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Abstract

We present a new method to obtain dynamic body force at virtual interfaces to reconstruct shear wave motions induced
by a source outside a truncated computational domain. Specifically, a partial differential equation (PDE)-constrained
optimization method is used to minimize the misfit between measured motions at a limited number of sensors on the
ground surface and their counterparts reconstructed from optimized forces. Numerical results show that the optimized
forces accurately reconstruct the targeted ground motions in the surface and the interior of the domain. The proposed
optimization framework yields a particular force vector among other valid solutions allowed by the domain reduction
method (DRM). Per this optimized or inverted force vector, the reconstructed wave field is identical to its reference
counterpart in the domain of interest but may differ in the exterior domain from the reference one. However, we
remark that the inverted solution is valid and introduce a simple post-process that can modify the solution to achieve
an alternative force vector corresponding to the reference wave field. We also study the desired sensor spacing to
accurately reconstruct the wave responses for a given dominant frequency of interest. We remark that the presented
method is omnidirectionally applicable in terms of the incident angle of an incoming wave and is effective for any
given material heterogeneity and geometry of layering of a reduced domain. The presented inversion method requires
information on the wave speeds and dimensions of only a reduced domain. Namely, it does not need any informa-
tion on the geophysical profile of an enlarged domain or a seismic source profile outside a reduced domain. Thus,
the computational cost of the method is compact even though it leads to the high-fidelity reconstruction of wave re-
sponse in the reduced domain, allowing for studying and predicting ground and structural responses using real seismic
measurements.

Keywords: Passive-seismic inversion, Domain reduction method (DRM), Effective seismic force vector,
Discretize-then-optimize (DTO) approach, Reconstruction of seismic responses, Full-waveform inversion.

1. Introduction

The ability to replay the wave motions from sparsely-measured ground motion data is of great interest to identify
the locations of large-amplitude dynamic responses during a seismic event. Such technique allows engineers to ac-
curately estimate earthquakes’ impact on soils and critical structures (e.g., tunnels, subways, bridges, power plants,
dams, lifelines, tall buildings) and weak or potentially-damaged spots in the structures. This information on seismic
impact estimation could be shared with decision-makers who would determine the budget and timeline to inspect and
fix the seismic damages of built environments.

Thus, engineers should be able to identify seismic sources from the measured ground-motion data to reconstruct
the corresponding seismic responses in the domain of interest. Although a large amount of ground motion data are
available from modern sensors, such as accelerometers, optical cables, distributed acoustic sensing (DAS), and vision
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sensors, there is no established method to identify arbitrarily-incoherent incident wave motions and to reconstruct the
corresponding responses in a truncated multi-dimensional near-surface domain.

Common methods to identify earthquake waves hitting a domain of consideration include 1) deconvolution in a
soil column and 2) seismic source identification in an extensive regional-scale domain. The deconvolution algorithm
allows engineers to identify an incident earthquake wave signal propagating into a 1D soil domain from surficial
seismic measurement [1, 2, 3]. However, the method is useful only when geophysical property is horizontally layered
and incoming seismic waves propagate vertically through the 1D columns. Thus, the approach fails to reconstruct the
incoming waves when the geophysical property is highly heterogeneous, rather than horizontally layered, and incident
earthquake waves—consisting of primary, shear, and surface waves—are not vertically propagating (i.e., incoherent)
due to the basin effect. In the same context, Mena and Jeremic [4] have confirmed the substantial difference between
(i) the seismic structural responses from the domain reduction method (DRM)-based seismic wave analysis using
“true” 3D incoherent free-field wave motions and (i) their counterparts using 1D vertically-propagating free-field
motions that are generated by the deconvolution from measured ground motions. On the other conventional method,
there have been studies on a regional-scale inversion of seismic-source parameters at a hypocenter. For instance,
Akcelik et al. [5] studied an algorithm to invert a simplified seismic source time signal in a large regional-scale 3D
domain that includes a source at a fault. However, the uncertainties in material properties in a large domain hinder the
method, and, more importantly, its computational cost is too high to simulate high-frequency contents (e.g., f > 1 Hz)
of ground wave motions. Because of the applicability and computational limits of the two conventional approaches
stated above, it is necessary to investigate an alternative method to identify arbitrarily-incoherent (due to, for instance,
the basin effect) incoming seismic waves or equivalent dynamic forces and reconstruct corresponding ground motions
within a 2D/3D reduced domain from observational data of seismic waves at sensors.

Several recent studies in the literature have reported the possibility of utilizing sparsely measured wave motion
data to estimate unknown earthquake waves entering a solid domain via a full-waveform inversion technique, which
has been widely used in geotechnical site characterization [6, 7, 8, 9, 10, 11, 12, 13, 14]. First, Jeong and Seylabi
[15] studied an inversion procedure for predicting an incoming earthquake wave in a one-dimensional soil column.
Guidio and Jeong [16] discussed an inversion process to estimate the function of targeted traction, in space and time,
applied on a boundary of a 2D bounded solid. They utilized wave motion data from a limited number of sensors to
estimate the traction profile. The study shows that the inversion performance without Tikhonov (TN) regularization
is the same as the case with the regularization employed. To support the observation, the authors proved that their
presented objective functional is quadratic—the relation from a force vector to wave responses is linear unlike the
nonlinear material-wave relation—and convex. Guidio et al. [17] also studied a new approach for identifying the
profile, in time and space, of an inclined wave which impinges a domain of SH wave motions. To mimic the incident
wave, they applied traction on a truncated boundary.

