

Effective Seismic Force Retrieval from Surface Measurement for SH-Wave Reconstruction

Bruno Guidio^a, Heedong Goh^{b,c}, Chanseok Jeong^{a,d,*}

^a*School of Engineering and Technology, Central Michigan University, Mount Pleasant, 48859, MI, USA*

^b*Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, 78712, TX, USA*

^c*Photonics Initiative, Advanced Science Research Center, City University of New York, New York, 10031, NY, USA*

^d*Earth and Ecosystem Science Program, Central Michigan University, Mount Pleasant, 48859, MI, USA*

Abstract

We present a new method to obtain dynamic body force at virtual interfaces to reconstruct shear wave motions induced by a source outside a truncated computational domain. Specifically, a partial differential equation (PDE)-constrained optimization method is used to minimize the misfit between measured motions at a limited number of sensors on the ground surface and their counterparts reconstructed from optimized forces. Numerical results show that the optimized forces accurately reconstruct the targeted ground motions in the surface and the interior of the domain. The proposed optimization framework yields a particular force vector among other valid solutions allowed by the domain reduction method (DRM). Per this optimized or inverted force vector, the reconstructed wave field is identical to its reference counterpart in the domain of interest but may differ in the exterior domain from the reference one. However, we remark that the inverted solution is valid and introduce a simple post-process that can modify the solution to achieve an alternative force vector corresponding to the reference wave field. We also study the desired sensor spacing to accurately reconstruct the wave responses for a given dominant frequency of interest. We remark that the presented method is omnidirectionally applicable in terms of the incident angle of an incoming wave and is effective for any given material heterogeneity and geometry of layering of a reduced domain. The presented inversion method requires information on the wave speeds and dimensions of only a reduced domain. Namely, it does not need any information on the geophysical profile of an enlarged domain or a seismic source profile outside a reduced domain. Thus, the computational cost of the method is compact even though it leads to the high-fidelity reconstruction of wave response in the reduced domain, allowing for studying and predicting ground and structural responses using real seismic measurements.

Keywords: Passive-seismic inversion, Domain reduction method (DRM), Effective seismic force vector, Discretize-then-optimize (DTO) approach, Reconstruction of seismic responses, Full-waveform inversion.

1. Introduction

The ability to replay the wave motions from sparsely-measured ground motion data is of great interest to identify the locations of large-amplitude dynamic responses during a seismic event. Such technique allows engineers to accurately estimate earthquakes' impact on soils and critical structures (e.g., tunnels, subways, bridges, power plants, dams, lifelines, tall buildings) and weak or potentially-damaged spots in the structures. This information on seismic impact estimation could be shared with decision-makers who would determine the budget and timeline to inspect and fix the seismic damages of built environments.

Thus, engineers should be able to identify seismic sources from the measured ground-motion data to reconstruct the corresponding seismic responses in the domain of interest. Although a large amount of ground motion data are available from modern sensors, such as accelerometers, optical cables, distributed acoustic sensing (DAS), and vision

*Corresponding author

Email address: jeong1c@cmich.edu (Chanseok Jeong)

11 sensors, there is no established method to identify arbitrarily-incoherent incident wave motions and to reconstruct the
12 corresponding responses in a truncated multi-dimensional near-surface domain.

13 Common methods to identify earthquake waves hitting a domain of consideration include 1) deconvolution in a
14 soil column and 2) seismic source identification in an extensive regional-scale domain. The deconvolution algorithm
15 allows engineers to identify an incident earthquake wave signal propagating into a 1D soil domain from surficial
16 seismic measurement [1, 2, 3]. However, the method is useful only when geophysical property is horizontally layered
17 and incoming seismic waves propagate vertically through the 1D columns. Thus, the approach fails to reconstruct the
18 incoming waves when the geophysical property is highly heterogeneous, rather than horizontally layered, and incident
19 earthquake waves—consisting of primary, shear, and surface waves—are not vertically propagating (i.e., incoherent)
20 due to the basin effect. In the same context, Mena and Jeremic [4] have confirmed the substantial difference between
21 (i) the seismic structural responses from the domain reduction method (DRM)-based seismic wave analysis using
22 “true” 3D incoherent free-field wave motions and (ii) their counterparts using 1D vertically-propagating free-field
23 motions that are generated by the deconvolution from measured ground motions. On the other conventional method,
24 there have been studies on a regional-scale inversion of seismic-source parameters at a hypocenter. For instance,
25 Akcelik et al. [5] studied an algorithm to invert a simplified seismic source time signal in a large regional-scale 3D
26 domain that includes a source at a fault. However, the uncertainties in material properties in a large domain hinder the
27 method, and, more importantly, its computational cost is too high to simulate high-frequency contents (e.g., $f > 1$ Hz)
28 of ground wave motions. Because of the applicability and computational limits of the two conventional approaches
29 stated above, it is necessary to investigate an alternative method to identify arbitrarily-incoherent (due to, for instance,
30 the basin effect) incoming seismic waves or equivalent dynamic forces and reconstruct corresponding ground motions
31 within a 2D/3D reduced domain from observational data of seismic waves at sensors.

32 Several recent studies in the literature have reported the possibility of utilizing sparsely measured wave motion
33 data to estimate unknown earthquake waves entering a solid domain via a full-waveform inversion technique, which
34 has been widely used in geotechnical site characterization [6, 7, 8, 9, 10, 11, 12, 13, 14]. First, Jeong and Seylabi
35 [15] studied an inversion procedure for predicting an incoming earthquake wave in a one-dimensional soil column.
36 Guidio and Jeong [16] discussed an inversion process to estimate the function of targeted traction, in space and time,
37 applied on a boundary of a 2D bounded solid. They utilized wave motion data from a limited number of sensors to
38 estimate the traction profile. The study shows that the inversion performance without Tikhonov (TN) regularization
39 is the same as the case with the regularization employed. To support the observation, the authors proved that their
40 presented objective functional is quadratic—the relation from a force vector to wave responses is linear unlike the
41 nonlinear material-wave relation—and convex. Guidio et al. [17] also studied a new approach for identifying the
42 profile, in time and space, of an inclined wave which impinges a domain of SH wave motions. To mimic the incident
43 wave, they applied traction on a truncated boundary.

