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ABSTRACT

Real-time thermal monitoring and regulation are critical to
the mitigation of thermal runaways and device failures in two-
phase cooling systems. Compared to conventional approaches
that rely on the Joule effect, thermal gradient or transverse
thermoelectric effect, acoustic emission (AE)-based remote
sensing is more promising for robust and non-intrusive thermal
monitoring. Nevertheless, due to the high stochasticity and noise
of acoustic signals, existing implementations of AE in thermal
systems have been limited to qualitative state monitoring. In
this paper, we present a technology for real-time heat flux
quantification during two-phase cooling by coupling acoustic
sensing using hydrophones and condenser microphones and
regression-based machine learning frameworks. These
frameworks integrate a fast Fourier transform feature extraction
algorithm with regressors, i.e., Gaussian process regressor and
multilayer perceptron regressor for heat flux predictions. The
acoustic signals and heat fluxes are collected from pool boiling
tests under transient heat loads. It is shown that both hydrophone
and condenser microphone signals are successful in predicting
heat flux. Multiple models are trained and compared some using
only one form of acoustic data while others combine both
acoustic types (i.e., hydrophone and microphone) in fusion ML
models (i.e., early, joint, late). The models using only
hydrophone data are shown to perform better than the models
using only microphone data. Also, some forms of fusion are
shown to have better performance than either of the single input
data type models. This AE-ML technology is demonstrated for
accurate heat flux quantification. As such, this work will not only
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lead to a light, low-cost, and non-contact thermal measurement
technology but also a new perspective for the physical
explanation of bubble dynamics during boiling.
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Acoustics, Machine Learning, Gaussian Process Regression

1. INTRODUCTION

High-performance cooling schemes are needed to sustain
the growth of high-power density applications, e.g., data centers
[1] and electric vehicles [2]. Two-phase cooling has the potential
to meet these cooling needs by providing greater heat flux
dissipation while maintaining a relatively low wall superheat in
the nucleate boiling regime. However, two-phase cooling is
limited by instabilities such as critical heat flux (CHF) and a lack
of understanding of boiling dynamics [3]. Due to this, in order to
avoid overheating or burnout, fast and accurate monitoring of the
cooling system is crucial for successful implementation.

Intrusive heat flux quantification methods have been used
during pool boiling, e.g., the Joule effect method [4], gradient
method [5], [6], or transverse thermoelectric effect [7]. For the
Joule effect method, heat flux is calculated directly using the
voltage and current applied. It is used for experiments where the
ratio of boiling surface area to total surface area is large. For the
gradient method, the temperature difference is measured within
a material with known thermal conductivity (k) and then
Fourier’s law (q = —k VT) is used to calculate the heat flux.
Although these methods are relatively easy and cheap to
implement, they suffer from drawbacks. The joule effect method
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is subject to large errors from nonuniform heating and the
response time of the gradient method is limited by thermal
diffusion. Also, since these methods require sensors embedded
near the heating surface, they can be difficult to replace and can
interfere with the boiling dynamics.

To avoid such interference, nonintrusive methods, such as
optical or acoustic sensing methods, are desired. Image
processing is one area that is been studied extensively in pool
boiling [8]-[10]. Traditional image analysis has been used to
correlate heat flux to boiling features within the image [11] (e.g.,
bubble diameter or bubble count). Advances in computer vision
have also aided in faster and more accurate pool boiling image
processing. Some groups have used image-based machine
learning methods for predicting heat flux. Suh et al used features
extracted using a convolutional neural network (i.e., VGG16)
with physical bubble features such as count and size found from
Mask R-CNN [12]. These features were then used in an MLP to
predict heat flux. Hobold et al used the unsupervised principal
component analysis (PCA) method to extract features which
were then used in training and testing an mlp for heat flux
prediction [13]. Although the data collection system utilizing a
camera can be entirely nonintrusive, the setup presents
challenges in an actual implementation such as the size/ weight
of the system or the need for a transparent boiling chamber and
adequate light.

