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ABSTRACT

Boiling is a high-performance heat dissipation process that
is central to electronics cooling and power generation. The past
decades have witnessed significantly improved and better-
controlled boiling heat transfer using structured surfaces,
whereas the physical mechanisms that dominate structure-
enhanced  boiling  remain  contested. Experimental
characterization of boiling has been challenging due to the high
dimensionality, stochasticity, and dynamicity of the boiling
process. To tackle these issues, this paper presents a coupled
multimodal sensing and data fusion platform to characterize
boiling states and heat fluxes and identify the key transport
parameters in different boiling stages. Pool boiling tests of water
on multi-tier copper structures are performed under both steady-
state and transient heat loads, during which multimodal, multi-
dimensional signals are recorded, including temperature
profiles, optical imaging, and acoustic signals via contact
acoustic emission (AE) sensors, hydrophones immersed in the
liquid pool, and condenser microphones outside the boiling
chamber. The physics-based analysis is focused on i) extracting
dynamic characteristics of boiling from time lags between
acoustic-optical-thermal signals, ii) analyzing energy balance
between thermal diffusion, bubble growth, and acoustic
dissipation, and iii) decoupling the response signals for different
physical processes, e.g., low-to-mid frequency range AE induced
by thermal expansion of liquids and bubble ebullition. Separate
multimodal sensing tests, namely a single-phase liquid test and
a single-bubble-dynamics test, are performed to reinforce the
analysis, which confirms an AE peak of 1.5 kHz corresponding
to bubble ebullition. The data-driven analysis is focused on
enabling the early fusion of acoustic and optical signals for
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improved boiling state and flux predictions. Unlike single-
modality analysis or commonly-used late fusion algorithms that
concatenate processed signals in dense layers, the current work
performs the fusion process in the deep feature domain using a
multi-layer perceptron regression model. This early fusion
algorithm is shown to lead to more accurate and robust
predictions. The coupled multimodal sensing and data fusion
platform is promising to enable reliable thermal monitoring and
advance the understanding of dominant transport mechanisms
during boiling.

Keywords: Boiling, Multimodal sensing, Data fusion,
Acoustic emissions

NOMENCLATURE
AE Acoustic Emission
CHF Critical Heat Flux
EV Electric Vehicles
DAQ Data Acquisition
HTC Heat Transfer Coefficient
pH Potential of Hydrogen
Cu Copper
FFT Fast Fourier Transform
MLP Multilayer Perceptron
PSD Power Spectral Density
DNB Departure from Nucleate Boiling

1. INTRODUCTION
Boiling occurs in various natural phenomena and several
engineering applications such as fabric manufacturing [1],

1 © 2023 by ASME




nuclear power plants [2], water desalination [3], food and
beverage industries [4], and hospitals and health care facilities
[5]. For systems working involving phase change with high-
temperature ranges, boiling is the dominant mode of heat
transverse. Boiling introduces the phase change from liquid to a
gaseous state. During the phase shift, a significant amount of
heat is stored in latent form without any change in temperature
rise [6]. Thus, boiling heat transfer is one of the effective cooling
approaches for the thermal management process and extensive
studies are invested in fully understanding this unpredictable and
stochastic process.

The boiling process is accompanied by three distinct stages,
namely natural convection from the boiling surface to the
surrounding liquid, the bulk liquid convection infused by each
bubble ebullition cycle, and vapor convection where direct heat
is transferred from the heating surface to generating bubble.
These three stages are depended on the thermal physical
properties of working fluids, the morphological structure of the
surface, bubble density, and departure diameter[7]. Higher
bubble nucleation density at nucleate boiling regime promotes
bulk convection which facilitates large heat removal. But, the
neighboring bubbles have an affinity to coalesce together which
can inhibit the removal of heat at high heat fluxes because of
partial vapor covering the heating surface. This stage, called
critical heat flux, is very detrimental to cooling and results in
burnout of high-power density devices.