44 Continuing the aforementioned works, herein, we introduce a novel procedure to (i) optimize dynamic body
45 force on virtual interfaces such that it induces dynamic behaviors within a reduced domain to be consistent with
46 observational data and, consequently, (ii) reconstruct targeted dynamic behaviors in a truncated domain. We also
47 compare our optimized body force with the force at the same interfaces calculated by the DRM theory using targeted,
48 unknown incident wave motions. The DRM was developed by Bielak et al. [18] and Yoshimura et al. [19], where
49 incident waves are modeled as an effective seismic force along a DRM layer of finite elements. The DRM has been
50 extensively employed to replicate seismic behaviors in truncated domains hit by an earthquake excitation, regardless
51 of the location of a seismic hypocenter and the amplitudes, frequency contents, and incident angles of incoming
52 waves. The DRM has been quite extensively utilized in various studies in earthquake engineering [20, 21, 22, 23, 24,
53 25, 26, 27, 28, 29, 30, 31, 32].

54 This paper presents numerical experiments that employ incoherently propagating incident waves and show that
55 the reconstructed wave field accurately matches its targeted value. We report that our optimized force reconstructs
56 the correct wave field in the interior area surrounded by the DRM interface. However, the optimized force can differ
57 from the reference force computed by the standard DRM procedure. This is because we do not impose any constraint
58 on the choice of solution among other possible solutions allowed by DRM. Fundamentally, as for any linear wave
59 equations, DRM admits different decompositions of the incident and scattered waves of the same total wave field,
60 where such property has been recently exploited in the context of analog computing [33]. In this paper, we developed
61 a post-process procedure to modify an optimized force vector to find an alternative force vector such that the scattered
62 wave field in the exterior domain is silenced.

63 2. Problem Definition

64 We consider a two-dimensional (2D) linear isotropic solid (Fig. 1(a)), truncated by wave-absorbing boundary conditions (WABC). The particle motion of the solid is considered to occur only in the anti-plane direction and to be
 65 attributed to shear-wave propagation. This study attempts to (i) optimize dynamic body forces at two virtual interfaces (i.e., Γ_b and Γ_e) in the solid and, then, (ii) replay the dynamic behaviors of the solid surrounded by WABC from
 66 surficial seismic measurements. The surficial measurements are attributed to wave motions in the domain that are
 67 induced by incident waves propagated from the outside of the domain.
 68

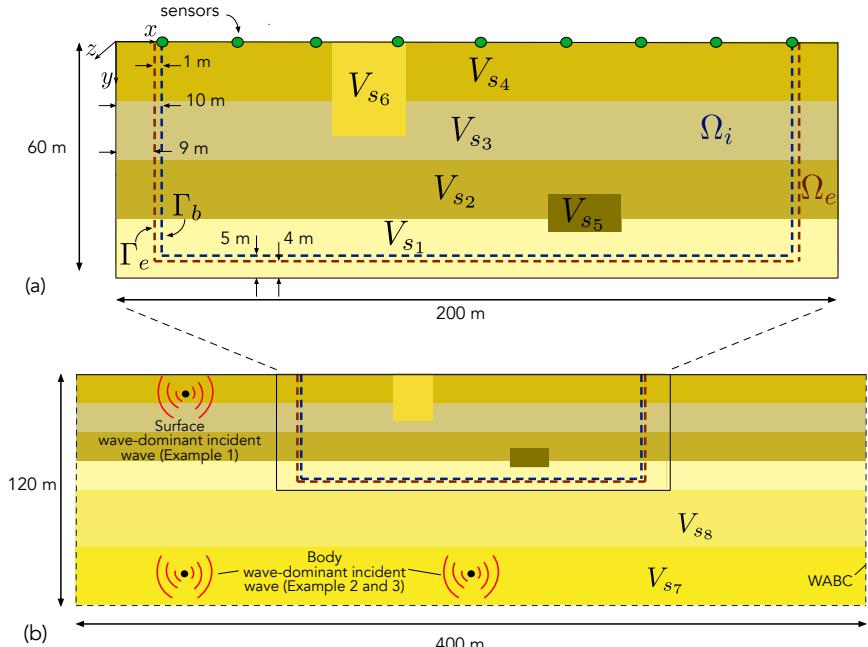


Figure 1: Enlarged domain used in the presented optimization problem. (a) a WABC-truncated domain is used for optimization of dynamic force at the virtual interfaces; (b) targeted dynamic behaviors are originally triggered by a seismic source outside the truncated solid, but the presented inversion solver is not informed of the source.

70 2.1. The governing equation

71 The governing differential equation of a shear wave in a 2D undamped solid domain for $(x, y) \in \Omega$ and $t \in J = (0, T]$
 72 is defined as:

$$\nabla \cdot (G \nabla u) - \rho \frac{\partial^2 u}{\partial t^2} = 0, \quad \text{on } \Omega \times J, \quad (1)$$

73 where $u = u(x, y, t)$ represents the displacement field of wave motions in the z -plane, while the wave propagates in the
 74 x - y plane (i.e., SH wave motion); x and y are the horizontal and vertical coordinates. The medium is characterized by
 75 shear modulus $G(x, y)$ and mass density $\rho(x, y)$. The top surface (Γ_{top}) is subject to a traction-free condition:

$$\frac{\partial u}{\partial y}(x, 0, t) = 0, \quad 0 \leq x \leq L, \quad (2)$$

76 while the WABC [34] are presented on the left (Γ_{left}), bottom (Γ_{bottom}), and right (Γ_{right}) boundaries:

$$\frac{\partial u}{\partial x} = -\frac{1}{V_s} \frac{\partial u}{\partial t}, \quad x = 0, \quad D \leq y \leq 0, \quad (3)$$

$$\frac{\partial u}{\partial y} = -\frac{1}{V_s} \frac{\partial u}{\partial t}, \quad 0 \leq x \leq L, \quad y = D, \quad (4)$$

$$\frac{\partial u}{\partial x} = -\frac{1}{V_s} \frac{\partial u}{\partial t}, \quad x = L, \quad D \leq y \leq 0. \quad (5)$$

