining mass fraction
after stellar evolution for a metallicity of Z = 0.0006 ([Fe/H]
~ —1.4). Expressing #4 in terms of the initial mass after stellar
evolution is needed because equation (1) only describes the mass-loss
due to evaporation. This prediction for 45 agrees well with the results
from the densest clusters, while the clusters with Ry >~ {30, 10, 3}
dissolve approximately a factor of {2, 3, 4.5} faster. In the next
section, we discuss in more detail the role of BHs in this trend of
tais(Ro).

2.2 Mass-loss rates

In this section, we describe how M depends on the initial conditions
of the clusters. Because all clusters lose about 45 per cent of their
initial mass by stellar evolution, mostly in the first Gyr, and we
are here interested in evaporation, we determine M in the range
500Mg < M < M; in mass bins with widths of 3 x 10° M. In
Fig. 2 we show M from the N-body models in the top row, with
different M, (different colours and symbols) and different initial
densities (different columns). The bottom row shows the remaining
mass in BHs (Mpgy). The clusters with relatively low densities (left
two columns) keep a significant fraction of their BHs and the mass-
loss rate of these models increases towards dissolution.

There is a clear trend for higher density clusters to lose more
of their BHs, which is the result of their shorter relaxation time
(Breen & Heggie 2013). The densest clusters (Ry =~ 100, right-hand
column) eject almost all BHs early and evolve along similar tracks
as models without BHs (equation 1), shown as black-dashed lines
in the top row. This is why their 74 is similar to those of clusters
without BHs (Fig. 1). Breen & Heggie (2013) explain that for tidally
limited clusters there exists a critical fgy ~ 0.1 at which the fraction
of the total mass that is lost is in the form of BHs equals 0.1, such
that fgy remains constant. If fzgy < 0.1 then all BHs are ejected,
while if fzgy 2 0.1 the cluster evolves towards a 100 percent BH
cluster (see also Banerjee & Kroupa 2011). This was derived for
idealized two-component models. In our models we find that this
critical fraction is lower: fgy =~ 0.025. This has consequences for
clusters with higher metallicity, because they form with a lower fzy
than metal-poor clusters and therefore drop more easily below the
critical fgy >~ 0.025 (Section 2.3).

The fact that the different coloured M points in each panel do
not overlap shows that at the same remaining mass M, models with
different M, have different M, because their fzy are different. This
behaviour is reproduced for most parts of the evolution by the dotted
lines, which are a simple parametrization of M, described in more
detail in Section 3 (equation 4). They are power-law relations for
M(M, My) of the form M (M/Mi)“Mim, where the value of a
required to described (most of) the data ranges froma = —1toa =
1/3. This relation results in a dependence fgj5 X Mg/ 3 (see Fig. 1)
independent of the value of a, that is, the same M, dependence as
was found for models without BHs (equation 1).
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Figure 2. Top: Mass-loss rates of N-body models on the orbit of Pal 5 from Gieles et al. (2021). Current cluster mass M(f) acts as a proxy for time, flowing
from left to right. The dotted lines show M curves from equation (4) that match the N-body points. The dashed line is the same in every top panel and shows M
without the effect of BHs. Bottom: Mass in BHs in the same N-body models. The diagonal dotted lines mark constant BH fractions of 1 per cent, 10 per cent,

and 100 per cent.

For fgy > 0.3, | M| decreases again, because then the stars become
less important and the cluster evolves from a two-component model
(stars and BHs) to a single-component model (only BHs). This
leads to a narrower mass spectrum and a slower evolution, but still
~10 times faster than for a cluster with only stars. In fact, M (M)
is then evolving parallel to the dashed line shown in the top row of
Fig. 2, but above it because of the higher mean mass, which reduces
Tth-

Fig. 3 shows M as a function of the remaining BH fraction fay
for all low-metallicity models. The increase of |M| with fzy can be
approximated by a linear relation M ~ —12.5Mg Myr~! (fu/0.1).
As shown earlier, clusters evolve at roughly constant Mgy at late
stages, such that a relation M o< fgy implies M o« M~'. This leads
to a strongly ‘jumping’ M(?), very different from the result of models
without BHs (M o« M'/3).

Clusters lose most of their BHs in the early expansion phase.
Once the cluster density has become comparable to (some multiple
of) the tidal density, the cluster evolves at approximately constant
Mgy (see bottom row of Fig. 2). We can estimate how the BH loss
in the expansion phase depends on the initial conditions. Breen &
Heggie (2013) showed that the mass-loss rate of the BH population
depends on the cluster properties as Mpy x M /T, Where 7., is the
half-mass relaxation time-scale. We approximate the total BH mass
lost as AMgy = Mgy At, where At is the time the cluster needs to fill
the Roche volume. In the expansion phase the density reduces in time
as p(t) ~ ph,o(t/rrh,o)*z, where Ty, ¢ is the initial v, (Hénon 1965;
Gieles et al. 2011). So the time the cluster needs to expand to the tidal
boundary is Ar >~ rrh,oR(l)/ %, Using also the initial values in the ex-
pression for Mgy, we thus find A Mgy o MOR(I)/2 or A fgh.o ’R(l)/z.
So the reduction of fgy due to dynamical ejections depends only on
the initial density, relative to the tidal density. The data in the bottom
row of Fig. 2 show that indeed that the drop in fzy is larger for the

T T T T T

201 ____ [M] = 12.5 Mg Myr~ (fg/0.1)
v®y Mgy=100M,
ox Mgy <100M
15| v Ox MpH o) v 1
*/@
g i
Is_ 'v vV % *
> 1.0 Wt ]
= [ }
]
E v nm '*
=
8 no BHs: logi;oM =4
logioM=3
-25 -20 -15 -1.0 -05 0.0
l0g10 faH

Figure 3. Mass-loss rate at different fgy for all models with [Fe/H] = —1.4.
We plot the models with Mgy < 100Mg as open symbols, because these
only have a few BHs, and these clusters are not expected to behave in the
same way as the cluster with a population of BHs. The dashed line is a linear
approximation for the relation M( fzn).

higher initial densities. We also note that there is a small dependence
on My for Ry = 10 — 30, with the drop in Mgy being (relatively)
large for the low-mass clusters. This is in the regime where only a
handful of BHs are left and therefore the theory of Breen & Heggie
no longer holds and we will not attempt to capture this.
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Figure 4. Mass fraction in stellar-mass BHs as a function of metallicity,
from SSE (Hurley, Pols & Tout 2000; Banerjee et al. 2020). BHs that receive
no kick are shown by dashed lines, the sum of BHs with and without kick is
shown by solid lines.

There exists a critical density R, between the models with Ry =
30 and Ry = 100 above which all BHs are ejected. We propose a
simple relation for the drop in fzy because of the dynamical ejection
of the form

R\ 2
AfBHO(<,R0) s 3)

for Ry < Re = 50. Metal-rich clusters have lower fgy o, and be-
cause the constant of proportionality in equation (3) does not depend
on fpy o, the critical density is found from equating Afgy = fsu, 0
such that R, o fy o We discuss the consequences for metallicity
next.

2.3 Metallicity

Stars of higher metallicity have stronger winds, which results in
lower remnant masses. To quantify this effect on the masses of BHs,
we adopt a Kroupa, Aarseth & Hurley (2001) IMF in the range
0.1 — 100Mg and evolve the stars to an age of 12 Gyr with the
single stellar evolution model SSE by Hurley et al. (2000), with the
recent update for massive star winds from Banerjee et al. (2020).
We then compute the mass fraction in BHs and show it in Fig. 4,
both in terms of the initial mass (fgu 0 = Mpu/M)y, blue shaded
region) and in terms of the total mass at 12 Gyr (fgg = Mgu/M,
green shaded region), which is roughly a factor 1/ =~ 1.8 higher.
Since some of the BHs receive natal kicks (see Section 2.1), we show
the two extreme cases where all BHs that are kicked are either lost
(dashed lines) or retained (full lines). As can be seen, fgy is roughly
constant below [Fe/H] ~ —1.5 (typical metal-poor GC) and decreases
approximately by a factor of two going to [Fe/H] ~ —0.5 (typical
metal-rich GC).