Acoustic sensing is nonintrusive, low-cost, light, and easy
to implement [14]. A variety of acoustic sensors have been
implemented in boiling studies such as AE sensors,
hydrophones, and condenser microphones. Hydrophones are
submerged in the body of liquid so they can be placed close to
the boiling surface. Condenser microphones are placed outside
of the boiling set up allowing for a truly non-intrusive sensor,
however, they are subject to high levels of noise. Current studies
have drawn connections between raw signals, power spectral
density, frequency domain, etc. to boiling characteristics.
Alhashan et al. correlated data from acoustic emission sensors
(e.g., AE energy, RMS, amplitude, etc.,) to fluid viscosity and
bubble diameter [15]. Baek et al found that the AE hit number
increased with heat flux [16]. Nishant et al observed a sharp
increase in the intensity of the acoustic signals at the CHF during
pool boiling experiments at different subcooling [17]. Machine
learning has also been incorporated with acoustic signals for
various applications like anomaly detection [18], guitar effects
recognition [19], or monitoring gas-liquid mixing [20]. With
respect to boiling studies, coupling machine learning techniques
and acoustic sensing have been less explored. Its uses have been
limited to qualitative analysis such as boiling regime
classification. Sinha et al used acoustic signals from pool boiling
to predict the associated boiling regime [21]. They did this by
transforming the acoustic signal to a spectrogram then used CNN
for feature extraction and an MLP classification model to predict
the regime. Ueki and Ara used an MLP model for classifying
boiling regimes using sound pressure levels from a hydrophone
[22]. One drawback of acoustic sensing is that they suffer from
high noise levels. Especially in boiling studies, it can be difficult
to remove noise while maintaining important features from

boiling. Some groups just use the raw signal while others have
performed some noise filtering. Negi used Audacity to filter the
noise from their signal by using a portion of the signal where
only the noise was present and boiling was not taking place [23].

In this work, both condenser microphone and hydrophone
signals from a pool boiling experiment are used to train and test
machine learning models for predicting heat flux. These
quantitative models include multilayer perceptron and Gaussian
process regression models. Both data types are used
independently and together in different types of simple fusion
models.

2. MATERIALS AND METHODS

Data from a pool boiling experiment was collected and
preprocessed. This section describes the experimental setup for
collecting the data, how the data was processed for use in the
machine learning models, and the structure of the supervised
regression machine learning models.
2.1 Data Collection

Data were collected from a transient pool boiling
experiment where the heat load ramps up to initiate the critical
heat flux condition. A Iecm x lcm copper block with surface
structures is summurged in deionized water heated to its
saturation point. The block is heated with nine cartridge heaters
(Omega Engineering 1IDC19102) connected to a DC power
supply (Magna-Power SL200-7.5) past the CHF. Four Type-T
thermocouples (Omega Engineering TJ36-CPSS-032U-6) are
evenly spaced in the copper block with a spacing of 0.1 inches
and are connected to an NI DAQ module (NI 9210). The
thermocouples were set to a sampling rate of 3012 Hz. More
detailed facility description and test procedures are provided in
[24] and [25], [26], respectively. Figure 1 shows the recorded
temperatures in the copper block with the four thermocouples
and the heat flux calculated using Fourier’s law.
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FIGURE 1 : TEMPERATURE FROM THERMOCOUPLES AND
CALCULATED HEAT FLUX AS A FUNCTION OF TIME.
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For the acoustic data sampling, both a hydrophone and
condenser microphone were used. A hydrophone with a built-in
preamplifier (High Tech HTI-96-Min) was submerged near the
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copper surface in the boiling chamber. A condenser microphone
(Behringer ECM8000) was used to measure AE outside of the
boiling chamber. The microphone was placed directly outside of
the chamber and was pointed at the nucleation source, to ensure
the best results despite its omnidirectional capability. The
microphone reads from 15Hz-20kHz. A 48V phantom power
supply (Neewer NW-100) was used to power the microphone.
This was then connected to the main DAQ body (Behringer U-
PHORIA UMC404HD). The DAQ can relay signals of 10Hz-
43kHz. This interface also allows for the preamplification of the
signal. The DAQ was connected to the computer and the data
was collected via LabVIEW. Both the hydrophone and
microphone were set to a sampling rate of 3012 Hz. Noise
removal is a difficult task for pool boiling acoustics in the sense
that it is easy to remove important characteristic acoustic boiling
features within the signal. Audacity was used to attempt to
remove some of the noise from the microphone signal. To do
this, the noise reduction effect in Audacity was used. The
microphone signal was first scaled to have an absolute max of 1
and saved as a wav file for use in Audacity. A sample of the
signal near the end was used as the noise profile and the settings
12 dB, 5 sensitivity, and 1 frequency smoothing were selected.
This noise filtering was applied to the entirety of the microphone
signal. Figure 2 shows the hydrophone acoustic signals and both
the raw microphone signal and the filtered microphone signal.
Both the raw microphone signal and noise-reduced signal were
used in the machine learning models.
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FIGURE 2: ORIGINAL HYDROPHONE AND MICROPHONE
DATA AND FILTERED MICROPHONE DATA.