77 In the above, $V_s(x, y)$ denotes the shear wave velocity of the soil; D represents the y -coordinate of Γ_{bottom} ; and L
78 represents the x -coordinate of Γ_{right} . Lastly, the system is initially at rest:

$$u(x, y, 0) = 0, \quad \frac{\partial u}{\partial t}(x, y, 0) = 0. \quad (6)$$

79 **2.2. Discrete state problem**

80 We use the finite element method to solve the governing equation (1), where its semi-discrete equation reads:

$$\mathbf{M}\ddot{\mathbf{u}}(t) + \mathbf{C}\dot{\mathbf{u}}(t) + \mathbf{K}\mathbf{u}(t) = \mathbf{F}(t). \quad (7)$$

81 In the above, $\mathbf{u}(t)$ is a displacement solution vector at time t . \mathbf{M} , \mathbf{C} , and \mathbf{K} are the global matrices, and \mathbf{F} denotes the
82 force vector. Our optimized force and effective seismic force (also dubbed a DRM force) on Γ_b and Γ_e will be defined
83 in the force vector of the discrete form (i.e., the nodal forces along Γ_b and Γ_e). Please see Appendix A, which briefly
84 describes how to compute DRM forces by using targeted incident (free-field) waves propagated from the outside of
85 the truncated domain.

86 We solve the time-dependent equation (7) by using the implicit Newmark method, which allows us to formulate
87 the forward wave simulation into the following compact form:

$$\mathbf{Q}\hat{\mathbf{u}} = \hat{\mathbf{F}}. \quad (8)$$

88 In the above, the matrix \mathbf{Q} is the discrete forward operator comprised of the \mathbf{M} , \mathbf{C} , and \mathbf{K} matrices of the semi-discrete
89 equation and the Newmark time integrator [35] (the detail of \mathbf{Q} can be seen in previous works [16, 17, 36], which used
90 the \mathbf{Q} matrix during the PDE-constrained optimization process). We use $\hat{\mathbf{u}}$ and $\hat{\mathbf{F}}$ to denote, respectively, the solution
91 and global force vectors for all the time steps, i.e.,

$$\hat{\mathbf{u}} = \begin{bmatrix} \mathbf{u}_0 \\ \dot{\mathbf{u}}_0 \\ \ddot{\mathbf{u}}_0 \\ \vdots \\ \mathbf{u}_N \\ \dot{\mathbf{u}}_N \\ \ddot{\mathbf{u}}_N \end{bmatrix}, \quad \hat{\mathbf{F}} = \begin{bmatrix} 0 \\ 0 \\ \mathbf{F}_0 \\ \vdots \\ \mathbf{F}_N \\ 0 \\ 0 \end{bmatrix}, \quad (9)$$

92 where the subscript indicates the time step, and N represents the final time step.

93 **3. Optimization Modeling**

94 In this section, we describe the inverse problem for the optimized force vector $\hat{\mathbf{F}}^{\text{opt}}$ driven by the misfit between the
95 measured and reconstructed wave motions at sensor locations on the surface. The discretize-then-optimize (DTO)
96 method [16, 17, 36, 37] is utilized in the presented optimization modeling because of its relatively compact numerical
97 procedure compared to the optimize-then-discretize (OTD) method. Using the optimized dynamic force at the virtual
98 interfaces, we aim to reconstruct the wave motions in an interior domain truncated by WABC.

99 3.1. Control parameters

100 Under this optimization method, the control parameters ξ are determined as P_{b_kj} and P_{e_kj} . They are components
 101 of $\hat{\mathbf{F}}^{\text{opt}}$ corresponding to γ_{b_k} and γ_{e_k} , respectively, and t_j . Here, γ_{b_k} is the k -th node on Γ_b , and γ_{e_k} is the k -th node on
 102 Γ_e ; and t_j is the j -th time step. We note that γ_{b_k} and γ_{e_k} are numbered from the top-left discrete nodes of Γ_b and Γ_e to
 103 the top-right ones. Moreover, the components of $\hat{\mathbf{F}}^{\text{opt}}$, which are not part of the control parameters, are set to be zero.

104 3.2. Discrete Lagrangian functional

105 We are interested in finding the control parameters' values that result in a minimum of a discrete objective functional:

$$\hat{\mathcal{L}} = \frac{1}{2}(\hat{\mathbf{u}} - \hat{\mathbf{u}}_m)^T \bar{\mathbf{B}}(\hat{\mathbf{u}} - \hat{\mathbf{u}}_m), \quad (10)$$

106 where $\hat{\mathbf{u}}$ corresponds to the discretization, in space and time, of $u(x, y, t)$ induced by a set of optimized P_{b_kj} and P_{e_kj} ; $\hat{\mathbf{u}}_m$
 107 is the discretization, in space and time, of $u_m(x, y, t)$, which is the targeted wave response induced by incident seismic
 108 waves propagated from the outside of the truncated domain. In (10), $\bar{\mathbf{B}}$ represents $\Delta t \mathbf{B}$, where \mathbf{B} is a square matrix
 109 with mostly zeros except for few diagonal components correspond to sparsely-distributed sensors. We synthetically
 110 generate $\hat{\mathbf{u}}_m$ by using our FEM solver with an enlarged domain, where a point seismic source induces the wave motions
 111 (see Fig. 1(b)).

