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A B S T R A C T 

Stellar-mass black holes (BHs) can be retained in globular clusters (GCs) until the present. Simulations of GC evolution find 

that the relaxation driven mass-loss rate is ele v ated if BHs are present, especially near dissolution. We capture this behaviour 
in a parametrized mass-loss rate, bench marked by results from N -body simulations, and use it to evolve an initial GC mass 
function (GCMF), similar to that of young massive clusters in the Local Universe, to an age of 12 Gyr. Low-metallicity GCs 
([Fe/H] � −1.5) have the highest mass-loss rates, because of their relatively high BH masses, which combined with their more 
radial orbits and stronger tidal field in the past explains the high turno v er mass of the GCMF ( ∼ 10 

5 M � ) at large Galactic radii 
( � 10 kpc ). The turno v er mass at smaller Galactic radii is similar because of the upper mass truncation of the initial GCMF 

and the lower mass-loss rate due to the higher metallicities. The density profile in the Galaxy of mass lost from massive GCs 
( � 10 

5 M � ) resembles that of nitrogen-rich stars in the halo, confirming that these stars originated from GCs. We conclude that 
two-body relaxation is the dominant effect in shaping the GCMF from a universal initial GCMF, because including the effect of 
BHs reduces the need for additional disruption mechanisms. 

Key words: stars: black holes – globular clusters: general – galaxies: star clusters: general. 
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 INTRODUCTION  

lobular cluster (GC) systems in the Milky Way and external galaxies
ave peaked logarithmic mass and luminosity functions, with a
ypical luminosity M V � −7.5 (for example, Harris 2001 ; Jord ́an
t al. 2007 ), corresponding to a peak mass ∼ 2 × 10 5 M � and a
ispersion σlog 10 M � 0 . 5. This is markedly different from young
tar clusters, which form with a power-law mass function with a
lope of about −2 (see Portegies Zwart, McMillan & Gieles 2010 ;
rumholz, McKee & Bland-Hawthorn 2019 , for re vie ws). Old GCs
ay have formed with a similar mass function, because low-mass

lusters had time to dissolve as the result of various disruptive effects,
uch as two-body relaxation, tidal shocks, and interaction with dense
olecular gas clouds. This disruption could turn o v er a power-law

nitial GC mass function (GCMF) and impose a typical mass scale
f ∼ 10 5 M � in the surviving GCs (for example, Okazaki & Tosa
995 ; Fall & Zhang 2001 ; Prieto & Gnedin 2008 ; Elmegreen 2010 ;
ruijssen 2015 ). Adopting the hypothesis that the physics of cluster

ormation in giant molecular clouds is similar at all cosmic times
Harris & Pudritz 1994 ; Elmegreen & Efremov 1997 ), several recent
tudies have confirmed that massive star clusters formed in high-
edshift galaxies would evolve into old clusters matching the age–
etallicity distribution and the spatial and kinematic distributions

f observed GC systems (Choksi, Gnedin & Li 2018 ; Pfeffer et al.
018 ; Kruijssen et al. 2019 ; Rodriguez et al. 2023 ). Ho we ver, the
 E-mail: mgieles@icc.ub.edu 
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esulting GCMF in these models tends to be skewed towards lower
asses compared to the observed GCMF. Reproducing the shape of

he GCMF is, therefore, one of the last remaining hurdles to confirm
hat star cluster formation is a universal mechanism in all epochs and
nvironments. 

Some studies have suggested that GCs had a typical mass scale
mprinted at formation (for example, Peebles & Dicke 1968 ; Fall &
ees 1985 ; Bromm & Clarke 2002 ; Kimm et al. 2016 ), and indeed
n initially peaked mass distribution would preserve its shape as
lusters lose mass (Vesperini 2000 ; Fall & Zhang 2001 ). Ho we ver,
uch scenarios rely on physical conditions in the galactic interstellar
edium that are unlikely to produce giant molecular clouds massive

nd dense enough to host proto-GCs (e.g. Forbes et al. 2018 ). We
herefore prefer the hypothesis that the initial GCMF is universal
cross cosmic time and that disruption is responsible for the current
hape of the GCMF. 

The relative contribution of various disruption mechanisms is still
ebated. Because of the high rate of close stellar encounters in GCs,
t is natural first to explore the effect of two-body relaxation in the
arge-scale galactic tidal field (hereafter, ‘e v aporation’). The mass-
oss rate due to e v aporation depends on the strength of the tidal field
for example, Lee & Ostriker 1987 ; Chernoff & Weinberg 1990 ;
aumgardt & Makino 2003 ), and therefore it predicts an anticorrela-

ion between the turno v er mass ( M TO ) and galactocentric radius ( R )
or clusters in a static galactic potential and with constant velocity
nisotropy. In contrast, the observed M TO varies only mildly with R in
he Milky Way (see, for example, fig. 8 in McLaughlin & Fall 2008 )
nd is also remarkably constant across galactic environments (Jord ́an
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t al. 2007 ). We refer to this tension between model predictions and
he observ ed near-univ ersality of the GCMF as ‘the GCMF problem’.

Various studies have attempted to resolve the GCMF problem by 
ither assuming a strong radially biased velocity anisotropy at large 
alactic radii (for e xample, F all & Zhang 2001 ); invoking additional
ni versal disrupti ve ef fects, such as stellar e volution (Vesperini &
epf 2003 ) and gas expulsion (Baumgardt, Kroupa & Parmentier 
008 ); or assuming that the mass-loss rate depends mainly on present-
ay density (McLaughlin & Fall 2008 ). Ho we ver, these assumptions
re all in tension with results from observations (Vesperini et al. 2003 ;
asiliev 2019 ), theory (H ́enon 1961 ; Gieles, Heggie & Zhao 2011 ),
nd numerical simulations of cluster evolution in tidal fields (Lee & 

striker 1987 ; Baumgardt & Makino 2003 ; Gieles & Baumgardt 
008 ). 
In recent years, much attention has been given to the disruption

y tidal interactions with giant molecular clouds in the first ∼ 1 Gyr
Elmegreen 2010 ; Kruijssen 2015 ; Pfeffer et al. 2018 ). Tidal shocks
referentially destroy low-density clusters (Spitzer 1958 ; Ostriker, 
pitzer & Che v alier 1972 ) and therefore not necessarily low-mass
lusters, but relaxation leads to an expansion of low-mass clusters, 
educing their densities, such that the combined effect of relaxation 
nd tidal perturbations leads to a mass-dependence of the disruption 
ime-scale that is similar to that of e v aporation (Gieles & Renaud
016 ). 
Most cluster population studies mentioned abo v e rely on pre- 

criptions for e v aporation based on theory of equal-mass clusters by
 ́enon ( 1961 ), or results of numerical N -body simulations of clusters
ith a stellar mass function and stellar evolution (for example, 
aumgardt & Makino 2003 ), but without stellar-mass black holes 

BHs). Ho we v er, BH candidates hav e been reported in several Milky
ay GCs (Strader et al. 2012 ; Chomiuk et al. 2013 ; Miller-Jones et al.

015 ; Giesers et al. 2018 ; Kamann et al. 2020 ) and in extragalactic
lusters (Maccarone et al. 2007 , 2011 ; Barnard, Garcia & Murray
012 ; Saracino et al. 2022 ). 
These disco v eries of BHs in clusters led to various modelling

fforts of GCs with BHs, that showed that clusters in a tidal field
issolve faster if they retain a significant fraction of their BHs after
atal kicks (Chatterjee, Rodriguez & Rasio 2017 ; Peuten et al. 2017 ;
iersz et al. 2019 ; Kremer et al. 2020 ; Wang 2020 ; Gieles et al.
021 ). Apart from shortening the total lifetime, the mass evolution 
 v er time is also different, in the sense that the (absolute) mass-loss
ate increases towards dissolution. This is because tidally limited 
lusters with a BH mass fraction at a critical value of a few per cent
ill lose BH mass at the same rate as stellar mass and therefore
aintain that constant BH mass fraction (Breen & Heggie 2013 ). If

he mass fraction in BHs is higher (lower), the BH fraction continues
o increase (decrease) (Banerjee & Kroupa 2011 ; Gieles et al. 2021 ).
n increasing BH fraction with time leads to an increasing (absolute) 
ass-loss rate and such an abrupt dissolution leads to a concave shape

f the mass evolution with time M ( t ) (Giersz et al. 2019 ). In contrast,
or clusters without BHs the shape of M ( t ) is conv e x (Baumgardt
001 ; Gieles & Baumgardt 2008 ). We will refer to the concave
nd conv e x shapes of M ( t ) as ‘jumping’ and ‘skiing’, respectively,
ollowing terminology from Contenta, Varri & Heggie ( 2015 ). In this
ork we propose an analytical prescription for the mass-loss rate that 

llo ws for dif ferent shapes of M ( t ), with a flexible dependence of the
otal lifetime on the initial mass, informed by results of a grid of
irect N -body simulations. We then use it to model the evolution of
he GCMF in a Milky Way-like galaxy. 

This paper is organized as follows. In Section 2 , we analyse the
ass-loss rate in N -body simulations of star clusters with BHs. In
ection 3 , we parametrize the mass-loss rate guided by the N -body
imulations. We present a model for the evolution of the GCMF
n Section 4 , present the results in Section 5 , and then discuss
roader implications of our results in Section 6 . Our conclusions
re summarized in Section 7 . 

