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ABSTRACT 
Boiling is a high-performance heat dissipation process that 

is central to electronics cooling and power generation. The past 

decades have witnessed significantly improved and better-

controlled boiling heat transfer using structured surfaces, 

whereas the physical mechanisms that dominate structure-

enhanced boiling remain contested. Experimental 

characterization of boiling has been challenging due to the high 

dimensionality, stochasticity, and dynamicity of the boiling 

process. To tackle these issues, this paper presents a coupled 

multimodal sensing and data fusion platform to characterize 

boiling states and heat fluxes and identify the key transport 

parameters in different boiling stages. Pool boiling tests of water 

on multi-tier copper structures are performed under both steady-

state and transient heat loads, during which multimodal, multi-

dimensional signals are recorded, including temperature 

profiles, optical imaging, and acoustic signals via contact 

acoustic emission (AE) sensors, hydrophones immersed in the 

liquid pool, and condenser microphones outside the boiling 

chamber. The physics-based analysis is focused on i) extracting 

dynamic characteristics of boiling from time lags between 

acoustic-optical-thermal signals, ii) analyzing energy balance 

between thermal diffusion, bubble growth, and acoustic 

dissipation, and iii) decoupling the response signals for different 

physical processes, e.g., low-to-mid frequency range AE induced 

by thermal expansion of liquids and bubble ebullition. Separate 

multimodal sensing tests, namely a single-phase liquid test and 

a single-bubble-dynamics test, are performed to reinforce the 

analysis, which confirms an AE peak of 1.5 kHz corresponding 

to bubble ebullition. The data-driven analysis is focused on 

enabling the early fusion of acoustic and optical signals for 

improved boiling state and flux predictions. Unlike single-

modality analysis or commonly-used late fusion algorithms that 

concatenate processed signals in dense layers, the current work 

performs the fusion process in the deep feature domain using a 

multi-layer perceptron regression model. This early fusion 

algorithm is shown to lead to more accurate and robust 

predictions. The coupled multimodal sensing and data fusion 

platform is promising to enable reliable thermal monitoring and 

advance the understanding of dominant transport mechanisms 

during boiling. 

Keywords: Boiling, Multimodal sensing, Data fusion, 

Acoustic emissions 

NOMENCLATURE 

AE  Acoustic Emission 

CHF              Critical Heat Flux 

EV                 Electric Vehicles 

DAQ              Data Acquisition   

HTC               Heat Transfer Coefficient 

pH                  Potential of Hydrogen 

Cu                  Copper 

FFT                Fast Fourier Transform 

MLP               Multilayer Perceptron 

PSD  Power Spectral Density 

       DNB  Departure from Nucleate Boiling 

 

1. INTRODUCTION 
Boiling occurs in various natural phenomena and several 

engineering applications such as fabric manufacturing [1], 
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nuclear power plants [2], water desalination [3], food and 

beverage industries [4], and hospitals and health care facilities 

[5]. For systems working involving phase change with high-

temperature ranges, boiling is the dominant mode of heat 

transverse. Boiling introduces the phase change from liquid to a 

gaseous state.  During the phase shift, a significant amount of 

heat is stored in latent form without any change in temperature 

rise [6]. Thus, boiling heat transfer is one of the effective cooling 

approaches for the thermal management process and extensive 

studies are invested in fully understanding this unpredictable and 

stochastic process. 

The boiling process is accompanied by three distinct stages, 

namely natural convection from the boiling surface to the 

surrounding liquid, the bulk liquid convection infused by each 

bubble ebullition cycle, and vapor convection where direct heat 

is transferred from the heating surface to generating bubble. 

These three stages are depended on the thermal physical 

properties of working fluids, the morphological structure of the 

surface, bubble density, and departure diameter[7]. Higher 

bubble nucleation density at nucleate boiling regime promotes 

bulk convection which facilitates large heat removal. But, the 

neighboring bubbles have an affinity to coalesce together which 

can inhibit the removal of heat at high heat fluxes because of 

partial vapor covering the heating surface. This stage, called 

critical heat flux, is very detrimental to cooling and results in 

burnout of high-power density devices.  

Based on thermal transport, boiling has been broadly 

classified into free convection, nucleate boiling, and transitional 

boiling stages which are followed by film boiling[8]. 