Based on thermal transport, boiling has been broadly
classified into free convection, nucleate boiling, and transitional
boiling stages which are followed by film boiling[8].
Nevertheless, an in-depth understanding of pool boiling from a
different perspective such as acoustics, noise, optical, and power
spectrum is not available. While several heat flux control
strategies are put forward, the current pragmatic systems use the
larger factor of safety in operation and run at relatively much
lower heat fluxes. This is due to the erratic behavior of boiling
and the lack of reliable techniques to monitor the system from a
multi-modal approach. The existing system uses thermal
monitoring which has accessibility issues and is also affected by
the thermo-physical properties of the elements used within the
compact system[9]. It is highly important to develop a multi-
modal approach relying on additional aspects with the thermal
measurement to effectively predict and real-time monitoring of
the boiling process. With that, a complete package of safety
systems can be developed for a reliable, risk-free, and effective
phase change cooling approach in near CHF situations while
mitigating possible thermal mishaps.

Boiling is a very stochastic process and is sensitive to
different experimental parameters including the thermo-physical
properties of heating material and working fluid, surface
wettability, pressure, pool temperature, heating orientation,
gravity, and among others. Developing high-wetting
surfaces[10]-[21] has been established as one of the promising
methods for an advanced cooling approach which is supposed to
constantly provide liquid delivery even at near-CHF heat fluxes
and can attain the target for operating high power density
systems at high temperatures. Although experimental

augmentation for boiling heat transfer has been extensively
studied, the experimental characterization for different stages of
pool boiling has yet to be fully understood. Moreover, a clear
understanding of pool boiling behavior with adept prediction and
control over CHF conditions is unavailable despite the extensive
reach of boiling experiments and research.

A lab-scale boiling experiment with optical imaging
comprises several large data sets extending from the temperature
measurements, and pressure values to optical images for
associated heat fluxes. Based on it, several optical images-based
machine learning approaches[22]—[28] are used to characterize
the boiling regimes which are highly dependent on in-house
images and the working fluid’s nature. This optical imaging-
based control system cannot be fully used in real-case scenarios
due to the necessity of a transparent boiling system and a similar
working environment as the datasets. Thus, a new approach to
characterizing the boiling process is essential which just not only
is dependent on thermal or optical datasets of the boiling process.
The multimodal characterization of the boiling process involves
a large dataset with the motto of an in-depth understanding of
pool boiling from different perspectives such as acoustics,
noise/microphone, optical, and power spectrum. The availability
of large datasets is very ideal for deep learning strategies where
learning and recognizing the patterns is attainable and the
predictions are based on multi-parameters that make the system
more realistic.

Acoustic sensing is a non-intrusive, easy-to-implement
system that has been used as an alternative for characterizing
boiling research [29]. Different acoustic measurements like
hydrophones, microphones, and acoustic sensors are used to
identify the boiling regimes and associated heat fluxes for
effective monitoring of the heating systems. The hydrophones
are immersion in the liquid bath which detects the boiling
anomaly based on differentiated sound signals. The microphones
are remotely attached to the systems that record the change in
noises that occurred due to increased heat fluxes. AE sensors
sense the stress waves propagated within the systems when
bolted on one of the edges and accurately predict the pre-CHF
and CHF conditions with a noticeable spike in the different AE
parameters including AE energy, AE count, and others. The
existing acoustic approaches to boiling research are dominated
by the frequency domain analysis and power spectral density
over the sound signals obtained from the hydrophones or
microphones. Despite the use of AE sensors in non-destructive
testing, leakage detections, active corrosion, and crack
propagation in avionics, among others, it has not been effectively
used for the multi-modal prediction of boiling crisis.

Lim et al.[30] recorded the acoustic signal and established
its correlation with the boiling regime and CHF. Alhashan et al.
[31] investigated the early detection of bubble formation during
boiling with acoustic emissions. It was found that AE parameters
like AE-Energy, AE-Amplitude, and others are reliable,
sensitive, and effective tools for monitoring the bubble process
during the boiling phenomenon and identifying the overheating.
Baek et al.[32] studied the acoustic emissions (AE) signals to
monitor water boiling on fuel cladding surfaces. The boiling
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behavior was monitored using AE signals and analyzed based on
different AE parameters including hits, energy, and frequency.
The relation between count and amplitude, two AE parameters,
showed a consistent result with the boiling process. Seo et al.
[33] studied the feasibility of boiling regimes identification
based on AE features. Both the AE measurements and optical
imaging was accompanied to differentiate between the boiling
regimes with their associated characterized AE features.