2.2 Data Preparation

Figure 3 shows an overview of the process used in for the
models. The sound data collected from the experiment was
segmented and then converted to sets of frequency intensity
vectors which were then used in different types of regression
models. This was done for both the raw signals and the filtered
microphone data. This section describes the methods used for
processing the data including the signal segmentation and feature
extraction.
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FIGURE 3: SCHEMATIC OF THE GENERAL PROCESS OF
CONSTRUCTING THE MODELS.

Five supervised mlp sequential regression models and
three Gaussian process regression models were used to predict
heat flux. The microphone, hydrophone, and thermocouples
were sampled at the same rate (3012 Hz). However, they all
had different data collection start times and lengths. To account
for this the beginning and end of the microphone and
hydrophone signals were cropped to match the thermocouples'
start and end time. After cropping, the dataset consisted of three
equal-length sequences of data; hydrophone (Sy), microphone
(Sy), and heat flux (H).

St = {sn(to), sn(tr), - sp(ty-1)}
SM = {Sm(to)’ Sm(tl)' e Sm(tN—l)}
H = {h(to), h(ty), ..., h(ty-1)}
where sy(t;) is a hydrophone sample at time t;, sy(¢t;) is a
microphone sample at time t; , h(t;) is a calculated
approximation of heat flux at time t;, and N is the number of
samples in the sequences.

The machine learning models take in inputs of audio
sequences and output a single heat flux prediction value. The
audio data needed to be split into sequences and matched to a
heat flux. To create these sequences, a rolling sampling method
was used for the acoustic signals with some overlap to create a
larger data set. Both the hydrophone and microphone sequences
(S, Sy) were split into sets of shorter audio clips;
((N_l)_Nseq)/Nstride}

0 1

{ay, ap, ... a,

0 .1 ((N-1)—Nseq)/Nstride
{am am, -, a,, }
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where each a) and al, are shorter audio clips of the
hydrophone and microphone data respectively and defined as:

i
ap = {sn (ti*Nstride) ’ Sh(ti*Nstride+1) r e S (ti*Nstride+Nseq)} ’
i
am = {Sm(ti*Nstride)’ Sm(ti*Nstride+1)' = Sm (ti*NStride+Nseq)} ’
Nieq is the sequence length (i.e. length of the sequence segments

(ai,al,)) and Nypige is the stride (i.e. amount of samples to
skip before the starting term in the next sequence segment). Each
audio sequence segment was then matched to a calculated heat
flux which corresponds to the same time as the last audio sample
in the sequence. Or in other words, each a},a’, is matched to
the heat flux value h(t.y,,, .+ Nseq)'

The dataset used for all the models was prepared with a
sequence length of 4000 and a stride of 1000. Next each
sequence segment (a},, a’,) was converted to frequency features
using the fast Fourier transform (FFT). This was done using the
FFT function in the NumPy library [27].

2.3 Machine Learning Models

Two different machine learning regression model
architectures were used; multilayer perceptron (mlp) and
Gaussian process regression. For each model architecture type,
two of the models were trained using only hydrophone or only
microphone data and the remaining models used a combination
of both types of data in fusion models. For all the models, 80%
of the data was used for training while 20% was used for testing.
For the mlp models, 20% of the training data was used for
validation. All of the models used the same training data and
testing data.