Nevertheless, an in-depth understanding of pool boiling from a 

different perspective such as acoustics, noise, optical, and power 

spectrum is not available. While several heat flux control 

strategies are put forward, the current pragmatic systems use the 

larger factor of safety in operation and run at relatively much 

lower heat fluxes. This is due to the erratic behavior of boiling 

and the lack of reliable techniques to monitor the system from a 

multi-modal approach. The existing system uses thermal 

monitoring which has accessibility issues and is also affected by 

the thermo-physical properties of the elements used within the 

compact system[9]. It is highly important to develop a multi-

modal approach relying on additional aspects with the thermal 

measurement to effectively predict and real-time monitoring of 

the boiling process. With that, a complete package of safety 

systems can be developed for a reliable, risk-free, and effective 

phase change cooling approach in near CHF situations while 

mitigating possible thermal mishaps.  

Boiling is a very stochastic process and is sensitive to 

different experimental parameters including the thermo-physical 

properties of heating material and working fluid, surface 

wettability, pressure, pool temperature, heating orientation, 

gravity, and among others. Developing high-wetting 

surfaces[10]–[21] has been established as one of the promising 

methods for an advanced cooling approach which is supposed to 

constantly provide liquid delivery even at near-CHF heat fluxes 

and can attain the target for operating high power density 

systems at high temperatures. Although experimental 

augmentation for boiling heat transfer has been extensively 

studied, the experimental characterization for different stages of 

pool boiling has yet to be fully understood. Moreover, a clear 

understanding of pool boiling behavior with adept prediction and 

control over CHF conditions is unavailable despite the extensive 

reach of boiling experiments and research.  

A lab-scale boiling experiment with optical imaging 

comprises several large data sets extending from the temperature 

measurements, and pressure values to optical images for 

associated heat fluxes. Based on it, several optical images-based 

machine learning approaches[22]–[28] are used to characterize 

the boiling regimes which are highly dependent on in-house 

images and the working fluid’s nature. This optical imaging-

based control system cannot be fully used in real-case scenarios 

due to the necessity of a transparent boiling system and a similar 

working environment as the datasets. Thus, a new approach to 

characterizing the boiling process is essential which just not only 

is dependent on thermal or optical datasets of the boiling process. 

The multimodal characterization of the boiling process involves 

a large dataset with the motto of an in-depth understanding of 

pool boiling from different perspectives such as acoustics, 

noise/microphone, optical, and power spectrum. The availability 

of large datasets is very ideal for deep learning strategies where 

learning and recognizing the patterns is attainable and the 

predictions are based on multi-parameters that make the system 

more realistic.  

Acoustic sensing is a non-intrusive, easy-to-implement 

system that has been used as an alternative for characterizing 

boiling research [29]. Different acoustic measurements like 

hydrophones, microphones, and acoustic sensors are used to 

identify the boiling regimes and associated heat fluxes for 

effective monitoring of the heating systems. The hydrophones 

are immersion in the liquid bath which detects the boiling 

anomaly based on differentiated sound signals. The microphones 

are remotely attached to the systems that record the change in 

noises that occurred due to increased heat fluxes. AE sensors 

sense the stress waves propagated within the systems when 

bolted on one of the edges and accurately predict the pre-CHF 

and CHF conditions with a noticeable spike in the different AE 

parameters including AE energy, AE count, and others. The 

existing acoustic approaches to boiling research are dominated 

by the frequency domain analysis and power spectral density 

over the sound signals obtained from the hydrophones or 

microphones. Despite the use of AE sensors in non-destructive 

testing, leakage detections, active corrosion, and crack 

propagation in avionics, among others, it has not been effectively 

used for the multi-modal prediction of boiling crisis.  

Lim et al.[30] recorded the acoustic signal and established 

its correlation with the boiling regime and CHF. Alhashan et al. 

[31] investigated the early detection of bubble formation during 

boiling with acoustic emissions. It was found that AE parameters 

like AE-Energy, AE-Amplitude, and others are reliable, 

sensitive, and effective tools for monitoring the bubble process 

during the boiling phenomenon and identifying the overheating. 

Baek et al.[32] studied the acoustic emissions (AE) signals to 

monitor water boiling on fuel cladding surfaces. The boiling 
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behavior was monitored using AE signals and analyzed based on 

different AE parameters including hits, energy, and frequency. 