Continuing the aforementioned works, herein, we introduce a novel procedure to (i) optimize dynamic body
force on virtual interfaces such that it induces dynamic behaviors within a reduced domain to be consistent with
observational data and, consequently, (i7) reconstruct targeted dynamic behaviors in a truncated domain. We also
compare our optimized body force with the force at the same interfaces calculated by the DRM theory using targeted,
unknown incident wave motions. The DRM was developed by Bielak et al. [18] and Yoshimura et al. [19], where
incident waves are modeled as an effective seismic force along a DRM layer of finite elements. The DRM has been
extensively employed to replicate seismic behaviors in truncated domains hit by an earthquake excitation, regardless
of the location of a seismic hypocenter and the amplitudes, frequency contents, and incident angles of incoming
waves. The DRM has been quite extensively utilized in various studies in earthquake engineering [20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32].

This paper presents numerical experiments that employ incoherently propagating incident waves and show that
the reconstructed wave field accurately matches its targeted value. We report that our optimized force reconstructs
the correct wave field in the interior area surrounded by the DRM interface. However, the optimized force can differ
from the reference force computed by the standard DRM procedure. This is because we do not impose any constraint
on the choice of solution among other possible solutions allowed by DRM. Fundamentally, as for any linear wave
equations, DRM admits different decompositions of the incident and scattered waves of the same total wave field,
where such property has been recently exploited in the context of analog computing [33]. In this paper, we developed
a post-process procedure to modify an optimized force vector to find an alternative force vector such that the scattered
wave field in the exterior domain is silenced.
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2. Problem Definition

We consider a two-dimensional (2D) linear isotropic solid (Fig. 1(a)), truncated by wave-absorbing boundary con-
ditions (WABC). The particle motion of the solid is considered to occur only in the anti-plane direction and to be
attributed to shear-wave propagation. This study attempts to (i) optimize dynamic body forces at two virtual inter-
faces (i.e., I, and I',) in the solid and, then, (ii) replay the dynamic behaviors of the solid surrounded by WABC from
surficial seismic measurements. The surficial measurements are attributed to wave motions in the domain that are
induced by incident waves propagated from the outside of the domain.

sensors
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Figure 1: Enlarged domain used in the presented optimization problem. (a) a WABC-truncated domain is used for optimization of dynamic force
at the virtual interfaces; (b) targeted dynamic behaviors are originally triggered by a seismic source outside the truncated solid, but the presented
inversion solver is not informed of the source.

2.1. The governing equation

The governing differential equation of a shear wave in a 2D undamped solid domain for (x,y) € Q and ¢t € J = (0, T]

is defined as: 5

V-(GVu)—p(;—:zo, onQxJ, 1)

where u = u(x, y, t) represents the displacement field of wave motions in the z-plane, while the wave propagates in the
x-y plane (i.e., SH wave motion); x and y are the horizontal and vertical coordinates. The medium is characterized by
shear modulus G(x, y) and mass density p(x, y). The top surface (I',p) is subject to a traction-free condition:

0
6—?()@ 0,7) =0, 0<x<L, )
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while the WABC [34] are presented on the left (I'ef), bottom (I'potom), and right (I'ign) boundaries:

ou 1 ou
—_— =, =O, DS SO, 3
Ox Vs Ot * Y )
ou 1 Ou
— ==, 0<x<L, y=D, 4
ay Vs ot ! Y @
ou 1 Ou
— = =L D<y<O0. 5
Ox Vs Ot * Y ©)

In the above, Vi(x,y) denotes the shear wave velocity of the soil; D represents the y-coordinate of I'yoyom; and L
represents the x-coordinate of I'yign. Lastly, the system is initially at rest:

u(x,y,0) =0, %(x, ,0) = 0. (©6)

2.2. Discrete state problem

We use the finite element method to solve the governing equation (1), where its semi-discrete equation reads:
Mii(r) + Cu(¢) + Ku(?) = F(). @)

In the above, u(r) is a displacement solution vector at time . M, C, and K are the global matrices, and F denotes the
force vector. Our optimized force and effective seismic force (also dubbed a DRM force) on I';, and I', will be defined
in the force vector of the discrete form (i.e., the nodal forces along I', and I',). Please see Appendix A, which briefly
describes how to compute DRM forces by using targeted incident (free-field) waves propagated from the outside of
the truncated domain.

We solve the time-dependent equation (7) by using the implicit Newmark method, which allows us to formulate
the forward wave simulation into the following compact form:

Qi =F. (8)

In the above, the matrix Q is the discrete forward operator comprised of the M, C, and K matrices of the semi-discrete
equation and the Newmark time integrator [35] (the detail of Q can be seen in previous works [16, 17, 36], which used
the Q matrix during the PDE-constrained optimization process). We use @ and F to denote, respectively, the solution
and global force vectors for all the time steps, i.e.,

o] 0]
uy 0
LI Fy

= , F= , (&)
uN FN
uy 0
LN | O]

where the subscript indicates the time step, and N represents the final time step.

3. Optimization Modeling

In this section, we describe the inverse problem for the optimized force vector FP driven by the misfit between the
measured and reconstructed wave motions at sensor locations on the surface. The discretize-then-optimize (DTO)
method [16, 17, 36, 37] is utilized in the presented optimization modeling because of its relatively compact numerical
procedure compared to the optimize-then-discretize (OTD) method. Using the optimized dynamic force at the virtual
interfaces, we aim to reconstruct the wave motions in an interior domain truncated by WABC.

4
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3.1. Control parameters

Under this optimization method, the control parameters £ are determined as Py, and P,,;. They are components

of Font corresponding to yp, and y,,, respectively, and ¢;. Here, vyp, is the k-th node on I', and ,, is the k-th node on
I';; and ¢; is the j-th time step. We note that y,, and vy,, are numbered from the top-left discrete nodes of I'; and I, to
the top-right ones. Moreover, the components of F°P', which are not part of the control parameters, are set to be zero.

