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ABSTRACT 
Real-time thermal monitoring and regulation are critical to 

the mitigation of thermal runaways and device failures in two-

phase cooling systems. Compared to conventional approaches 

that rely on the Joule effect, thermal gradient or transverse 

thermoelectric effect, acoustic emission (AE)-based remote 

sensing is more promising for robust and non-intrusive thermal 

monitoring. Nevertheless, due to the high stochasticity and noise 

of acoustic signals, existing implementations of AE in thermal 

systems have been limited to qualitative state monitoring.  In 

this paper, we present a technology for real-time heat flux 

quantification during two-phase cooling by coupling acoustic 

sensing using hydrophones and condenser microphones and 

regression-based machine learning frameworks. These 

frameworks integrate a fast Fourier transform feature extraction 

algorithm with regressors, i.e., Gaussian process regressor and 

multilayer perceptron regressor for heat flux predictions. The 

acoustic signals and heat fluxes are collected from pool boiling 

tests under transient heat loads. It is shown that both hydrophone 

and condenser microphone signals are successful in predicting 

heat flux. Multiple models are trained and compared some using 

only one form of acoustic data while others combine both 

acoustic types (i.e., hydrophone and microphone) in fusion ML 

models (i.e., early, joint, late). The models using only 

hydrophone data are shown to perform better than the models 

using only microphone data. Also, some forms of fusion are 

shown to have better performance than either of the single input 

data type models. This AE-ML technology is demonstrated for 

accurate heat flux quantification. As such, this work will not only 

lead to a light, low-cost, and non-contact thermal measurement 

technology but also a new perspective for the physical 

explanation of bubble dynamics during boiling.  

 

Keywords: Pool Boiling, Heat Flux, Hydrophone, Microphone, 
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1. INTRODUCTION  
High-performance cooling schemes are needed to sustain 

the growth of high-power density applications, e.g., data centers 

[1] and electric vehicles [2]. Two-phase cooling has the potential 

to meet these cooling needs by providing greater heat flux 

dissipation while maintaining a relatively low wall superheat in 

the nucleate boiling regime. However, two-phase cooling is 

limited by instabilities such as critical heat flux (CHF) and a lack 

of understanding of boiling dynamics [3]. Due to this, in order to 

avoid overheating or burnout, fast and accurate monitoring of the 

cooling system is crucial for successful implementation.  

Intrusive heat flux quantification methods have been used 

during pool boiling, e.g., the Joule effect method [4], gradient 

method [5], [6], or transverse thermoelectric effect [7]. For the 

Joule effect method, heat flux is calculated directly using the 

voltage and current applied. It is used for experiments where the 

ratio of boiling surface area to total surface area is large. For the 

gradient method, the temperature difference is measured within 

a  material with known thermal conductivity (k) and then 

Fourier’s law (𝑞 = −𝑘 ∇𝑇)  is used to calculate the heat flux. 

Although these methods are relatively easy and cheap to 

implement, they suffer from drawbacks. The joule effect method 
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is subject to large errors from nonuniform heating and the 

response time of the gradient method is limited by thermal 

diffusion. Also, since these methods require sensors embedded 

near the heating surface, they can be difficult to replace and can 

interfere with the boiling dynamics.  

To avoid such interference, nonintrusive methods, such as 

optical or acoustic sensing methods, are desired. Image 

processing is one area that is been studied extensively in pool 

boiling [8]–[10]. Traditional image analysis has been used to 

correlate heat flux to boiling features within the image [11] (e.g., 

bubble diameter or bubble count). Advances in computer vision 

have also aided in faster and more accurate pool boiling image 

processing. Some groups have used image-based machine 

learning methods for predicting heat flux. Suh et al used features 

extracted using a convolutional neural network (i.e., VGG16) 

with physical bubble features such as count and size found from 

Mask R-CNN [12]. These features were then used in an MLP to 

predict heat flux. Hobold et al used the unsupervised principal 

component analysis (PCA) method to extract features which 

were then used in training and testing an mlp for heat flux 

prediction [13]. Although the data collection system utilizing a 

camera can be entirely nonintrusive, the setup presents 

challenges in an actual implementation such as the size/ weight 

of the system or the need for a transparent boiling chamber and 

adequate light.  

Acoustic sensing is nonintrusive, low-cost, light, and easy 

to implement [14]. A variety of acoustic sensors have been 

implemented in boiling studies such as AE sensors, 

hydrophones, and condenser microphones. Hydrophones are 

submerged in the body of liquid so they can be placed close to 

the boiling surface. Condenser microphones are placed outside 

of the boiling set up allowing for a truly non-intrusive sensor, 

however, they are subject to high levels of noise. Current studies 

have drawn connections between raw signals, power spectral 

density, frequency domain, etc. to boiling characteristics. 