The relation between count and amplitude, two AE parameters, 

showed a consistent result with the boiling process. Seo et al. 

[33] studied the feasibility of boiling regimes identification 

based on AE features. Both the AE measurements and optical 

imaging was accompanied to differentiate between the boiling 

regimes with their associated characterized AE features. 

In this work, we have performed multi-modal boiling 

characterization using temperature, optical images, and acoustic 

sensing (hydrophone, AE sensor, microphone) of two different 

heat load conditions in boiling heat transfer, that is steady-state 

and transient heat load conditions. This is because steady-state 

heat transfer has been extensively studied in literature but the 

actual real-time heat transfer is dominated by transient heat 

transfer whether it be in the battery management system of EVs 

or temperature control systems used in boilers of nuclear power 

plants. A detailed study showing the transient heat load is 

essential for ensuring the safety of systems working at larger heat 

fluxes. This is because the current cooling systems design is 

based on steady-state analysis that underpredicts the factor of 

safety. If an actual transient system is fully characterized and 

understood, the perfect monitoring of the cooling system can be 

imposed on high-power high-temperature applications which 

will save a lot of energy lost due to undervaluation.   

 

2. MATERIALS AND METHODS 
The project has two major aspects, that is, a) collection of 

synchronized data from transient and steady-state heat transfer 

conditions including all the optical images, acoustic emissions, 

microphone noises, and hydrophone signals as a function of 

time, and b) multi-modal characterization. 

 

2.1 Experimental Setup 

 
Figure 1 shows the pool boiling experimental setup 

comprising the 1 cm2 heating element of copper block inside the 

PEEK boiling chamber. A detailed description is provided in our 

previous work [34]. For acoustic sensing, the acoustic sensor 

(MISTRAS R3a 30kHz) is attached to the outer edge of the 

boiling chamber to record the acoustic waves emitted during the 

pool boiling. During the AE measurement, a threshold frequency 

of 55 Hz is applied to the hardware acquisition software from 

Physical Acoustics Corporation (1283 USB AE Node) for 

reducing the possible background white noises over AE reading). 

A condenser microphone (Behringer ECM8000) connected to 

the main DAQ body (Behringer U-PHORIA UMC404HD) and 

powered by a 48V phantom power supply (Neewer NW-100) 

was used to measure noises generated outside of the boiling 

chamber. The DAQ can relay signals of 10Hz-43kHz and the 

microphone reads from 15Hz-20kHz. The DAQ is connected to 

the computer and the data is collected via LabVIEW.   

 

2.2 Data Collection 
The pool boiling data are collected over plain Cu surfaces as 

well as structured Cu foams-deposited boiling surfaces. For the 

pool boiling experiments, the multimodal signals were recorded 

from 0 to CHF conditions irrespective of the type of heat loading 

conditions. Also, the pool boiling experiments for each of the 

heat load types were done on four different samples, that is, 

polished copper, pH-0 deposited Cu foam, pH-10 deposited Cu 

foam, and pH-12 deposited Cu foam.  

The datasets include multimodal signals such as optical 

images, acoustic signals (hydrophone, AE sensor), microphone 

AE 

Microphone 

FIGURE 1: EXPERIMENTAL SETUP SHOWING BOILING 

CHAMBER WITH DIFFERENT SENSORS EMBEDDED WITHIN 

THE SYSTEM 

(a) (b) 

(c) 

(e) 

(g) (h) 

(f) 

(d) 

FIGURE 2: SYNCHRONIZED ACOUSTIC SIGNALS FOR 

STEADY STATE (A, C, E, G) AND TRANSIENT TESTING (B, D, 

F, G) RECORDED WITH THERMOCOUPLES (A, B), 

MICROPHONE (C, D), HYDROPHONE (E, F) AND AE SENSOR 

(G, H) OVER A PH-10 DEPOSITED CU FOAM SAMPLE 
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noises, and temperature profiles via thermocouples. The pool 

boiling setup as shown in Figure 1 was used for collecting the 

data where two different sets of heat loading conditions were 

provided, that is, steady-state and transient heating. Steady-state 

heating observes the steady increase in the heat flux as a stepwise 

increment in the power of approximately 15 or 20 W until the 

CHF is triggered whereas, for transient heating, single ramp-up 

heating is applied till CHF occurred. All the datasets obtained 

are employed for the multi-modal analysis using machine 

learning algorithms. 