 INSIGHT  FROM  N -BODY  MODELS  

.1 Description of the models 

o quantify the effect of BHs on the mass-loss rate ( Ṁ ) of star
lusters, we use the N -body models presented in Gieles et al. ( 2021 )
hat were performed with NBODY6 ++ GPU (Aarseth 2003 ; Wang et al.
015 ). The grid of models in that work was intended to find the initial
onditions of the Milky Way GC Palomar 5 (Pal 5, hereafter), hence
ll clusters are on the same orbit in a three-component Milky Way
otential, with an apocentre distance ≈ 15 . 5 kpc and a pericentre
istance ≈ 6 . 5 kpc (implying an orbital eccentricity ε � 0.41). We
se the first 11 models from their table 1, which is a grid of models
ith different initial density within the half-mass radius ( r h, 0 ) of

h , 0 ≡ 3 M 0 / (8 πr 3 h , 0 ) = { 30 , 100 , 300 , 1000 } M � pc −3 and number
f stars N = { 0.5, 1, 2 } × 10 5 , which for the adopted Kroupa ( 2001 )
tellar initial mass function (IMF) in the range 0 . 1 − 100 M � corre-
ponds to initial cluster masses M 0 = { 0 . 32 , 0 . 64 , 1 . 28 } × 10 5 M �.
he models adopt the rapid supernova mechanism (Fryer et al. 2012 )
ith the natal kicks lowered by the amount of fallback such that
omentum is conserved. As a result, 63 per cent (73 per cent) of the

umber (mass) of BHs do not receive a natal kick for the adopted IMF
nd the metallicity of Z = 0.0006 ([Fe/H] � −1.4, using Z � = 0.014
or the solar metallicity; Asplund, Amarsi & Grevesse 2021 ). The
odel with ρh , 0 = 10 3 M � pc −3 and N = 2 × 10 5 was not run for that

tudy, and we run it here with the same settings as the other models.
e also run here two additional models with higher metallicity: Z =

.006 ([Fe/H] � −0.4) and Z = 0.017 ([Fe/H] � 0), both with N =
0 5 and ρh , 0 = 300 M � pc −3 . 
We compare the mass-loss rates of these models to the frequently-

ited N -body models of Baumgardt & Makino ( 2003 ). These models
onsider a galactic tidal field due to a singular isothermal sphere
SIS) with circular velocity V c = 220 km s −1 , the effects of stellar
volution, and a stellar IMF truncated at 15 M � such that no
Hs form. Their mass-loss rates can be approximated as (Lamers, 
aumgardt & Gieles 2013 ; Choksi et al. 2018 ) 

˙
 � −30 M � Myr −1 

(
M 

2 × 10 5 M �

)1 / 3 
�tid 

0 . 32 Myr −1 . (1) 

he influence of the tidal field is captured by �tid , which depends
n the tidal and centrifugal forces. For circular orbits, it can be
xpressed through the first and third eigenvalues of the tidal tensor
s �tid = 

√ 

λ1 − λ3 (Renaud, Gieles & Boily 2011 ; Chen & Gnedin
023 ). For the SIS λ1 = −λ3 = V 

2 
c /R 

2 such that �tid = 

√ 

2 V c /R.
or eccentric orbits we use �tid = 

√ 

2 V c /R eff , where R eff is the radius
f the circular orbit with the same lifetime. Baumgardt & Makino
 2003 ) show that for relaxation driven mass-loss of clusters in an SIS
his ef fecti ve radius is R eff ≡ R p (1 + ε) = R a (1 − ε), where R p and
 a are the pericentre and apocentre distance of the orbit, respectively

see also Cai et al. 2016 ). We normalize �tid to a value corresponding
o V c = 220 km s −1 and R eff = 1 kpc . 

For clarity, in this work we also adopt the SIS to approximate the
alaxy potential. The Pal 5 models did not evolve in an SIS, but in
 more realistic three-component Milky Way, so we can use those
esults as an anchor point from which we extrapolate to larger and
maller R eff by using the simple analytic properties of the SIS. For
he Pal 5 models R eff � 9 . 15 kpc and therefore �tid � 0 . 035 Myr −1 .
MNRAS 522, 5340–5357 (2023) 
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M

Table 1. Parameters of the N -body models shown in Fig. 1 . For each initial 
density, models with N = { 0.5, 1, 2 } × 10 5 stars were run, corresponding 
to initial masses of M 0 � { 0 . 32 , 0 . 64 , 1 . 28 } × 10 5 M �. All models adopt a 
metallicity of Z = 0.0006 ([Fe/H] � −1.4) and two additional models with 
higher metallicity were run for R 0 = 29. The parameters Ṁ ref and y in the 
last two columns are used to approximate Ṁ ( M, M 0 ) (equation 4 ) in Fig. 2 
(dashed line, top row). 

ρh, 0 R 0 = 

ρh , 0 

ρh , f 

r h , 0 

r J , eff 
Ṁ ref y 

(M � pc −3 ) (M � Myr −1 ) 

30 2.9 0.10 −95 2 
100 9.5 0.068 −60 1.75 
300 29 0.047 −45 1.33 
1000 95 0.032 −30 0.67 

Figure 1. Disruption times ( t dis ) for different M 0 and R 0 (see Table 1 ) of 
all 12 N -body models on the orbit of Pal 5 from Gieles et al. ( 2021 ). The 
dashed line shows the expected t dis for models without BHs, as derived from 

equation ( 1 ), see the text for detail. The densest N -body models ( R 0 = 100) 
have similar t dis because they eject all their BHs dynamically (Section 2.2 ). 
Lower density clusters dynamically retain a BH population until dissolution 
and disrupt up to 4.5 times faster. 
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he density within the ef fecti ve Jacobi radius ( r J, eff ) for an SIS is
iven by ρJ , eff = 3 / (2 πG ) �2 

tid , where G is the gravitational constant.
or the models on the orbit of Pal 5 it is ρJ , eff � 0 . 064 M � pc −3 . 
To describe the dependence of our results on the initial cluster

ensity, we introduce a dimension-less parameter R ≡ ρh /ρh , f ,
here ρh, f is the half-mass density of a Roche-filling cluster. Roche
lling in the context of clusters is ill-defined, but here we take

t as a cluster that has r h / r J = 0.145, which is the filling factor
n the tidally limited cluster on a circular orbit of H ́enon ( 1961 ).
he Pal 5 models have ρh , f = 0 . 5 × 0 . 145 −3 ρJ , eff � 10 . 5 M �pc −3 .
he relation between density and filling factor in terms of radius is
 h /r J , eff = 0 . 145 R 

−1 / 3 . Table 1 relates ρh, 0 of the N -body models to
hese more physically rele v ant quantities. 

In Fig. 1 we show the disruption times ( t dis ) of all 12 N -body
odels with low metallicity. We define t dis as the time needed for

he mass to reach zero, although in the N -body models we only
etermine the time when the cluster reaches a low enough mass of
NRAS 522, 5340–5357 (2023) 
00 M �. The dashed line sho ws t dis follo wing from Ṁ for models
ithout BHs (equation 1 ), which for this mass dependence of Ṁ is

 dis ( M 0 ) = 1 . 5 M i / | Ṁ ( M i ) | (Lamers et al. 2005 ), where 

 i ≡ μsev M 0 (2) 

s the initial mass after (most) stellar evolution related mass-loss
as occurred. From hereon we make the simplifying assumption that
tellar evolution happens independently from evaporation, which is
ustified by the different time-scales on which they operate (several
0 Myr for most stellar evolution mass-loss to occur versus several
yr for e v aporation). Here μsev � 0.55 is the remaining mass fraction

fter stellar evolution for a metallicity of Z = 0.0006 ([Fe/H]
 −1.4). Expressing t dis in terms of the initial mass after stellar

volution is needed because equation ( 1 ) only describes the mass-loss
ue to e v aporation. This prediction for t dis agrees well with the results
rom the densest clusters, while the clusters with R 0 � { 30 , 10 , 3 }
issolve approximately a factor of { 2, 3, 4.5 } faster. In the next
ection, we discuss in more detail the role of BHs in this trend of
 dis ( R 0 ). 

.2 Mass-loss rates 

n this section, we describe how Ṁ depends on the initial conditions
f the clusters. Because all clusters lose about 45 per cent of their
nitial mass by stellar evolution, mostly in the first Gyr, and we
re here interested in e v aporation, we determine Ṁ in the range
00 M � ≤ M < M i in mass bins with widths of 3 × 10 3 M �. In
ig. 2 we show Ṁ from the N -body models in the top row, with
if ferent M 0 (dif ferent colours and symbols) and different initial
ensities (different columns). The bottom row shows the remaining
ass in BHs ( M BH ). The clusters with relatively low densities (left

wo columns) keep a significant fraction of their BHs and the mass-
oss rate of these models increases towards dissolution. 

There is a clear trend for higher density clusters to lose more
f their BHs, which is the result of their shorter relaxation time
Breen & Heggie 2013 ). The densest clusters ( R 0 � 100, right-hand
olumn) eject almost all BHs early and evolve along similar tracks
s models without BHs (equation 1 ), shown as black-dashed lines
n the top row. This is why their t dis is similar to those of clusters
ithout BHs (Fig. 1 ). Breen & Heggie ( 2013 ) explain that for tidally

imited clusters there exists a critical f BH � 0.1 at which the fraction
f the total mass that is lost is in the form of BHs equals 0.1, such
hat f BH remains constant. If f BH � 0.1 then all BHs are ejected,
hile if f BH � 0.1 the cluster evolves towards a 100 per cent BH

luster (see also Banerjee & Kroupa 2011 ). This was derived for
dealized two-component models. In our models we find that this
ritical fraction is lower: f BH � 0.025. This has consequences for
lusters with higher metallicity, because they form with a lower f BH 

han metal-poor clusters and therefore drop more easily below the
ritical f BH � 0.025 (Section 2.3 ). 

The fact that the different coloured Ṁ points in each panel do
ot o v erlap shows that at the same remaining mass M , models with
ifferent M 0 have different Ṁ , because their f BH are different. This
ehaviour is reproduced for most parts of the evolution by the dotted
ines, which are a simple parametrization of Ṁ , described in more
etail in Section 3 (equation 4 ). They are power-law relations for
˙
 ( M, M 0 ) of the form Ṁ ∝ ( M/M i ) a M 

1 / 3 
i , where the value of a

equired to described (most of) the data ranges from a = −1 to a =
/3. This relation results in a dependence t dis ∝ M 

2 / 3 
0 (see Fig. 1 )

ndependent of the value of a , that is, the same M 0 dependence as
as found for models without BHs (equation 1 ). 

art/stad1287_f1.eps
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Figure 2. Top: Mass-loss rates of N -body models on the orbit of Pal 5 from Gieles et al. ( 2021 ). Current cluster mass M ( t ) acts as a proxy for time, flowing 
from left to right. The dotted lines show Ṁ curves from equation ( 4 ) that match the N -body points. The dashed line is the same in every top panel and shows Ṁ 

without the effect of BHs. Bottom: Mass in BHs in the same N -body models. The diagonal dotted lines mark constant BH fractions of 1 per cent, 10 per cent, 
and 100 per cent. 
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For f BH � 0.3, | Ṁ | decreases again, because then the stars become
ess important and the cluster evolves from a two-component model 
stars and BHs) to a single-component model (only BHs). This 
eads to a narrower mass spectrum and a slower ev olution, b ut still

10 times faster than for a cluster with only stars. In fact, Ṁ ( M)
s then evolving parallel to the dashed line shown in the top row of
ig. 2 , but abo v e it because of the higher mean mass, which reduces
rh . 
Fig. 3 shows Ṁ as a function of the remaining BH fraction f BH 

or all low-metallicity models. The increase of | Ṁ | with f BH can be
pproximated by a linear relation Ṁ � −12 . 5 M � Myr −1 ( f BH / 0 . 1 ) . 
s shown earlier, clusters evolve at roughly constant M BH at late 

tages, such that a relation Ṁ ∝ f BH implies Ṁ ∝ M 
−1 . This leads

o a strongly ‘jumping’ M ( t ), very different from the result of models
ithout BHs ( Ṁ ∝ M 

1 / 3 ). 
Clusters lose most of their BHs in the early expansion phase. 