Alhashan et al. correlated data from acoustic emission sensors 

(e.g., AE energy, RMS, amplitude, etc.,) to fluid viscosity and 

bubble diameter [15]. Baek et al found that the AE hit number 

increased with heat flux [16]. Nishant et al observed a sharp 

increase in the intensity of the acoustic signals at the CHF during 

pool boiling experiments at different subcooling [17]. Machine 

learning has also been incorporated with acoustic signals for 

various applications like anomaly detection [18], guitar effects 

recognition [19], or monitoring gas-liquid mixing [20]. With 

respect to boiling studies, coupling machine learning techniques 

and acoustic sensing have been less explored. Its uses have been 

limited to qualitative analysis such as boiling regime 

classification. Sinha et al used acoustic signals from pool boiling 

to predict the associated boiling regime [21]. They did this by 

transforming the acoustic signal to a spectrogram then used CNN 

for feature extraction and an MLP classification model to predict 

the regime. Ueki and Ara used an MLP model for classifying 

boiling regimes using sound pressure levels from a hydrophone 

[22]. One drawback of acoustic sensing is that they suffer from 

high noise levels. Especially in boiling studies, it can be difficult 

to remove noise while maintaining important features from 

boiling. Some groups just use the raw signal while others have 

performed some noise filtering. Negi used Audacity to filter the 

noise from their signal by using a portion of the signal where 

only the noise was present and boiling was not taking place [23]. 

In this work, both condenser microphone and hydrophone 

signals from a pool boiling experiment are used to train and test 

machine learning models for predicting heat flux. These 

quantitative models include multilayer perceptron and Gaussian 

process regression models. Both data types are used 

independently and together in different types of simple fusion 

models.  

 

2. MATERIALS AND METHODS 
Data from a pool boiling experiment was collected and 

preprocessed. This section describes the experimental setup for 

collecting the data, how the data was processed for use in the 

machine learning models, and the structure of the supervised 

regression machine learning models.   

2.1 Data Collection 

Data were collected from a transient pool boiling 

experiment where the heat load ramps up to initiate the critical 

heat flux condition. A 1cm × 1cm copper block with surface 

structures is summurged in deionized water heated to its 

saturation point. The block is heated with nine cartridge heaters 

(Omega Engineering IIDC19102) connected to a DC power 

supply (Magna-Power SL200-7.5) past the CHF. Four Type-T 

thermocouples (Omega Engineering TJ36-CPSS-032U-6) are 

evenly spaced in the copper block with a spacing of 0.1 inches 

and are connected to an NI DAQ module (NI 9210). The 

thermocouples were set to a sampling rate of 3012 Hz. More 

detailed facility description and test procedures are provided in 

[24] and [25], [26], respectively. Figure 1 shows the recorded 

temperatures in the copper block with the four thermocouples 

and the heat flux calculated using Fourier’s law.  

 
FIGURE 1 : TEMPERATURE FROM THERMOCOUPLES AND 

CALCULATED HEAT FLUX AS A FUNCTION OF TIME. 

For the acoustic data sampling, both a hydrophone and 

condenser microphone were used. A hydrophone with a built-in 

preamplifier (High Tech HTI-96-Min) was submerged near the 
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copper surface in the boiling chamber. A condenser microphone 

(Behringer ECM8000) was used to measure AE outside of the 

boiling chamber. The microphone was placed directly outside of 

the chamber and was pointed at the nucleation source, to ensure 

the best results despite its omnidirectional capability. The 

microphone reads from 15Hz-20kHz. A 48V phantom power 

supply (Neewer NW-100) was used to power the microphone. 

This was then connected to the main DAQ body (Behringer U-

PHORIA UMC404HD). The DAQ can relay signals of 10Hz-

43kHz. This interface also allows for the preamplification of the 

signal. The DAQ was connected to the computer and the data 

was collected via LabVIEW. Both the hydrophone and 

microphone were set to a sampling rate of 3012 Hz. Noise 

removal is a difficult task for pool boiling acoustics in the sense 

that it is easy to remove important characteristic acoustic boiling 

features within the signal. Audacity was used to attempt to 

remove some of the noise from the microphone signal. To do 

this, the noise reduction effect in Audacity was used. The 

microphone signal was first scaled to have an absolute max of 1 

and saved as a wav file for use in Audacity. A sample of the 

signal near the end was used as the noise profile and the settings 

12 dB, 5 sensitivity, and 1 frequency smoothing were selected. 

This noise filtering was applied to the entirety of the microphone 

signal. Figure 2 shows the hydrophone acoustic signals and both 

the raw microphone signal and the filtered microphone signal. 

Both the raw microphone signal and noise-reduced signal were 

used in the machine learning models.  

 
FIGURE 2: ORIGINAL HYDROPHONE AND MICROPHONE 

DATA AND FILTERED MICROPHONE DATA.  

 

2.2 Data Preparation 

Figure 3 shows an overview of the process used in for the 

models. The sound data collected from the experiment was 

segmented and then converted to sets of frequency intensity 

vectors which were then used in different types of regression 

models. This was done for both the raw signals and the filtered 

microphone data. This section describes the methods used for 

processing the data including the signal segmentation and feature 

extraction. 