3.2. Discrete Lagrangian functional

We are interested in finding the control parameters’ values that result in a minimum of a discrete objective functional:
PO P =,
L= 5@ ty)" B (0 -y, (10)

where @ corresponds to the discretization, in space and time, of u(x, y, f) induced by a set of optimized Py,; and P, ; G,
is the discretization, in space and time, of uy,(x,y, t), which is the targeted wave response induced by incident seismic
waves propagated from the outside of the truncated domain. In (10), B represents A7B, where B is a square matrix
with mostly zeros except for few diagonal components correspond to sparsely-distributed sensors. We synthetically
generate i, by using our FEM solver with an enlarged domain, where a point seismic source induces the wave motions
(see Fig. 1(b)).

In addition to the objective functional, the discrete state problem (8) is imposed as a side constraint to £ via the
use of a Lagrange multiplier vector A. There results in the following Lagrangian functional A:

=—m )" B (0 — ) — A7 (Qa — FoPY, (11
where
A T 3T 5T T 9T 5T T
A=A A5 AT, AT AT AL (12)

3.3. The three first-order optimality conditions

We optimize the control parameters by satisfying the three first-order optimality conditions. In the first condition, the
derivative of A with respect to A vanishes when we solve the state equation (8) by using F':

OA
a1

—Qii + FPt = . (13)

Next, the second condition, the vanishing derivative of A with respect to @, leads us to the adjoint equation:

?9_“:[ =-Q1+B (@ -1y = (14)

adjoint problem

We note that the adjoint problem is a final-value problem, as opposed to the original initial-value state problem, which
is identified by QT;I term in (14). The adjoint method (14) can be solved by marching backward in time as shown in
our previous work [17].

The third condition makes the derivative of A with respect to F' to vanish and yields the next control equation:

A
ot

_i=o, (15)

which indicates that adFﬂ‘ = a‘;fp - is a vector of the components of A corresponding to the discrete node numbering and

the time step of £&. Eq. (15) is satisfied at an optimal value of control parameters, where both the objective functional
and the source term of the adjoint problem (14) vanish.
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4. Numerical Implementation

The algorithm iteratively optimizes the control parameters using the gradient-based minimization method by employ-
ing the semi-analytically evaluated gradient vector VgL as follows:

(a) First, @i, are synthetically generated by considering incident seismic waves. Namely, we compute the wave
solutions in an enlarged domain, which contains a point seismic source.

(b) An optimized "', comprised of control parameters & (all zero-valued at the initial iteration), is utilized to
obtain @ by solving the state problem.

(c) Next, A is computed by solving the adjoint equation using @ and @,.
(d) The gradient of the objective functional, V{’:.ﬁ, is calculated by using the adjoint solution.

(e) We use the conjugate-gradient method to find the best search direction, d, where an optimal step length, A, is
calculated by using the Newton’s method [16].

(f) Lastly, the gradient-based scheme refreshes the approximate & using the search direction and optimal step length
as: gupdated = ‘fprevious +dh.

The above procedures, (b) to (f), are consistently repeated by the optimizer, which searches to determine the control
parameters that make the control equation to vanish as (15). We discontinue the iteration of the optimizer either when
the Lypdated 1S smaller than Liyia X 1077 or when the iteration number is greater than 1000.

5. Numerical Results

We conduct numerical experiments to study the performance of the outlined optimization procedure for updating FOPt
at the virtual interface boundaries (I', and I',) and eventually reconstructing the wave responses—induced by incident
seismic waves propagated from the outside of the truncated domain—in €; delineated by the DRM boundary in a
near-surface area with respect to various factors.

The proposed objective functional is driven only by the measurements of the sparsely distributed sensors on the
surface without information on the choice of scattered field in the exterior domain. Thus, we expect that the optimized
force F°P' may differ from the reference force FT constructed by the standard DRM procedure. However, F°' is a
valid solution; thus, it is unnecessary to obtain the same reference force, i.e., the standard DRM force. Instead, an
alternative effective seismic force that gives a silent scattered field may serve as another reference force. Thus, we
introduce a post-process procedure to modify the optimized force to achieve a zero scattering field in the exterior
domain and compare it with the alternative effective seismic force.

For all examples, we reconstruct the ground motions in €; of a 4-layered solid with 2 inclusions, as shown in
Fig. 1(a). The truncated domain is set to be 200 m x 60 m with shear wave speeds Vj, to V, of 300, 250, 200, 150,
800, and 1000 m/s. We also consider that a mass density (o) is uniform as 1500 kg/m® in the entire domain. We
placed sensors in a manner such that the first sensor is always placed in the top-left corner of I', and the last one is
located in the top-right corner of I',. The truncated domain is a subset of the enlarged domain, as shown in Fig. 1(b).
The enlarged domain is employed to obtain targeted wave response t,, of which surficial measurements are used in
our optimization procedure per (10). Its dimension is 400 m X 120 m, and the wave speeds at the lower part of the
enlarged domain are set to be V,, = 1800 m/s and V, = 1500 m/s, respectively.

The presented method requires that the inversion simulator is informed of the spatial distribution of wave speeds in
a reduced domain, which can be obtained via a prior site characterization technique (e.g., spectral analysis of surface
waves (SASW) method [38, 39, 40, 41, 42], multi-channel analysis of surface waves (MASW) method [43, 44], or
full-waveform inversion (FWI) [12, 13, 45]. The truncated, reduced model is the domain of interest, where we intend
to reconstruct its response to a seismic activity, and the domain contains the surface on which we sparsely measure
the response. The dimension of the enlarged domain is chosen to generate synthetic data that are originally attributed
to a source located outside of the domain of interest. Thus, we determined the dimensions of the reduced and the
enlarged domains in a manner such that the enlarged domain must contain the reduced model and be sufficiently

6
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large to include a seismic source. As long as this condition is met, the presented method can be generalized for any
dimensions of reduced and enlarged domains that a computing resource can permit. Namely, the method is not limited
to the presented dimensions of 200 by 60 m and 400 by 120 m.