To illustrate the effect of [Fe/H] and the resulting fgy on the
evolution of the cluster, we show here the results of two N-body
models with higher metallicity Z = 0.006 ([Fe/H] >~ —0.4) and Z =
0.017 ([Fe/H] 2 0.1) on the same orbit as the other models, and with
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Figure 5. Results of N-body models with different initial metallicities. The
model with [Fe/H] = —1.4 is the same as shown in Fig. 2. The models with
higher [Fe/H] have lower initial fgy, leading to complete ejection of all BHs
and mass-loss rates comparable to models without BHs (dashed line).

N = 10° and pypo = 300Mg pc—3 (Ro = 30). For the metal-poor
models shown in Fig. 2, sufficient number of BHs were retained for
them to have a noticeable effect on M at this density. The effect of
higher metallicity on fzy and M in N-body models is shown in Fig. 5.
From this plot we see that the lower initial value of fgy results in all
BHs being dynamically ejected and their M following the results of
models without BHs (equation 1). Because fgy o is a factor of ~2
lower at these higher metallicities, the critical initial density for ejec-
tion of all BHs is a factor of ~4 lower (see the text below equation 3),
s0 Rer = 13 instead of 50. This R, is now lower than the density of
these models (R =~ 30) and explains why all BHs are ejected. We
will use this metallicity dependence of M in the population model
(Section 4).

3 A NOVEL PARAMETRIZATION OF THE
CLUSTER MASS-LOSS RATE

In this section, we consider a simple analytical model for the
evolution of the GCMF that results from adding the effects of BHs.
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Figure 6. Left-hand panel: Evolution of cluster mass for different My, x and y. Here M,f is a constant reference mass. Right-hand panel: Evolved cluster mass
function for the same set of x and y as in the left-hand panel and for M,.s = —30 Mg, Myr_1 and Qg = 0.32 Myr_] .

3.1 Mass-loss rate and mass evolution

If we assume clusters to be spherically symmetric and moving on
circular orbits in a static galactic potential, the evaporation mass-
loss rate would be independent of both cluster mass and time (for
example, Hénon 1961; Fall & Zhang 2001). In this simple picture,
the mass-loss time-scale is always proportional to the current mass
M(t): Tyy = —M /M o M. The total disruption time for a cluster with
initial mass M; (that is, the mass after stellar evolution, equation 2)
is then #4;; o< M;. Escape of stars from a more realistic, anisotropic
Roche volume around the cluster is delayed relative to a spherical
one (Fukushige & Heggie 2000), which leads to a modified scaling
of the form #4is o M;*, with x 2~ 2/3 (Baumgardt 2001). For clusters
without BHs, the mass-loss time-scale is also 7 o¢ M*, such that
M = —M /Ty x M'=* (Lamers, Baumgardt & Gieles 2010), and
this scaling is often used in GC population studies (Lamers et al.
2005; Pfeffer et al. 2018; Choksi & Gnedin 2019a; Chen & Gnedin
2022). The positive correlation between | M | and M leads to a reduced
mass-loss rate as the cluster approaches dissolution, that is, a gentle
‘skiing” M(f) evolution. This allows proportionally more low-mass
clusters to survive until the present, leading to GCMF with a lower
Mo and a larger dispersion (Gieles 2009) than for the case of x = 1.

As we have shown in Section 2, the opposite regime of x > 1 is
needed to mimic the effect of BHs and obtain steep ‘jumping’ M(7)
curves. However, with the simple scaling above this would result in
a superlinear scaling between #4;5 and M;, which is not found in these
N-body simulations (see Fig. 1).

To unify a ‘jumping’ M(¢) with a sublinear dependence of #4;5 on
the initial mass, we write the mass-loss rate generally as

L M\ M; Y Qu
M= Mref - 5 1 (4)
M, 2 x 100 Mg 0.32 Myr

where x > 0 is a parameter that controls the relation between fg;s
and M;, and y > 0 is a parameter that controls the shape of M(7).
Here M, < 0 is the mass-loss rate at a fixed reference mass M =
2 x 10° Mg, and the same reference Q4 as in equation (1), that is,
for V. =220kms~! and R.; = 1 kpc.

The functional form of equation (4) recovers the simple constant
mass-loss rate for x = y = 1, and the ‘skiing’ M(¢) evolution with
the delayed escape for x = y ~ 2/3. However, x and y do not need
to be the same, and equation (4) allows for both ‘skiing’ (y < 1) and
‘jumping’ (y > 1) evolution, for any scaling between #4;s and initial
mass via the parameter x. A physical explanation for why x and y can
be different lies in the history of disruption of clusters with the same
M but different M;. Clusters with the same M, but different M/M;
have different mass fractions in BHs, which has a large effect on M,
as we have seen in Section 2. The different dependence of M on M
and on M; was proposed previously by Muratov & Gnedin (2010),
based on independent arguments.

Integrating equation (4) over time we find the mass evolution

1/y
t
MM, Qug. ) =M, (1 - ———— , 5
(M;, Qia, 1) 1( [dis(Mi,Qtid)> ”

for t < t4is(M;, Q24iq), Where

2/3 30 Mg /Myr 0.32 Myr™! M; *
tae = 10Gyr 23 30Mo/Myr bl ( ) (6)
y |Mref| Qlid 2x 105 MO

is the total lifetime, that is, the time for the cluster mass to reach zero.
The mass evolution of a cluster is defined by the four parameters x,
Vs Mreﬁ and Qtid~

In the left-hand panel of Fig. 6 we provide a synopsis of the mass
evolution for different choices of these parameters. The values of x

and y also affect the shape of the GCMF, which we discuss next.

3.2 Cluster mass function

We define the mass function ¢ at time ¢ as the number of GCs in the
mass range [M, M + dM], that is, (M, Q4q, 1) = AN/AM(M, Q44, 1).
We can relate the mass function to the initial mass function vo(M;)
as

LM, Qua, t
M( tids 1)

aM;
V(M, Q4a, 1) = Yo Mi(M)] ‘ 3

. @)

An analytical expression for the dependence M;(M) (that is, the
inverse of equation (5) for M(M;)) can only be found for x =y

MNRAS 522, 5340-5357 (2023)

€202 AInp 2z uo Jesn ueByoI Jo Asioniun Aq 86525 1L 2/0VES/P/ZZS/a10ME/SBIUW/WOD dNO"DlWSPEDE.//:SA)Y WOI) PIPEOJUMOQ


art/stad1287_f6.eps

5346 M. Gieles and O. Y. Gnedin

1.2 T T

Mo /M min

0.5 II’ =1
i —— =y
0.4 1 1 1 1 1 1
0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Y

Figure 7. Turn-over mass Mto of GCMF found numerically as a root
of equation (10). The special case x = y allows an analytic solution
M1o/M;, min = y'?, shown by the dashed line.

(Gieles 2009), so we cannot write the mass function analytically in a
general case x # y. Instead, we find dM/0M; from the relation given
by equation (5):

dlnM x x (M\7’
—1-42(2) . @®)
81nM1 y y M;

By interpolating both this relation and M(M;) from equation (5), we
find M;(M) and dM;/dM(M) to evaluate (M, Qq, 1).