112 In addition to the objective functional, the discrete state problem (8) is imposed as a side constraint to $\hat{\mathcal{L}}$ via the
 113 use of a Lagrange multiplier vector $\hat{\lambda}$. There results in the following Lagrangian functional $\hat{\mathcal{A}}$:

$$\hat{\mathcal{A}} = \frac{1}{2}(\hat{\mathbf{u}} - \hat{\mathbf{u}}_m)^T \bar{\mathbf{B}}(\hat{\mathbf{u}} - \hat{\mathbf{u}}_m) - \hat{\lambda}^T(\mathbf{Q}\hat{\mathbf{u}} - \hat{\mathbf{F}}^{\text{opt}}), \quad (11)$$

114 where

$$\hat{\lambda} = [\lambda_0^T, \lambda_1^T, \lambda_2^T, \dots, \lambda_N^T, \lambda_N^T, \lambda_N^T]^T. \quad (12)$$

115 3.3. The three first-order optimality conditions

116 We optimize the control parameters by satisfying the three first-order optimality conditions. In the first condition, the
 117 derivative of $\hat{\mathcal{A}}$ with respect to $\hat{\lambda}$ vanishes when we solve the state equation (8) by using $\hat{\mathbf{F}}^{\text{opt}}$:

$$\frac{\partial \hat{\mathcal{A}}}{\partial \hat{\lambda}} = -\mathbf{Q}\hat{\mathbf{u}} + \hat{\mathbf{F}}^{\text{opt}} = 0. \quad (13)$$

118 Next, the second condition, the vanishing derivative of $\hat{\mathcal{A}}$ with respect to $\hat{\mathbf{u}}$, leads us to the adjoint equation:

$$\frac{\partial \hat{\mathcal{A}}}{\partial \hat{\mathbf{u}}} = \underbrace{-\mathbf{Q}^T \hat{\lambda} + \bar{\mathbf{B}}(\hat{\mathbf{u}} - \hat{\mathbf{u}}_m)}_{\text{adjoint problem}} = 0. \quad (14)$$

119 We note that the adjoint problem is a final-value problem, as opposed to the original initial-value state problem, which
 120 is identified by $\mathbf{Q}^T \hat{\lambda}$ term in (14). The adjoint method (14) can be solved by marching backward in time as shown in
 121 our previous work [17].

122 The third condition makes the derivative of $\hat{\mathcal{A}}$ with respect to $\hat{\mathbf{F}}^{\text{opt}}$ to vanish and yields the next control equation:

$$\frac{\partial \hat{\mathcal{A}}}{\partial \hat{\mathbf{F}}^{\text{opt}}} = \hat{\lambda} = 0, \quad (15)$$

123 which indicates that $\frac{\partial \hat{\mathcal{A}}}{\partial \hat{\mathbf{F}}^{\text{opt}}} = \frac{\partial \hat{\mathcal{L}}}{\partial \hat{\mathbf{F}}^{\text{opt}}}$ is a vector of the components of $\hat{\lambda}$ corresponding to the discrete node numbering and
 124 the time step of ξ . Eq. (15) is satisfied at an optimal value of control parameters, where both the objective functional
 125 and the source term of the adjoint problem (14) vanish.

126 **4. Numerical Implementation**

127 The algorithm iteratively optimizes the control parameters using the gradient-based minimization method by employing
128 the semi-analytically evaluated gradient vector $\nabla_{\xi} \hat{\mathcal{L}}$ as follows:

129 (a) First, $\hat{\mathbf{u}}_m$ are synthetically generated by considering incident seismic waves. Namely, we compute the wave
130 solutions in an enlarged domain, which contains a point seismic source.

131 (b) An optimized $\hat{\mathbf{F}}^{opt}$, comprised of control parameters ξ (all zero-valued at the initial iteration), is utilized to
132 obtain $\hat{\mathbf{u}}$ by solving the state problem.

133 (c) Next, $\hat{\lambda}$ is computed by solving the adjoint equation using $\hat{\mathbf{u}}$ and $\hat{\mathbf{u}}_m$.

134 (d) The gradient of the objective functional, $\nabla_{\xi} \hat{\mathcal{L}}$, is calculated by using the adjoint solution.

135 (e) We use the conjugate-gradient method to find the best search direction, \mathbf{d} , where an optimal step length, h , is
136 calculated by using the Newton's method [16].

137 (f) Lastly, the gradient-based scheme refreshes the approximate ξ using the search direction and optimal step length
138 as: $\xi_{\text{updated}} = \xi_{\text{previous}} + \mathbf{d} h$.

139 The above procedures, (b) to (f), are consistently repeated by the optimizer, which searches to determine the control
140 parameters that make the control equation to vanish as (15). We discontinue the iteration of the optimizer either when
141 the $\hat{\mathcal{L}}_{\text{updated}}$ is smaller than $\hat{\mathcal{L}}_{\text{initial}} \times 10^{-7}$ or when the iteration number is greater than 1000.

142 **5. Numerical Results**

143 We conduct numerical experiments to study the performance of the outlined optimization procedure for updating $\hat{\mathbf{F}}^{opt}$
144 at the virtual interface boundaries (Γ_b and Γ_e) and eventually reconstructing the wave responses—induced by incident
145 seismic waves propagated from the outside of the truncated domain—in Ω_i delineated by the DRM boundary in a
146 near-surface area with respect to various factors.

147 The proposed objective functional is driven only by the measurements of the sparsely distributed sensors on the
148 surface without information on the choice of scattered field in the exterior domain. Thus, we expect that the optimized
149 force $\hat{\mathbf{F}}^{opt}$ may differ from the reference force $\hat{\mathbf{F}}^{eff}$ constructed by the standard DRM procedure. However, $\hat{\mathbf{F}}^{opt}$ is a
150 valid solution; thus, it is unnecessary to obtain the same reference force, i.e., the standard DRM force. Instead, an
151 alternative effective seismic force that gives a silent scattered field may serve as another reference force. Thus, we
152 introduce a post-process procedure to modify the optimized force to achieve a zero scattering field in the exterior
153 domain and compare it with the alternative effective seismic force.