 
FIGURE 3: SCHEMATIC OF THE GENERAL PROCESS OF 

CONSTRUCTING THE MODELS.  

 

Five supervised mlp sequential regression models and 

three Gaussian process regression models were used to predict 

heat flux. The microphone, hydrophone, and thermocouples 

were sampled at the same rate (3012 Hz). However, they all 

had different data collection start times and lengths. To account 

for this the beginning and end of the microphone and 

hydrophone signals were cropped to match the thermocouples' 

start and end time. After cropping, the dataset consisted of three 

equal-length sequences of data; hydrophone (𝑆𝐻), microphone 

(𝑆𝑀), and heat flux (H).  

𝑆𝐻 = {𝑠ℎ(𝑡0), 𝑠ℎ(𝑡1), … 𝑠ℎ(𝑡𝑁−1)} 

𝑆𝑀 = {𝑠𝑚(𝑡0), 𝑠𝑚(𝑡1), … , 𝑠𝑚(𝑡𝑁−1)} 

𝐻 = {ℎ(𝑡0), ℎ(𝑡1), … , ℎ(𝑡𝑁−1)} 

where 𝑠𝐻(𝑡𝑖) is a hydrophone sample at time 𝑡𝑖, 𝑠𝑀(𝑡𝑖) is a 

microphone sample at time 𝑡𝑖 , ℎ(𝑡𝑖)  is a calculated 

approximation of heat flux at time 𝑡𝑖, and N is the number of 

samples in the sequences.   

The machine learning models take in inputs of audio 

sequences and output a single heat flux prediction value. The 

audio data needed to be split into sequences and matched to a 

heat flux. To create these sequences, a rolling sampling method 

was used for the acoustic signals with some overlap to create a 

larger data set. Both the hydrophone and microphone sequences 

(𝑆𝐻 , 𝑆𝑀) were split into sets of shorter audio clips;  

{𝑎ℎ
0 , 𝑎ℎ

1 , … 𝑎ℎ

((𝑁−1)−𝑁𝑠𝑒𝑞)/𝑁𝑠𝑡𝑟𝑖𝑑𝑒} 

{𝑎𝑚
0 , 𝑎𝑚

1 , … , 𝑎𝑚

((𝑁−1)−𝑁𝑠𝑒𝑞)/𝑁𝑠𝑡𝑟𝑖𝑑𝑒} 
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where each 𝑎ℎ
𝑖  and 𝑎𝑚

𝑖 are shorter audio clips of the 

hydrophone and microphone data respectively and defined as: 

 𝑎ℎ
𝑖 = {𝑠ℎ(𝑡𝑖∗𝑁𝑠𝑡𝑟𝑖𝑑𝑒

) , 𝑠ℎ(𝑡𝑖∗𝑁𝑠𝑡𝑟𝑖𝑑𝑒+1) , … , 𝑠ℎ (𝑡𝑖∗𝑁𝑠𝑡𝑟𝑖𝑑𝑒+𝑁𝑠𝑒𝑞
)} , 

𝑎𝑚
𝑖 = {𝑠𝑚(𝑡𝑖∗𝑁𝑠𝑡𝑟𝑖𝑑𝑒

), 𝑠𝑚(𝑡𝑖∗𝑁𝑠𝑡𝑟𝑖𝑑𝑒+1), … , 𝑠𝑚 (𝑡𝑖∗𝑁𝑠𝑡𝑟𝑖𝑑𝑒+𝑁𝑠𝑒𝑞
)} , 

𝑁𝑠𝑒𝑞  is the sequence length (i.e. length of the sequence segments 

(𝑎ℎ
𝑖 , 𝑎𝑚

𝑖 )) and 𝑁𝑠𝑡𝑟𝑖𝑑𝑒  is the stride (i.e. amount of samples to 

skip before the starting term in the next sequence segment). Each 

audio sequence segment was then matched to a calculated heat 

flux which corresponds to the same time as the last audio sample 

in the sequence. Or in other words, each 𝑎ℎ
𝑖 , 𝑎𝑚

𝑖  is matched to 

the heat flux value ℎ(𝑡𝑖∗𝑁𝑠𝑡𝑟𝑖𝑑𝑒+𝑁𝑠𝑒𝑞
).   

The dataset used for all the models was prepared with a 

sequence length of 4000 and a stride of 1000. Next each 

sequence segment (𝑎ℎ
𝑖 , 𝑎𝑚

𝑖 ) was converted to frequency features 

using the fast Fourier transform (FFT). This was done using the 

FFT function in the NumPy library [27].  

  

2.3 Machine Learning Models 
Two different machine learning regression model 

architectures were used; multilayer perceptron (mlp) and 

Gaussian process regression. For each model architecture type, 

two of the models were trained using only hydrophone or only 

microphone data and the remaining models used a combination 

of both types of data in fusion models. For all the models, 80% 

of the data was used for training while 20% was used for testing. 