The right-hand panel of Fig. 6 shows cluster mass functions
evolved from the initial yo(M;) o< M;~2, for different xand y. The log-
arithmic slope at low masses equals y, independent of x. This can be
understood from considering the behaviour of dM/9M; in the limit M
< M. In this case Y (M) =~ ro(M;) i (M /M;)*~" from equations (7)
and (8). The logarithmic mass function v (log M) o Mys(M) o< M”.
This power-law holds for masses below the minimum initial mass
of clusters still surviving at the time of observation ¢, which can be
found from equation (6):

. 1/x
t Mre'
V1 [ Miet] ) . ©)

Mimin(6) = 2 x 10° Mo (m
©

For a given Mt, Mro increases with increasing y. It can be
calculated by setting dln ¥/dln M = —1 (Gieles 2009). For the initial
Yo(M;) o Mfz, after some algebra this gives the equation

x(p—D@p-=y, (10

where p = (M/M;)™. The root of this equation can be found numer-
ically after we specify the relation between the initial cluster mass
M; and mass M(t) after time . That relation is given by equation (5)
and can be expressed in both masses normalized by the minimum
survival mass: (M/M; min) = (Mi/M; min) — (Mi/M; min)® ~*. The
latter relation allows us to convert the turnover mass Myo from
equation (10) to a ratio Mto/M;, min. The numerical solutions for two
cases x = 1 and x = 0.67 are shown in Fig. 7. They reproduce the
values in Table 2 found from the evolved models.

There are three contributing factors to the higher Mo when
BHs are considered: (1) a larger y and (2) a higher |M,¢| both

MNRAS 522, 5340-5357 (2023)

Table 2. Turnover mass (Mto) and (logarithmic) mean (iiog,,m) and
dispersion (0iog,,) for the mass functions shown in the right-hand panel
of Fig. 6 and two additional values of y (y = 1.75 and y = 2).

x y Mr1o/M;, min  10g1oMT0 Hlog oM Olog oM
(dex)
0.67 0.67 0.55 5.16 4.99 0.93
0.67 1.00 0.70 5.53 5.48 0.73
0.67 1.33 0.80 5.78 5.78 0.60
0.67 1.75 0.88 5.99 6.03 0.49
0.67 2.00 0.92 6.10 6.14 0.45
1.00 0.67 0.91 5.34 5.13 0.89
1.00 1.00 1.00 5.56 5.49 0.71
1.00 1.33 1.05 5.70 5.71 0.59
1.00 1.75 1.08 5.83 5.89 0.51
1.00 2.00 1.10 5.90 5.97 0.47

increase M; min (equation 9) and (3) a larger y also results in a larger
Mr1o/M;, min (Fig. 7). As an illustration, we highlight the difference in
Mo for the parameter we will use in the next section: for the models
with BHs (y = 1.33, Myf = —45Mg Myr™!), Mo is a factor of
2.8 x 1.45 x 1.5 = 6.1 higher than for the model without BHs
(y = 0.67, My = —30 Mg Myr™!), for the same x = 0.67 and the
same 2id.

This simple model illustrates the general behaviour of the mass
function under the new parametrization of the cluster mass-loss.
While many of its assumptions are not valid in the real Milky Way
galaxy, the analytical expressions help us understand main effects of
including BHs on the accelerated disruption. In the next section, we
present a more realistic model that accounts for the orbit distribution
in the galaxy and matches the observations of Galactic GCs.

4 POPULATION MODEL

In this section, we present a detailed model for the evolution of a GC
population in a Milky Way-like galaxy. Our approach is similar to that
of Fall & Zhang (2001) who start with a distribution function (DF)
and then evolve the GCMF due to various disruption mechanisms
which all have a dependence on the orbit. Their DF depends on
isolating integrals (specific energy and angular momentum), but we
express the DF directly in terms of mass, position, and velocity. We
adopt an SIS for the Galaxy, which has a potential

®(R) = V2 In(R), 1D

and we assume the circular velocity of V, = 220kms~!.

4.1 Initial conditions

We write the initial DF, that is, the phase-space density of clusters
in the galaxy, as a function of M;, galactic position (R), and galactic
velocity (V)

Jo(Mi, R, V) = ¥o(M;) no(R) F(R, Vi, V). 12)

Here ¢(M;) describes the initial GCMF, ng(R) the radial number
density profile, and F(R, V;, V,) the radius-dependent velocity
distribution. Because we will consider the effect of radially bi-
ased velocity anisotropy for the GC orbits, we define the velocity
distribution in terms of the radial velocity (V;) and the tangen-
tial velocity (V;). The Ayhase—space density is normalized such
that [~ &3V fg:" d*R fM]:" dM; fo(M;, R, V) = 1, where we adopt
the following boundary values: R), = 1kpc, R, = 100kpc, M), =
10* Mg, and M,, = 108 M. We discuss the effect of varying M,
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in Section 6 and next we discuss the functional forms for each
contribution to fj.
For y¢(M;) we adopt a power law with an exponential truncation

_ M;
Yo(M;) oc M exp (— ) ; (13)
M.
where M, is the truncation mass, which we take either M, — oo
(the ‘power-law’ model considered in the previous section), or M, =~
10° M, (the ‘Schechter’ model). We fix the power-law index « = 2 in
all models, as it is a common value found for young massive clusters
in nearby galaxies. Although it cannot be ruled out that GCs formed
with a more peaked initial GCMF, here we adopt the hypothesis that
massive star clusters form with a universal GCMF at all redshifts.
The constant of proportionality is found from the requirement that
e Yo dM; = 1.

The velocity distribution is assumed to be Gaussian in all three

components, such that

exp [~V2/(202(R))] exp [~V /02(R)]
V2ro(R) Tot(R)

Here oy(R) = (V2(R))!/? is the root-mean-square tangential velocity
atradius Rand o,(R) = (VrZ(R)) 172 is the root-mean-square radial ve-
locity at radius R. For an isotropic velocity distribution 02 = 202 It
satisfies [ PV F(R, V;, V) =27 [[°VidV, [* AV, F(R, V,, V) =
1. We adopt an anisotropy profile of the GC system of the form

F(R, Vi, V) = (14)

BR) =1 — 258

207(R)

_ 1
= TR/ R 5)

where 6 > 0. This profile results in isotropy for R < R, and radial
orbits for R > R, with the parameter § determining how quickly
B(R) rises. DFs that include radial anisotropy with an exp (—J?) term,
where J is the specific angular momentum, result in a S(R) profile as
in equation (15) with § = 2 (Eddington 1915; Michie 1963; Osipkov
1979; Merritt 1985). The present-day anisotropy profile of Milky
Way GCs as derived from line-of-sight velocities and Gaia proper
motions (Vasiliev 2019) is better described by § >~ 1. Here we will
vary §, together with R,,;, to match the B profile of the observed
clusters (see the description of Model (3) in Section 4.3).

To find o,(R) and o(R) we need to define ng(R) and solve the
radially anisotropic Jeans equation (equation 4.215 in Binney &
Tremaine 2008) with GCs as tracer particles in the Galactic potential
(equation 11). A convenient choice for ny(R) is

R~V
2/5°

no(R) X ——————5
[1 + (R/Rani)a]

16)

because it results in a constant radial dispersion o, = V./y 2. For
R < Ry, the profile is ng(R) o« R77, and for R > R,y it is
no(R) o« R7772. Fully isotropic models (R, — ©0) have a single
power-law ny(R) oc R77. The constant of proportionality is found
from the requirement that [ no(R)d*R = 4x fl;:" no(R)R*dR = 1.
Combined with the expression for B(R), we find that 6(R) =
203[1 + (R/Ru)’1”!. We now have a fully analytic form for
fo(Mi, R, V) (equation 12) and describe next how we evolve it to
the present age of GCs.

4.2 Evolving the GC population

To evolve the mass function as a function of R, we need to obtain
the effective tidal field strength Q;q = Vc[Ry(1 + ]~! from V,, V,
and R. For the case of a SIS, Ry(R, V;, V1) and Ry (R, V;, V) are the
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Table 3. Overview of the functions used in the population model.

Function Definition Description
fo(Mi, R, V) LU Initial DF (after stell lution)
i, R, —_— nitial after stellar evolution
oL dM; R &V
f(M,R,V,1) d'N DF (aft tion)
RV, — after evaporation
dM &R d3V P
dN
Yo(M;) T Initial GCMF (after stellar evolution)
i
dN .

v (M, Quig, 1) 73 Evolved GCMF for a single Qg
(M, R, 1) d Evolved GCMF at R ( tion 17)
R, volve at R (equation

dMdR q
dN
Y(M, 1) FTi ¥(M, R, 1) integrated over R

Table 4. Overview of the nine parameters of the GC population model.