nce the cluster density has become comparable to (some multiple 
f) the tidal density, the cluster evolves at approximately constant 
 BH (see bottom row of Fig. 2 ). We can estimate how the BH loss

n the expansion phase depends on the initial conditions. Breen & 

eggie ( 2013 ) showed that the mass-loss rate of the BH population
epends on the cluster properties as Ṁ BH ∝ M/τrh , where τ rh is the 
alf-mass relaxation time-scale. We approximate the total BH mass 
ost as 
M BH = Ṁ BH 
t , where 
 t is the time the cluster needs to fill
he Roche volume. In the expansion phase the density reduces in time
s ρ( t ) � ρh, 0 ( t / τ rh, 0 ) −2 , where τ rh, 0 is the initial τ rh (H ́enon 1965 ;
ieles et al. 2011 ). So the time the cluster needs to expand to the tidal
oundary is 
t � τrh , 0 R 

1 / 2 
0 . Using also the initial values in the ex-

ression for Ṁ BH , we thus find 
M BH ∝ M 0 R 

1 / 2 
0 or 
f BH , 0 ∝ R 

1 / 2 
0 .

o the reduction of f BH due to dynamical ejections depends only on
he initial density, relative to the tidal density. The data in the bottom
ow of Fig. 2 show that indeed that the drop in f BH is larger for the
igher initial densities. We also note that there is a small dependence
n M 0 for R 0 = 10 − 30, with the drop in M BH being (relatively)
arge for the low-mass clusters. This is in the regime where only a
andful of BHs are left and therefore the theory of Breen & Heggie
o longer holds and we will not attempt to capture this. 
MNRAS 522, 5340–5357 (2023) 
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Figure 4. Mass fraction in stellar-mass BHs as a function of metallicity, 
from SSE (Hurley, Pols & Tout 2000 ; Banerjee et al. 2020 ). BHs that receive 
no kick are shown by dashed lines, the sum of BHs with and without kick is 
shown by solid lines. 
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Figure 5. Results of N -body models with different initial metallicities. The 
model with [Fe/H] = −1.4 is the same as shown in Fig. 2 . The models with 
higher [Fe/H] have lower initial f BH , leading to complete ejection of all BHs 
and mass-loss rates comparable to models without BHs (dashed line). 
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There exists a critical density R cr between the models with R 0 =
0 and R 0 = 100 abo v e which all BHs are ejected. We propose a
imple relation for the drop in f BH because of the dynamical ejection
f the form 

f BH ∝ 

(R 0 

R cr 

)1 / 2 

, (3) 

or R 0 < R cr � 50. Metal-rich clusters have lower f BH, 0 , and be-
ause the constant of proportionality in equation ( 3 ) does not depend
n f BH, 0 , the critical density is found from equating 
 f BH = f BH, 0 

uch that R cr ∝ f 2 BH , 0 . We discuss the consequences for metallicity
ext. 

.3 Metallicity 

tars of higher metallicity have stronger winds, which results in
ower remnant masses. To quantify this effect on the masses of BHs,
e adopt a Kroupa, Aarseth & Hurley ( 2001 ) IMF in the range
 . 1 − 100 M � and evolve the stars to an age of 12 Gyr with the
ingle stellar evolution model SSE by Hurley et al. ( 2000 ), with the
ecent update for massive star winds from Banerjee et al. ( 2020 ).

e then compute the mass fraction in BHs and show it in Fig. 4 ,
oth in terms of the initial mass ( f BH, 0 = M BH / M 0 , blue shaded
egion) and in terms of the total mass at 12 Gyr ( f BH = M BH / M ,
reen shaded region), which is roughly a factor 1/ μsev � 1.8 higher.
ince some of the BHs receive natal kicks (see Section 2.1 ), we show

he two extreme cases where all BHs that are kicked are either lost
dashed lines) or retained (full lines). As can be seen, f BH is roughly
onstant below [Fe/H] � −1.5 (typical metal-poor GC) and decreases
pproximately by a factor of two going to [Fe/H] � −0.5 (typical
etal-rich GC). 
To illustrate the effect of [Fe/H] and the resulting f BH on the

volution of the cluster, we show here the results of two N -body
odels with higher metallicity Z = 0.006 ([Fe/H] � −0.4) and Z =

.017 ([Fe/H] � 0.1) on the same orbit as the other models, and with
NRAS 522, 5340–5357 (2023) 
 = 10 5 and ρh , 0 = 300 M � pc −3 ( R 0 � 30). For the metal-poor
odels shown in Fig. 2 , sufficient number of BHs were retained for

hem to have a noticeable effect on Ṁ at this density. The effect of
igher metallicity on f BH and Ṁ in N -body models is shown in Fig. 5 .
rom this plot we see that the lower initial value of f BH results in all
Hs being dynamically ejected and their Ṁ following the results of
odels without BHs (equation 1 ). Because f BH, 0 is a factor of ∼2

ower at these higher metallicities, the critical initial density for ejec-
ion of all BHs is a factor of ∼4 lower (see the text below equation 3 ),
o R cr � 13 instead of 50. This R cr is now lower than the density of
hese models ( R 0 � 30) and explains why all BHs are ejected. We
ill use this metallicity dependence of Ṁ in the population model

Section 4 ). 

 A  NOVEL  PARAMETRIZATION  OF  THE  

LUSTER  MASS-LOSS  RATE  

n this section, we consider a simple analytical model for the
volution of the GCMF that results from adding the effects of BHs. 
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Figure 6. Left-hand panel: Evolution of cluster mass for different M 0 , x and y . Here M ref is a constant reference mass. Right-hand panel: Evolved cluster mass 
function for the same set of x and y as in the left-hand panel and for Ṁ ref = −30 M � Myr −1 and �tid = 0 . 32 Myr −1 . 
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.1 Mass-loss rate and mass evolution 

f we assume clusters to be spherically symmetric and moving on 
ircular orbits in a static galactic potential, the e v aporation mass-
oss rate would be independent of both cluster mass and time (for
 xample, H ́enon 1961 ; F all & Zhang 2001 ). In this simple picture,
he mass-loss time-scale is al w ays proportional to the current mass
 ( t ): τM ≡ −M/ Ṁ ∝ M . The total disruption time for a cluster with

nitial mass M i (that is, the mass after stellar evolution, equation 2 )
s then t dis ∝ M i . Escape of stars from a more realistic, anisotropic
oche volume around the cluster is delayed relative to a spherical 
ne (Fukushige & Heggie 2000 ), which leads to a modified scaling
f the form t dis ∝ M 

x 
i , with x � 2/3 (Baumgardt 2001 ). For clusters

ithout BHs, the mass-loss time-scale is also τM ∝ M 
x , such that

˙
 = −M/τM ∝ M 

1 −x (Lamers, Baumgardt & Gieles 2010 ), and 
his scaling is often used in GC population studies (Lamers et al.
005 ; Pfeffer et al. 2018 ; Choksi & Gnedin 2019a ; Chen & Gnedin
022 ). The positive correlation between | Ṁ | and M leads to a reduced
ass-loss rate as the cluster approaches dissolution, that is, a gentle 

skiing’ M ( t ) evolution. This allows proportionally more low-mass
lusters to survive until the present, leading to GCMF with a lower
 TO and a larger dispersion (Gieles 2009 ) than for the case of x = 1.
As we have shown in Section 2 , the opposite regime of x > 1 is

eeded to mimic the effect of BHs and obtain steep ‘jumping’ M ( t )
urves. Ho we ver, with the simple scaling abo v e this would result in
 superlinear scaling between t dis and M i , which is not found in these
 -body simulations (see Fig. 1 ). 
To unify a ‘jumping’ M ( t ) with a sublinear dependence of t dis on

he initial mass, we write the mass-loss rate generally as 

˙
 = Ṁ ref 

(
M 

M i 

)1 −y (
M i 

2 × 10 5 M �

)1 −x 
�tid 

0 . 32 Myr −1 , (4) 

here x > 0 is a parameter that controls the relation between t dis 

nd M i , and y > 0 is a parameter that controls the shape of M ( t ).
ere Ṁ ref < 0 is the mass-loss rate at a fixed reference mass M =
 × 10 5 M � and the same reference �tid as in equation ( 1 ), that is,
or V c = 220 km s −1 and R eff = 1 kpc . 
The functional form of equation ( 4 ) reco v ers the simple constant
ass-loss rate for x = y = 1, and the ‘skiing’ M ( t ) evolution with

he delayed escape for x = y � 2/3. Ho we ver, x and y do not need
o be the same, and equation ( 4 ) allows for both ‘skiing’ ( y < 1) and
jumping’ ( y > 1) evolution, for any scaling between t dis and initial
ass via the parameter x . A physical explanation for why x and y can

e different lies in the history of disruption of clusters with the same
 but different M i . Clusters with the same M , but different M / M i 

ave different mass fractions in BHs, which has a large effect on Ṁ ,
s we have seen in Section 2 . The different dependence of Ṁ on M
nd on M i was proposed previously by Muratov & Gnedin ( 2010 ),
ased on independent arguments. 
Integrating equation ( 4 ) over time we find the mass evolution 

( M i , �tid , t) = M i 

(
1 − t 

t dis ( M i , �tid ) 

)1 /y 

, (5) 

or t ≤ t dis ( M i , �tid ), where 

 dis = 10 Gyr 
2 / 3 

y 

30 M �/ Myr 

| Ṁ ref | 
0 . 32 Myr −1 

�tid 

(
M i 

2 ×10 5 M �

)x 

(6) 

s the total lifetime, that is, the time for the cluster mass to reach zero.
he mass evolution of a cluster is defined by the four parameters x ,
 , Ṁ ref , and �tid . 

In the left-hand panel of Fig. 6 we provide a synopsis of the mass
 volution for dif ferent choices of these parameters. The v alues of x
nd y also affect the shape of the GCMF, which we discuss next. 