In this work, we have performed multi-modal boiling
characterization using temperature, optical images, and acoustic
sensing (hydrophone, AE sensor, microphone) of two different
heat load conditions in boiling heat transfer, that is steady-state
and transient heat load conditions. This is because steady-state
heat transfer has been extensively studied in literature but the
actual real-time heat transfer is dominated by transient heat
transfer whether it be in the battery management system of EVs
or temperature control systems used in boilers of nuclear power
plants. A detailed study showing the transient heat load is
essential for ensuring the safety of systems working at larger heat
fluxes. This is because the current cooling systems design is
based on steady-state analysis that underpredicts the factor of
safety. If an actual transient system is fully characterized and
understood, the perfect monitoring of the cooling system can be
imposed on high-power high-temperature applications which
will save a lot of energy lost due to undervaluation.

2. MATERIALS AND METHODS

The project has two major aspects, that is, a) collection of
synchronized data from transient and steady-state heat transfer
conditions including all the optical images, acoustic emissions,
microphone noises, and hydrophone signals as a function of
time, and b) multi-modal characterization.

2.1 Experimental Setup
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FIGURE 1: EXPERIMENTAL SETUP SHOWING BOILING
CHAMBER WITH DIFFERENT SENSORS EMBEDDED WITHIN
THE SYSTEM

Figure 1 shows the pool boiling experimental setup
comprising the 1 cm? heating element of copper block inside the
PEEK boiling chamber. A detailed description is provided in our

previous work [34]. For acoustic sensing, the acoustic sensor
(MISTRAS R3a 30kHz) is attached to the outer edge of the
boiling chamber to record the acoustic waves emitted during the
pool boiling. During the AE measurement, a threshold frequency
of 55 Hz is applied to the hardware acquisition software from
Physical Acoustics Corporation (1283 USB AE Node) for
reducing the possible background white noises over AE reading).
A condenser microphone (Behringer ECM8000) connected to
the main DAQ body (Behringer U-PHORIA UMC404HD) and
powered by a 48V phantom power supply (Neewer NW-100)
was used to measure noises generated outside of the boiling
chamber. The DAQ can relay signals of 10Hz-43kHz and the
microphone reads from 15Hz-20kHz. The DAQ is connected to
the computer and the data is collected via LabVIEW.

2.2 Data Collection

The pool boiling data are collected over plain Cu surfaces as
well as structured Cu foams-deposited boiling surfaces. For the
pool boiling experiments, the multimodal signals were recorded
from 0 to CHF conditions irrespective of the type of heat loading
conditions. Also, the pool boiling experiments for each of the
heat load types were done on four different samples, that is,
polished copper, pH-0 deposited Cu foam, pH-10 deposited Cu
foam, and pH-12 deposited Cu foam.
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FIGURE 2: SYNCHRONIZED ACOUSTIC SIGNALS FOR
STEADY STATE (A, C, E, G) AND TRANSIENT TESTING (B, D,
F, G) RECORDED WITH THERMOCOUPLES (A, B),
MICROPHONE (C, D), HYDROPHONE (E, F) AND AE SENSOR
(G, H) OVER A PH-10 DEPOSITED CU FOAM SAMPLE

The datasets include multimodal signals such as optical
images, acoustic signals (hydrophone, AE sensor), microphone
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noises, and temperature profiles via thermocouples. The pool
boiling setup as shown in Figure 1 was used for collecting the
data where two different sets of heat loading conditions were
provided, that is, steady-state and transient heating. Steady-state
heating observes the steady increase in the heat flux as a stepwise
increment in the power of approximately 15 or 20 W until the
CHF is triggered whereas, for transient heating, single ramp-up
heating is applied till CHF occurred. All the datasets obtained
are employed for the multi-modal analysis using machine
learning algorithms.