We use an error norm to quantify the difference of the reconstructed ground motions at interior nodes uijnlerior from

their targeted counterpart uigtf”'m at all the time steps for #;, which reads:

N interior __ jyinterior|2
u |llm/ uj
& = § — x 100[%]. (16)
|umter10r|2
j=1 m;

The difference between the optimized force F to its reference value F* is measured by:

jeff _ fropt|2
E= w x 100[%]. a7)
|Feﬁ'|2
We analyze the effectiveness of the proposed optimization method with respect to the frequency content of the
incident wave, the number of sensors utilized on the top surface, and an incident angle in which the incident seismic
waves are propagated from the outside of the truncated domain. The presented optimizer is tested by incident waves,
that do not mimic plane waves but those in realistic seismic activity, as shown in Examples 1 to 3. Example 4
investigates the performance of the optimizer for a plane incoming wave of a dominant incident angle.
For all numerical examples, the spatial and temporal intervals for the discretization of F°P' and @ are 1 m and 0.001
s, respectively.

5.1. Example 1: Assessing the performance to reconstruct ground motions induced by surface wave-dominant inci-
dent waves

We evaluate the performance of optimizing the dynamic force at the virtual interfaces and reconstructing the dynamic
behaviors in Q; in a case where dynamic behaviors are attributed to surface wave-dominant incident waves impinging
the reduced domain.

To this end, we generate the incident waves in the enlarged domain, which encompasses a point wave source at x
=-40 m and y = 10 m with its force time signal being a Ricker wavelet signal:

(0.251% = 0.5)e 0257 — 13,7135

-1
foey.0 =100 0.5 + 13133 ’

t<1, (18)

where 7 = wr — 3V6; 7 = 6 V6/w; w = 2xf.; and f, is the central frequency of the signal. We note that Ricker pulses
are used to characterize a seismic source with a continuous spectrum, and by setting their f, to be less than 10 Hz, we
aim to mimic the frequency spectrum of typical seismic activity. Fig. 2 shows the time histories of Ricker signals of
dominant frequencies of 2, 5, and 10 Hz, and the frequency content of each signal.
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Figure 2: (a-c) Time histories and (d-f) frequency content of Ricker wavelet signals of central frequencies of 2, 5, and 10 Hz, respectively.

5.1.1. Optimization without post-processing

Fig. 3 presents how &" depends on the dominant frequency of the point source that generates incident waves and
the sensor spacing in Example 1. Fig. 3 presents that, when we use a sensor spacing of up to 5 m, i.e., 37 sensors on the
surface, the optimization solver accurately estimates the wave responses in Q; (& < 2%) for surface wave-like waves
of their dominant frequencies of 2, 5, and 10 Hz. For the spacing of the sensors of 10 m, the solver cannot reconstruct
the dynamic behaviors in Q; for the dominant frequency of 10 Hz (E* = 14.6%) as accurately as 5 Hz (8" = 2%) and
2 Hz (8" = 1%). Overall, the desired sensor spacing decreases as the dominant frequency of the surface-dominant
incident wave increases.

18 -
ol Wz (A=T75m)
— — 5 Hz (A =30m)
14 | /. —-—-10Hz (A = 15 m)
12+ 1
. /
S0 :
= / e
3 [
w 8 // v
/
6 ; 1,
/
at / ~
7
2 i '//,—0
O 1 \= 1 '\ 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45

Sensor Spacing [m]

Figure 3: Example 1 - Relation of the reconstruction accuracy to the dominant frequency (or wavelength A) of the surface wave-dominant incident
waves and the sensor spacing.

Fig. 4(a) shows the targeted dynamic responses in €; that are computed from the enlarged domain solver, and
Fig. 4(b) to (d) show their reconstructed counterparts for a different value of sensor spacing, when a 10 Hz Ricker
source signal is used in the enlarged domain simulator. The time steps () shown in Fig. 4 (0.6 s, 0.8 s, and 1.0 s) are
based on the time elapsed since the source’s Ricker signal is initiated. We note, from Fig. 4, that, as the spacing of the
sensors is increased, the agreement between the targeted and reconstructed motions in €; diminishes.

8
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Fig. 5 shows the excellent agreement between the measured data u,,, obtained by using the enlarged domain, and
their reconstructed counterparts u induced by F°P* at nineteen different locations on I', when we utilize the 10 Hz
Ricker source signal and the sensor spacing of 1 m.
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Figure 5: Example 1 - Comparison between the measured data uy, and the computed signals « induced by FP' at 19 different locations on Tiop.

210

In Fig. 6, we examine the amplitudes of the scattered waves in the exterior domain induced by F°P* and FT, which

211 is built by the free-field incident waves propagated from the outside of the truncated domain. The sensor spacing is 1

212

m, and the 10 Hz Ricker source signal is utilized. The optimized force F°? induces relatively large amplitudes in the

9



213

214

215

216

217

218

219

220

221

222

223

exterior domain €., the outer region of the dashed line, compared to the scattered wave in Q. induced by Fe. This
difference implies that there is more than one choice of incident-scatttered wave decompositions for an identical total
wave. Namely, a total wave u' can be decomposed into an incident wave u® and a scattered wave u® as the following:

u' =u’ + vt (19)

In the above, u® is defined as a scattered wave from local features in an interior domain impinged by u® per the
standard DRM. However, we can also define u® in a manner such that u° is identical to u!, and u® is silenced. With
such a modified free-field, the new decomposition leads to a modified effective seismic force as an alternative.
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Figure 6: Example 1 - Ground motions in the domain induced by the effective force and the optimized force using 1 m sensor spacing; and the
scattered waves of reference ground motions and reconstructed ground motions, for the case that considers a Ricker pulse signal of 10 Hz. The
dashed line indicates a DRM boundary I'.