Description Parameter
Galaxy: Ve =220kms™!
Mass-loss: Myt = —30 or — 45 Mg Myr™!
x=2/3
y=2/3or4/3
Initial GCMF: a=2
M, = 10® M, or 0o
no(R): y =3.50r4.5
B(R) and ny(R): Rani = Skpc or co
§=0.5

radii where V; = 0, which are roots that need to solved numerically
from the orbital energy and angular momentum (see, for example,
Section 2.1 of van den Bosch et al. 1999), which then provides € =
(Ra — Rp)/(Ry + Rp). Because of the scale-free nature of the SIS,
we do this once for 100 eccentricities between 0 and 1 and then use
interpolation to find Quq(R, Vi, V1).

We first find the present-day phase-space density f(M, R, V,t) =
Y(M, Qa, 1) no(R) F(R, Vi, V), where (M, Qqq4, 1) is given by
equation (7) and we recall that Qg = Q4ia(R, Vi, V). We then integrate
over all velocities to obtain the mass function as a function of R

W(M,R, 1) = /f(M,R, vV, dv,
= 4nR2n0(R)/d3V1//(M, Qua, DF(R, V., VD).  (17)

The fraction of surviving clusters is then given by fyw =
f,yl:“ dm fR’l‘p dR (M, R, t). To compare the model to the obser-
vations we multiply ¥ (M, R, t) by Noc/fsurv, With Ngc = 156 being
the total number of GCs in the Milky Way for which a luminosity
and R are available (Harris 1996, 2010). We summarize the various

definitions of the DF and the mass function in Table 3.

4.3 Model parameters

In Table 4, we summarize the nine parameters of the GC population
model we described above, including the adopted values. The
parameters with a single mentioned value are fixed in all models.
For some parameters we adopt two values, in order to study their
effect on the resulting GCMF. We use these parameters to solve
eight models summarized in Table 5 and described below.

(i) Model (1), no BHs: This model serves as a starting point
and defines the magnitude of the GCMF problem by considering the
simplest case: an isotropic velocity distribution S(R) = 0. Integrating
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Table 5. Different population models shown in Figs 9 and 10. In all models x = 0.67, & = 2, V, = 220kms~!.

Model Description Parameters
Name Anisotropy ICMF [Fe/H] gradient Past tidal Rani $ y M. Mot y
(kpe) Mo)  (Mo/Myr)

(D) no BHs no power law no oo - 4.5 o0 -30 0.67
2) BHs no power law no 00 — 4.5 o0 —45 1.33
3) BHs + A (Anisotropy) yes power law no 5 0.5 3.5 00 —45 1.33
4) BHs + S (Schechter) no Schechter no 00 — 4.5 100 —45 1.33
5) BHs + F ([Fe/H] gradient) no power law yes no 00 — 4.5 o0 —45 1.33
(6) BHs + P (Past evolution) no power law yes 00 — 4.5 00 —45 1.33
7 BHs+A+S yes Schechter no 5 0.5 3.5 100 -45 1.33
(8) BHs + A+S+F + P yes Schechter yes yes 5 0.5 3.5 100 —45 1.33

over all orbits, we find that the average mass-loss rate at R is a 0.0

factor of ~3.1 higher than that of the circular orbit at that R. The

initial GCMF is a power law and for the mass-loss parameters we

adopt the values found in models without BHs (equation 1), that

is, Mt = —30MoMyr~! and x = y = 2/3. This model roughly

describes the contribution of evaporation in the hierarchical models

of Pfeffer et al. (2018) and Choksi & Gnedin (2019b) at low redshift.

(ii) Model (2), BHs: Here we study the effect of higher | M| and y —1.0} N

due to BHs. We base the values on the N—body.models with Ry >~ 30 T WU BN

from Section 2, which can be described by My = —45Mg Myr ™" o) I A

and y = 4/3. In these models the effect of BHs is moderate compared = M

to the two sets of N-body models with lower Ry shown in Fig. 2, =157 At it l‘ “““

which have higher | M| and y. We assume the same R ~ 30 and I

1, o/ry,er = 0.05 (Table 1) for all clusters. This is of course not l

realistic, because real clusters have a spread in these parameters 20!

and the orbits evolve in time, but it serves as an approximation for

the average filling factor of clusters. We discuss this point more in

Section 6.4.

-2.5

In the next four models, we add a single physical effect to the BHs,
which each reduce the gradient of Mr1o(R):

(iii) Model (3), BHs + A (Anisotropy): Here we add radially
biased anisotropy by choosing R,, = 5kpc with a relatively slowly
rising B(R) (§ = 0.5). These values were chosen such that in the final
Model (8) the anisotropy profile of the surviving clusters is similar
to the observed profile. Anisotropy increases | M| at large R, thereby
reducing the gradient of Mto(R).

(iv) Model (4), BHs + S (Schechter): Here we add a Schechter
truncation mass of M. = 10° M, as found by Jordén et al. (2007)
from fits of ‘evolved Schechter functions’ of the Milky Way GCMF.
If the amount of mass lost is comparable to M., the turnover mass
only increases slowly for any additional mass-loss (Jordan et al.
2007; Gieles 2009), so this truncation mass reduces the gradient of
M1o(R) in the inner galaxy.

(v) Model (5), BHs + F ([Fe/H] gradient): Here we consider the
effect of the GC metallicity gradient in the galaxy. In Section 2.3 we
showed that more metal-rich clusters ([Fe/H] 2 —0.5), with the same
initial density (R =~ 30) eject all BHs and evolve similarly to clusters
without BHs. This means that in the inner galaxy, | M| is lower than
in Model (2). Fig. 8 shows that in the range 0 < log;o(R/kpc) <
1, [Fe/H] of Milky Way GCs decreases from approximately —0.5
to —1.5. We mimic the effect of a [Fe/H]-gradient by adopting R-
dependent relations for M and y for R < 10kpc:

M.et(R) = —=30Mp Myr™' (1 + 1logo(R)) (18)
¥(R) = % + %log,(R). (19)
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Figure 8. Metallicities of Milky Way GCs, as individual points (grey
symbols) and in radial bins. The dashed line shows a simple analytic approx-
imation, which for R < 10kpc has a logarithmic slope of —1: [Fe/H](R) =
—0.5 — logoR.

At R = 10 kpc these relations result in the same values as Model (2)
(Myef = —45Mg Myr~!, y = 4/3), and at R = 1kpc they give the
values found for clusters without BHs (Mt = —30 Mo Myr", y=
2/3, equation 1), thereby reducing the effect of BHs on M and
therefore the gradient of Mr1o(R).

(vi) Model (6), BHs + P (Past evolution): Here we include an
approximate correction for the past tidal evolution of clusters from
a full hierarchical model, described in Appendix A. As a result we
multiply M by (R.;/4)"? at Resr > 4 kpc.

(vii) Model (7), BHs + A+S: In this model, we combine the
effect of anisotropy and the Schechter cutoff mass.

(viii) Model (8), BHs + A+S+F+P: Here we include all effects
described in Models (2)—(6). This model represents a realistic way
of modelling cluster evolution.

5 RESULTS OF POPULATION MODELS

In this section, we discuss the results of the eight models summarized
in Table 5. We compare the models to 156 GCs with luminosities
and R in the Harris catalogue (Harris 1996, 2010). We adopt a mass-
to-light ratio M/Ly = 1.8 from Baumgardt, Sollima & Hilker (2020)
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Figure 9. Different ingredients in the GCMF model compared. A stands for Anisotropy, S for Schechter, F for [Fe/H] gradient, P for past evolution. Red dashed
lines in the top panels are the initial distributions, solid blue lines are the final distributions, black data points with error bars, and black solid line with grey

shaded regions are observations.

and quantify the shape of the GCMF at different radii by piiog, ;1 =
(log,,(M/Mg)) and the dispersion of the logarithmic mass distribu-
tion, Gjog,,m» for M > 10° M. The mean of the logarithm of mass is
areasonable approximation to Mt (see Table 2). For the anisotropy,
we consider clusters with M > 10° My, and compare to the results
from Gaia DR2 by Vasiliev (2019). All models are displayed in Figs 9
and 10.