.2 Cluster mass function 

e define the mass function ψ at time t as the number of GCs in the
ass range [ M , M + d M ], that is, ψ( M , �tid , t ) = d N /d M ( M , �tid , t ).
e can relate the mass function to the initial mass function ψ 0 ( M i )

s 

( M, �tid , t) = ψ 0 [ M i ( M )] 

∣∣∣∣∂ M i 

∂ M 

( M , �tid , t) 

∣∣∣∣ . (7) 

n analytical expression for the dependence M i ( M ) (that is, the
nverse of equation ( 5 ) for M ( M i )) can only be found for x = y
MNRAS 522, 5340–5357 (2023) 
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M

Figure 7. Turn-o v er mass M TO of GCMF found numerically as a root 
of equation ( 10 ). The special case x = y allows an analytic solution 
M TO / M i, min = y 1/ y , shown by the dashed line. 
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Table 2. Turno v er mass ( M TO ) and (logarithmic) mean ( μlog 10 M ) and 
dispersion ( σlog 10 M ) for the mass functions shown in the right-hand panel 
of Fig. 6 and two additional values of y ( y = 1.75 and y = 2). 

x y M TO / M i, min log 10 M TO μlog 10 M σlog 10 M 

(dex) 

0.67 0.67 0.55 5.16 4.99 0.93 
0.67 1.00 0.70 5.53 5.48 0.73 
0.67 1.33 0.80 5.78 5.78 0.60 
0.67 1.75 0.88 5.99 6.03 0.49 
0.67 2.00 0.92 6.10 6.14 0.45 
1.00 0.67 0.91 5.34 5.13 0.89 
1.00 1.00 1.00 5.56 5.49 0.71 
1.00 1.33 1.05 5.70 5.71 0.59 
1.00 1.75 1.08 5.83 5.89 0.51 
1.00 2.00 1.10 5.90 5.97 0.47 
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Gieles 2009 ), so we cannot write the mass function analytically in a
eneral case x 
= y . Instead, we find ∂ M / ∂ M i from the relation given
y equation ( 5 ): 

∂ ln M 

∂ ln M i 
= 1 − x 

y 
+ 

x 

y 

(
M 

M i 

)−y 

. (8) 

y interpolating both this relation and M ( M i ) from equation ( 5 ), we
nd M i ( M ) and ∂ M i / ∂ M ( M ) to e v aluate ψ( M , �tid , t ). 
The right-hand panel of Fig. 6 shows cluster mass functions

volved from the initial ψ 0 ( M i ) ∝ M 
−2 
i , for different x and y . The log-

rithmic slope at low masses equals y , independent of x . This can be
nderstood from considering the behaviour of ∂ M / ∂ M i in the limit M

M i . In this case ψ( M) ≈ ψ 0 ( M i ) 
y 

x 
( M/M i ) y−1 from equations ( 7 )

nd ( 8 ). The logarithmic mass function ψ(log M ) ∝ M ψ( M ) ∝ M 
y .

his power-law holds for masses below the minimum initial mass
f clusters still surviving at the time of observation t , which can be
ound from equation ( 6 ): 

 i , min ( t) = 2 × 10 5 M �

(
y t | Ṁ ref | 

2 × 10 5 M �

)1 /x 

. (9) 

F or a giv en Ṁ ref t , M TO increases with increasing y . It can be
alculated by setting dln ψ /dln M = −1 (Gieles 2009 ). For the initial
 0 ( M i ) ∝ M 

−2 
i , after some algebra this gives the equation 

 ( xμ − 1) ( μ − 1) = y, (10) 

here μ ≡ ( M / M i ) −y . The root of this equation can be found numer-
cally after we specify the relation between the initial cluster mass
 i and mass M ( t ) after time t . That relation is given by equation ( 5 )

nd can be expressed in both masses normalized by the minimum
urvi v al mass: ( M / M i, min ) y = ( M i / M i, min ) y − ( M i / M i, min ) y − x . The
atter relation allows us to convert the turnover mass M TO from
quation ( 10 ) to a ratio M TO / M i, min . The numerical solutions for two
ases x = 1 and x = 0.67 are shown in Fig. 7 . They reproduce the
alues in Table 2 found from the evolved models. 

There are three contributing factors to the higher M TO when
Hs are considered: (1) a larger y and (2) a higher | Ṁ ref | both
NRAS 522, 5340–5357 (2023) 
ncrease M i, min (equation 9 ) and (3) a larger y also results in a larger
 TO / M i, min (Fig. 7 ). As an illustration, we highlight the difference in
 TO for the parameter we will use in the next section: for the models
ith BHs ( y = 1 . 33 , Ṁ ref = −45 M � Myr −1 ), M TO is a factor of
.8 × 1.45 × 1.5 = 6.1 higher than for the model without BHs
 y = 0 . 67 , Ṁ ref = −30 M � Myr −1 ), for the same x = 0.67 and the
ame �tid . 

This simple model illustrates the general behaviour of the mass
unction under the new parametrization of the cluster mass-loss.

hile many of its assumptions are not valid in the real Milky Way
alaxy, the analytical expressions help us understand main effects of
ncluding BHs on the accelerated disruption. In the next section, we
resent a more realistic model that accounts for the orbit distribution
n the galaxy and matches the observations of Galactic GCs. 

 POPULATION  MODEL  

n this section, we present a detailed model for the evolution of a GC
opulation in a Milky Way-like galaxy. Our approach is similar to that
f Fall & Zhang ( 2001 ) who start with a distribution function (DF)
nd then evolve the GCMF due to various disruption mechanisms
hich all have a dependence on the orbit. Their DF depends on

solating integrals (specific energy and angular momentum), but we
xpress the DF directly in terms of mass, position, and velocity. We
dopt an SIS for the Galaxy, which has a potential 

 ( R) = V 
2 

c ln ( R) , (11) 

nd we assume the circular velocity of V c = 220 km s −1 . 

.1 Initial conditions 

e write the initial DF, that is, the phase-space density of clusters
n the galaxy, as a function of M i , galactic position ( R ), and galactic
elocity ( V ) 

 0 ( M i , R , V ) = ψ 0 ( M i ) n 0 ( R) F ( R, V r , V t ) . (12) 

ere ψ 0 ( M i ) describes the initial GCMF, n 0 ( R ) the radial number
ensity profile, and F ( R , V r , V t ) the radius-dependent velocity
istribution. Because we will consider the effect of radially bi-
sed velocity anisotropy for the GC orbits, we define the velocity
istribution in terms of the radial velocity ( V r ) and the tangen-
ial velocity ( V t ). The phase-space density is normalized such
hat 

∫ ∞ 

0 d 3 V 

∫ R up 

R lo 
d 3 R 

∫ M up 

M lo 
d M i f 0 ( M i , R , V ) = 1, where we adopt

he following boundary values: R lo = 1 kpc , R up = 100 kpc , M lo =
0 4 M �, and M up = 10 8 M �. We discuss the effect of varying M lo 
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Table 3. Overview of the functions used in the population model. 

Function Definition Description 

f 0 ( M i , R , V ) 
d 7 N 

d M i d 3 R d 3 V 
Initial DF (after stellar evolution) 

f ( M, R , V , t) 
d 7 N 

d M d 3 R d 3 V 
DF (after e v aporation) 

ψ 0 ( M i ) 
d N 

d M i 
Initial GCMF (after stellar evolution) 

ψ( M , �tid , t ) 
d N 

d M 

Evolved GCMF for a single �tid 

ψ( M , R , t ) 
d 2 N 

d Md R 

Evolved GCMF at R (equation 17 ) 

ψ( M , t ) 
d N 

d M 

ψ( M , R , t ) integrated over R 

Table 4. Overview of the nine parameters of the GC population model. 

Description Parameter 

Galaxy: V c = 220 km s −1 

Mass-loss: Ṁ ref = −30 or − 45 M � Myr −1 

x = 2/3 
y = 2/3 or 4/3 

Initial GCMF: α = 2 
M c = 10 6 M � or ∞ 

n 0 ( R ): γ = 3.5 or 4.5 
β( R ) and n 0 ( R ): R ani = 5 kpc or ∞ 

δ = 0.5 
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n Section 6 and next we discuss the functional forms for each
ontribution to f 0 . 

For ψ 0 ( M i ) we adopt a power law with an exponential truncation 

 0 ( M i ) ∝ M 
−α
i exp 

(
− M i 

M c 

)
, (13) 

here M c is the truncation mass, which we take either M c → ∞
the ‘power-law’ model considered in the previous section), or M c � 

0 6 M � (the ‘Schechter’ model). We fix the power-law index α = 2 in
ll models, as it is a common value found for young massive clusters
n nearby galaxies. Although it cannot be ruled out that GCs formed
ith a more peaked initial GCMF, here we adopt the hypothesis that
assive star clusters form with a universal GCMF at all redshifts.
he constant of proportionality is found from the requirement that 
 M up 

M lo 
ψ 0 d M i = 1. 

The velocity distribution is assumed to be Gaussian in all three 
omponents, such that 

 ( R, V r , V t ) = 

exp 
[−V 

2 
r / (2 σ

2 
r ( R)) 

]
√ 

2 πσr ( R) 

exp 
[−V 

2 
t /σ

2 
t ( R) 

]
πσ 2 

t ( R) 
. (14) 

ere σt ( R) = 〈 V 
2 

t ( R) 〉 1 / 2 is the root-mean-square tangential velocity
t radius R and σr ( R) = 〈 V 

2 
r ( R) 〉 1 / 2 is the root-mean-square radial ve-

ocity at radius R . For an isotropic velocity distribution σ 2 
t = 2 σ 2 

r . It
atisfies 

∫ 
d 3 V F ( R, V r , V t ) = 2 π

∫ ∞ 

0 V t d V t 

∫ ∞ 

−∞ 
d V r F ( R, V r , V t ) =

. We adopt an anisotropy profile of the GC system of the form 

( R) ≡ 1 − σ 2 
t ( R) 

2 σ 2 
r ( R) 

= 
1 

1 + ( R ani /R) δ , (15) 

here δ > 0. This profile results in isotropy for R � R ani and radial
rbits for R � R ani , with the parameter δ determining how quickly 
( R ) rises. DFs that include radial anisotropy with an exp ( −J 2 ) term,
here J is the specific angular momentum, result in a β( R ) profile as

n equation ( 15 ) with δ = 2 (Eddington 1915 ; Michie 1963 ; Osipkov
979 ; Merritt 1985 ). The present-day anisotropy profile of Milky
ay GCs as derived from line-of-sight velocities and Gaia proper 
otions (Vasiliev 2019 ) is better described by δ � 1. Here we will

ary δ, together with R ani , to match the β profile of the observed
lusters (see the description of Model (3) in Section 4.3 ). 

To find σ r ( R ) and σ t ( R ) we need to define n 0 ( R ) and solve the
adially anisotropic Jeans equation (equation 4.215 in Binney & 

remaine 2008 ) with GCs as tracer particles in the Galactic potential
equation 11 ). A convenient choice for n 0 ( R ) is 

 0 ( R ) ∝ 

R 
−γ

[
1 + ( R/R ani ) δ

]2 /δ , (16) 

ecause it results in a constant radial dispersion σ r = V c / γ 1/2 . For
 � R ani , the profile is n 0 ( R ) ∝ R 

−γ , and for R � R ani it is
 0 ( R ) ∝ R 

−γ−2 . Fully isotropic models ( R ani → ∞ ) have a single
ower-law n 0 ( R ) ∝ R 

−γ . The constant of proportionality is found
rom the requirement that 

∫ 
n 0 ( R) d 3 R = 4 π

∫ R up 

R lo 
n 0 ( R) R 

2 d R = 1.

ombined with the expression for β( R ), we find that σ 2 
t ( R) =

 σ 2 
r [1 + ( R/R ani ) δ] −1 . We now have a fully analytic form for

 0 ( M i , R , V ) (equation 12 ) and describe next how we evolve it to
he present age of GCs. 