The representative raw signals recorded from the different
acoustic sensors, that is, AE sensor, microphone, and
hydrophone respectively are shown in Figure 2. The tests are
carried out both in a steady state followed by transient heat
loading over the same pH-10 deposited Cu foam sample. CHF
for the tests was reported to be 218.5634 W/cm? and 197.1744
W/cm? respectively. Figure 2a, b shows the temperature spike
at the CHF. Following the trend, the acoustic waves in terms of
AE amplitude recorded by the AE sensor also depict a large spike
at the CHF point as shown in Figure 2g, h. Similarly, for the
microphone and hydrophone data, their raw signals increase with
the increased heat flux till CHF occurs. But, at the triggering of
CHF, the raw signals get reduced as shown in Figure 2 ¢, d, e f
respectively. The observed acoustic behavior during boiling is
closely related to its physical phenomena. Boiling, a stochastic
and unpredictable process, is much more complex and involves
continuous bubble generation, bubble growth, and their
departures from the hot surface inside the liquid pool. While
doing so, it generates sound waves resulting in noise or
vibrations. During the nucleate boiling, the acoustic thrust
created by the bubble ebullition gradually increases with an
increment in heat flux. But, at CHF, the boiling surface is
blanketed by vapor film with exerts a significant sound pressure
due to increased power density as shown in Figure 6,7,8 whether
it be inside the liquid pool or on the boundary walls. The
different acoustic devices pick up these waves and these AE
signals can be used to investigate and understand boiling.

2.3 Multi-modal architecture

To show the potential of utilizing both high-speed image
data and acoustic signals from a hydrophone together, three
different machine-learning regression models were trained and
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FIGURE 3: SCHEMATIC SHOWING THE ARCHITECTURE OF
THE IMAGE AND ACOUSTIC FUSION MODEL.

tested for heat flux prediction. All of the models used data from
the transient boiling test with the pH10 Cu foam. One model was
a multilayer perceptron (MLP) and used segmented clips of the
hydrophone signal converted to frequency intensities using the
fast Fourier transform (FFT) to predict heat flux. Another model
used only images reduced to 50 x 50 pixels from the pool boiling
experiment. It coupled convolutional layers for feature
extraction with an MLP for regression. The third model, which
is shown in Figure 3, used both image data and acoustic signals.
Feature extraction was performed on both data types (i.e. FFT
for audio and convolutional layers for images) and was
concatenated together and passed through an MLP for heat flux
prediction. All three of the models used the same MLP structure
for prediction. For the results of these models, the hydrophone
signal was split into non-overlapping sequences of a length of
3000 samples. Each of the sequences was mapped to an image
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FIGURE 4: (A) CRITICAL HEAT FLUX AND (B) HEAT
TRANSFER COEFFICIENTS FOR DIFFERENT BOILING
SURFACES DURING STEADY STATE AND TRANSIENT HEAT
LOAD CONDITIONS

and corresponding heat flux. For all the models, 80% of the data
was used for training and 20% for testing. Each model was
trained with the Adam optimizer and a mean squared error loss
function. The FFT feature extraction was implemented using
NumPy [35] and the models were implemented using
TensorFlow [36].

3. RESULTS AND DISCUSSION

The respective pool boiling tests boiling parameters, which are,
critical heat flux (CHF) and heat transfer coefficient (HTC) are
plotted in Figure 4. The pH-10 Cu foam was found to have better
performances in terms of CHF and HTC as compared to other
Cu foams as well as flat polished copper surfaces. For the
different modes of heat applications to the chamber, steady state
condition has higher CHF and HTC values as compared to the
transient testing.

3.1 Acoustic Analysis on Hydrophone signals
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The acoustic signals recorded from the hydrophone,
submerged inside the water bath, were further analyzed
following the spectrogram. The acoustic frequency and energy
obtained from spectrum analysis are used to characterize the
acoustic waves. The spectrogram helps in determining the
frequency as a function of time with the power intensity at each
time frame.