Figs. 7 and 8 highlight the difference between the optimized dynamic force vector F°P' and ¥, where the error
is quantified as & = 97.43%. Specifically, Fig. 8 shows the effective and optimized control parameters corresponding
to the nodes on I', and I', at x = 9 m and 10 m, respectively, and y = 10 m and for every time step. In the following
section, we discuss this seemingly different behavior in detail and introduce post-processing to alter the optimized
force, which will be compared with the modified effective seismic force.
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Figure 7: Example 1 - (a) Effective seismic force and (b) its final-optimized counterpart on I',, and (c) effective seismic force and (d) its final-
optimized counterpart on I', when a Ricker of 10 Hz as the seismic source signal and a sensor spacing of 1 m are used.
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Figure 8: Example 1 - Time signals of effective and optimized forces at x = 9 m and 10 m (I, and Iy, respectively) and y = 10 m when a Ricker of
10 Hz and a sensor spacing of 1 m are used.

5.1.2. Post-processing the optimized force

In the standard DRM procedure, shown in Appendix Appendix A, an effective force vector KT is obtained
from free-field ground motions (u® and i’ on I', and in €,), which are computed in an enlarged domain without
considering the wave speeds of local features, such as the inclusions of V, and V,, in Fig. 1. Thus, when simulated
with the effective force, the scattered field in the exterior domain exclusively reveals the effect of the local features.

Alternatively, we introduce a modified effective force vector anff) 4 by using the “modified” free-field ground mo-
tions (u’¢ and i’ on I, and in Q,), which are computed in an enlarged domain taking into account the local
features (Appendix Appendix B). The modified effective force l:“fxfi 4 differs from the original effective force vector
¥ in a manner such that I:’fn‘f) 4 leads to zero scattered field in €. In the following, we modify both reference and

optimized force vectors to provide a direct comparison.
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We refer the modification on the optimized force vector as post-processing, which reads:
Fob' = Q. (20)
In the above, i, is rebuilt from @ by making the components of @ corresponding to €, to vanish. Namely,
i, =D, @

where D is a square, diagonal matrix, of which component is one everywhere except on the zero-valued diagonal
components corresponding to nodes on €2,.

Fig. 9 shows that the modified effective force Fflﬁ) 4 are in agreement with its post-processed optimized counterpart
Fggt: the error & between them is 15.21%, which is a lot smaller than & = 97.43% between Fef and Frort, Particularly,
as far as the forces only at the upper-left portion of I', and I';, at x of 9 and 10 m, respectively, and 0 m < y < 30
m (i.e., 1 < kin Py; < 31) are concerned, the error & is only 1.45%. It is because, for this surface-wave dominant
incident wave, the wave response that is induced by I:’ggt at the upper-left portion on the virtual interfaces accounts for
the surficial measurement data more significantly than its counterpart that is induced by ﬁggt at the other part of the
virtual interfaces. Therefore, the measurement data drive our optimizer in a manner such that the part of Fggl at the
upper-left portion of I', and I', matches l:“ffo 4 better than the other part of l:“gg[. Fig. 10 shows the agreement between
modified effective forces and their post-processed optimized counterparts corresponding to the nodes on the upper-left
portion of I', and I';, at x of 9 and 10 m, respectively, and y of 10 m.

Modified Effective Force on I', Post-Processed Optimized Force on I, 10

Figure 9: Example 1 - (a) Modified effective seismic force and (b) its post-processed optimized counterpart on I, and (c) modified effective seismic
force and (d) its post-processed optimized counterpart on I', when a Ricker of 10 Hz as the seismic source signal and a sensor spacing of 1 m are

used.
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Figure 10: Example 1 - Time signals of modified effective and post-processed optimized forces at (a) x =9 mandy = 10 m on I',, and (b) x = 10
m and y = 10 m on I';,, when a Ricker of 10 Hz and a sensor spacing of 1 m are used.

5.2. Example 2: Studying the accuracy to reconstruct dynamic responses caused by body wave-dominant, oblique

incoming waves
This example focuses on evaluating the performance of the proposed optimization algorithm for identifying dynamic
responses in (; caused by incoherently-propagating body-wave-dominant, oblique incoming waves. The same en-
larged domain used in the previous example is used for generating the incident waves. We use a Ricker source in
the bottom-left area of the enlarged domain, at x = -40 m and y = 100 m, in this example to obtain the synthetic
measurement data. We note that the incident waves propagate as inclined waves in the reduced domain of interest.

In Fig. 11, we present the targeted and reconstructed dynamic motions in Q; for the 10 Hz Ricker source in the
enlarged domain. As the spacing of sensors increases, the mismatch between the targeted and reconstructed dynamic
responses in Q; grows, as shown in Fig. 11. Fig. 12 also shows the desired sensor spacing required to effectively
estimate dynamic responses in ;. A denser array of sensors is required to effectively estimate higher-frequency

dynamic responses.
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Figure 11: Example 2 - Targeted dynamic motions in Q; caused by incoming waves from a source in the bottom-left corner of the enlarged domain
with a dominant frequency 10 Hz and reconstructed motions for different sensor spacing (1, 5, and 10 m).
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Figure 12: Example 2 - Relation of the reconstruction accuracy to the dominant frequency (or wavelength A) of a body wave-dominant incident
wave and the sensor spacing.

Figs. 13 and 14 compare reference and optimized force vectors and their modified/post-processed versions. The
error between the modified/post-processed vectors is & = 13.01%. The error reduces to 1.19% when considering the
forces only at the bottom-center portion of I', and I', at 85 m < x < 115 m and y of 55 and 56 m, respectively (i.e.,
131 < kin Py,; <161 and 133 < kin P, < 163). Fig. 15 shows the agreement between modified effective control
parameters and their post-processed optimized counterparts corresponding to the nodes on the bottom-center portion
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Figure 13: Example 2 - (a) Effective seismic force and (b) its final-optimized counterpart; and (c) modified effective seismic force and (d) its
post-processed optimized counterpart on I', when a Ricker of 10 Hz and a sensor spacing of 1 m are used.
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Figure 14: Example 2 - (a) Effective seismic force and (b) its final-optimized counterpart; and (c) modified effective seismic force and (d) its
post-processed optimized counterpart on I', when a Ricker of 10 Hz and a sensor spacing of 1 m are used.
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Figure 15: Example 2 - Time signals of modified effective and post-processed optimized forces at (a) x = 100 m and y = 56 m on I, and (b) x =
100 m and y = 55 m on I',, when a Ricker of 10 Hz and a sensor spacing of 1 m are used.
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5.3. Example 3: Examining the numerical performance to reconstruct ground motions induced by body wave-dominant,
arc-shaped incident waves

Here, we consider a seismic source in the bottom-center part (at x = 100 m and y = 100 m) of the same enlarged
domain. The resulted incident wave propagates as an arc-shaped wave in the reduced domain of interest.