Four different mlp model architectures were trained and
tested on the hydrophone and microphone data seperately. The
architecture which had the best performance on the test data for
both the hydrophone and microphone data was chosen for further
analysis and for use in the feature extraction portion of the fusion
models. An mlp is a machine learning model that consists of
layers of neurons. Each neuron describes a function whose inputs
are first each multiplied by a weight then summed with a bias
and passed through an activation function. A common activation
function is the rectified linear unit (ReLU) which is defined as
f(x) = max (0, x). During training, backpropagation is used to
iteratively update the weights and biases to minimize the
specified loss. In supervised learning, the loss function is defined
to describe the difference between the model’s prediction and
true label. For example, the mean squared error loss function is
commonly used in regression problems and defined as MSE =

N (true; — pred;)?> . The hydrophone data only and
microphone data only models had an identical structure shown
in Figure 4. The models consisted of 6 dense layers with 200,
200, 200, 200, 64, and 1 neurons respectively. The first 5 layers
used the ReLU activation function. Dropout after the 2", 4t |
and 6" layer was implemented with a rate of 0.2. Dropout is used
to prevent overfitting during training by randomly dropping
inputs at a specified rate for the layer.

Three types of fusion were implemented on the data;
early, joint, and late. Figure 5 shows the general structure of the

three types of fusion used. The fusion models all took in inputs
of both hydrophone and microphone frequency features. The
difference between the three models residing in the
concatenating location. The early fusion model concatenated the
hydrophone and microphone frequency features first then passed
these frequencies through an mlp which consisted of 6 dense
layers with 200, 200, 200, 200, 64, and 1 neurons. The first 5
layers used the ReLU activation function. Two dropout layers
with a rate of 0.2 were applied after the 2" and 4" layer. For the
joint fusion model, the hydrophone and microphone frequency
features were first passed through mlps separately. These mlps
consisted of 2 dense layers with 200 and 200 neurons, ReLU
activation functions, and 0.2 dropout after the second layer. The
output of these two mlps were then concatenated and this vector
was then passed through a mlp consisting of 4 layers with 128,
128, 64, and 1 neurons. The first 3 layers had an ReL U activation
function and the 2™ layer had 0.2 dropout applied. The late
fusion model first consisted of two identical mlp’s for the
hydrophone and microphone frequency feature vectors. These
models had 5 layers with 200, 200, 200, 200, and 64 neurons, all
with ReLU activation functions. A dropout layer with a rate of
0.2 is applied after the 2" and 4" layer. The output of these mlps
are concatenated and then passed through a single dense layer
with one neuron. All of the models used the mean squared error
loss function and the Adam optimizer. They were trained with a
patience of 10 and the weights corresponding to the best
validation loss were restored. These five machine learning model
structures were implemented using TensorFlow [28].

Layer Activation Function Dutput Shape
Input - [iMone, 20007
Densa Ralu {Monea, 200)
Dense RellU (Mone, 2000
Dropout - (Mone, 200)
Denss Rell {Mone, 200}
Dense RealU (Mone, 200)
Drapout - (Monea, 200)
Dense RellU (Mone, 64)
Drapout - (Mona, 64)
Dense - {Mone, 1)

FIGURE 4: MODEL ARCHITECTURE USED FOR BOTH THE
HYDROPHONE ONLY AND MICROPHONE ONLY MODELS.
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FIGURE 5: SCHEMATIC SHOWING THE GENERAL FUSION
PROCESSES

Gaussian process regression (GPR), another supervised

machine learning regression model architecture, was also
implemented. Gaussian process regression is a probabilistic
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model in which a kernel is defined and used for calculating the
covariance matrix used in fitting the data. Three different
Gaussian models were trained; one using only the hydrophone
frequency intensity data, one using only microphone frequency
intensity data, and one used both data types. All three models
used the same kernel: DotProduct() + WhiteKernel() +
ConstantKernel().

where

DotProduct: k(x;,x;) = 6§ + x; - x; ;

WhiteKernel: k(x;, x;) = {1 if x; == x;

0 ;
ConstantKernel: k(xi,xj) = 1.0.

For the combined model, the microphone and hydrophone
frequency features for each corresponding heat flux were
appended together. This model is referred to as the early fusion
Gaussian model. These models were implemented using the
Scikit-learn library [29] in python.