For the mlp models, 20% of the training data was used for 

validation. All of the models used the same training data and 

testing data.  

Four different mlp model architectures were trained and 

tested on the hydrophone and microphone data seperately. The 

architecture which had the best performance on the test data for 

both the hydrophone and microphone data was chosen for further 

analysis and for use in the feature extraction portion of the fusion 

models. An mlp is a machine learning model that consists of 

layers of neurons. Each neuron describes a function whose inputs 

are first each multiplied by a weight then summed with a bias 

and passed through an activation function. A common activation 

function is the rectified linear unit (ReLU) which is defined as 

𝑓(𝑥) = max (0, 𝑥). During training, backpropagation is used to 

iteratively update the weights and biases to minimize the 

specified loss. In supervised learning, the loss function is defined 

to describe the difference between the model’s prediction and 

true label. For example, the mean squared error loss function is 

commonly used in regression problems and defined as 𝑀𝑆𝐸 =
1

𝑁
∑ (𝑡𝑟𝑢𝑒𝑖 − 𝑝𝑟𝑒𝑑𝑖)2𝑁

𝑖=1 . The hydrophone data only and 

microphone data only models had an identical structure shown 

in Figure 4. The models consisted of 6 dense layers with 200, 

200, 200, 200, 64, and 1 neurons respectively. The first 5 layers 

used the ReLU activation function. Dropout after the 2nd, 4th , 

and 6th layer was implemented with a rate of 0.2. Dropout is used 

to prevent overfitting during training by randomly dropping 

inputs at a specified rate for the layer.  

Three types of fusion were implemented on the data;  

early, joint, and late. Figure 5 shows the general structure of the 

three types of fusion used. The fusion models all took in inputs 

of both hydrophone and microphone frequency features. The 

difference between the three models residing in the 

concatenating location. The early fusion model concatenated the 

hydrophone and microphone frequency features first then passed 

these frequencies through an mlp which consisted of 6 dense 

layers with 200, 200, 200, 200, 64, and 1 neurons. The first 5 

layers used the ReLU activation function. Two dropout layers 

with a rate of 0.2 were applied after the 2nd and 4th layer. For the 

joint fusion model, the hydrophone and microphone frequency 

features were first passed through mlps separately. These mlps 

consisted of 2 dense layers with 200 and 200 neurons, ReLU 

activation functions, and 0.2 dropout after the second layer. The 

output of these two mlps were then concatenated and this vector 

was then passed through a mlp consisting of 4 layers with 128, 

128, 64, and 1 neurons. The first 3 layers had an ReLU activation 

function and the 2nd layer had 0.2 dropout applied.  The late 

fusion model first consisted of two identical mlp’s for the 

hydrophone and microphone frequency feature vectors. These 

models had 5 layers with 200, 200, 200, 200, and 64 neurons, all 

with ReLU activation functions. A dropout layer with a rate of 

0.2 is applied after the 2nd and 4th layer. The output of these mlps 

are concatenated and then passed through a single dense layer 

with one neuron. All of the models used the mean squared error 

loss function and the Adam optimizer. They were trained with a 

patience of 10 and the weights corresponding to the best 

validation loss were restored. These five machine learning model 

structures were implemented using TensorFlow [28].  

 
FIGURE 4: MODEL ARCHITECTURE USED FOR BOTH THE 

HYDROPHONE ONLY AND MICROPHONE ONLY MODELS.  
 

 
FIGURE 5: SCHEMATIC SHOWING THE GENERAL FUSION 

PROCESSES 

 

Gaussian process regression (GPR), another supervised 

machine learning regression model architecture, was also 

implemented. Gaussian process regression is a probabilistic 
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model in which a kernel is defined and used for calculating the 

covariance matrix used in fitting the data. Three different 

Gaussian models were trained; one using only the hydrophone 

frequency intensity data, one using only microphone frequency 

intensity data, and one used both data types. All three models 

used the same kernel: DotProduct() + WhiteKernel() + 

ConstantKernel().  

where  

𝐷𝑜𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑡: 𝑘(𝑥𝑖 , 𝑥𝑗) = 𝜎0
2 + 𝑥𝑖 ⋅ 𝑥𝑗 ; 

𝑊ℎ𝑖𝑡𝑒𝐾𝑒𝑟𝑛𝑒𝑙: 𝑘(𝑥𝑖 , 𝑥𝑗) = {
1 𝑖𝑓 𝑥𝑖 == 𝑥𝑗

0
; 

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝐾𝑒𝑟𝑛𝑒𝑙: 𝑘(𝑥𝑖 , 𝑥𝑗) = 1.0.  

For the combined model, the microphone and hydrophone 

frequency features for each corresponding heat flux were 

appended together. This model is referred to as the early fusion 

Gaussian model. These models were implemented using the 

Scikit-learn library [29] in python.  

 

3. RESULTS AND DISCUSSION 
3.1 Model Performance 

Five different supervised mlp models were trained. One mlp 

for hydrophone data only, one mlp for microphone data only and 

three fusion models combining both data types for predicting 

heat flux. For all the model types using microphone data, both 

the filtered and raw signals were used for training and testing. 