5.1 Global properties

(i) Model (1), no BHs: This model quantifies the magnitude of
the GCMF problem: ftjog,,3 reproduces the data only at R =~ 1 kpc
and then it declines as R~ = R~32, which is a known scaling for
Mro(R) for an initial GCMF that is a power law with logarithmic

slope of —2 and #4;; oc My (Gieles 2009). At R 2= 100kpc, ptiog,,um 18
a factor of ~10 too low. The model also underestimates f at all radii,
because preferentially radial orbits are removed at small radii while
the initial 8 is too low at large R and evolves very little. The power law
initial GCMF and low value for x also result in a very wide GCMF
(Otog,om = 0.75) compared to the observed width (oiog,,1 = 0.5).
The model width is also decreasing with R, while the data show an
increase. From this it is clear that evaporation of clusters without
BHs is not able to explain the shape of the GCMF. Adding radial
anisotropy within the constraints of the observed B(R) increases
Miogom by only ~ 0.3 dex at large R (not shown), and is therefore not
sufficient.

(i) Model (2), BHs: Here we only change M,e; and y to mimic
the effect of BHs on M. This model almost reproduces fiog,,m at
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Figure 10. As Fig. 9, but now for Models (3-6), showing in each column the effect BHs and one additional ingredient (A = Anisotropy; S = Schechter; F

= [Fe/H] gradient; P = past evolution).

R Z 10kpc, suggesting that the effect of BHs alleviates a large part
of the GCMF problem. This model gives rise to the same scaling
Miogjpm X R73/2, s0 when adding BHs the problem is that Mg is too
high in the inner galaxy (< 10 kpc).

Models (3)—(6) present four additional ingredients that all reduce the
(logarithmic) slope of the ptiog, s (R) relation. The individual effects
can be seen in Fig. 10.

(iii) Model (3), BHs + A (Anisotropy): In this model
we add radial anisotropy to the effect of BHs. We find
that for R,; =5kpc and § = 0.5 the observed B(R) pro-
file is well reproduced. Compared to Model (2), radially bi-
ased anisotropy increases fiog,m DY ~03dex at RZ
10 kpc, improving agreement with the observations at those large
radii.
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(iv) Model (4), BHs + S (Schechter): The addition of the expo-
nential truncation in the initial GCMF reduces ftiog,, at R 2 1kpc
by nearly an order of magnitude. It also narrows the GCMF to
approximately the correct width oy,g i = 0.5.

(v) Model (5), BHs + F ([Fe/H] gradient): The inclusion of
the metallicity gradient reduces M mainly at R < 3 kpc, decreasing
Miog,om and increasing oog, ar there.

(vi) Model (6), BHs + P (Past evolution): The past tidal evolu-
tion reduces the gradient of fujog i (R) from R=*2 to approximately
R—0.9.

(vii) Model (7), BHs + A+S: The combined effect of anisotropy
and a Schechter cutoff reduces the decline of fiioq,,n, but still
the disruption at small (large) R is overestimated (underestimated)
slightly.
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(viii) Model (8), BHs + A+S+F+P: This model combines all
four effects (A+S+F + P) in addition to the BHs. We note that
because of the relatively small § = 0.5, the logarithmic slope of the
initial density profile is steeper than —3.5 at all radii: it reduces
from —4.1 at 1kpc to —5.1 at 100kpc, and at R,, = Skpc the
slope is —4.5. In this model the gradient of ftiog,,ss is substantially
reduced compared to the power-law Model (2) and closely follows
the observed ptiog,,m(R). This model reproduces well the number
density profile, the anisotropy profile, and the shape of the GCMF at
different Galactic radii. The model orbits are a bit too tangentially
biased (8 < 0) at R < 3kpc. We interpret this as an artefact of our
assumption of a static potential in which orbits do not isotropize due
to interactions with the galactic bar, other GCs and infalling satellite
galaxies. We expect that these effects in a real galaxy would lead to
an isotropic velocity distribution of inner GCs.

5.2 Mass function

In Figs 9 and 10, we used the (logarithmic) mean and dispersion of
the GCMF as measures of the GCMF shape. It is also instructive to
look at the full GCMF in different Galactocentric radius bins. The
GCMF for all GCs is obtained from (M, t) = fg:" v (M, R, t)dR,
with (M, R, 1) from equation (17). The integration boundaries can
be changed to obtain the GCMF in different radial intervals. Fig. 11
shows the total mass function for Model (8) and in three radial bins.
For the observational data, we used radial bins with equal number
of GCs (52) and the histograms were constructed with equal number
of GCs: eight in the total sample and four in the three R bins. For
the model we also defined the radial bins to contain exactly 1/3 of
the total number of GCs, which results in slightly different bin edges
than for the observations because the number density profile of the
model is slightly steeper. We do this because we are mostly interested
in comparing the shapes, rather then the vertical scaling. The model
GCMF shows good resemblance to the observed one, reproducing
the slightly lower Mo and larger width at high R.

6 DISCUSSION

6.1 Contribution to field stars

The vast majority of GCs in our model do not survive, so an important
check is to compare the contribution of dissolved clusters to the field
stars. The total mass lost from star clusters with M; > 10* Mg in
Model (8) is AM ~ 5 x 108 M, and here we discuss the implica-
tions. The total mass of the Galactic halo is 1.4 x 10° M, (Deason,
Belokurov & Sanders 2019), so if all lost mass ended up in the
halo, then roughly one-third of the stellar halo would be made out
of disrupted star clusters. If we adopt a lower limit of 10> M, this
fraction approximately doubles. This appears in tension with the
results of Deason, Belokurov & Weisz (2015) who find that the ratio
of the number of blue stragglers over blue horizontal branch stars in
the halo is more similar to that in dwarf galaxies than in surviving
GCs. It must be noted that this ratio in low-mass clusters is closer
to what is found in the field than in massive clusters (Deason et al.
2015). Also, the contribution of stars from GCs to the halo is more
important in the inner Galaxy where tides are stronger. To quantify
this, we determined the radial density profile of mass lost from GCs,
p+(R). We find p,(R) by subtracting the mass in surviving clusters
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from the initial mass of the GC population as a function of R

Nac { Mup

*R =
PR =

Miyro(M;)no(R) dM;—
Mo
1 Mup

—_— My (M, R, 12Gyr)dM |20
i ), M yr) dM |(20)

Here ¥(M, R, t) is the present-day GCMF (equation 17) and ¥((M;)
and ny(R) are the initial GCMF and initial number density profile
from equation (12). Note that this expression is only approximate,
because it assumes that the mass is lost at R while in reality
the escaped stars follow a distribution between the pericentre and
apocentre distance of the orbit. Nevertheless, equation (20) provides
a useful estimate that can be compared to observational data.

In Fig. 12 we compare p,(R) to the stellar halo density profile
from APOGEE (Horta et al. 2021). Because the APOGEE data only
include stars with —2.5 < [Fe/H] < —1, we multiply our model
predictions by a correction factor fyp(R) < 1 that approximates the
fraction of GCs with [Fe/H] < —1 as a function of R. From the Harris
catalogue, we find that this fraction for GCs today is well described
by fmp = [1.5 + log;o(R/kpc)]/3.5 for 1 < R/kpe < 100. It increases
from fup(1kpe) >~ 0.4 to fup(100kpe) = 1. At the smallest R in the
APOGEE data (1.5 kpc), the contribution of mass lost from GCs to
the total halo mass is nearly 70 per cent. This seems extreme, but we
note that at 15 kpc the fraction drops to ~ 10 per cent, so there is no
tension with the conclusion of Deason et al. (2015), because their
sample considered stars at R 2 10kpc. Also, we note that GC may
form in a disc-like configuration (Kravtsov & Gnedin 2005; Meng &
Gnedin 2021) and later scatter into the halo. The fast disrupting
low-mass clusters therefore may contribute more to the thick disc
and/or the bulge, which are 5-10 times more massive than the halo,
respectively.