154 For all examples, we reconstruct the ground motions in Ω_i of a 4-layered solid with 2 inclusions, as shown in
155 Fig. 1(a). The truncated domain is set to be 200 m \times 60 m with shear wave speeds V_{s_1} to V_{s_6} of 300, 250, 200, 150,
156 800, and 1000 m/s. We also consider that a mass density (ρ) is uniform as 1500 kg/m³ in the entire domain. We
157 placed sensors in a manner such that the first sensor is always placed in the top-left corner of Γ_b , and the last one is
158 located in the top-right corner of Γ_b . The truncated domain is a subset of the enlarged domain, as shown in Fig. 1(b).
159 The enlarged domain is employed to obtain targeted wave response $\hat{\mathbf{u}}_m$, of which surficial measurements are used in
160 our optimization procedure per (10). Its dimension is 400 m \times 120 m, and the wave speeds at the lower part of the
161 enlarged domain are set to be $V_{s_7} = 1800$ m/s and $V_{s_8} = 1500$ m/s, respectively.

162 The presented method requires that the inversion simulator is informed of the spatial distribution of wave speeds in
163 a reduced domain, which can be obtained via a prior site characterization technique (e.g., spectral analysis of surface
164 waves (SASW) method [38, 39, 40, 41, 42], multi-channel analysis of surface waves (MASW) method [43, 44], or
165 full-waveform inversion (FWI) [12, 13, 45]). The truncated, reduced model is the domain of interest, where we intend
166 to reconstruct its response to a seismic activity, and the domain contains the surface on which we sparsely measure
167 the response. The dimension of the enlarged domain is chosen to generate synthetic data that are originally attributed
168 to a source located outside of the domain of interest. Thus, we determined the dimensions of the reduced and the
169 enlarged domains in a manner such that the enlarged domain must contain the reduced model and be sufficiently

170 large to include a seismic source. As long as this condition is met, the presented method can be generalized for any
 171 dimensions of reduced and enlarged domains that a computing resource can permit. Namely, the method is not limited
 172 to the presented dimensions of 200 by 60 m and 400 by 120 m.

173 We use an error norm to quantify the difference of the reconstructed ground motions at interior nodes $\mathbf{u}_j^{\text{interior}}$ from
 174 their targeted counterpart $\mathbf{u}_{m_j}^{\text{interior}}$ at all the time steps for t_j , which reads:

$$\mathcal{E}^u = \sum_{j=1}^N \frac{|\mathbf{u}_{m_j}^{\text{interior}} - \mathbf{u}_j^{\text{interior}}|^2}{|\mathbf{u}_{m_j}^{\text{interior}}|^2} \times 100[\%]. \quad (16)$$

175 The difference between the optimized force $\hat{\mathbf{F}}^{\text{opt}}$ to its reference value $\hat{\mathbf{F}}^{\text{eff}}$ is measured by:

$$\mathcal{E} = \frac{|\hat{\mathbf{F}}^{\text{eff}} - \hat{\mathbf{F}}^{\text{opt}}|^2}{|\hat{\mathbf{F}}^{\text{eff}}|^2} \times 100[\%]. \quad (17)$$

176 We analyze the effectiveness of the proposed optimization method with respect to the frequency content of the
 177 incident wave, the number of sensors utilized on the top surface, and an incident angle in which the incident seismic
 178 waves are propagated from the outside of the truncated domain. The presented optimizer is tested by incident waves,
 179 that do not mimic plane waves but those in realistic seismic activity, as shown in Examples 1 to 3. Example 4
 180 investigates the performance of the optimizer for a plane incoming wave of a dominant incident angle.

181 For all numerical examples, the spatial and temporal intervals for the discretization of $\hat{\mathbf{F}}^{\text{opt}}$ and $\hat{\mathbf{u}}$ are 1 m and 0.001
 182 s, respectively.

183 *5.1. Example 1: Assessing the performance to reconstruct ground motions induced by surface wave-dominant inci-
 184 dent waves*

185 We evaluate the performance of optimizing the dynamic force at the virtual interfaces and reconstructing the dynamic
 186 behaviors in Ω_i in a case where dynamic behaviors are attributed to surface wave-dominant incident waves impinging
 187 the reduced domain.

188 To this end, we generate the incident waves in the enlarged domain, which encompasses a point wave source at x
 189 = -40 m and $y = 10$ m with its force time signal being a Ricker wavelet signal:

$$f(x, y, t) = -100 \times \frac{(0.25\eta^2 - 0.5)e^{-0.25\eta^2} - 13e^{-13.5}}{0.5 + 13e^{-13.5}}, \quad t \leq \bar{t}, \quad (18)$$

190 where $\eta = \omega t - 3\sqrt{6}$; $\bar{t} = 6\sqrt{6}/\omega$; $\omega = 2\pi f_c$; and f_c is the central frequency of the signal. We note that Ricker pulses
 191 are used to characterize a seismic source with a continuous spectrum, and by setting their f_c to be less than 10 Hz, we
 192 aim to mimic the frequency spectrum of typical seismic activity. Fig. 2 shows the time histories of Ricker signals of
 193 dominant frequencies of 2, 5, and 10 Hz, and the frequency content of each signal.