Figure 6 shows the coefficient of determination (R2 score) for 

the models calculated from the test data. The R2 score is defined 

as 𝑅2 = 1 −
∑ (𝑇𝑟𝑢𝑒𝑖−𝑃𝑟𝑒𝑑𝑖)2𝑁

𝑖=1

∑ (𝑇𝑟𝑢𝑒𝑖−𝑀𝑒𝑎𝑛)2𝑁
𝑖=1

. This is a measurement of the fit 

of the model to the data, where an R2 of 1 is the best scenario and 

values close to one are desired indicating the model fits the data 

well. From this bar plot a couple things can be seen. The model 

just using the hydrophone data performs better than the models 

just using the microphone signals. It is also observed that the mlp 

model with the filtered microphone data performs worst when 

trained and tested with raw signal data than the filtered data. 

However, this is not the case for the three fusion models. For the 

joint and late fusion types, the model using filtered microphone 

data performed better than the one with the raw signal. It is also 

seen that with the exception of the noisy early fusion model, all 

the fusion models preform better than the non-fused models. For 

the raw microphone data, the best model was found to be the late 

fusion model achieving a R2 score of 0.982 on the test data. 

While the best model using the filtered microphone signal was 

found to be the late fusion model with a R2 score of 0.985. Figure 

7 shows the predicted heat flux vs the true heat flux label for all 

the models using the log scale on both axes. Ideally, the predicted 

heat flux would equal the true heat flux label so all the points 

would reside on the diagonal black line. These plots make sense 

given the R2 scores. For example, the plot of predicted vs true 

for the microphone only model’s points are spread out more than 

the best performing late fusion model with filter microphone data 

whose points more closely follow the diagonal line. Another area 

where the mlp models were compared was their training times. 

Figure 8 shows the total training times for each model. It was 

found that the late fusion models took the most time for training 

while the microphone only models and early fusion model were 

the fastest.  

 
FIGURE 6: R2 VALUES FOR FIVE DIFFERENT MODELS; 

HYDROPHONE MLP, MICROPHONE MLP, EARLY FUSION, 

JOINT FUSION, AND LATE FUSION WITH BOTH RAW DATA 

AND FILTERED DATA.  

 

 
FIGURE 7: PREDICTED VS. TRUE HEAT FLUX FOR ALL MLP 

MODELS; HYDROPHONE DATA ONLY, MICROPHONE DATA 

ONLY, EARLY FUSION, JOINT FUSION, AND LATE FUSION. 
 

Three Gaussian process regression models were also trained 

and tested using the same data. Figure 9 shows the R2 score for 

these three gpr models. As seen by this plot the noise filtering 

performed on the microphone data did not improve the 

performance for either of the models including microphone data. 
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The early fusion model using the noisy microphone data 

performed the best with an R2 score of 0.985. This value was the 

highest achieved among all of the models including the mlp ones. 

However, when compared to the mlp models both the 

hydrophone data only and microphone data only gpr models had 

lower R2 scores.   

 
FIGURE 8: TRAINING TIMES FOR THE FIVE DIFFERENT 

MODELS; HYDROPHONE MLP, MICROPHONE MLP, EARLY 

FUSION, JOINT FUSION, AND LATE FUSION WITH BOTH RAW 

DATA AND FILTERED DATA.  

 

 
FIGURE 9: R2 SCORE OF ALL GAUSSIAN PROCESS 

REGRESSION MODELS. SHOWS VALUES FOR HYDROPHONE 

DATA ONLY MODEL, MICROPHONE DATA ONLY MODEL 

WITH FILTERED AND UNFILTERED DATA, AND BOTH 

FUSION MODELS WITH FILTERED AND UNFILTERED 

MICROPHONE DATA.  

 

 
FIGURE 10: PREDICTED VS. TRUE HEAT FLUX FOR ALL 

GAUSSIAN MODELS; HYDROPHONE DATA ONLY, 

MICROPHONE DATA ONLY, EARLY FUSION MODEL.  

 

3.1 Hydrophone and Microphone Signal Comparison 

Although both acoustic sensors are used to measure the 

same experiment, the models all performed differently. One 

thing of note is that for the mlp models with hydrophone data 

and the hydrophone gpr model there are two predicted heat flux 

points that deviate more than 30 W/cm2 from the true value. 