The representative raw signals recorded from the different 

acoustic sensors, that is, AE sensor, microphone, and 

hydrophone respectively are shown in Figure 2. The tests are 

carried out both in a steady state followed by transient heat 

loading over the same pH-10 deposited Cu foam sample. CHF 

for the tests was reported to be 218.5634 W/cm2 and 197.1744 

W/cm2 respectively. Figure 2a, b shows the temperature spike 

at the CHF. Following the trend, the acoustic waves in terms of 

AE amplitude recorded by the AE sensor also depict a large spike 

at the CHF point as shown in Figure 2g, h. Similarly, for the 

microphone and hydrophone data, their raw signals increase with 

the increased heat flux till CHF occurs. But, at the triggering of 

CHF, the raw signals get reduced as shown in Figure 2 c, d, e f 

respectively. The observed acoustic behavior during boiling is 

closely related to its physical phenomena. Boiling, a stochastic 

and unpredictable process, is much more complex and involves 

continuous bubble generation, bubble growth, and their 

departures from the hot surface inside the liquid pool. While 

doing so, it generates sound waves resulting in noise or 

vibrations. During the nucleate boiling, the acoustic thrust 

created by the bubble ebullition gradually increases with an 

increment in heat flux. But, at CHF, the boiling surface is 

blanketed by vapor film with exerts a significant sound pressure 

due to increased power density as shown in Figure 6,7,8 whether 

it be inside the liquid pool or on the boundary walls. The 

different acoustic devices pick up these waves and these AE 

signals can be used to investigate and understand boiling.  

 
2.3 Multi-modal architecture 

To show the potential of utilizing both high-speed image 

data and acoustic signals from a hydrophone together, three 

different machine-learning regression models were trained and 

tested for heat flux prediction. All of the models used data from 

the transient boiling test with the pH10 Cu foam. One model was 

a multilayer perceptron (MLP) and used segmented clips of the 

hydrophone signal converted to frequency intensities using the 

fast Fourier transform (FFT) to predict heat flux. Another model 

used only images reduced to 50 x 50 pixels from the pool boiling 

experiment. It coupled convolutional layers for feature 

extraction with an MLP for regression. The third model, which 

is shown in Figure 3, used both image data and acoustic signals. 

Feature extraction was performed on both data types (i.e. FFT 

for audio and convolutional layers for images) and was 

concatenated together and passed through an MLP for heat flux 

prediction. All three of the models used the same MLP structure 

for prediction. For the results of these models, the hydrophone 

signal was split into non-overlapping sequences of a length of 

3000 samples. Each of the sequences was mapped to an image 

and corresponding heat flux. For all the models, 80% of the data 

was used for training and 20% for testing. Each model was 

trained with the Adam optimizer and a mean squared error loss 

function. The FFT feature extraction was implemented using 

NumPy [35] and the models were implemented using 

TensorFlow [36]. 

 

3. RESULTS AND DISCUSSION 
The respective pool boiling tests boiling parameters, which are, 

critical heat flux (CHF) and heat transfer coefficient (HTC) are 

plotted in Figure 4. The pH-10 Cu foam was found to have better 

performances in terms of CHF and HTC as compared to other 

Cu foams as well as flat polished copper surfaces. For the 

different modes of heat applications to the chamber, steady state 

condition has higher CHF and HTC values as compared to the 

transient testing.  

 
3.1 Acoustic Analysis on Hydrophone signals FIGURE 3: SCHEMATIC SHOWING THE ARCHITECTURE OF 

THE IMAGE AND ACOUSTIC FUSION MODEL.  

FIGURE 4: (A) CRITICAL HEAT FLUX AND (B) HEAT 

TRANSFER COEFFICIENTS FOR DIFFERENT BOILING 

SURFACES DURING STEADY STATE AND TRANSIENT HEAT 

LOAD CONDITIONS  

(a) (b) 



 5 © 2023 by ASME 

The acoustic signals recorded from the hydrophone, 

submerged inside the water bath, were further analyzed 

following the spectrogram. The acoustic frequency and energy 

obtained from spectrum analysis are used to characterize the 

acoustic waves. The spectrogram helps in determining the 

frequency as a function of time with the power intensity at each 

time frame.  