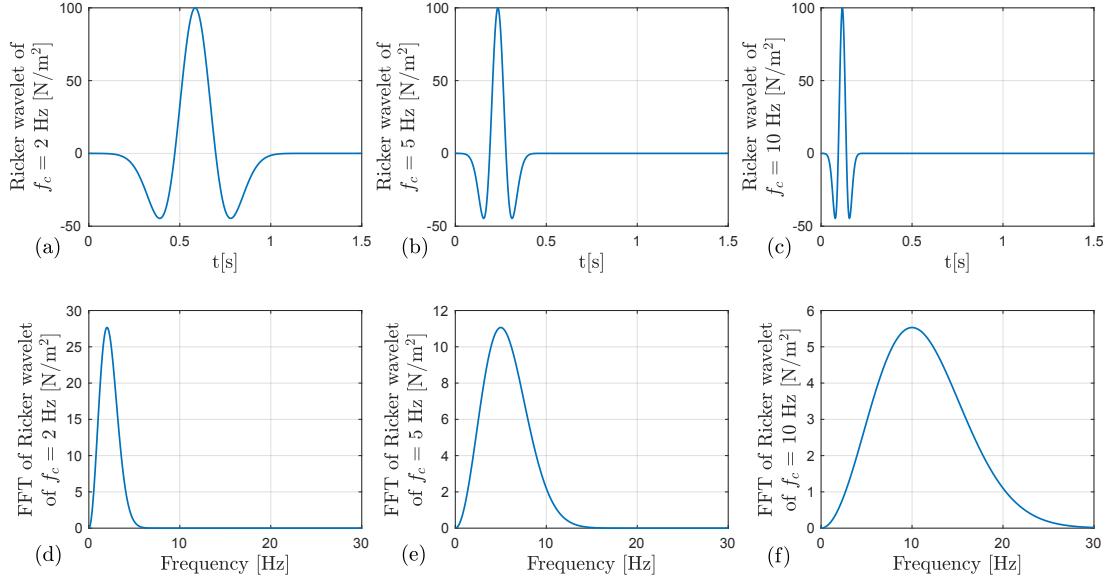


Figure 2: (a-c) Time histories and (d-f) frequency content of Ricker wavelet signals of central frequencies of 2, 5, and 10 Hz, respectively.

194 **5.1.1. Optimization without post-processing**

195 Fig. 3 presents how \mathcal{E}^u depends on the dominant frequency of the point source that generates incident waves and
 196 the sensor spacing in Example 1. Fig. 3 presents that, when we use a sensor spacing of up to 5 m, i.e., 37 sensors on the
 197 surface, the optimization solver accurately estimates the wave responses in Ω_i ($\mathcal{E}^u \leq 2\%$) for surface wave-like waves
 198 of their dominant frequencies of 2, 5, and 10 Hz. For the spacing of the sensors of 10 m, the solver cannot reconstruct
 199 the dynamic behaviors in Ω_i for the dominant frequency of 10 Hz ($\mathcal{E}^u = 14.6\%$) as accurately as 5 Hz ($\mathcal{E}^u = 2\%$) and
 200 2 Hz ($\mathcal{E}^u = 1\%$). Overall, the desired sensor spacing decreases as the dominant frequency of the surface-dominant
 201 incident wave increases.

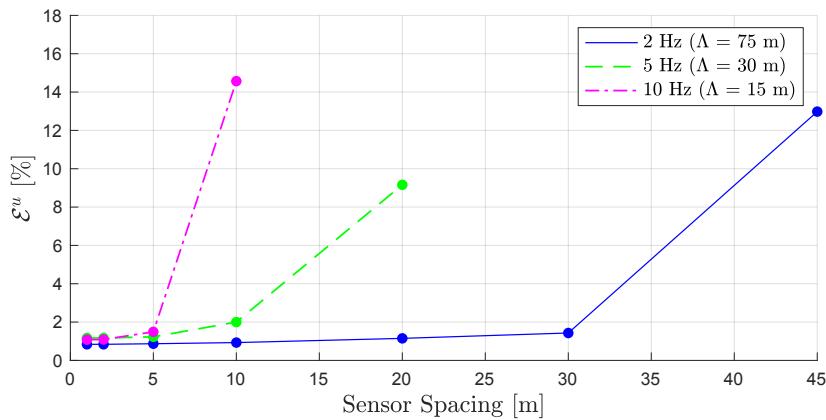


Figure 3: Example 1 - Relation of the reconstruction accuracy to the dominant frequency (or wavelength Λ) of the surface wave-dominant incident waves and the sensor spacing.

202 Fig. 4(a) shows the targeted dynamic responses in Ω_i that are computed from the enlarged domain solver, and
 203 Fig. 4(b) to (d) show their reconstructed counterparts for a different value of sensor spacing, when a 10 Hz Ricker
 204 source signal is used in the enlarged domain simulator. The time steps (t) shown in Fig. 4 (0.6 s, 0.8 s, and 1.0 s) are
 205 based on the time elapsed since the source's Ricker signal is initiated. We note, from Fig. 4, that, as the spacing of the
 206 sensors is increased, the agreement between the targeted and reconstructed motions in Ω_i diminishes.