These two outstanding points are present in all of the mlp models 

with hydrophone data. To look into this more the time at which 

these points are taken is found. It happens that these are the first 

two heat flux values in the testing set that occur after the critical 

heat flux is reached. At this point the heat flux decreases 

hundreds of degrees in a matter of seconds. Figure 11 shows the 

true value of these two points and the predicted value from the 

hydrophone only and microphone only model with respect to the 

heat flux curve. It is seen here that both of these points reside on 

the sharp decline of heat flux seen once CHF is hit. One reason 

for this far off prediction could be the lack of training data with 

in this region for the models. For both values the microphone 

only model prediction is closer to the true value. It is also 

interesting to note that for the gpr models, the hydrophone only 

data model also has large error in the prediction of these points 

but when fused the Gaussian model is able to more accurately 

predict them. This observation seen in both model architecture 

types implies that for this data preparation method, the 

microphone data can better predicted heat flux in the transition 

boiling regime than the hydrophone data.  
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FIGURE 11: PLOT OF HEAT FLUX WITH TWO 

OUTSTANDING POINTS IN MODEL PREDICTION SHOWN. 

THESE TWO POINTS ARE MARKED ALONG WITH THE 

PREDICTION FROM THE HYDROPHONE DATA ONLY MLP 

MODEL AND THE MICROPHONE DATA ONLY MLP MODEL. 

THESE TWO POINTS OCCUR JUST AFTER THE MAX HEAT 

FLUX IS ACHIEVED. 

 

Just looking at the results plots from the models trained with 

only one type of data, it can be observed that the hydrophone 

models perform better than the microphone models with a higher 

R2 score than both with and without filtering. This is what was 

expected since the condenser microphone is subject to higher 

levels of noise and since the hydrophone is in such close 

proximity to the boiling surface. This is also seen in figure 12 of 

the spectrograms. Figure 12a shows the spectrogram from the 

hydrophone signal. From this, it can be seen that frequencies 

under 600 Hz vary the most throughout the transient experiment. 

Although this transition over time can easily be seen in the 

hydrophone data, it is less seen in figure 12b or 12c which are 

the spectrograms of the raw microphone signal and filtered 

microphone signal, respectively. In fact, there are several low 

frequencies of roughly constant high intensities throughout the 

entire time of the recording for the microphone data. For 

example, the dark red line at just under 300 Hz. This constant 

intensity frequency line can also be seen at the beginning and end 

of the hydrophone signal spectrogram but it is much less intense 

in comparison to the other frequencies present. These steady 

frequencies are less intense in the filtered microphone data 

spectrogram than the raw microphone data but the filtered 

microphone data also losses quite a bit of frequency information. 

The spectrograms are generated using the matplotlib library [30].  
 

 

FIGURE 12: SPECTROGRAM OF THE ACOUSTIC SIGNALS 

FROM A.) HYDROPHONE, B.) MICROPHONE, AND C.) 

FILTERED MICROPHONE. 

 

Another comparison made between the acoustic signals is the 

root mean squared (RMS) values. RMS is essentially a measure 

of loudness. The RMS value is defined as 𝑅𝑀𝑆 =

√
1

𝑁
∑ |𝑥(𝑛)|2

𝑛 . Figure 13a shows the heat flux vs time and the 

plots in figures 13b, 13c, and 13d show the RMS value vs time 

for the hydrophone, raw microphone, and filtered microphone 

data. For these plots the hydrophone, microphone, and filtered 

microphone signals were normalized to be between -1 and 1. For 

the RMS values data from overlapping windows are used to 

generate the RMS vs time plot. From these plots it can be seen 

that both microphone and hydrophone signals show an increase 

in volume as the heat flux rises to the critical heat flux. Both 

signals also show a sharp decline in RMS after the critical heat 

flux has been reached. The RMS values are found using the 

librosa library [31].   
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FIGURE 13: FOUR PLOTS FOR COMPARING A.) THE 

CALCULATED HEAT FLUX VS TIME, B.) RMS VS TIME FOR 

THE HYDROPHONE DATA, C.) RMS VS TIME FOR THE 

MICROPHONE DATA, AND D.) RMS VS TIME FOR THE 

FILTERED MICROPHONE DATA. THE RED DASHED LINE 

SHOWS THE TIME CORRESPONDING TO THE CRITICAL HEAT 

FLUX. 

 
4. CONCLUSION 

Acoustic signals from pool boiling can be used to 

approximate heat flux. Hydrophone and microphone signals 

contain frequency information that correlates to the heat flux of 

the system. Hydrophone data achieves the best accuracy when 

compared to the condenser microphone due to its proximity to 

the boiling surface and smaller noise levels. However, even with 

the high levels of noise present in the condenser microphone 

signal, the regression models still performed well with some R2 

scores greater than 0.95. It was also seen that the noise removal 

process used did not improve the accuracy of the individual 

models. It was also found that fusing the two signal types 

together shows promise in achieving even higher prediction 

accuracy. It is important to note that although the models 

performed well with the experimental test data, they are expected 

to have less accurate results for additional experiments with 

different boiling liquids, heating surface, or even background 

noise. Future studies will involve incorporating more data from 

separate experiments to attempt and create a more generalizable 

model.  