6.2 Nitrogen-rich stars

Most mass is lost from now-disrupted low-mass clusters, and it
is challenging to identify these stars as having originated from a
cluster, because their streams will have phase mixed long ago. How-
ever, massive clusters (= 10° Mg) have anomalous light-element
abundances, manifesting as anticorrelations in N-C, Na-O, and
sometimes Al-Mg (Bastian & Lardo 2018), and these chemical
imprints are preserved when stars are lost from the cluster. Stars
with such abundances have also been found in the (inner) halo
(Martell et al. 2016; Schiavon et al. 2017; Horta et al. 2021;
Belokurov & Kravtsov 2022). As another test, we compare p,(R)
of stars originating from massive clusters to the density profile of
N-rich stars found in APOGEE by Horta et al. (2021). We assume
that 2/3 of GC stars with M; > 10° Mo (= Moy 10° M, after stellar
mass-loss) have anomalous abundances. In Fig. 12 we show that the
predicted p,(R) of N-rich stars matches the observed profile from
APOGEE very well. This suggests that these N-rich halo stars have
a GC origin. A follow-up test is to look for clustering of stars in
energy and angular momentum space (or action-angles), because a
GC origin predicts that the N-rich stars are more clustered than the
rest of the halo stars, as they originated from more massive clusters,
which disrupted more recently. Additionally, at a given R, most mass
is lost from the GCs that have the most radial orbits, so we predict that
the N-rich stars are preferentially on radial orbit (8 ~ 0.5). Indeed,
N-rich stars are on highly eccentric orbits (Fernandez-Trincado et al.
2019), but not more eccentric than normal metal-poor stars (Tang
et al. 2020).
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Figure 11. Comparison between the GCMF of Model (8) and the observed MF of Galactic GCs from the Harris catalogue for all 156 GCs (left-hand panel)
and at three Galactocentric radius bins containing equal number of GCs (52) each. The dashed (red) line shows the initial GCMFs. The dotted (black) lines in

the three right-hand panels show the total GCMF model for reference.
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Figure 12. Comparison between the density profiles of stellar mass stripped
from GCs (AM) and the N-rich stars in the Galactic halo (Horta et al. 2021),
which are expected to originate from massive GCs. We compare this to AM
from GCs with initial masses M; > 10° M, and assume that 2/3 of their stars
are N rich. The APOGEE data do not include stars with [Fe/H] > —1, so
we multiply our model prediction (grey dashed lines) by an approximation
for the fraction of metal-poor GCs as a function of radius fAiR) = (1.5 +
log (R))/3.5, for R < 100 kpc, which describes the present-day fraction of
Milky Way GCs with [Fe/H] < —1.

6.3 Specific frequency as a function of metallicity

Another aspect to consider is GC disruption as a function of [Fe/H]. In
our model, metal-poor GCs have a higher | M| than metal-rich GCs for
the same 24. If we assume that all star formation happens in clusters
(that is, the cluster formation efficiency is 100 per cent), then in the
absence of a metallicity gradient and for a metallicity-independent
B(R) we expect a lower GC specific frequency for metal-poor GCs.
Here we define specific frequency as the fraction of the stellar mass
thatis in clusters at present. However, the observed specific frequency
is a factor of ~5 higher at [Fe/H] >~ —1.5 compared to [Fe/H] >~ —0.5
(in NGC 5128; Harris & Harris 2002). Because of the metallicity
gradient, metal-rich clusters are closer to the Galaxy centre where the
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tides are stronger, resulting in more mass-loss for metal-rich clusters.
Depending on the metallicity gradient, this effect may overcome
the lower |M| at high [Fe/H]. We quantify this with our adopted
implementation of [Fe/H]-gradient: we assume metal-rich GCs are
within R < 3kpe and metal-poor GCs at R 2 3kpc (see Fig. 8).
From this we find that the specific frequency of metal-poor (metal-
rich) GCs is ~ 4 per cent (2 per cent). So we recover the same sign as
the observation, but the slope is not as steep (factor of ~2 versus ~5).
Note that this is computed from the ratio of surviving clusters over
disrupted clusters, not considering the actual field stars in the Milky
Way.

6.4 Initial density

Our model assumes a fixed Ro = pn,0/pn,s = 30 (or ry, o/75, er 22 0.05,
see Table 1). Here we discuss the implication for the distribution
of initial densities of the GC population. Because pp ¢ depends
on the tidal field, from the orbit distribution we can derive the
implied initial distribution of py, . For the SIS, py ¢ can be found
from Quq as pnr > 78.3Q2,/G. To obtain a well-sampled density
distribution, we draw 2 x 107 initial masses and orbits from
Jo(Mi, R, V) (equation 12) with parameters of Model (8), restricted
to M; > 10* Mg, because lower mass GCs almost all dissolve. We
evolve the initial masses to present-day masses with equation (5),
which results in ~2.5 x 10° surviving clusters. We note that although
our model only evolves initial masses after stellar evolution (that is,
M), the M parameters that we use are based on initial densities
before stellar evolution so we can find py ¢ for each GC from
Pno =30 pn (R, V).

In Fig. 13, we plot the initial half-mass density distribution of all
clusters and of the surviving clusters. Including clusters in the range
10? — 10* M, would increase the distribution of all GCs by a factor
of ~110. This shows a peak at ~ 10*°> Mg pc 3. This is roughly an
order of magnitude higher than young massive clusters in the Local
Universe (Portegies Zwart et al. 2010; Brown & Gnedin 2021), but
it is expected that GCs at a redshift of z >~ 4 form denser because
galaxies had higher gas fractions and velocity dispersion leading
to higher pressure. Interestingly, it was recently shown (Antonini
et al. 2023) that an initial density of > 10* Mg pc~ is what is
needed to create sufficient numbers of (hierarchical) BH mergers
to explain the gravitational wave sources with large primary masses
(2 20Mo).
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Figure 13. Initial density distribution for all clusters in Model (8) (red,
dashed line) and for the surviving clusters (blue, solid line).

Fig. 13 shows that the surviving clusters have slightly lower initial
densities, because the densest clusters are typically located near the
Galactic centre where tidal disruption is most efficient.

We also compare these densities to present-day (half-mass)
densities of Milky Way GCs. These can be estimated by assum-
ing that mass follows light and give the median (mean) p, ~
300(1000) M, pc—3, that is, more than an order of magnitude lower
than the peak density in our model after stellar evolution. This is
encouraging because it is expected that the densities of clusters
decrease further after stellar mass-loss as the result of two-body
relaxation (Hénon 1965; Gieles et al. 2011).

6.5 Black holes in present-day GCs

In our model, all GCs undergo a BH-dominated phase towards the
end of their evolution. This is the result of our assumption of a
constant R for all clusters. As already discussed in Section 6.4,
this assumption is intended to describe the average GC. We can
also estimate the distribution of the BH mass fraction (fgg) in our
model. Towards the end of the evolution, Mgy remains approximately
constant (Fig. 2). Assuming a constant mass-loss rate in time (y =
1), the distribution dN /d fgg = (AN /dM)|0M /0 fsu| and because
dN/dM =~ constant at low masses and fgy o 1/M for Mgy =~ constant,
we have dN /d fgy fB]_f , S0 we expect the majority of clusters to
have fgy close to the minimum fgy =~ 0.02 for clusters with Ry = 30
(see Fig. 2).