3.1.1 Acoustic Features of Single Bubble Dynamics
The key optical, acoustic, and thermal characteristics of
bubble nucleation and release are recorded and analyzed for
individual air bubbles. These characteristics, including
frequency, period, amplitude, etc. will set a reference for the
analysis of multi-bubble dynamics. Figure 5 shows the
schematic drawing for the air bubble system and test results. Air
bubbles are generated and released using a programmable
syringe pump. The bubble dynamics are visualized using VIS
high-speed imaging. Acoustic signals are measured using a
hydrophone immersed in the liquid pool and an AE sensor
attached to the bottom of the pool. The bubble trajectories are
analyzed using high-speed videos with results presented in
figure 5b. The rising velocity of the small bubble is 150 mm/s,
lower than that of the large bubble (177 mm/s). As shown in
figure Sc, the spectrograms from the hydrophone signals show
spikes at the moment of the bubble rising. The peak frequency of
the 3.94 mm bubble is approximately 1.45 kHz, which is
consistent with the natural frequency of Minnaert resonance
calculated to be 1.432 kHz following f= (2mr)"'(3yP/p1)*>, where
r is the bubble radius, y polytropic coefficient, P pressure, and pi

liquid density.
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FIGURE 5: OPTICAL AND ACOUSTIC FEATURES OF SINGLE
AIR BUBBLE DYNAMICS SHOWING (A) SCHEMATIC
DRAWING OF THE TEST FACILITY OF AIR BUBBLE DYNAMICS
CHARACTERIZATION, (B) TRAJECTORIES OF BUBBLES FROM
HIGH-SPEED IMAGING, AND (C) SPECTROGRAMS OF AIR
BUBBLE TESTS USING DIFFERENT TUBE DIAMETERS.
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3.1.2 Acoustic Features of Pool Boiling Bubble
Dynamics

Both the steady state and transient testing spectral analysis is
analyzed below:

3.1.2.1 Steady State Boiling Spectral Analysis

Spectral analysis for the hydrophone signals recorded
during the boiling experiment over pH-10 Cu foams is shown in
Figure 6. At the CHF initiation, both the frequency and heat flux
is observed to reduce significantly implying the heat transfer
insulation caused by vapor wrapping on the boiling surface. As
the spectrogram is analyzed, a common trend can be observed
between the heat flux and maximum power spectral density.
Both of them keep on increasing at the step heat supply
increment but once CHF occurs, values of both parameters have
plummeted. Moreover, the frequency at maximum PSD is
shifted towards a higher frequency range at the CHF state as
shown in Figure 6d.
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FIGURE 6: SPECTRAL ANALYSIS FOR THE CRITICAL

HEAT FLUX CONDITION OF A STEADY-STATE TEST

SHOWING SYNCHRONIZED (A) SPECTROGRAM, (B) HEAT

FLUX, (C) MAXIMUM POWER, AND (D) DOMINANT
FREQUENCY OVER TIME.

Figure 7 shows the power spectral density during steady-state
boiling on different boiling surfaces. The steady-state test results
show an increased power level with heat flux in the nucleate
boiling regime. But when CHF is triggered, the acoustic power
is reduced by more than 2 orders of magnitude within 0.0112
seconds. Since the acoustic power scales with the square of its
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frequency, energy frequency via acoustic waves significantly
decreases.

3.1.2.2 Transient Boiling Raw Data Spectral Analysis

For transient testing, a ramp-up heat is provided from 0 to
CHF condition in one go. Three different stages are observed
including nucleate boiling to pre-CHF, pre-CHF to transition
boiling i.e. DNB (departure from nucleate boiling), and DNB to
NB as the heat supply is turned off. Figure 8 represents the
spectral analysis for the transient test conducted over a pH-10
deposited Cu sample. From the spectral analysis, it can be noted
that the frequency, heat flux, and PSD max are increasing with
the increased applied heat load. But at the CHF point, all of these
three parameters are decreased significantly. Moreover, the
frequency at PSD max is reduced at the CHF point and will stay
the same until the boiling reversal occurs where the departure
from the nucleate boiling state is reversed back to the nucleate
boiling regime. At this state, the frequency at maximum PSD is
shifted from low to high and resembles back to the frequencies
present at the initial stages of the boiling process at the nucleate
boiling regime. This shows that there is a characteristic
frequency in the NB regime and transition boiling regime. Such
understanding can be leveraged in CHF detection and
monitoring systems based on either frequency shift recognition
or PSD max differential values as the function of the temporal
axis.