 
 

ACKNOWLEDGEMENTS 
This study was supported by the National Science 

Foundation under Grant No. TI-2212002 and the University of 

Arkansas through the Chancellor’s Commercialization Fund and 

GAP Fund. This work used Bridges2 GPU at Pittsburgh 

Supercomputing Center through allocation MCH200010 from 

the Advanced Cyberinfrastructure Coordination Ecosystem: 

Services & Support (ACCESS) program, which is supported by 

National Science Foundation grants #2138259, #2138286, 

#2138307, #2137603, and #2138296. J.M. and E.W. appreciate 

support from the University of Arkansas Honors College 

Research Grant.   
 
REFERENCES 

[1] Q. Zhang et al., “A survey on data center cooling 

systems: Technology, power consumption modeling and 

control strategy optimization,” Journal of Systems 

Architecture, vol. 119, p. 102253, Oct. 2021, doi: 

10.1016/J.SYSARC.2021.102253. 
[2] C. Roe et al., “Immersion cooling for lithium-ion 

batteries – A review,” J Power Sources, vol. 525, p. 

231094, Mar. 2022, doi: 

10.1016/J.JPOWSOUR.2022.231094. 

[3] H. Hu, J. A. Weibel, and S. V. Garimella, “A coupled 

wicking and evaporation model for prediction of pool 

boiling critical heat flux on structured surfaces,” Int J 

Heat Mass Transf, vol. 136, pp. 373–382, 2019, doi: 

10.1016/j.ijheatmasstransfer.2019.03.005. 

[4] J. P. McHale and S. v. Garimella, “Nucleate boiling from 

smooth and rough surfaces - Part 1: Fabrication and 

characterization of an optically transparent heater-sensor 

substrate with controlled surface roughness,” Exp Therm 

Fluid Sci, vol. 44, pp. 456–467, Jan. 2013, doi: 

10.1016/j.expthermflusci.2012.08.006. 

[5] M. M. Rahman, E. Ölçeroglu, and M. McCarthy, “Role 

of wickability on the critical heat flux of structured 

superhydrophilic surfaces,” Langmuir, vol. 30, no. 37, 

pp. 11225–11234, Sep. 2014, doi: 10.1021/la5030923. 

[6] M. Bongarala, H. Hu, J. A. Weibel, and S. V Garimella, 

“Microlayer evaporation governs heat transfer 

enhancement during pool boiling from microstructured 

surfaces,” Appl Phys Lett, vol. 221602, no. May, 2022, 

doi: 10.1063/5.0090156. 

[7] L. A. Konopko, A. A. Nikolaeva, T. E. Huber, and A. K. 

Kobylianskaya, “Miniaturized Heat-Flux Sensor Based 

on a Glass-Insulated Bi–Sn Microwire,” 

Semiconductors, vol. 53, no. 5, pp. 662–666, May 2019, 

doi: 10.1134/S1063782619050117. 

[8] C. Dunlap, H. Pandey, and H. Hu, “Supervised and 

Unsupervised Learning Models for Detection of Critical 

Heat Flux during Pool Boiling,” in Proceedings of the 

ASME 2022 Heat Transfer Summer Conference, 

Philadelphia, PA, 2022. 

[9] A. Rokoni, L. Zhang, T. Soori, H. Hu, T. Wu, and Y. Sun, 

“Learning new physical descriptors from reduced-order 

analysis of bubble dynamics in boiling heat transfer,” Int 



 9 © 2023 by ASME 

J Heat Mass Transf, vol. 186, p. 122501, 2022, doi: 

10.1016/j.ijheatmasstransfer.2021.122501. 

[10] S. M. Rassoulinejad-Mousavi et al., “Deep learning 

strategies for critical heat flux detection in pool boiling,” 

Appl Therm Eng, vol. 190, p. 116940, 2021, doi: 

10.1016/j.applthermaleng.2021.116849. 

[11] J. P. McHale and S. v. Garimella, “Nucleate boiling from 

smooth and rough surfaces - Part 2: Analysis of surface 

roughness effects on nucleate boiling,” Exp Therm Fluid 

Sci, vol. 44, pp. 439–455, Jan. 2013, doi: 

10.1016/j.expthermflusci.2012.08.005. 

[12] Y. Suh, R. Bostanabad, and Y. Won, “Deep learning 

predicts boiling heat transfer,” Sci Rep, vol. 11, no. 1, pp. 

1–11, 2021, doi: 10.1038/s41598-021-85150-4. 

[13] G. M. Hobold and A. K. da Silva, “Visualization-based 

nucleate boiling heat flux quantification using machine 

learning,” Int J Heat Mass Transf, vol. 134, pp. 511–520, 

May 2019, doi: 

10.1016/J.IJHEATMASSTRANSFER.2018.12.170. 

[14] H. Hu, H. Pandey, and C. Dunlap, “Detecting or 

Predicting System Faults in Cooling Systems in a Non-

Intrusive Manner Using Deep Learning,” Dec 9, 2022, 

US Patent Application No. 18/078,774. 

[15] T. Alhashan, A. Addali, J. Amaral Teixeira, and S. 

Elhashan, “Identifying bubble occurrence during pool 

boiling employing acoustic emission technique,” 

Applied Acoustics, vol. 132, pp. 191–201, Mar. 2018, 

doi: 10.1016/j.apacoust.2017.11.006. 