3. RESULTS AND DISCUSSION
3.1 Model Performance
Five different supervised mlp models were trained. One mlp
for hydrophone data only, one mlp for microphone data only and
three fusion models combining both data types for predicting
heat flux. For all the model types using microphone data, both
the filtered and raw signals were used for training and testing.
Figure 6 shows the coefficient of determination (R? score) for
the models calculated from the test data. The R? score is defined
Z?’: (True;—Pred;)?
as R* =1— Zli\ii(Trueli—Mearz)z'
of the model to the data, where an R? of 1 is the best scenario and
values close to one are desired indicating the model fits the data
well. From this bar plot a couple things can be seen. The model
just using the hydrophone data performs better than the models
just using the microphone signals. It is also observed that the mlp
model with the filtered microphone data performs worst when
trained and tested with raw signal data than the filtered data.
However, this is not the case for the three fusion models. For the
joint and late fusion types, the model using filtered microphone
data performed better than the one with the raw signal. It is also
seen that with the exception of the noisy early fusion model, all
the fusion models preform better than the non-fused models. For
the raw microphone data, the best model was found to be the late
fusion model achieving a R? score of 0.982 on the test data.
While the best model using the filtered microphone signal was
found to be the late fusion model with a R? score of 0.985. Figure
7 shows the predicted heat flux vs the true heat flux label for all
the models using the log scale on both axes. Ideally, the predicted
heat flux would equal the true heat flux label so all the points
would reside on the diagonal black line. These plots make sense
given the R? scores. For example, the plot of predicted vs true
for the microphone only model’s points are spread out more than
the best performing late fusion model with filter microphone data
whose points more closely follow the diagonal line. Another area
where the mlp models were compared was their training times.
Figure 8 shows the total training times for each model. It was
found that the late fusion models took the most time for training

This is a measurement of the fit

while the microphone only models and early fusion model were
the fastest.
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FIGURE 6: R> VALUES FOR FIVE DIFFERENT MODELS;
HYDROPHONE MLP, MICROPHONE MLP, EARLY FUSION,
JOINT FUSION, AND LATE FUSION WITH BOTH RAW DATA
AND FILTERED DATA.
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FIGURE 7: PREDICTED VS. TRUE HEAT FLUX FOR ALL MLP
MODELS; HYDROPHONE DATA ONLY, MICROPHONE DATA
ONLY, EARLY FUSION, JOINT FUSION, AND LATE FUSION.

Three Gaussian process regression models were also trained
and tested using the same data. Figure 9 shows the R? score for
these three gpr models. As seen by this plot the noise filtering
performed on the microphone data did not improve the
performance for either of the models including microphone data.
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The early fusion model using the noisy microphone data
performed the best with an R? score of 0.985. This value was the
highest achieved among all of the models including the mlp ones.
However, when compared to the mlp models both the
hydrophone data only and microphone data only gpr models had
lower R? scores.
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FIGURE 8: TRAINING TIMES FOR THE FIVE DIFFERENT
MODELS; HYDROPHONE MLP, MICROPHONE MLP, EARLY
FUSION, JOINT FUSION, AND LATE FUSION WITH BOTH RAW
DATA AND FILTERED DATA.
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GAUSSIAN MODELS; HYDROPHONE DATA  ONLY,
MICROPHONE DATA ONLY, EARLY FUSION MODEL.

3.1 Hydrophone and Microphone Signal Comparison

Although both acoustic sensors are used to measure the
same experiment, the models all performed differently. One
thing of note is that for the mlp models with hydrophone data
and the hydrophone gpr model there are two predicted heat flux
points that deviate more than 30 W/cm? from the true value.
These two outstanding points are present in all of the mlp models
with hydrophone data. To look into this more the time at which
these points are taken is found. It happens that these are the first
two heat flux values in the testing set that occur after the critical
heat flux is reached. At this point the heat flux decreases
hundreds of degrees in a matter of seconds. Figure 11 shows the
true value of these two points and the predicted value from the
hydrophone only and microphone only model with respect to the
heat flux curve. It is seen here that both of these points reside on
the sharp decline of heat flux seen once CHF is hit. One reason
for this far off prediction could be the lack of training data with
in this region for the models. For both values the microphone
only model prediction is closer to the true value. It is also
interesting to note that for the gpr models, the hydrophone only
data model also has large error in the prediction of these points
but when fused the Gaussian model is able to more accurately
predict them. This observation seen in both model architecture
types implies that for this data preparation method, the
microphone data can better predicted heat flux in the transition
boiling regime than the hydrophone data.