.2 Evolving the GC population 

o evolve the mass function as a function of R , we need to obtain
he ef fecti ve tidal field strength �tid = V c [ R p (1 + ε)] −1 from V r , V t 

nd R . For the case of a SIS, R p ( R , V r , V t ) and R a ( R , V r , V t ) are the
adii where V r = 0, which are roots that need to solved numerically
rom the orbital energy and angular momentum (see, for example, 
ection 2.1 of van den Bosch et al. 1999 ), which then provides ε =
 R a − R p )/( R a + R p ). Because of the scale-free nature of the SIS,
e do this once for 100 eccentricities between 0 and 1 and then use

nterpolation to find �tid ( R , V r , V t ). 
We first find the present-day phase-space density f ( M, R , V , t) =
( M, �tid , t) n 0 ( R) F ( R, V r , V t ), where ψ( M , �tid , t ) is given by

quation ( 7 ) and we recall that �tid = �tid ( R , V r , V t ). We then integrate
 v er all velocities to obtain the mass function as a function of R 

( M, R, t) = 

∫ 
f ( M, R , V , t) d 3 V , 

= 4 πR 
2 n 0 ( R) 

∫ 
d 3 V ψ( M, �tid , t) F ( R, V r , V t ) . (17) 

he fraction of surviving clusters is then given by f surv =
 M up 

M lo 
d M 

∫ R up 

R lo 
d R ψ( M, R, t). To compare the model to the obser-

ations we multiply ψ( M , R , t ) by N GC / f surv , with N GC = 156 being
he total number of GCs in the Milky Way for which a luminosity
nd R are available (Harris 1996 , 2010 ). We summarize the various
efinitions of the DF and the mass function in Table 3 . 

.3 Model parameters 

n Table 4 , we summarize the nine parameters of the GC population
odel we described abo v e, including the adopted values. The

arameters with a single mentioned value are fixed in all models.
or some parameters we adopt two values, in order to study their
ffect on the resulting GCMF. We use these parameters to solve
ight models summarized in Table 5 and described below. 

(i) Model (1), no BHs: This model serves as a starting point
nd defines the magnitude of the GCMF problem by considering the
implest case: an isotropic velocity distribution β( R ) = 0. Integrating
MNRAS 522, 5340–5357 (2023) 
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Table 5. Different population models shown in Figs 9 and 10 . In all models x = 0.67, α = 2, V c = 220 km s −1 . 

Model Description Parameters 

Name Anisotropy ICMF [Fe/H] gradient Past tidal R ani δ γ M c Ṁ ref y 
(kpc) (M �) (M �/Myr) 

(1) no BHs no power law no no ∞ − 4.5 ∞ −30 0.67 
(2) BHs no power law no no ∞ − 4.5 ∞ −45 1.33 
(3) BHs + A (Anisotropy) yes power law no no 5 0.5 3.5 ∞ −45 1.33 
(4) BHs + S (Schechter) no Schechter no no ∞ − 4.5 10 6 −45 1.33 
(5) BHs + F ([Fe/H] gradient) no power law yes no ∞ − 4.5 ∞ −45 1.33 
(6) BHs + P (Past evolution) no power law no yes ∞ − 4.5 ∞ −45 1.33 
(7) BHs + A + S yes Schechter no no 5 0.5 3.5 10 6 -45 1.33 
(8) BHs + A + S + F + P yes Schechter yes yes 5 0.5 3.5 10 6 −45 1.33 
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Figure 8. Metallicities of Milky Way GCs, as individual points (grey 
symbols) and in radial bins. The dashed line shows a simple analytic approx- 
imation, which for R < 10 kpc has a logarithmic slope of −1: [Fe/H]( R ) = 

−0.5 − log 10 R . 
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 v er all orbits, we find that the average mass-loss rate at R is a
actor of ∼3.1 higher than that of the circular orbit at that R . The
nitial GCMF is a power law and for the mass-loss parameters we
dopt the values found in models without BHs (equation 1 ), that
s, Ṁ ref = −30 M � Myr −1 and x = y = 2/3. This model roughly
escribes the contribution of e v aporation in the hierarchical models
f Pfeffer et al. ( 2018 ) and Choksi & Gnedin ( 2019b ) at low redshift.
(ii) Model (2), BHs: Here we study the effect of higher | Ṁ | and y

ue to BHs. We base the values on the N -body models with R 0 � 30
rom Section 2 , which can be described by Ṁ ref = −45 M � Myr −1 

nd y = 4/3. In these models the effect of BHs is moderate compared
o the two sets of N -body models with lower R 0 shown in Fig. 2 ,
hich have higher | Ṁ ref | and y . We assume the same R 0 � 30 and
 h, 0 / r J, eff � 0.05 (Table 1 ) for all clusters. This is of course not
ealistic, because real clusters have a spread in these parameters
nd the orbits evolve in time, but it serves as an approximation for
he average filling factor of clusters. We discuss this point more in
ection 6.4 . 
n the next four models, we add a single physical effect to the BHs,
hich each reduce the gradient of M TO ( R ): 
(iii) Model (3), BHs + A (Anisotropy): Here we add radially

iased anisotropy by choosing R ani = 5 kpc with a relati vely slo wly
ising β( R ) ( δ = 0.5). These values were chosen such that in the final

odel (8) the anisotropy profile of the surviving clusters is similar
o the observed profile. Anisotropy increases | Ṁ | at large R , thereby
educing the gradient of M TO ( R ). 

(iv) Model (4), BHs + S (Schechter): Here we add a Schechter
runcation mass of M c = 10 6 M � as found by Jord ́an et al. ( 2007 )
rom fits of ‘evolved Schechter functions’ of the Milky W ay GCMF .
f the amount of mass lost is comparable to M c , the turno v er mass
nly increases slowly for any additional mass-loss (Jord ́an et al.
007 ; Gieles 2009 ), so this truncation mass reduces the gradient of
 TO ( R ) in the inner galaxy. 
(v) Model (5), BHs + F ( [Fe/H] gradient): Here we consider the

ffect of the GC metallicity gradient in the galaxy. In Section 2.3 we
howed that more metal-rich clusters ([Fe/H] � −0.5), with the same
nitial density ( R 0 � 30) eject all BHs and evolve similarly to clusters
ithout BHs. This means that in the inner galaxy, | Ṁ | is lower than

n Model (2). Fig. 8 shows that in the range 0 � log 10 ( R /kpc) �
, [Fe/H] of Milky Way GCs decreases from approximately −0.5
o −1.5. We mimic the effect of a [Fe/H]-gradient by adopting R -
ependent relations for Ṁ and y for R ≤ 10 kpc : 

˙
 ref ( R) = −30 M � Myr −1 

(
1 + 

1 
2 log 10 ( R) 

)
(18) 

( R) = 
2 
3 + 

2 
3 log 10 ( R) . (19) 
NRAS 522, 5340–5357 (2023) 
t R = 10 kpc these relations result in the same values as Model (2)
 Ṁ ref = −45 M � Myr −1 , y = 4/3), and at R = 1 kpc they give the
alues found for clusters without BHs ( Ṁ ref = −30 M � Myr −1 , y =
/3, equation 1 ), thereby reducing the effect of BHs on Ṁ and
herefore the gradient of M TO ( R ). 

(vi) Model (6), BHs + P (Past evolution): Here we include an
pproximate correction for the past tidal evolution of clusters from
 full hierarchical model, described in Appendix A . As a result we
ultiply Ṁ by ( R eff /4) 1/2 at R eff > 4 kpc. 
(vii) Model (7), BHs + A + S: In this model, we combine the

ffect of anisotropy and the Schechter cutoff mass. 
(viii) Model (8), BHs + A + S + F + P: Here we include all effects

escribed in Models (2)–(6). This model represents a realistic way
f modelling cluster evolution. 

 RESULTS  OF  POPULATION  MODELS  

n this section, we discuss the results of the eight models summarized
n Table 5 . We compare the models to 156 GCs with luminosities
nd R in the Harris catalogue (Harris 1996 , 2010 ). We adopt a mass-
o-light ratio M / L V = 1.8 from Baumgardt, Sollima & Hilker ( 2020 )
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Figure 9. Different ingredients in the GCMF model compared. A stands for Anisotropy, S for Schechter, F for [Fe/H] gradient, P for past evolution. Red dashed 
lines in the top panels are the initial distributions, solid blue lines are the final distributions, black data points with error bars, and black solid line with grey 
shaded regions are observations. 
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nd quantify the shape of the GCMF at different radii by μlog 10 M ≡
 log 10 ( M/ M �) 〉 and the dispersion of the logarithmic mass distribu-
ion, σlog 10 M , for M ≥ 10 3 M �. The mean of the logarithm of mass is
 reasonable approximation to M TO (see Table 2 ). For the anisotropy,
e consider clusters with M > 10 5 M � and compare to the results

rom Gaia DR2 by Vasiliev ( 2019 ). All models are displayed in Figs 9
nd 10 . 

.1 Global properties 

(i) Model (1), no BHs: This model quantifies the magnitude of 
he GCMF problem: μlog 10 M reproduces the data only at R � 1 kpc
nd then it declines as R 

−1/ x = R 
−3/2 , which is a known scaling for

 TO ( R ) for an initial GCMF that is a power law with logarithmic
lope of −2 and t dis ∝ M 
x 
0 (Gieles 2009 ). At R � 100 kpc , μlog 10 M is

 factor of ∼10 too low. The model also underestimates β at all radii,
ecause preferentially radial orbits are remo v ed at small radii while
he initial β is too low at large R and evolves very little. The power law
nitial GCMF and low value for x also result in a very wide GCMF
 σlog 10 M � 0 . 75) compared to the observed width ( σlog 10 M � 0 . 5).
he model width is also decreasing with R , while the data show an

ncrease. From this it is clear that e v aporation of clusters without
Hs is not able to explain the shape of the GCMF. Adding radial
nisotropy within the constraints of the observed β( R ) increases
log 10 M by only ∼ 0 . 3 dex at large R (not shown), and is therefore not

ufficient. 
(ii) Model (2), BHs: Here we only change Ṁ ref and y to mimic

he effect of BHs on Ṁ . This model almost reproduces μlog M at
MNRAS 522, 5340–5357 (2023) 
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Figure 10. As Fig. 9 , but now for Models (3–6), showing in each column the effect BHs and one additional ingredient ( A = Anisotropy; S = Schechter; F 
= [Fe/H] gradient; P = past evolution). 
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 � 10 kpc , suggesting that the effect of BHs alleviates a large part
f the GCMF problem. This model gives rise to the same scaling
log 10 M ∝ R 

−3 / 2 , so when adding BHs the problem is that M TO is too
igh in the inner galaxy ( � 10 kpc ). 
odels (3)–(6) present four additional ingredients that all reduce the

logarithmic) slope of the μlog 10 M ( R) relation. The individual effects
an be seen in Fig. 10 . 