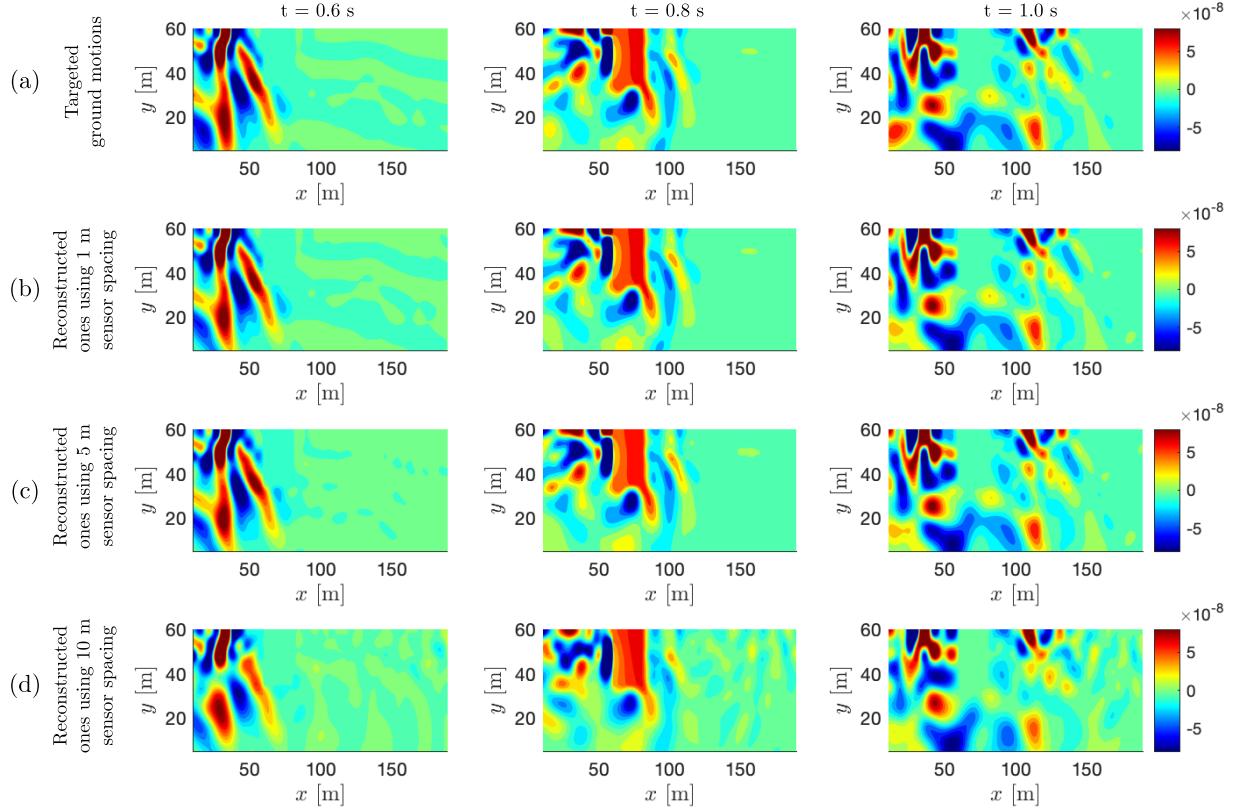


Figure 4: Example 1 - (a) Targeted dynamic motions in Ω_i caused by surface wave-like incoming waves of an dominant frequency 10 Hz and (b-d) reconstructed motions for different sensor spacing (1, 5, and 10 m).

207 Fig. 5 shows the excellent agreement between the measured data u_m obtained by using the enlarged domain, and
 208 their reconstructed counterparts u induced by $\hat{\mathbf{F}}^{\text{opt}}$ at nineteen different locations on Γ_{top} when we utilize the 10 Hz
 209 Ricker source signal and the sensor spacing of 1 m.

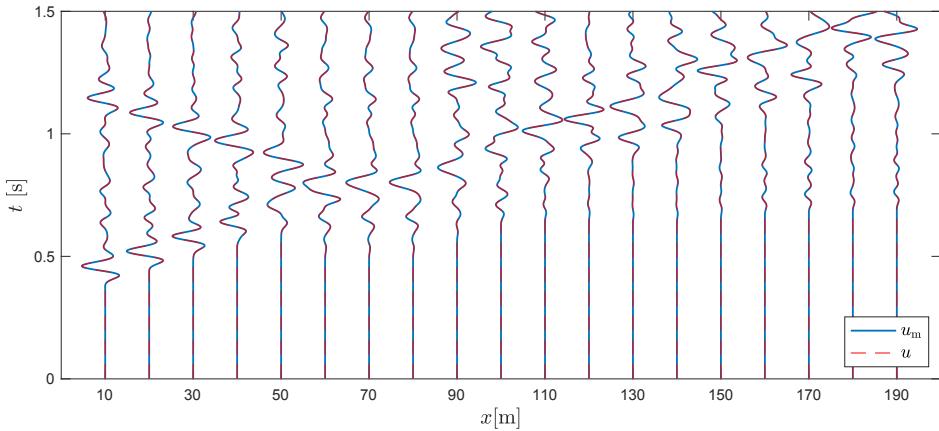


Figure 5: Example 1 - Comparison between the measured data u_m and the computed signals u induced by $\hat{\mathbf{F}}^{\text{opt}}$ at 19 different locations on Γ_{top} .

210 In Fig. 6, we examine the amplitudes of the scattered waves in the exterior domain induced by $\hat{\mathbf{F}}^{\text{opt}}$ and $\hat{\mathbf{F}}^{\text{eff}}$, which
 211 is built by the free-field incident waves propagated from the outside of the truncated domain. The sensor spacing is 1
 212 m, and the 10 Hz Ricker source signal is utilized. The optimized force $\hat{\mathbf{F}}^{\text{opt}}$ induces relatively large amplitudes in the

213 exterior domain Ω_e , the outer region of the dashed line, compared to the scattered wave in Ω_e induced by $\hat{\mathbf{F}}^{\text{eff}}$. This
 214 difference implies that there is more than one choice of incident-scattered wave decompositions for an identical total
 215 wave. Namely, a total wave \mathbf{u}^t can be decomposed into an incident wave \mathbf{u}^0 and a scattered wave \mathbf{u}^s as the following:

$$\mathbf{u}^t = \mathbf{u}^0 + \mathbf{u}^s. \quad (19)$$

216 In the above, \mathbf{u}^s is defined as a scattered wave from local features in an interior domain impinged by \mathbf{u}^0 per the
 217 standard DRM. However, we can also define \mathbf{u}^s in a manner such that \mathbf{u}^0 is identical to \mathbf{u}^t , and \mathbf{u}^s is silenced. With
 218 such a modified free-field, the new decomposition leads to a modified effective seismic force as an alternative.