6 © 2023 by ASME



2007 Heat Flux

True Heat Flux
Microphone Data Only Model
Hydrophone Data Only Model

- -
B 5
{=) w
afe |

[
P
L

Heat Flux [W/fcm?®)
=3
[=)

5
50
5
o
o 100 200 300 400 500
Time (s}
FIGURE 11: PLOT OF HEAT FLUX WITH TWO

OUTSTANDING POINTS IN MODEL PREDICTION SHOWN.
THESE TWO POINTS ARE MARKED ALONG WITH THE
PREDICTION FROM THE HYDROPHONE DATA ONLY MLP
MODEL AND THE MICROPHONE DATA ONLY MLP MODEL.
THESE TWO POINTS OCCUR JUST AFTER THE MAX HEAT
FLUX IS ACHIEVED.

Just looking at the results plots from the models trained with
only one type of data, it can be observed that the hydrophone
models perform better than the microphone models with a higher
R? score than both with and without filtering. This is what was
expected since the condenser microphone is subject to higher
levels of noise and since the hydrophone is in such close
proximity to the boiling surface. This is also seen in figure 12 of
the spectrograms. Figure 12a shows the spectrogram from the
hydrophone signal. From this, it can be seen that frequencies
under 600 Hz vary the most throughout the transient experiment.
Although this transition over time can easily be seen in the
hydrophone data, it is less seen in figure 12b or 12¢ which are
the spectrograms of the raw microphone signal and filtered
microphone signal, respectively. In fact, there are several low
frequencies of roughly constant high intensities throughout the
entire time of the recording for the microphone data. For
example, the dark red line at just under 300 Hz. This constant
intensity frequency line can also be seen at the beginning and end
of the hydrophone signal spectrogram but it is much less intense
in comparison to the other frequencies present. These steady
frequencies are less intense in the filtered microphone data
spectrogram than the raw microphone data but the filtered
microphone data also losses quite a bit of frequency information.
The spectrograms are generated using the matplotlib library [30].
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FIGURE 12: SPECTROGRAM OF THE ACOUSTIC SIGNALS
FROM A.) HYDROPHONE, B.) MICROPHONE, AND C)
FILTERED MICROPHONE.

Another comparison made between the acoustic signals is the
root mean squared (RMS) values. RMS is essentially a measure
of loudness. The RMS value is defined as RMS =

/%anx(n)lz. Figure 13a shows the heat flux vs time and the

plots in figures 13b, 13¢, and 13d show the RMS value vs time
for the hydrophone, raw microphone, and filtered microphone
data. For these plots the hydrophone, microphone, and filtered
microphone signals were normalized to be between -1 and 1. For
the RMS values data from overlapping windows are used to
generate the RMS vs time plot. From these plots it can be seen
that both microphone and hydrophone signals show an increase
in volume as the heat flux rises to the critical heat flux. Both
signals also show a sharp decline in RMS after the critical heat
flux has been reached. The RMS values are found using the
librosa library [31].
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4. CONCLUSION

Acoustic signals from pool boiling can be used to
approximate heat flux. Hydrophone and microphone signals
contain frequency information that correlates to the heat flux of
the system. Hydrophone data achieves the best accuracy when
compared to the condenser microphone due to its proximity to
the boiling surface and smaller noise levels. However, even with
the high levels of noise present in the condenser microphone
signal, the regression models still performed well with some R?
scores greater than 0.95. It was also seen that the noise removal
process used did not improve the accuracy of the individual
models. It was also found that fusing the two signal types
together shows promise in achieving even higher prediction
accuracy. It is important to note that although the models
performed well with the experimental test data, they are expected
to have less accurate results for additional experiments with
different boiling liquids, heating surface, or even background
noise. Future studies will involve incorporating more data from
separate experiments to attempt and create a more generalizable
model.
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