(iii) Model (3), BHs + A (Anisotropy): In this model
e add radial anisotropy to the effect of BHs. We find

hat for R ani = 5 kpc and δ = 0.5 the observed β( R ) pro-
le is well reproduced. Compared to Model (2), radially bi-
sed anisotropy increases μlog 10 M by ∼ 0 . 3 dex at R �
0 kpc , improving agreement with the observations at those large
adii. 
NRAS 522, 5340–5357 (2023) 
(iv) Model (4), BHs + S (Schechter): The addition of the expo-
ential truncation in the initial GCMF reduces μlog 10 M at R � 1 kpc
y nearly an order of magnitude. It also narrows the GCMF to
pproximately the correct width σlog 10 M � 0 . 5. 

(v) Model (5), BHs + F ( [Fe/H] gradient): The inclusion of
he metallicity gradient reduces Ṁ mainly at R � 3 kpc , decreasing

log 10 M and increasing σlog 10 M there. 
(vi) Model (6), BHs + P (Past evolution): The past tidal evolu-

ion reduces the gradient of μlog 10 M ( R) from R 
−3/2 to approximately

 
−0.9 . 
(vii) Model (7), BHs + A + S: The combined effect of anisotropy

nd a Schechter cutoff reduces the decline of μlog 10 M , but still
he disruption at small (large) R is o v erestimated (underestimated)
lightly. 
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(viii) Model (8), BHs + A + S + F + P: This model combines all
our effects (A + S + F + P) in addition to the BHs. We note that
ecause of the relatively small δ = 0.5, the logarithmic slope of the
nitial density profile is steeper than −3.5 at all radii: it reduces
rom −4.1 at 1 kpc to −5.1 at 100 kpc , and at R ani = 5 kpc the
lope is −4.5. In this model the gradient of μlog 10 M is substantially 
educed compared to the power-law Model (2) and closely follows 
he observed μlog 10 M ( R). This model reproduces well the number 
ensity profile, the anisotropy profile, and the shape of the GCMF at
ifferent Galactic radii. The model orbits are a bit too tangentially 
iased ( β < 0) at R � 3 kpc . We interpret this as an artefact of our
ssumption of a static potential in which orbits do not isotropize due
o interactions with the galactic bar, other GCs and infalling satellite 
alaxies. We expect that these effects in a real galaxy would lead to
n isotropic velocity distribution of inner GCs. 

.2 Mass function 

n Figs 9 and 10 , we used the (logarithmic) mean and dispersion of
he GCMF as measures of the GCMF shape. It is also instructive to
ook at the full GCMF in different Galactocentric radius bins. The 
CMF for all GCs is obtained from ψ ( M, t ) = 

∫ R up 

R lo 
ψ( M, R, t)d R,

ith ψ( M , R , t ) from equation ( 17 ). The integration boundaries can
e changed to obtain the GCMF in different radial intervals. Fig. 11
hows the total mass function for Model (8) and in three radial bins.
or the observational data, we used radial bins with equal number 
f GCs (52) and the histograms were constructed with equal number 
f GCs: eight in the total sample and four in the three R bins. For
he model we also defined the radial bins to contain exactly 1/3 of
he total number of GCs, which results in slightly different bin edges
han for the observations because the number density profile of the 

odel is slightly steeper. We do this because we are mostly interested
n comparing the shapes, rather then the vertical scaling. The model 
CMF shows good resemblance to the observed one, reproducing 

he slightly lower M TO and larger width at high R . 

 DISCUSSION  

.1 Contribution to field stars 

he vast majority of GCs in our model do not survive, so an important
heck is to compare the contribution of dissolved clusters to the field
tars. The total mass lost from star clusters with M i > 10 4 M � in
odel (8) is 
M � 5 × 10 8 M � and here we discuss the implica-

ions. The total mass of the Galactic halo is 1 . 4 × 10 9 M � (Deason,
elokurov & Sanders 2019 ), so if all lost mass ended up in the
alo, then roughly one-third of the stellar halo would be made out
f disrupted star clusters. If we adopt a lower limit of 10 2 M � this
raction approximately doubles. This appears in tension with the 
esults of Deason, Belokurov & Weisz ( 2015 ) who find that the ratio
f the number of blue stragglers o v er blue horizontal branch stars in
he halo is more similar to that in dwarf galaxies than in surviving
Cs. It must be noted that this ratio in low-mass clusters is closer

o what is found in the field than in massive clusters (Deason et al.
015 ). Also, the contribution of stars from GCs to the halo is more
mportant in the inner Galaxy where tides are stronger. To quantify 
his, we determined the radial density profile of mass lost from GCs,
� ( R ). We find ρ� ( R ) by subtracting the mass in surviving clusters
rom the initial mass of the GC population as a function of R 

� ( R) = 

N GC 

f surv 

[∫ M up 

M lo 

M i ψ 0 ( M i ) n 0 ( R) d M i −

1 

4 πR 
2 

∫ M up 

M lo 

M ψ( M , R, 12 Gyr ) d M 

]
. (20) 

ere ψ( M , R , t ) is the present-day GCMF (equation 17 ) and ψ 0 ( M i )
nd n 0 ( R ) are the initial GCMF and initial number density profile
rom equation ( 12 ). Note that this expression is only approximate,
ecause it assumes that the mass is lost at R while in reality
he escaped stars follow a distribution between the pericentre and 
pocentre distance of the orbit. Nevertheless, equation ( 20 ) provides
 useful estimate that can be compared to observational data. 

In Fig. 12 we compare ρ� ( R ) to the stellar halo density profile
rom APOGEE (Horta et al. 2021 ). Because the APOGEE data only
nclude stars with −2.5 < [Fe/H] < −1, we multiply our model
redictions by a correction factor f MP ( R ) ≤ 1 that approximates the
raction of GCs with [Fe/H] < −1 as a function of R . From the Harris
atalogue, we find that this fraction for GCs today is well described
y f MP = [1.5 + log 10 ( R /kpc)]/3.5 for 1 < R /kpc < 100. It increases
rom f MP (1 kpc ) � 0 . 4 to f MP (100 kpc ) = 1. At the smallest R in the
POGEE data (1 . 5 kpc ), the contribution of mass lost from GCs to

he total halo mass is nearly 70 per cent . This seems extreme, but we
ote that at 15 kpc the fraction drops to ∼ 10 per cent , so there is no
ension with the conclusion of Deason et al. ( 2015 ), because their
ample considered stars at R � 10 kpc . Also, we note that GC may
orm in a disc-like configuration (Kravtsov & Gnedin 2005 ; Meng &
nedin 2021 ) and later scatter into the halo. The fast disrupting

ow-mass clusters therefore may contribute more to the thick disc 
nd/or the bulge, which are 5–10 times more massive than the halo,
espectively. 

.2 Nitrogen-rich stars 

ost mass is lost from no w-disrupted lo w-mass clusters, and it
s challenging to identify these stars as having originated from a
luster, because their streams will have phase mixed long ago. How-
 ver, massi ve clusters ( � 10 5 M �) have anomalous light-element
bundances, manifesting as anticorrelations in N–C, Na–O, and 
ometimes Al–Mg (Bastian & Lardo 2018 ), and these chemical 
mprints are preserved when stars are lost from the cluster. Stars
ith such abundances have also been found in the (inner) halo

Martell et al. 2016 ; Schia v on et al. 2017 ; Horta et al. 2021 ;
elokurov & Kravtsov 2022 ). As another test, we compare ρ� ( R )
f stars originating from massive clusters to the density profile of
-rich stars found in APOGEE by Horta et al. ( 2021 ). We assume

hat 2/3 of GC stars with M i ≥ 10 5 M � ( ≥ μsev 10 5 M � after stellar
ass-loss) have anomalous abundances. In Fig. 12 we show that the

redicted ρ� ( R ) of N-rich stars matches the observed profile from
POGEE very well. This suggests that these N-rich halo stars have
 GC origin. A follow-up test is to look for clustering of stars in
nergy and angular momentum space (or action-angles), because a 
C origin predicts that the N-rich stars are more clustered than the

est of the halo stars, as they originated from more massive clusters,
hich disrupted more recently . Additionally , at a given R , most mass

s lost from the GCs that have the most radial orbits, so we predict that
he N-rich stars are preferentially on radial orbit ( β ∼ 0.5). Indeed,
-rich stars are on highly eccentric orbits (Fern ́andez-Trincado et al.
019 ), but not more eccentric than normal metal-poor stars (Tang
t al. 2020 ). 
MNRAS 522, 5340–5357 (2023) 
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M

Figure 11. Comparison between the GCMF of Model (8) and the observed MF of Galactic GCs from the Harris catalogue for all 156 GCs (left-hand panel) 
and at three Galactocentric radius bins containing equal number of GCs (52) each. The dashed (red) line shows the initial GCMFs. The dotted (black) lines in 
the three right-hand panels show the total GCMF model for reference. 

Figure 12. Comparison between the density profiles of stellar mass stripped 
from GCs ( 
 M ) and the N-rich stars in the Galactic halo (Horta et al. 2021 ), 
which are expected to originate from massive GCs. We compare this to 
 M 

from GCs with initial masses M i > 10 5 M � and assume that 2/3 of their stars 
are N rich. The APOGEE data do not include stars with [Fe/H] ≥ −1, so 
we multiply our model prediction (grey dashed lines) by an approximation 
for the fraction of metal-poor GCs as a function of radius f ( R ) = (1.5 + 

log ( R ))/3.5, for R ≤ 100 kpc, which describes the present-day fraction of 
Milky Way GCs with [Fe/H] < −1. 

6

A  

o  

t  

(  

a  

β  

H  

t  

i  

(  

g  

t  

D  

t  

i  

w  

F  

r  

t  

N  

d  

W

6

O  

s  

o  

o  

i  

f  

d  

f  

t  

e  

w  

o  

M  

b  

ρ

 

c  

1  

o  

o  

U  

i  

g  

t  

e  

n  

t  

(

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/522/4/5340/7152598 by U
niversity of M

ichigan user on 27 July 2023
.3 Specific frequency as a function of metallicity 

nother aspect to consider is GC disruption as a function of [Fe/H]. In
ur model, metal-poor GCs have a higher | Ṁ | than metal-rich GCs for
he same �tid . If we assume that all star formation happens in clusters
that is, the cluster formation efficiency is 100 per cent), then in the
bsence of a metallicity gradient and for a metallicity-independent
( R ) we expect a lower GC specific frequency for metal-poor GCs.
ere we define specific frequency as the fraction of the stellar mass

hat is in clusters at present. Ho we v er, the observ ed specific frequenc y
s a factor of ∼5 higher at [Fe/H] � −1.5 compared to [Fe/H] � −0.5
in NGC 5128; Harris & Harris 2002 ). Because of the metallicity
radient, metal-rich clusters are closer to the Galaxy centre where the
NRAS 522, 5340–5357 (2023) 
ides are stronger, resulting in more mass-loss for metal-rich clusters.
epending on the metallicity gradient, this effect may o v ercome

he lower | Ṁ | at high [Fe/H]. We quantify this with our adopted
mplementation of [Fe/H]-gradient: we assume metal-rich GCs are
ithin R � 3 kpc and metal-poor GCs at R � 3 kpc (see Fig. 8 ).
rom this we find that the specific frequency of metal-poor (metal-
ich) GCs is ∼ 4 per cent (2 per cent ). So we reco v er the same sign as
he observation, but the slope is not as steep (factor of ∼2 versus ∼5).
ote that this is computed from the ratio of surviving clusters o v er
isrupted clusters, not considering the actual field stars in the Milky
ay. 