Fig. 16 shows the targeted dynamic motions in ;, which are initiated by the arc-shaped body wave-dominant
incident wave in the enlarged domain, and their estimated counterparts in the case where incident waves are charac-
terized by a 10 Hz Ricker source signal. As the sensor spacing increases, we notice a reduction in the effectiveness
to estimate the dynamic responses in ;. Thus, this example, again, serves as another example illustrating that our
optimization simulator can successfully estimate body wave-dominant dynamic responses in €); if the sensor spacing
is small enough for a given frequency of an incident wave.

t=025s t=04s t=065s 10
% 60 60 pm—— —_— 60 H _ 4\ s
= é d G ? - .:‘. 5
Q — — — 0
$E B — = ElRad Yy =
= o L]
£5 20 ~ = 20 . = 20 “ - -
% . 4 -5
50 100 150 50 100 150 50 100 150
x [m] z [m] x [m] 109
x
8- et PR — o he
DEE | = [ ) M
25 o | weee———l N -
572 T20 - 20 \ . 20“ - -
=55 - N e
50 100 150 50 100 150 50 100 150
z [m] z [m] z [m] .
60 80 60 e
o —— ——  — . L S
BE — O (3 5
$ee — A ¥ - — b s
EER B e WS E 0 g 40 -
SE2x o, [ ee—l ’ N v - L0
’ - - . 2l
o =« -
50 100 150 50 100 150 50 100 150
x [m] z [m] z [m] o
X
g Ew 60 60 www— e 60 v -—Ag T
icf | e T oD U :
I - - R -
ED g o [ e . - -’
£28 a0 = 20 ' = 20 -
i3 v - 0 e -
50 100 150 50 100 150 50 100 150

Figure 16: Example 3 - Targeted dynamic motions in €; caused by arc-shaped incoming waves from a source in the bottom center of the enlarged
domain with a dominant frequency 10 Hz and reconstructed motions for different sensor spacing (1, 5, and 10 m).

Fig. 17 shows that the frequency content of the incident wave and the sensor spacing are related to the performance
of reconstructing wave responses in €); as mentioned in previous examples.
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Figure 17: Example 3 - Relation of the reconstruction accuracy to the dominant frequency (or wavelength A) of a body wave-dominant arc-shaped
incident waves and the sensor spacing.

The optimized force vector is compared with its reference value in Figs. 18 and 19. We observed that the post-
processed optimized force vector exhibits a small error of & = 8.23% when it is compared with the modified effective
force. The error at the bottom-center portion of I', and I', at 85 m < x < 115 m and y of 55 and 56 m, respectively (i.e.,
131 < kin Pp,; < 161 and 133 < kin P,,; < 163) decreases to 1.43%. Furthermore, Fig. 20 highlights the excellent
agreement between modified effective control parameters and their post-processed optimized counterparts at nodes on
the bottom-center portion of I', and I';, at x of 100 m and y of 56 and 55 m, respectively.
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Figure 18: Example 3 - (a) Effective seismic force and (b) its final-optimized counterpart; and (c) modified effective seismic force and (d) its
post-processed optimized counterpart on I', when a Ricker of 10 Hz and a sensor spacing of 1 m are used.
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Figure 19: Example 3 - (a) Effective seismic force and (b) its final-optimized counterpart; and (c) modified effective seismic force and (d) its
post-processed optimized counterpart on I', when a Ricker of 10 Hz and a sensor spacing of 1 m are used.
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Figure 20: Example 3 - Time signals of modified effective and post-processed optimized forces at (a) x = 100 m and y = 56 m on I, and (b) x =
100 m and y = 55 m on I',, when a Ricker of 10 Hz and a sensor spacing of 1 m are used.

5.4. Example 4: Assessing the performance to reconstruct ground motions with respect to the incident angle of an

incoming wave
The originally-presented incident SH waves are not plane waves with specific directions. While our method is
generally applicable for arbitrary types of an incident wave, our previously-shown Examples 1 to 3 considered three
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different point sources at different locations for demonstrations in each example: one at near surface and two at far
field. Each point source radiates in all directions and contains all angles in the wavenumber space. Thus, Examples 1
to 3 generally accommodate a broad range of angles of incident waves.

The purpose of this example 4 is to evaluate the performance of the presented method on reconstructing ground
motions in €; with respect to the predominant incident angle of an incoming wave entering €;. To this end, we
consider a line array of seismic wave sources in the bottom-left part of an enlarged domain so that we mimic a
strike slip on a fault line using line body force loading in the anti-plane direction. Each wave source of this line
body force loading is characterized by a 10 Hz Ricker source signal. The line loading generates an inclined plane
incident wave in the enlarged domain with a specific predominant angle of incidence if the material of the enlarged
domain is homogeneous. Thus, this example considers a homogeneous enlarged domain with the two inclusions. The
wave speeds Vy,, Vy,, V,, Vy,, Vi, and V,, in the previous Examples 1 to 3 are now all reset to 250 m/s (i.e., the
homogeneous background material’s wave speed) while V, and V,,—800 and 1000 m/s, respectively—remain the
same (i.e., the two inclusions’ wave speeds).