 

3.1.1 Acoustic Features of Single Bubble Dynamics 
The key optical, acoustic, and thermal characteristics of 

bubble nucleation and release are recorded and analyzed for 

individual air bubbles. These characteristics, including 

frequency, period, amplitude, etc. will set a reference for the 

analysis of multi-bubble dynamics. Figure 5 shows the 

schematic drawing for the air bubble system and test results. Air 

bubbles are generated and released using a programmable 

syringe pump. The bubble dynamics are visualized using VIS 

high-speed imaging. Acoustic signals are measured using a 

hydrophone immersed in the liquid pool and an AE sensor 

attached to the bottom of the pool. The bubble trajectories are 

analyzed using high-speed videos with results presented in 

figure 5b. The rising velocity of the small bubble is 150 mm/s, 

lower than that of the large bubble (177 mm/s). As shown in 

figure 5c, the spectrograms from the hydrophone signals show 

spikes at the moment of the bubble rising. The peak frequency of 

the 3.94 mm bubble is approximately 1.45 kHz, which is 

consistent with the natural frequency of Minnaert resonance 

calculated to be 1.432 kHz following f = (2πr)-1(3γP/ρl)0.5, where 

r is the bubble radius, γ polytropic coefficient, P pressure, and ρl 

liquid density.  
 

 
 

FIGURE 5: OPTICAL AND ACOUSTIC FEATURES OF SINGLE 

AIR BUBBLE DYNAMICS SHOWING (A) SCHEMATIC 

DRAWING OF THE TEST FACILITY OF AIR BUBBLE DYNAMICS 

CHARACTERIZATION, (B) TRAJECTORIES OF BUBBLES FROM 

HIGH-SPEED IMAGING, AND (C) SPECTROGRAMS OF AIR 

BUBBLE TESTS USING DIFFERENT TUBE DIAMETERS. 

3.1.2 Acoustic Features of Pool Boiling Bubble 
Dynamics 
Both the steady state and transient testing spectral analysis is 

analyzed below: 

 

3.1.2.1 Steady State Boiling Spectral Analysis 
Spectral analysis for the hydrophone signals recorded 

during the boiling experiment over pH-10 Cu foams is shown in 

Figure 6. At the CHF initiation, both the frequency and heat flux 

is observed to reduce significantly implying the heat transfer 

insulation caused by vapor wrapping on the boiling surface. As 

the spectrogram is analyzed, a common trend can be observed 

between the heat flux and maximum power spectral density. 

Both of them keep on increasing at the step heat supply 

increment but once CHF occurs, values of both parameters have 

plummeted. Moreover, the frequency at maximum PSD is 

shifted towards a higher frequency range at the CHF state as 

shown in Figure 6d.  

Figure 7 shows the power spectral density during steady-state 

boiling on different boiling surfaces. The steady-state test results 

show an increased power level with heat flux in the nucleate 

boiling regime. But when CHF is triggered, the acoustic power 

is reduced by more than 2 orders of magnitude within 0.0112 

seconds. Since the acoustic power scales with the square of its 

FIGURE 6: SPECTRAL ANALYSIS FOR THE CRITICAL 

HEAT FLUX CONDITION OF A STEADY-STATE TEST 

SHOWING SYNCHRONIZED (A) SPECTROGRAM, (B) HEAT 

FLUX, (C) MAXIMUM POWER, AND (D) DOMINANT 

FREQUENCY OVER TIME.  

(a) 

(b) 

(c) 

(d) 
f shifts at CHF 

Ph,max drops to less 
than 1 at CHF 
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frequency, energy frequency via acoustic waves significantly 

decreases. 

 

3.1.2.2 Transient Boiling Raw Data Spectral Analysis 

For transient testing, a ramp-up heat is provided from 0 to 

CHF condition in one go. Three different stages are observed 

including nucleate boiling to pre-CHF, pre-CHF to transition 

boiling i.e. DNB (departure from nucleate boiling), and DNB to 

NB as the heat supply is turned off. Figure 8 represents the 

spectral analysis for the transient test conducted over a pH-10 

deposited Cu sample. From the spectral analysis, it can be noted 

that the frequency, heat flux, and PSD max are increasing with 

the increased applied heat load. But at the CHF point, all of these 

three parameters are decreased significantly. Moreover, the 

frequency at PSD max is reduced at the CHF point and will stay 

the same until the boiling reversal occurs where the departure 

from the nucleate boiling state is reversed back to the nucleate 

boiling regime. At this state, the frequency at maximum PSD is 

shifted from low to high and resembles back to the frequencies 

present at the initial stages of the boiling process at the nucleate 

boiling regime. This shows that there is a characteristic 

frequency in the NB regime and transition boiling regime. Such 

understanding can be leveraged in CHF detection and 

monitoring systems based on either frequency shift recognition 

or PSD max differential values as the function of the temporal 

axis.  