.4 Initial density 

ur model assumes a fixed R 0 = ρh , 0 /ρh , f = 30 (or r h, 0 / r J, eff � 0.05,
ee Table 1 ). Here we discuss the implication for the distribution
f initial densities of the GC population. Because ρh, f depends
n the tidal field, from the orbit distribution we can derive the
mplied initial distribution of ρh, 0 . For the SIS, ρh, f can be found
rom �tid as ρh , f � 78 . 3 �2 

tid /G . To obtain a well-sampled density
istribution, we draw 2 × 10 7 initial masses and orbits from
 0 ( M i , R , V ) (equation 12 ) with parameters of Model (8), restricted

o M i > 10 4 M �, because lower mass GCs almost all dissolve. We
volve the initial masses to present-day masses with equation ( 5 ),
hich results in ∼2.5 × 10 5 surviving clusters. We note that although
ur model only evolves initial masses after stellar evolution (that is,
 i ), the Ṁ parameters that we use are based on initial densities

efore stellar evolution so we can find ρh, 0 for each GC from
h , 0 = 30 ρh , f ( R, V ). 
In Fig. 13 , we plot the initial half-mass density distribution of all

lusters and of the surviving clusters. Including clusters in the range
0 2 − 10 4 M � would increase the distribution of all GCs by a factor
f ∼110. This shows a peak at ∼ 10 4 . 5 M � pc −3 . This is roughly an
rder of magnitude higher than young massive clusters in the Local
niv erse (Porte gies Zwart et al. 2010 ; Brown & Gnedin 2021 ), but

t is expected that GCs at a redshift of z � 4 form denser because
alaxies had higher gas fractions and velocity dispersion leading
o higher pressure. Interestingly, it was recently shown (Antonini
t al. 2023 ) that an initial density of � 10 4 M � pc −3 is what is
eeded to create sufficient numbers of (hierarchical) BH mergers
o explain the gravitational wave sources with large primary masses
 � 20 M �). 
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Figure 13. Initial density distribution for all clusters in Model (8) (red, 
dashed line) and for the surviving clusters (blue, solid line). 
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Fig. 13 shows that the surviving clusters have slightly lower initial 
ensities, because the densest clusters are typically located near the 
alactic centre where tidal disruption is most efficient. 
We also compare these densities to present-day (half-mass) 

ensities of Milky Way GCs. These can be estimated by assum-
ng that mass follows light and give the median (mean) ρh ∼
00(1000) M � pc −3 , that is, more than an order of magnitude lower
han the peak density in our model after stellar evolution. This is
ncouraging because it is expected that the densities of clusters 
ecrease further after stellar mass-loss as the result of two-body 
elaxation (H ́enon 1965 ; Gieles et al. 2011 ). 

.5 Black holes in present-day GCs 

n our model, all GCs undergo a BH-dominated phase towards the 
nd of their evolution. This is the result of our assumption of a
onstant R 0 for all clusters. As already discussed in Section 6.4 ,
his assumption is intended to describe the average GC. We can 
lso estimate the distribution of the BH mass fraction ( f BH ) in our
odel. Towards the end of the evolution, M BH remains approximately 

onstant (Fig. 2 ). Assuming a constant mass-loss rate in time ( y =
), the distribution d N / d f BH = (d N / d M ) | ∂ M /∂ f BH | and because
 N /d M � constant at low masses and f BH ∝ 1/ M for M BH � constant,
e have d N/ d f BH ∝ f −2 

BH , so we expect the majority of clusters to
ave f BH close to the minimum f BH � 0.02 for clusters with R 0 = 30
see Fig. 2 ). 

Various studies have pointed out that populations of stellar- 
ass BHs may be present in GCs, based on their large core radii

Mackey et al. 2007 , 2008 ); the absence of mass se gre gation of
tars in some GCs (Alessandrini et al. 2016 ; Peuten et al. 2016 ;
eatherford et al. 2020 ); the central mass-to-light ratio (for the 

ases of Omega Centauri and 47 Tucanae; see Baumgardt et al. 
019 ; Zocchi, Gieles & H ́enault-Brunet 2019 ; H ́enault-Brunet et al.
019 ); the core o v er half-light radius (Askar, Arca Sedda & Giersz
018 ; Kremer et al. 2020 ) and the presence of tidal tails (see Gieles
t al. 2021 , for the case of Palomar 5). Breen & Heggie ( 2013 )
uggest that all GCs apart from the ones that are classified as ‘core
ollapsed’ possess BHs, which implies that 80 per cent of Milky Way
Cs still contains BHs. Several studies that try to quantify f BH for

arger numbers of GCs with different methods have recently become 
vailable (Askar et al. 2018 ; Weatherford et al. 2020 ; Dickson et al.
023 ). There is generally poor agreement for individual GCs, but all
tudies find typical f BH � 0.01, with exceptions like Omega Centauri
 f BH � 0.05; Baumgardt et al. 2019 ; Zocchi et al. 2019 ) and Pal 5
 f BH � 0.2; Gieles et al. 2021 ). 

Observationally inferred f BH are very uncertain and with the 
vailable data we can only say at this moment that observations
upport our assumption that the majority of GCs retained some BHs
ntil the present day. In a future modelling e x ercise that includes
lso the evolution of cluster radii it would be interesting to see how a
pread in R 0 affects the final distribution of f BH to check, for example,
hether the fraction of core collapsed clusters can be reproduced. 

.6 Tidal perturbations and black holes 

everal studies ha ve inv oked tidal perturbations with gas clouds in the
arly Universe to explain the shape of the GCMF (Elmegreen 2010 ;
ruijssen 2015 ; Pfeffer et al. 2018 ; Reina-Campos et al. 2018 ). The
agnitude of this disruption mechanism is highly uncertain because 

t relies on poorly understood conditions in the early Universe 
initial cluster densities, gas properties, etc.). The population models 
f Pfeffer et al. ( 2018 ) and Reina-Campos et al. ( 2018 ) adopt
nitial radii of ∼ 3 pc (after stellar evolution), implying densities of 
h , 0 ∼ 10 3 M �pc −3 , i.e. more than an order of magnitudes lower than

he peak of the initial density distribution in our models (Fig. 13 ).
ecause the disruption time-scale due to tidal shocks is directly 
roportional to the initial density, a higher initial density would 
ecrease the disruption rate in their models. Similarly, including 
idal shocks in our model would have only a small effect on our
esults. 

The interplay between BH heating and tidal shocks is likely non-
inear, but we can speculate what would happen if both effects play a
ole. The BHs sink to the cluster centre on a time-scale of ∼ 10 Myr ,
hile interactions with gas clouds can be important for up to ∼ 1 Gyr ,
ence tidal shocks will predominantly remo v e stars from the cluster
nd the BH population is shielded, thereby increasing f BH . So mass-
oss as a result of tidal shocks amplifies the effect of BHs at later
imes because of an increase in f BH . 

.7 Application to other galaxies 

e applied our modelling to the Milky Way GC system, so it is
nteresting to consider to what extent our results apply to other
alaxies. For a power-law initial GCMF with index −2, relaxation- 
ri ven e v aporation predicts a correlation between the turno v er mass,
 TO , and the average tidal field strength experienced by the GCs,

 �tid 〉 . One may therefore expect M TO to depend on the galaxy
ass/luminosity. Jord ́an et al. ( 2007 ) fit ‘evolved Schechter func-

ions’ 1 to luminosity functions of GC systems in early-type galaxies 
n the Virgo Cluster. They find that M TO is within a factor of ∼2
onstant o v er two orders of magnitude of galaxy luminosity ( L gal ),
ith the faintest galaxies having on average a lower M TO . Using
alaxy scaling relations and assuming that the half-light radius of a
alaxy is a proxy for the typical orbital radii of GCs, Jord ́an et al.
 2007 ) show that for galaxies with M B > −18 (that is, approximately
 mag fainter than the Milky Way), the average tidal field strength
MNRAS 522, 5340–5357 (2023) 
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epends on galaxy luminosity as 〈 �tid 〉 ∝ L 
0 . 35 
Gal , while for brighter

alaxies it goes as 〈 �tid 〉 ∝ L 
−0 . 5 
Gal . They argue that this ‘peaked’

elation between 〈 �tid 〉 and L Gal is one of the explanations for the
ear constant M TO . The authors also show that in addition to 〈 �tid 〉 ,
ariations of M c with L gal affect the relation M TO ( L gal ). For bright
alaxies they find a correlation between M c and L gal , which offsets
he anticorrelation between 〈 �tid 〉 and L gal , leading to a near constant
 TO and a correlation between the width of the GCMF and L gal ,

s is observed. These arguments apply to our suggested mass-loss
ecipe, with the additional effects of y and metallicity discussed in
his work. This helps in reaching relatively high M TO even in the
mallest galaxies. 

In the Local Group we have even fainter galaxies, with GC
ystems that resemble the Milky Way GCs. For example, the Fornax
Sph galaxy has five old GCs with an average logarithmic mass
log 10 M � 5 . 0 ± 0 . 2 and dispersion σlog 10 M � 0 . 5 ± 0 . 2 (based on

he luminosities from Larsen, Strader & Brodie 2012 , and a mass-to-
ight ratio of 1.8). Four of these GCs are metal-poor ([Fe/H] � −2), so
Hs are expected to be important for their evolution and Ṁ . Adopting
 c = 20 km s −1 for Fornax dSph, and R eff = 1 kpc for the GC orbits
nd the same model parameters as for our population model (that is,
 = 0.67, y = 1.33, Ṁ ref = −45 M �/ Myr ), we find μlog 10 M = 4 . 8 and
log 10 M = 0 . 5, in satisfactory agreement with the observed GCMF.
n important constraint for GC evolution models comes from the
eld stars. Larsen et al. ( 2012 ) find that about 20 per cent–30 per cent
f all metal-poor stars ([Fe/H] � −2) in the galaxy resides in the four
etal-poor GCs. For the simple model GCMF discussed here, and

he assumption that all stars formed in GCs, we find this fraction to
e ∼ 20 per cent (40 per cent ) for M lo = 10 2 M �(10 4 M �) (see also
hen & Gnedin 2023 , who reach a similar conclusion). We therefore
onclude that even in the faintest galaxies our proposed mass-loss
odel can reproduce the shape of the GCMF. 