Fig. 21(a) shows an examplary strike-slip-like line body force loading in the enlarged domain to create an inci-
dent wave of its predominant incident angle of 45°. Fig. 21(b) shows the inclined incident waves entering €); with
three different predominant incident angles 6 (i.e., 26.57°, 45°, and 63.43°, respectively). We examine the presented
method’s performance to reconstruct ground motions induced by each of these three different inclined plane waves
using a sensor spacing of 1 m.
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Figure 21: Example 4 - (a) An exemplary strike-slip-like line body force loading in the enlarged homogeneous background domain; (b) targeted
incident waves with three different angles of incidence—26.57°, 45°, and 63.43°—entering the reduced domain.

Table 1 shows the final values of errors for each case in Example 4 and those in Example 1-3 that employed a
Ricker of 10 Hz and a sensor spacing of 1 m. We note that the values of errors (i.e., & and &) in Example 4 are
of the same order of magnitude as those in Examples 1-3, indicating that the presented method is omnidirectionally
applicable in terms of the incident angle of an incoming wave.
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Table 1: Comparison of & and & obtained in Examples 1-4 when a Ricker of 10 Hz and a sensor spacing of 1 m are used.

Cases & &

Example 1 1.08% | 15.21%
Example 2 2.94% | 13.01%
Example 3 229% | 8.23%
Example 4: 6 =26.57° | 4.97% | 15.80%
Example 4: 6 = 45° 3.70% | 7.35%
Example 4: 6 = 63.43° | 5.98% | 16.14%

Fig. 22 shows the agreement between targeted ground motions for three different predominant angles of incidence

in Q; at ¢ of 0.53 s and their reconstructed counterparts.
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Figure 22: Example 4 - Targeted wave responses in €; propagating in three different predominant angles and their reconstructed counterparts at ¢

=0.53s.

Fig. 23 compares reference and optimized force vectors and their modified/post-processed counterparts on I';, for

the case in which the incident angle of an incoming wave is 45°.

Fig. 23 shows excellent agreement between the

modified effective seismic force and its post-processed optimized counterpart. In addition, Fig. 24 reveals agreement
between modified effective and post-processed optimized forces corresponding to the nodes on the bottom-left portion
of I', and T, at x of 55 m and y of 56 m and 55 m, respectively, for three predominant incident angles of incoming

waves.
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Figure 23: Example 4 - (a) Targeted effective seismic force and (b) its final-optimized counterpart; and (c) modified effective seismic force and (d)
its post-processed optimized counterpart on I', when the incident angle of the incoming wave is 45°.
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Figure 24: Example 4 - Time signals of modified effective and post-processed optimized forces at x = 55 m and y = 56 mon I', and x = 55 m and
y =55 m on I', when the predominant incident angle of an incoming wave is (a) 23.57°, (b) 45°, and (c) 63.43°.
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5.5. Time duration effect

In Figs. 10, 15, and 20, the disagreement between the I:’fnff) 4 and Fggt is more noticeable at the later time steps (e.g.,
1.2 to 1.5 s). Such a larger error at the later time is due to the fact that we cannot identify the part of Fflff) 4 that is
attributed to the incident waves in the later time, which do not arrive at the sensors before the end of the observation
duration.

Thus, the issue can be resolved simply by considering a longer observation time. We rerun the examples 1-3 with
a longer duration of 3 seconds with a Ricker of 10 Hz and the sensor spacing of 1 m. Fig. 25 shows the time signals of
modified effective and post-processed optimized forces on I', and I';, at the same nodal locations discussed in Fig. 10,
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Figure 25: Time signals of modified effective and post-processed optimized forces on I, and I';, when a Ricker of 10 Hz, a sensor spacing of 1 m,
and a long observation duration (i.e., 3 seconds) are used in (a) Example 1, (b) Example 2, and (c) Example 3. The signals correspond to the same
nodal locations discussed in Fig. 10, 15, and 20.

6. Conclusion

In this paper, we presented a new numerical approach for optimizing dynamic forces at virtual interfaces to reconstruct
the shear wave ground motions induced by a seismic source outside of the truncated domain. An enlarged domain is
utilized in the forward wave solver to model arbitrarily-incoherent incident waves that propagate into the truncated
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domain and to generate targeted measurement data at sensors. The optimization problem is tackled using a gradient-
based minimization, where the DTO method is implemented to solve the adjoint problem and calculate the gradient
of the objective functional.

The performance of the presented optimizer was numerically tested for different frequencies of the incident waves,
sensor spacings on the surface, and the angles of incident waves. The numerical examples present the following in-
sights. First, the targeted wave responses obtained from an enlarged domain can be reconstructed within the interior
domain by using the optimized forces from the presented method. Second, the optimized seismic force vector may dif-
fer from its reference standard DRM counterpart while being a valid solution among other possible solutions allowed
by the DRM and alternative decompositions of total field into incident and scattered fields. Third, we introduce a post-
processing technique to properly compare the optimized force vector with its reference value. By post-processing the
optimized body force at virtual interfaces, we can identify “modified” targeted effective seismic forces at the interfaces
such that scattered wave in the exterior domain is silenced. Fourth, the presented inversion method can reconstruct the
dynamic motions in a truncated domain impinged by typical seismic waves of a continuous frequency spectrum. Fifth,
the presented method is omnidirectionally applicable in terms of the incident angle of an incoming wave. Lastly, we
study the desired spacing of sensors to accurately reconstruct the ground motions, which depends on the dominant
frequency of the incident waves.