 
3.2 AE sensor amplitude analysis for pool boiling 

The acoustic sensing in terms of amplitude is recorded using 

AE sensors attached to the bottom of the boiling chamber. The 

AE amplitude, defined by Physical Acoustics, is plotted for the 

different boiling surfaces at CHF as shown in Figure 9. It can be 

concluded that irrespective of the heat loading type the acoustics 

waves detected by the AE sensor were very close to each other. 

But, at the CHF triggering there is a significant spike in AE 

amplitude as shown in Figure 2g, h which differentiates the 

FIGURE 8: SPECTRAL ANALYSIS FOR A TRANSIENT POOL 

BOILING TEST SHOWING SYNCHRONIZED (A) 

SPECTROGRAM, (B) HEAT FLUX, (C) MAXIMUM POWER, AND 

(D) DOMINANT FREQUENCY OVER TIME.  

(a) 

(b) 

(c) 

(d) 

Boiling reversal 

f shifts  

FIGURE 9: AE AMPLITUDE RECORDED AT CHF FOR 

STEADY-STATE AND TRANSIENT TESTING 

RESPECTIVELY  

FIGURE 7: POWER SPECTRAL DENSITY FOR THE 

STEADYSTATE BOILING OVER PH-10 SAMPLE VERSUS HEAT 

FLUX. 
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transition boiling initiation from the nucleate boiling regime. AE 

amplitude threshold value of 55 dB was provided to mitigate the 

background white signals, present if any during the experiments. 

As such the AE amplitude can be seen with values larger than 55 

dB. A common trend of slightly higher AE amplitude is observed 

for the steady-state test as compared to the transient test with pH-

0 being an exception. For the pH-0 case, the amplitude for the 

transient test is larger than the steady state one.  

 
3.3 Image-based vapor fraction analysis for 
boiling tests 

The vapor flux analysis is performed on the boiling images 

to understand the bubble dynamics in both the steady state and 

transient heating conditions. As shown in figure 10, the vapor 

generation is increased with the increased heat flux in the 

transient heating case. But, at the CHF initiation, the vapor flux 

is reduced tremendously indicating the stubby bubble blanketing 

on the boiling surface. A proper real-time vapor contour analysis 

can be used to correlate with boiling stages and potentially 

identify the CHF initiation. 

  

 
The different steady-state boiling experiments conducted on 

various boiling surfaces and their mean vapor fraction vs the heat 

flux is shown in Figure 11. Figures 10 and 11 show a common 

trend that irrespective of heat load conditions the mean vapor 

fraction is increased with the increased heat flux. This behavior 

is observed till the CHF triggering occurs. 

 
3.4 Multimodal Fusion 

Both the acoustic (from hydrophone) and optical data were 

combined to predict the heat flux. After training all three 

regression models, the coefficient of determination (R2 score) 

results are shown in Figure 12. 

 
 The R2 score is a measurement of the fit of the model to the 

data. Values close to 1 are desired and indicate a good fit. The 

image regression model performed the worst with an R2 score of 

0.68. This could be due to the reduced image size and small 

training set. The fusion model did the best with an R2 score of 

0.941 but just slightly better than the sound model with an R2 

score of 0.928. This is also seen in Figure 13 where the predicted 

values of heat flux vs the true heat flux labels are plotted for all 

three models. Ideally, the points would all lie on the diagonal line 

implying the predicted heat flux is the same as the true heat flux 

label. It can be seen here that the fusion model and sound model 

do the best. From these results, it is shown that there is promise 

in improving the accuracy by incorporating both image data and 

sound data in a fusion model. 