3.2 AE sensor amplitude analysis for pool boiling

The acoustic sensing in terms of amplitude is recorded using
AE sensors attached to the bottom of the boiling chamber. The
AE amplitude, defined by Physical Acoustics, is plotted for the
different boiling surfaces at CHF as shown in Figure 9. It can be
concluded that irrespective of the heat loading type the acoustics
waves detected by the AE sensor were very close to each other.
But, at the CHF triggering there is a significant spike in AE
amplitude as shown in Figure 2g, h which differentiates the

3 .
E " m
G“ I}- T T T T T T T
0 50 1040 154 200 250 300 350 400
(c),
= 200
=
< 100 -
o
l}- T T T T T T T
0 50 1040 150 200 250 300 350 400
400 4
(dgk f shifts
= 200
e
l} r T T T T T T T 1
0 50 109 150 200 250 300 350 400

FIGURE 8: SPECTRAL ANALYSIS FOR A TRANSIENT POOL
BOILING TEST SHOWING SYNCHRONIZED (A)
SPECTROGRAM, (B) HEAT FLUX, (C) MAXIMUM POWER, AND
(D) DOMINANT FREQUENCY OVER TIME.
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transition boiling initiation from the nucleate boiling regime. AE
amplitude threshold value of 55 dB was provided to mitigate the
background white signals, present if any during the experiments.
As such the AE amplitude can be seen with values larger than 55
dB. A common trend of slightly higher AE amplitude is observed
for the steady-state test as compared to the transient test with pH-
0 being an exception. For the pH-0 case, the amplitude for the
transient test is larger than the steady state one.

3.3 Image-based vapor fraction analysis for
boiling tests

The vapor flux analysis is performed on the boiling images
to understand the bubble dynamics in both the steady state and
transient heating conditions. As shown in figure 10, the vapor
generation is increased with the increased heat flux in the
transient heating case. But, at the CHF initiation, the vapor flux
is reduced tremendously indicating the stubby bubble blanketing
on the boiling surface. A proper real-time vapor contour analysis
can be used to correlate with boiling stages and potentially
identify the CHF initiation.

FIGURE 10: VAPOR FRACTION ANALYSIS FOR A
TRANSIENT TESTING DONE ON DIFFERENT BOILING
SURFACES (A, B, C, D) WHERE A TRANSIENT TEST (C) IS
FURTHER ANALYZED WITH MEAN VAPOR FRACTION
SHOWING THE INCREASE IN VAPOR AS A FUNCTION OF
TIME WITH INCREASED HEAT FLUX

The different steady-state boiling experiments conducted on
various boiling surfaces and their mean vapor fraction vs the heat
flux is shown in Figure 11. Figures 10 and 11 show a common
trend that irrespective of heat load conditions the mean vapor
fraction is increased with the increased heat flux. This behavior
is observed till the CHF triggering occurs.

3.4 Multimodal Fusion
Both the acoustic (from hydrophone) and optical data were
combined to predict the heat flux. After training all three

regression models, the coefficient of determination (R? score)
results are shown in Figure 12.
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FIGURE 11: VAPOR FRACTION FOR STEADY-STATE
HEAT LOAD CONDITION

The R? score is a measurement of the fit of the model to the
data. Values close to 1 are desired and indicate a good fit. The
image regression model performed the worst with an R? score of
0.68. This could be due to the reduced image size and small
training set. The fusion model did the best with an R? score of
0.941 but just slightly better than the sound model with an R?
score 0f 0.928. This is also seen in Figure 13 where the predicted
values of heat flux vs the true heat flux labels are plotted for all
three models. Ideally, the points would all lie on the diagonal line
implying the predicted heat flux is the same as the true heat flux
label. It can be seen here that the fusion model and sound model
do the best. From these results, it is shown that there is promise
in improving the accuracy by incorporating both image data and
sound data in a fusion model.