Various studies have pointed out that populations of stellar-
mass BHs may be present in GCs, based on their large core radii
(Mackey et al. 2007, 2008); the absence of mass segregation of
stars in some GCs (Alessandrini et al. 2016; Peuten et al. 2016;
Weatherford et al. 2020); the central mass-to-light ratio (for the
cases of Omega Centauri and 47 Tucanae; see Baumgardt et al.
2019; Zocchi, Gieles & Hénault-Brunet 2019; Hénault-Brunet et al.
2019); the core over half-light radius (Askar, Arca Sedda & Giersz
2018; Kremer et al. 2020) and the presence of tidal tails (see Gieles
et al. 2021, for the case of Palomar 5). Breen & Heggie (2013)
suggest that all GCs apart from the ones that are classified as ‘core
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collapsed’ possess BHs, which implies that 80 per cent of Milky Way
GCs still contains BHs. Several studies that try to quantify fgy for
larger numbers of GCs with different methods have recently become
available (Askar et al. 2018; Weatherford et al. 2020; Dickson et al.
2023). There is generally poor agreement for individual GCs, but all
studies find typical fgg >~ 0.01, with exceptions like Omega Centauri
(fsu =~ 0.05; Baumgardt et al. 2019; Zocchi et al. 2019) and Pal 5
(fsa =~ 0.2; Gieles et al. 2021).

Observationally inferred fgy are very uncertain and with the
available data we can only say at this moment that observations
support our assumption that the majority of GCs retained some BHs
until the present day. In a future modelling exercise that includes
also the evolution of cluster radii it would be interesting to see how a
spread in R affects the final distribution of fgy to check, for example,
whether the fraction of core collapsed clusters can be reproduced.

6.6 Tidal perturbations and black holes

Several studies have invoked tidal perturbations with gas clouds in the
early Universe to explain the shape of the GCMF (Elmegreen 2010;
Kruijssen 2015; Pfeffer et al. 2018; Reina-Campos et al. 2018). The
magnitude of this disruption mechanism is highly uncertain because
it relies on poorly understood conditions in the early Universe
(initial cluster densities, gas properties, etc.). The population models
of Pfeffer et al. (2018) and Reina-Campos et al. (2018) adopt
initial radii of ~ 3 pc (after stellar evolution), implying densities of
ono ~ 10* Mgpc 3, i.e. more than an order of magnitudes lower than
the peak of the initial density distribution in our models (Fig. 13).
Because the disruption time-scale due to tidal shocks is directly
proportional to the initial density, a higher initial density would
decrease the disruption rate in their models. Similarly, including
tidal shocks in our model would have only a small effect on our
results.

The interplay between BH heating and tidal shocks is likely non-
linear, but we can speculate what would happen if both effects play a
role. The BHs sink to the cluster centre on a time-scale of ~ 10 Myr,
while interactions with gas clouds can be important for up to ~ 1 Gyr,
hence tidal shocks will predominantly remove stars from the cluster
and the BH population is shielded, thereby increasing fzy. So mass-
loss as a result of tidal shocks amplifies the effect of BHs at later
times because of an increase in fgy.

6.7 Application to other galaxies

We applied our modelling to the Milky Way GC system, so it is
interesting to consider to what extent our results apply to other
galaxies. For a power-law initial GCMF with index —2, relaxation-
driven evaporation predicts a correlation between the turnover mass,
Mo, and the average tidal field strength experienced by the GCs,
(24q). One may therefore expect Myo to depend on the galaxy
mass/luminosity. Jordan et al. (2007) fit ‘evolved Schechter func-
tions’! to luminosity functions of GC systems in early-type galaxies
in the Virgo Cluster. They find that Mo is within a factor of ~2
constant over two orders of magnitude of galaxy luminosity (Lga),
with the faintest galaxies having on average a lower Mrp. Using
galaxy scaling relations and assuming that the half-light radius of a
galaxy is a proxy for the typical orbital radii of GCs, Jordan et al.
(2007) show that for galaxies with Mp > —18 (that is, approximately
1 mag fainter than the Milky Way), the average tidal field strength

I These functions correspond to our ¥ (M, Qq, 1), forx =y = 1.
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depends on galaxy luminosity as (Q4q) oc L%, while for brighter
galaxies it goes as (S24q) o ng,-S. They argue that this ‘peaked’
relation between (€244) and Lg, is one of the explanations for the
near constant Mto. The authors also show that in addition to (€2q4),
variations of M. with Ly, affect the relation Mto(Lga). For bright
galaxies they find a correlation between M. and Lg,, which offsets
the anticorrelation between (€24) and Ly, leading to a near constant
Mro and a correlation between the width of the GCMF and Lg,,
as is observed. These arguments apply to our suggested mass-loss
recipe, with the additional effects of y and metallicity discussed in
this work. This helps in reaching relatively high Mt even in the
smallest galaxies.

In the Local Group we have even fainter galaxies, with GC
systems that resemble the Milky Way GCs. For example, the Fornax
dSph galaxy has five old GCs with an average logarithmic mass
Miog;om == 5.0 0.2 and dispersion oog,, = 0.5 4 0.2 (based on
the luminosities from Larsen, Strader & Brodie 2012, and a mass-to-
light ratio of 1.8). Four of these GCs are metal-poor ([Fe/H] < —2), so
BHs are expected to be important for their evolution and M. Adopting
V. = 20km s~ for Fornax dSph, and R.;; = 1kpc for the GC orbits
and the same model parameters as for our population model (that is,
x=0.67,y=1.33, M,or = —45 Mg /Myr), we find ptiog,,» = 4.8 and
Ologom = 0.5, in satisfactory agreement with the observed GCMF.
An important constraint for GC evolution models comes from the
field stars. Larsen et al. (2012) find that about 20 per cent—30 per cent
of all metal-poor stars ([Fe/H] < —2) in the galaxy resides in the four
metal-poor GCs. For the simple model GCMF discussed here, and
the assumption that all stars formed in GCs, we find this fraction to
be ~ 20 per cent(40 per cent) for M, = 10> Mg (10* M) (see also
Chen & Gnedin 2023, who reach a similar conclusion). We therefore
conclude that even in the faintest galaxies our proposed mass-loss
model can reproduce the shape of the GCMF.

7 CONCLUSIONS

We find that two-body relaxation in a static tidal field can be the
dominant disruption process in shaping the GCMF if GCs retain
some of their BHs. Earlier studies on the effect of evaporation on
the shape of the GCMF showed that models of clusters without
BHs cannot reproduce the observed shape of the GCMF and its
insensitivity to Galactocentric radius (Baumgardt 1998; Vesperini
1998). In particular, these models find a turnover mass that is too
low at large Galactocentric radii. Using N-body models of clusters
with BHs, we show that the initial density is a critical parameter in
setting the dynamical retention of BHs, and that high density clusters
(relative to the tidal density) eject all their BHs and have similar M
to clusters without BH. In models where dynamical BH retention is
modest, the resulting | M| is still an order of magnitude higher than
for models without BHs (Fig. 3) and the resulting mass evolution
is sufficient to explain the observed turnover mass of ~ 10° M, at
R 2 10kpc (Fig. 11).

Several additional ingredients are needed to reduce the turnover
mass in the inner galaxy to a similar value. We show that the
anisotropy profile of GC orbits, a Schechter-like truncation in the
initial GCMF, the metallicity gradient of GCs, and the effect of the
past tidal evolution all reduce the decline of the turnover mass with
R, with the combined effect providing a satisfactory match to the
properties of Milky Way GCs (Figs 9 and 10). The proposed solution
to the GCMF problem implies that the turnover mass gradually
decreases with redshift, which is different from models that rely on
early disruption mechanisms which leads to a redshift independent
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turnover mass. The difference may be observable with future thirty-
metre class telescope and/or the JWST (Kruijssen 2015).