The proposed method provides an efficient method to study the effect of a seismic event on a soil-structure system
such as foundations and underground structures. As the merit of the presented inversion method, it necessitates the
information of the wave speeds and dimensions of only a reduced domain. Namely, the geophysical profile of an
enlarged domain or a seismic source profile outside a reduced domain do not need to be informed to the presented
inversion simulator. Thus, the computational cost of the method is quite compact even though it leads to the high-
fidelity reconstruction of wave response in the reduced domain. In addition, even though the dispersive properties
(natural frequency, wave velocities, etc.) due to material heterogeneity or geometry of layering affect the wave motion,
the presented method is effective, for any given material heterogeneity and geometry of layering of the domain, in
inverting for DRM force using measurement on the surface. Namely, the presented method can be used for any depth
of layers in a reduced domain, which can also be unbounded homogeneous soil.

A three-dimensional extension of this study is straightforward and will provide a computationally efficient frame-
work in earthquake engineering by selectively modeling a near-surface domain without including the hypocenter. The
proposed method could also be extended by using a more robust WABC, such as the Perfectly Matched Layer (PML)
[46, 47], instead of the presented Lysmer-Kuhlemeyer WABC [34], to prevent spurious reflection at the truncated
boundary, which may improve the performance of the inverse process.
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Nomenclature

Symbol Definition

X, V,2 Horizontal, vertical, and anti-plane directions, respectively

t, T Time and final time of J

J Duration of the observation

u(x,y,t) Displacement field of dynamic motions polarized in the z-plane

G(x,y), Vs(x,y)  Shear modulus and shear wave speed

p(x,y) Mass density

Q Domain

Q;, Q, Interior and exterior domain, respectively, inside and outside virtual interface
Liop> Tbottom Top and bottom boundaries of Q2

Trights Det Right and left boundaries of Q

u(r) Displacement solution vector at ¢

M,K,C, F Global mass, stiffness, and damping matrices, and global force vector

I, Inner virtual interface boundary; Inner boundary of a DRM layer

I, Outer virtual interface boundary; Outer boundary of a DRM layer

Feff Effective force vector

Mfg‘“’, MS) Mass matrices that correspond to the nodes only in the DRM layer

K., ng Stiffness matrices that correspond to the nodes only in the DRM layer

u’, i’ Free-field displacements and accelerations, respectively

Q Matrix comprised of the M, K, and C matrices, indicating the Newmark time integration
a Discretization, in time and space, of u(x, y, t) for all ¢;

F Force vector for all #;

N Final time step

front Optimized seismic force vector

Vo> Ve The k-th node on I', and I, respectively

k Numbering of the node y,, and y,,; k-th component in Pp,; and P,

J The j-th component in Py, ; and P, ; the j-th time step;

Pp;s Py, Components of FP' corresponding to Yp, and y,,, respectively, and ¢;

& A set of control parameters (i.e., Py, and P, )

L Discrete objective functional

Un(x,y, 1) Dynamic response induced by targeted incident waves and measured by a sensor
11 Space-time discretization of uy(x,y, t) for all ¢;

B Square matrix that is zero except on the diagonals corresponding to sensors

A Discrete Lagrangian functional

A Lagrange multiplier vector for all the nodes and all ¢;

d, h Search direction vector and scalar-value step size

&" Error norm between dynamic motions in €; induced by incident waves and its FOP counterpart
& Error norm between optimized force on a DRM layer and its targeted counterpart
flx,y,0) Ricker wavelet signal

I Central frequency of the Ricker signal

u', ut Total and scattered wave field, respectively

anff) 4 Modified effective force vector

| Qe Post-processed optimized force vector

u¥mod | j0mod Modified free-field displacements and accelerations, respectively

0y, Post-processed @

D Square matrix that is zero except on the diagonals corresponding to nodes except Q,
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Appendix A. Brief review on DRM

Per Bielak’s DRM formulation [18, 19], we subdivide a reduced domain of consideration into the following three parts:
an exterior domain €2, an interface I',, and an interior domain €;, as shown in Fig. 1. A DRM layer is delineated
by the nodes on I';, and their neighboring exterior counterparts, on a fictitious boundary I',. Per the DRM theory, an
effective seismic force vector F° is obtained from free-field dynamic responses and computed using (A.1). We, in
turn, apply F°T on all the nodes on the DRM layer (i.e., I', and T, if a single, four node-element DRM layer is used
as in the presented paper) so that we can effectively model incident seismic waves impinging a reduced domain as an
equivalent dynamic force vector in the position of F() in (7). Namely, F(¢) in (7) is replaced by F in the following:

Peﬁ 0
i
Fel = | Peff| = |- Ml — Kpeud| (A1)
eff Q420 Q10
P M, + K pu,

where the subscripts 7, b, and e denote the nodes in Q;, I, and Q,; Mf}g“, M%‘, K?g“, and K%‘ are the mass and stiffness
matrices that correspond to the nodes only in the DRM layer: these matrices vanish everywhere except the single layer
of finite elements (i.e., DRM layer). For instance, M?e" is the partition of M* corresponding to the row indices of u,,
and column indices of u,. Only the free-field wave responses, u’ and ii’, at nodes of the DRM layer are needed to
calculate F. In the presented paper, an effective nodal force vector is obtained by using free-field seismic motions
(u® and ii°) that are obtained from the forward solver using the enlarged domain. We note that, per the DRM theory,
we do not consider the wave speeds of local features, such as inclusions of V,, and V,, in the presented numerical

examples, in order to obtain the free-field ground motions.

Appendix B. Modified effective force vector

The modified effective force vector anfi) 4 18 computed as:

peff 0
eff _ |peff 2% 30mod 1 Re 11 0mod
Fmod - me%)db - Mbe u, Khe u, ’ (B 1)

C QF "Omod Qe' Omod
Pmode Meh ub + Keh uh

where u® and i’ are the modified free-field displacements and accelerations, respectively. Namely, the wave

speeds of local features in the enlarged domain (i.e., Vy, and Vy, in the numerical examples) are considered in the
forward wave solver when we obtain the modified free-field wave motions. Therefore, solving (8) using (B.1) leads
the wave response in the exterior domain to vanish, while solving (8) using (A.1) leads that not to vanish but be equal
to the scattered field from local features.
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