This can be attributed to different approaches, whether it be 

optical or acoustic data acquisition, implemented in the very 

same boiling process. The method for procuring the images and 

sounds would be independent of themselves but they are 

FIGURE 10: VAPOR FRACTION ANALYSIS FOR A 

TRANSIENT TESTING DONE ON DIFFERENT BOILING 

SURFACES (A, B, C, D) WHERE A TRANSIENT TEST (C) IS 

FURTHER ANALYZED WITH MEAN VAPOR FRACTION 

SHOWING THE INCREASE IN VAPOR AS A FUNCTION OF 

TIME WITH INCREASED HEAT FLUX 

(a) 

(b) 

(c)  

(d) 

(e) 

(f) 

FIGURE 11: VAPOR FRACTION FOR STEADY-STATE 

HEAT LOAD CONDITION 

FIGURE 12: R
2
 SCORES FOR ALL THREE 

MODELS; IMAGE CNN-MLP, SOUND FFT-MLP, 

AND IMAGE-SOUND FUSION MODEL. 
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corresponding to the same physical phenomenon. As a result, a 

fusion of both optic-acoustic models can be anticipated 

complimenting each other which shows great promise in the 

effective prediction of heat fluxes.   

 

3.5 Limitations of the study 
This boiling study was performed over the electrodeposited 

copper foams and polished copper surfaces at different heat load 

conditions. While doing so, the current study was susceptible to 

several limitations that could be grouped into two major 

categories: a. Data collection limitations b. Machine learning 

fusion limitations. Some of those limitations and future 

directions for mitigating such issues are discussed below: 

 

3.5.1 Data collection limitations 
1. During both the SteadyState and Transient boiling 

experiments, the boiling setup was exposed to the 

surrounding noises. This study implements the threshold 

values for AE sensors to diminish the white noises but the 

data from the microphone and hydrophones are adulterated 

by the noises. For minimizing this effect, the complete setup 

was kept in a low-noise environment. For future approaches, 

noise reduction filters can be implemented over hydrophone 

data. 

2. In each pool boiling experiment, two hydrophones were 

placed inside the saturated water bath and tried to be fixed 

at a position. As boiling is such a vigorous process, the 

vehement bubble generation induced the vibration over the 

hydrophones. Also, the geometrical location, its position 

from the heating area as well as orientation could alter the 

sound signal recording. For averaging out these odds, we 

used two different hydrophones in alternate directions. 

These differences in data could potentially reduce the 

aforementioned issues with hydrophones' location.  

3. Deionized water is used as the thermal transport media 

during the boiling tests. The acoustic characteristics could 

vary depending on the liquid properties such as viscosity, 

boiling point, etc. which are not explored in this study. 

 

3.5.2 Machine learning limitations 
The acoustic and fusion machine learning models presented 

in the paper are shown to have high performance in the testing 

phase. However, the performance of these models may be limited 

when faced with more diverse testing data. For example, 

changing the copper surface or the boiling fluid could 

significantly affect the model’s performance. Moreover, the use 

of acoustics as a sensor makes the model sensitive to background 

noise, which could also impact the results. To overcome these 

limitations, various approaches have been developed, such as 

incorporating more diverse data during training, utilizing domain 

adaption techniques, and using transfer learning with pre-trained 

models fine-tuned on additional data. By implementing these 

strategies, the performance of the machine learning models can 

be more generalized and improved, ultimately leading to better 

results.  

 

4.  CONCLUSION 
The multi-model characterization of two different heating 

applications including steady state and transient is done in this 

paper with a focus on early prediction and effective monitoring 

of boiling crisis. The acoustics signals obtained from different 

sensors such as hydrophone, and AE sensors show a definite 

change during the CHF initiation whether it be the dominant 

acoustic frequency and power level of hydrophone signals or the 

amplitude recorded for the AE sensor. A single bubble analysis 

is done to understand the bubble footprints from spectrogram 

analysis and it is further applied to the pool boiling. The vapor 

flux analysis depicted the increment in vapor fraction as the heat 

flux increased and was seen to decrease dramatically at the CHF 

point. Finally, three different machine-learning regression 

models were tested for understanding the potential fusion 

implementing both the high-speed images and acoustic signals 

in an attempt to characterize boiling processes. Future work will 

focus on incorporating a variety of boiling environments and 

potentially develop a generalized non-intrusive fault detection 

model for high-performance cooling environments involving 

boiling.  
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