We present a modified analytical model for the cluster disruption
rate that accounts for the effect of BHs. It is given by equation (4)
and for our parameters it reads

M= —asmoMyr! (M o M; P Qu
=— r — .
oM\, 2x10°My )  0.32Myr !
20

The scaling with the initial mass is the same as of clusters without
BHs (equation 1, Fig. 1). The scaling with the remaining mass
fraction depends on the cluster density, which sets the dynamical
BH retention, and the index can be between 1/3 (high density, all
BHs ejected) and —1 (low density, almost all BHs retained, Fig. 2
and Table 1). For negative indices, we obtain the ‘jumping’ evolution
of mass with time, where the mass-loss rate accelerates near cluster
dissolution (Fig. 6).

Although we have focused on the Milky Way system, the physical
ingredients of our model are found in all galaxies and we therefore
expect that the model presented here can also explain the near
universality of the GCMF among different galaxies. More work is
needed to confirm this.
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APPENDIX A: CLUSTER PROPERTIES FROM A
FULL FORMATION MODEL

Several recent studies focused on modelling GCs from their forma-
tion in high-redshift galaxies through evolution until the present in
the context of hierarchical galaxy formation (Choksi et al. 2018;
Pfeffer et al. 2018; Kruijssen et al. 2019; Rodriguez et al. 2023).
These studies assume that proto-GCs form in giant molecular clouds
with the same initial cluster mass function as young clusters in the
nearby Universe. This formation process continues as long as the
specific adopted criteria are satisfied and results in a range of GC
formation times, typically 1 — 4 Gyr after the Big Bang. Then cluster
mass-loss is calculated using various combinations of two-body
relaxation, tidal shocks, and stellar mass loss. Despite differences
in detailed implementation of all these processes, these studies reach
similar conclusions that the resulting present-day GC populations can
match observed properties of GC systems such as the age—metallicity
distribution and the spatial and kinematic distributions. However,
the resulting GCMF is usually skewed towards lower masses than
observed. Given the successes in reproducing other GC properties,
which support the main assumptions of the hierarchical models,
the issues with the GCMF are likely to be due to inaccuracies in
modelling cluster disruption. Possible inaccuracies can arise from
insufficient resolution of the tidal field along cluster trajectories or
using simplified mass-loss prescriptions.

Our work can help improve the modelling of cluster evolution
in hierarchical models. And in turn, hierarchical models can help
test some of the assumptions made in this work. Chen & Gnedin
(2022) presented the latest version of a GC formation and evolution
model, which matches most observed properties of the Galactic GC
system. Here we use the predicted properties of GCs from the model
to validate our adopted initial conditions.

We use the catalogue of model GC properties available online
at https://github.com/ognedin/gc_model_mw. The catalogue contains
three systems chosen specifically to be analogous to the Milky Way
in its present halo and stellar mass and in its history of the mass
assembly. We use all three systems to represent a range of possible
initial conditions of the Galactic GC system. Fig. Al shows the
number density profile of all clusters that formed in the model as
a function of the distance to the main galaxy center. This includes
clusters formed throughout the cosmic time, although the middle
half of them formed at the cosmic times between 11.1 and 12.5 Gyr,
which is close to the assumed fixed age of 12 Gyr in our population
model.

The assumed initial number density profile in our population
model (equation 16) is a good match to the range of profiles shown
in red. The hierarchical model predicts a slightly shallower slope at
large radii (R > 30kpc) but those radii correspond to the locations
of satellite galaxies in which outer GCs formed. The satellites may
bring their GC systems closer to the main galaxy by dynamical
friction and the eventual radii of these halo GCs would be smaller.
In the population model, we do not include changes of orbits due to
dynamical friction, and therefore survived clusters would retain their
initial radii. Thus we conclude that the hierarchical model provides
support for our assumed rg(R).

To check consistency with observations, in the lower blue shaded
region we show the range of number density profiles of survived
clusters. Here the slope is more noticeably shallower than in our
population model, but the difference is expected because the Chen &
Gnedin (2022) model used a different GC disruption prescription
with x =y = 2/3 and M,,f = —45Mg Myr~! (in our notation). The
smaller y (compared to y = 4/3 in our Model 8) leads to slower
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Figure Al. Number density profile of GCs from the mock catalogue of
the hierarchical formation model (Chen & Gnedin 2022). Upper red shaded
region shows the range of initial densities in the three model realizations of
Milky Way-like systems. Lower blue shaded region shows the range of the
density of survived clusters at present. Dashed red and solid blue lines show
the corresponding densities in our population Model (8), also plotted in the
right-hand column of Fig. 9.
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Figure A2. Velocity anisotropy profile of GCs from the mock catalogue of
the hierarchical formation model. Shaded regions show the range covered by
the three realizations: red for initial, blue for final. The dashed red and solid
blue lines show the corresponding densities in our population Model (8), also
plotted in right-hand column of Fig. 9.

disruption of low-mass clusters and allows them to survive longer
at large radii where the disruption time is longer than the age. In
our population model such clusters are more easily disrupted and the
outer density profile steepens.

Fig. A2 compares the velocity anisotropy profiles of the two
models. Variations among the three hierarchical model realizations
are large but the overall trend of initial B increasing with radius is in
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Figure A3. The effective strength of tidal field averaged over cluster history
in the hierarchical formation model, relative to that of the best-fitting fixed
SIS potential. Points show iq averaged over all simulation outputs for three
Milky Way analogue systems indicated by different colour. The solid line
shows our modified expression 24, 1 at Regr > 4 kpc.

reasonable agreement with the assumed form in equation (15). For
the survived clusters, the B-profiles are even closer and both clearly
predict a mildly tangential anisotropy in the inner few kpc. Thus we
can conclude that the results of the full hierarchical formation model
support our assumed initial conditions.

The hierarchical model also allows us to investigate the evolution
of the tidal field along the trajectories of model GCs. For example,
Meng & Gnedin (2022) showed that a typical effective strength of
tidal field 2,4 was a factor of 10 higher in the first ~300 Myr after
cluster formation compared to the values inferred from the present-
day potential. Young clusters experience stronger tides because they
are still surrounded by dense gaseous and stellar structure. The tidal
field can also vary rapidly in time depending on the GC trajectories.
A higher fraction of GCs migrate outward from the galaxy centre

© 2023 The Author(s)
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than inward, also leading to the weaker tidal field at present. To
account for this ‘past evolution’ of the tidal field, we calculate the
time averaged 24 experienced by survived clusters in the Chen &
Gnedin (2022) model and compare it with the value in our assumed
potential. Fig. A3 shows the ratio of the two for model clusters as a
function of their effective radius Rer = R,(1 + €), where R;, is the
pericentre distance of the orbit near the present. The ratio is based
on the following calculation.

Chen & Gnedin (2022) calculated the tidal strength via a com-
bination of the highest and lowest eigenvalues of the tidal tensor
that accounts for the tidal and centrifugal forces: Q3; >~ A; — As.
Typically, A; > 0 and A3 < 0. For a SIS, A; = —A3 = V2/R?, and
therefore

2v2

Qg sis(R) = R; ) (AD)

For a general power-law density distribution p « R™" withO <n <3

n n Vo(R)?
o (R) =47 Gp(R) 7— = — =, (A2)

where V.(R)?> = GM(R)/R and n = 2 for the SIS.

The SIS model is a good approximation to the total mass density
in the three model realizations in the range of radii from 1 to 100 kpc;
in the inner 1 kpc the density profile approaches a core. In the
middle part of the galaxy, at Ry < 4 kpe, the SIS potential gives
overall correct scaling of <24 > with radius, however the scatter of
individual points is significant. At larger radii, the present-day 24, sis
visibly underestimates the past tidal strength. We can approximately
correct this underestimate by switching to 24 , corresponding to
shallower distribution with n & 1. This results in a stronger tidal field
at Rt > 4 kpc relative to our SIS model by a factor

di, 1 (Reff) o Reff
ind’z(Reﬁ) 4kpc’

Q

(A3)

This adopted modified expression for <€2;4 > is shown by the broken
line in Fig. A3 and is used in Models (6) and (8) to include the effect
of the past evolution of GCs.

This paper has been typeset from a TEX/I&IEX file prepared by the author.
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