[16] S. H. Baek, K. Wu, H. S. Shim, D. H. Lee, J. G. Kim, 

and D. H. Hur, “Acoustic emission monitoring of water 

boiling on fuel cladding surface at 1 bar and 130 bar,” 

Measurement (Lond), vol. 109, pp. 18–26, Oct. 2017, 

doi: 10.1016/j.measurement.2017.05.042. 

[17] K. Nishant Ranjan Sinha, D. Ranjan, N. Kumar, M. 

Qaisar Raza, and R. Raj, “Simultaneous audio-visual-

thermal characterization of transition boiling regime,” 

Exp Therm Fluid Sci, vol. 118, Oct. 2020, doi: 

10.1016/j.expthermflusci.2020.110162. 

[18] F. König, C. Sous, A. Ouald Chaib, and G. Jacobs, 

“Machine learning based anomaly detection and 

classification of acoustic emission events for wear 

monitoring in sliding bearing systems,” Tribol Int, vol. 

155, Mar. 2021, doi: 10.1016/j.triboint.2020.106811. 

[19] M. Comunità, D. Stowell, and J. D. Reiss, “Guitar 

Effects Recognition and Parameter Estimation with 

Convolutional Neural Networks,” Dec. 2020, doi: 

10.17743/jaes.2021.0019. 

[20] G. Forte, F. Alberini, M. Simmons, and H. E. Stitt, “Use 

of acoustic emission in combination with machine 

learning: monitoring of gas–liquid mixing in stirred 

tanks,” J Intell Manuf, vol. 32, no. 2, pp. 633–647, Feb. 

2021, doi: 10.1007/s10845-020-01611-z. 

[21] K. N. R. Sinha, V. Kumar, N. Kumar, A. Thakur, and R. 

Raj, “Deep learning the sound of boiling for advance 

prediction of boiling crisis,” Cell Rep Phys Sci, vol. 2, 

no. 3, p. 100382, 2021, doi: 

10.1016/j.xcrp.2021.100382. 

[22] Y. Ueki and K. Ara, “Proof of concept of acoustic 

detection of boiling inception and state transition using 

deep neural network,” International Communications in 

Heat and Mass Transfer, vol. 129, Dec. 2021, doi: 

10.1016/j.icheatmasstransfer.2021.105675. 

[23] A. Negi, “Characterization of Boiling Sound at 

Conditions Approaching Characterization of Boiling 

Sound at Conditions Approaching Critical Heat Flux 

Critical Heat Flux,” 2019. [Online]. Available: 

https://scholarworks.rit.edu/theses 

[24] H. Pandey, H. Mehrabi, A. Williams, C. Mira-

Hernández, R. H. Coridan, and H. Hu, “Electrochemical 

Control of Copper Foam Synthesis for Critical Heat Flux 

Enhancement During Boiling,”  Available at SSRN: 

https://ssrn.com/abstract=4382894 or 

http://dx.doi.org/10.2139/ssrn.4382894. 

[25] H. Pandey, C. Dunlap, A. Williams, J. Marsh, and H. Hu, 

“Multimodal characterization of steady-state and 

transient boiling heat transfer,” in Proceedings of the 

ASME 2023 Heat Transfer Summer Conference, 2023, 

pp. HT2023-106015. 

[26] H. Pandey, W. Waldo, and H. Hu, “Non-Intrusive 

Cooling System Fault Detection and Diagnostics Using 

Acoustic Emission,” in Proceedings of the ASME 2022 

Heat Transfer Summer Conference, Philadelphia, PA, 

2022, pp. HT2022-85429. 

[27] C. R. Harris et al., “Array programming with NumPy,” 

Nature, vol. 585, no. 7825. Nature Research, pp. 357–

362, Sep. 17, 2020. doi: 10.1038/s41586-020-2649-2. 

[28] M. Abadi et al., “TensorFlow: A system for large-scale 

machine learning,” May 2016, [Online]. Available: 

http://arxiv.org/abs/1605.08695 

[29] F. Pedregosa FABIANPEDREGOSA et al., “Scikit-

learn: Machine Learning in Python Gaël Varoquaux 

Bertrand Thirion Vincent Dubourg Alexandre Passos 

PEDREGOSA, VAROQUAUX, GRAMFORT ET AL. 

Matthieu Perrot,” 2011. [Online]. Available: 

http://scikit-learn.sourceforge.net. 

[30] J. D. Hunter, “Matplotlib: A 2D graphics environment,” 

Comput Sci Eng, vol. 9, no. 3, pp. 90–95, 2007, doi: 

10.1109/MCSE.2007.55. 

[31] B. McFee et al., “librosa: Audio and Music Signal 

Analysis in Python,” in Proceedings of the 14th Python 

in Science Conference, SciPy, 2015, pp. 18–24. doi: 

10.25080/majora-7b98e3ed-003. 

 

 