 CONCLUSIONS  

e find that two-body relaxation in a static tidal field can be the
ominant disruption process in shaping the GCMF if GCs retain
ome of their BHs. Earlier studies on the effect of evaporation on
he shape of the GCMF showed that models of clusters without
Hs cannot reproduce the observed shape of the GCMF and its

nsensitivity to Galactocentric radius (Baumgardt 1998 ; Vesperini
998 ). In particular, these models find a turno v er mass that is too
ow at large Galactocentric radii. Using N -body models of clusters
ith BHs, we show that the initial density is a critical parameter in

etting the dynamical retention of BHs, and that high density clusters
relative to the tidal density) eject all their BHs and have similar Ṁ 

o clusters without BH. In models where dynamical BH retention is
odest, the resulting | Ṁ | is still an order of magnitude higher than

or models without BHs (Fig. 3 ) and the resulting mass evolution
s sufficient to explain the observed turnover mass of ∼ 10 5 M � at
 � 10 kpc (Fig. 11 ). 
Several additional ingredients are needed to reduce the turno v er
ass in the inner galaxy to a similar value. We show that the

nisotropy profile of GC orbits, a Schechter-like truncation in the
nitial GCMF, the metallicity gradient of GCs, and the effect of the
ast tidal evolution all reduce the decline of the turno v er mass with
 , with the combined effect providing a satisfactory match to the
roperties of Milky Way GCs (Figs 9 and 10 ). The proposed solution
o the GCMF problem implies that the turno v er mass gradually
ecreases with redshift, which is different from models that rely on
arly disruption mechanisms which leads to a redshift independent
NRAS 522, 5340–5357 (2023) 
urno v er mass. The difference may be observable with future thirty-
etre class telescope and/or the JWST (Kruijssen 2015 ). 
We present a modified analytical model for the cluster disruption

ate that accounts for the effect of BHs. It is given by equation ( 4 )
nd for our parameters it reads 

˙
 = −45 M � Myr −1 

(
M 

M i 

)−1 / 3 (
M i 

2 × 10 5 M �

)1 / 3 
�tid 

0 . 32 Myr −1 . 

(21)

he scaling with the initial mass is the same as of clusters without
Hs (equation 1 , Fig. 1 ). The scaling with the remaining mass

raction depends on the cluster density, which sets the dynamical
H retention, and the index can be between 1/3 (high density, all
Hs ejected) and −1 (low density, almost all BHs retained, Fig. 2
nd Table 1 ). For negative indices, we obtain the ‘jumping’ evolution
f mass with time, where the mass-loss rate accelerates near cluster
issolution (Fig. 6 ). 
Although we have focused on the Milky Way system, the physical

ngredients of our model are found in all galaxies and we therefore
xpect that the model presented here can also explain the near
niversality of the GCMF among different galaxies. More work is
eeded to confirm this. 
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Figure A1. Number density profile of GCs from the mock catalogue of 
the hierarchical formation model (Chen & Gnedin 2022 ). Upper red shaded 
region shows the range of initial densities in the three model realizations of 
Milky Way-like systems. Lower blue shaded region shows the range of the 
density of survived clusters at present. Dashed red and solid blue lines show 

the corresponding densities in our population Model (8), also plotted in the 
right-hand column of Fig. 9 . 

Figure A2. Velocity anisotropy profile of GCs from the mock catalogue of 
the hierarchical formation model. Shaded regions show the range co v ered by 
the three realizations: red for initial, blue for final. The dashed red and solid 
blue lines show the corresponding densities in our population Model (8), also 
plotted in right-hand column of Fig. 9 . 
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PPENDIX  A:  CLUSTER  PROPERTIES  FROM  A  

ULL  FORMATION  MODEL  

everal recent studies focused on modelling GCs from their forma-
ion in high-redshift galaxies through evolution until the present in
he context of hierarchical galaxy formation (Choksi et al. 2018 ;
feffer et al. 2018 ; Kruijssen et al. 2019 ; Rodriguez et al. 2023 ).
hese studies assume that proto-GCs form in giant molecular clouds
ith the same initial cluster mass function as young clusters in the
earby Universe. This formation process continues as long as the
pecific adopted criteria are satisfied and results in a range of GC
ormation times, typically 1 − 4 Gyr after the Big Bang. Then cluster
ass-loss is calculated using various combinations of two-body

elaxation, tidal shocks, and stellar mass loss. Despite differences
n detailed implementation of all these processes, these studies reach
imilar conclusions that the resulting present-day GC populations can
atch observed properties of GC systems such as the age–metallicity

istribution and the spatial and kinematic distributions. Ho we ver,
he resulting GCMF is usually ske wed to wards lo wer masses than
bserv ed. Giv en the successes in reproducing other GC properties,
hich support the main assumptions of the hierarchical models,

he issues with the GCMF are likely to be due to inaccuracies in
odelling cluster disruption. Possible inaccuracies can arise from

nsufficient resolution of the tidal field along cluster trajectories or
sing simplified mass-loss prescriptions. 
Our work can help impro v e the modelling of cluster evolution

n hierarchical models. And in turn, hierarchical models can help
est some of the assumptions made in this work. Chen & Gnedin
 2022 ) presented the latest version of a GC formation and evolution
odel, which matches most observed properties of the Galactic GC

ystem. Here we use the predicted properties of GCs from the model
o validate our adopted initial conditions. 

We use the catalogue of model GC properties available online
t https://github.com/ognedin/gc model mw . The catalogue contains
hree systems chosen specifically to be analogous to the Milky Way
n its present halo and stellar mass and in its history of the mass
ssembly. We use all three systems to represent a range of possible
nitial conditions of the Galactic GC system. Fig. A1 shows the
umber density profile of all clusters that formed in the model as
 function of the distance to the main galaxy center. This includes
lusters formed throughout the cosmic time, although the middle
alf of them formed at the cosmic times between 11.1 and 12.5 Gyr,
hich is close to the assumed fixed age of 12 Gyr in our population
odel. 
The assumed initial number density profile in our population
odel (equation 16 ) is a good match to the range of profiles shown

n red. The hierarchical model predicts a slightly shallower slope at
arge radii ( R > 30 kpc) but those radii correspond to the locations
f satellite galaxies in which outer GCs formed. The satellites may
ring their GC systems closer to the main galaxy by dynamical
riction and the eventual radii of these halo GCs would be smaller.
n the population model, we do not include changes of orbits due to
ynamical friction, and therefore survived clusters would retain their
nitial radii. Thus we conclude that the hierarchical model provides
upport for our assumed n 0 ( R ). 

To check consistency with observations, in the lower blue shaded
egion we show the range of number density profiles of survived
lusters. Here the slope is more noticeably shallower than in our
opulation model, but the difference is expected because the Chen &
nedin ( 2022 ) model used a different GC disruption prescription
ith x = y = 2/3 and Ṁ ref = −45 M � Myr −1 (in our notation). The

maller y (compared to y = 4/3 in our Model 8) leads to slower
NRAS 522, 5340–5357 (2023) 

a  
isruption of low-mass clusters and allows them to survive longer
t large radii where the disruption time is longer than the age. In
ur population model such clusters are more easily disrupted and the
uter density profile steepens. 
Fig. A2 compares the velocity anisotropy profiles of the two
odels. Variations among the three hierarchical model realizations

re large but the o v erall trend of initial β increasing with radius is in

https://github.com/ognedin/gc_model_mw
art/stad1287_fA1.eps
art/stad1287_fA2.eps
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igure A3. The ef fecti ve strength of tidal field averaged over cluster history
n the hierarchical formation model, relative to that of the best-fitting fixed
IS potential. Points show �tid averaged over all simulation outputs for three 
ilky Way analogue systems indicated by different colour. The solid line 

hows our modified expression �tid, 1 at R eff > 4 kpc. 

easonable agreement with the assumed form in equation ( 15 ). For
he survived clusters, the β-profiles are even closer and both clearly 
redict a mildly tangential anisotropy in the inner few kpc. Thus we
an conclude that the results of the full hierarchical formation model 
upport our assumed initial conditions. 

The hierarchical model also allows us to investigate the evolution 
f the tidal field along the trajectories of model GCs. For example,
eng & Gnedin ( 2022 ) showed that a typical ef fecti ve strength of

idal field �tid was a factor of 10 higher in the first ∼300 Myr after
luster formation compared to the values inferred from the present- 
ay potential. Young clusters experience stronger tides because they 
re still surrounded by dense gaseous and stellar structure. The tidal 
eld can also vary rapidly in time depending on the GC trajectories.
 higher fraction of GCs migrate outward from the galaxy centre 
2023 The Author(s) 
ublished by Oxford University Press on behalf of Royal Astronomical Society 
han inward, also leading to the weaker tidal field at present. To
ccount for this ‘past evolution’ of the tidal field, we calculate the
ime av eraged �tid e xperienced by surviv ed clusters in the Chen &
nedin ( 2022 ) model and compare it with the value in our assumed
otential. Fig. A3 shows the ratio of the two for model clusters as a
unction of their ef fecti ve radius R eff = R p (1 + ε), where R p is the
ericentre distance of the orbit near the present. The ratio is based
n the following calculation. 
Chen & Gnedin ( 2022 ) calculated the tidal strength via a com-

ination of the highest and lowest eigenvalues of the tidal tensor
hat accounts for the tidal and centrifugal forces: �2 

tid � λ1 − λ3 . 
ypically, λ1 > 0 and λ3 < 0. For a SIS, λ1 = −λ3 = V 

2 
c /R 

2 , and
herefore 

2 
tid , SIS ( R ) = 

2 V 
2 

c 

R 
2 

. (A1) 

or a general power-law density distribution ρ ∝ R 
−n with 0 < n < 3 

2 
tid ,n ( R) = 4 πGρ( R) 

n 

3 − n 
= 

n V c ( R) 2 

R 
2 

, (A2) 

here V c ( R ) 2 ≡ GM ( R )/ R and n = 2 for the SIS. 
The SIS model is a good approximation to the total mass density

n the three model realizations in the range of radii from 1 to 100 kpc;
n the inner 1 kpc the density profile approaches a core. In the
iddle part of the galaxy, at R eff � 4 kpc, the SIS potential gives
 v erall correct scaling of < �tid > with radius, ho we ver the scatter of
ndividual points is significant. At larger radii, the present-day �tid, SIS 

isibly underestimates the past tidal strength. We can approximately 
orrect this underestimate by switching to �tid, n corresponding to 
hallower distribution with n ≈ 1. This results in a stronger tidal field
t R eff > 4 kpc relative to our SIS model by a factor 

�2 
tid , 1 ( R eff ) 

�2 
tid , 2 ( R eff ) 

= 

R eff 

4 kpc 
. (A3) 

his adopted modified expression for < �tid > is shown by the broken
ine in Fig. A3 and is used in Models (6) and (8) to include the effect
f the past evolution of GCs. 
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