This can be attributed to different approaches, whether it be
optical or acoustic data acquisition, implemented in the very
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FIGURE 12: R° SCORES FOR ALL THREE
MODELS; IMAGE CNN-MLP, SOUND FFT-MLP,
AND IMAGE-SOUND FUSION MODEL.

same boiling process. The method for procuring the images and
sounds would be independent of themselves but they are
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corresponding to the same physical phenomenon. As a result, a
fusion of both optic-acoustic models can be anticipated
complimenting each other which shows great promise in the
effective prediction of heat fluxes.
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FIGURE 13: TRUE HEAT FLUX LABEL VS PREDICTED HEAT
FLUX LABEL FOR ALL THREE MODELS; IMAGE-ONLY
MODEL, SOUND-ONLY MODEL, AND IMAGE-SOUND FUSION
MODEL.

3.5 Limitations of the study

This boiling study was performed over the electrodeposited
copper foams and polished copper surfaces at different heat load
conditions. While doing so, the current study was susceptible to
several limitations that could be grouped into two major
categories: a. Data collection limitations b. Machine learning
fusion limitations. Some of those limitations and future
directions for mitigating such issues are discussed below:

3.5.1 Data collection limitations

1. During both the SteadyState and Transient boiling
experiments, the boiling setup was exposed to the
surrounding noises. This study implements the threshold
values for AE sensors to diminish the white noises but the
data from the microphone and hydrophones are adulterated
by the noises. For minimizing this effect, the complete setup
was kept in a low-noise environment. For future approaches,
noise reduction filters can be implemented over hydrophone
data.

2. In each pool boiling experiment, two hydrophones were
placed inside the saturated water bath and tried to be fixed
at a position. As boiling is such a vigorous process, the
vehement bubble generation induced the vibration over the
hydrophones. Also, the geometrical location, its position
from the heating area as well as orientation could alter the
sound signal recording. For averaging out these odds, we
used two different hydrophones in alternate directions.
These differences in data could potentially reduce the
aforementioned issues with hydrophones' location.

3. Deionized water is used as the thermal transport media

during the boiling tests. The acoustic characteristics could
vary depending on the liquid properties such as viscosity,
boiling point, etc. which are not explored in this study.

3.5.2 Machine learning limitations

The acoustic and fusion machine learning models presented
in the paper are shown to have high performance in the testing
phase. However, the performance of these models may be limited
when faced with more diverse testing data. For example,
changing the copper surface or the boiling fluid could
significantly affect the model’s performance. Moreover, the use
of acoustics as a sensor makes the model sensitive to background
noise, which could also impact the results. To overcome these
limitations, various approaches have been developed, such as
incorporating more diverse data during training, utilizing domain
adaption techniques, and using transfer learning with pre-trained
models fine-tuned on additional data. By implementing these
strategies, the performance of the machine learning models can
be more generalized and improved, ultimately leading to better
results.

4. CONCLUSION

The multi-model characterization of two different heating
applications including steady state and transient is done in this
paper with a focus on early prediction and effective monitoring
of boiling crisis. The acoustics signals obtained from different
sensors such as hydrophone, and AE sensors show a definite
change during the CHF initiation whether it be the dominant
acoustic frequency and power level of hydrophone signals or the
amplitude recorded for the AE sensor. A single bubble analysis
is done to understand the bubble footprints from spectrogram
analysis and it is further applied to the pool boiling. The vapor
flux analysis depicted the increment in vapor fraction as the heat
flux increased and was seen to decrease dramatically at the CHF
point. Finally, three different machine-learning regression
models were tested for understanding the potential fusion
implementing both the high-speed images and acoustic signals
in an attempt to characterize boiling processes. Future work will
focus on incorporating a variety of boiling environments and
potentially develop a generalized non-intrusive fault detection
model for high-performance cooling environments involving
boiling.
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