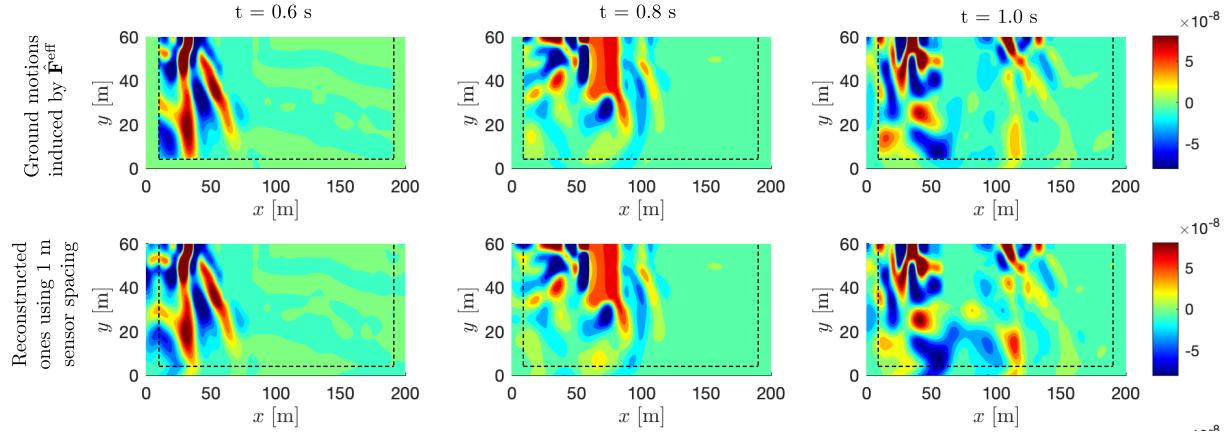


Figure 6: Example 1 - Ground motions in the domain induced by the effective force and the optimized force using 1 m sensor spacing; and the scattered waves of reference ground motions and reconstructed ground motions, for the case that considers a Ricker pulse signal of 10 Hz. The dashed line indicates a DRM boundary Γ_b .

219 Figs. 7 and 8 highlight the difference between the optimized dynamic force vector $\hat{\mathbf{F}}^{\text{opt}}$ and $\hat{\mathbf{F}}^{\text{eff}}$, where the error
 220 is quantified as $\mathcal{E} = 97.43\%$. Specifically, Fig. 8 shows the effective and optimized control parameters corresponding
 221 to the nodes on Γ_e and Γ_b at $x = 9$ m and 10 m, respectively, and $y = 10$ m and for every time step. In the following
 222 section, we discuss this seemingly different behavior in detail and introduce post-processing to alter the optimized
 223 force, which will be compared with the modified effective seismic force.

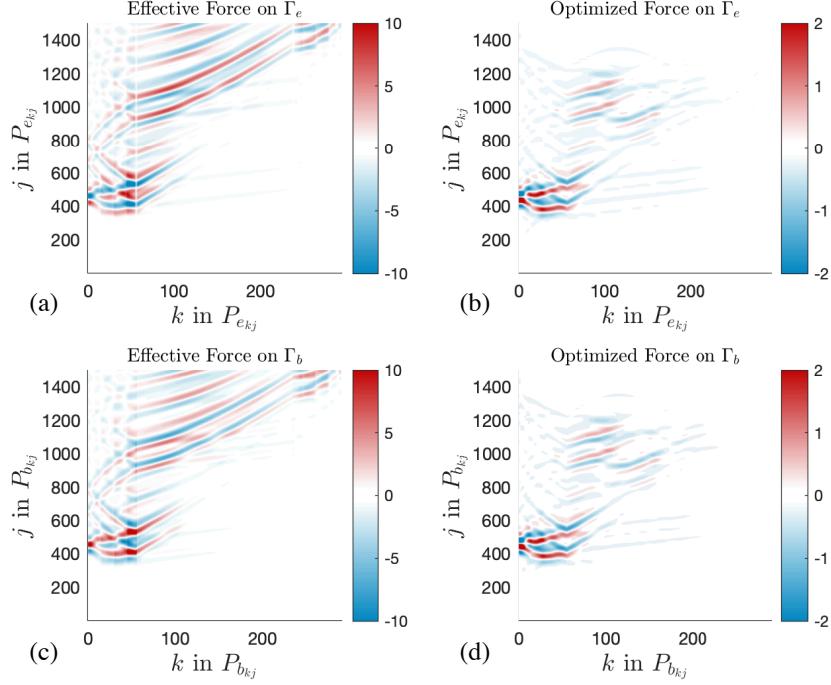


Figure 7: Example 1 - (a) Effective seismic force and (b) its final-optimized counterpart on Γ_e , and (c) effective seismic force and (d) its final-optimized counterpart on Γ_b when a Ricker of 10 Hz as the seismic source signal and a sensor spacing of 1 m are used.

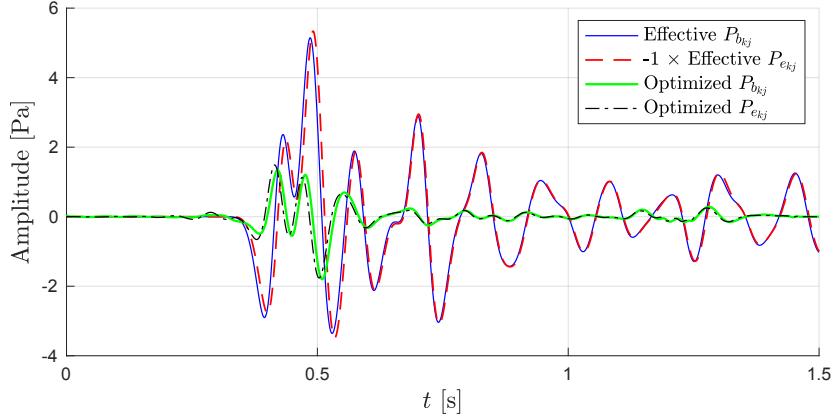


Figure 8: Example 1 - Time signals of effective and optimized forces at $x = 9$ m and 10 m (Γ_e and Γ_b , respectively) and $y = 10$ m when a Ricker of 10 Hz and a sensor spacing of 1 m are used.

5.1.2. Post-processing the optimized force

In the standard DRM procedure, shown in Appendix A, an effective force vector $\hat{\mathbf{F}}^{\text{eff}}$ is obtained from free-field ground motions (\mathbf{u}^0 and $\ddot{\mathbf{u}}^0$ on Γ_b and in Ω_e), which are computed in an enlarged domain without considering the wave speeds of local features, such as the inclusions of V_{s5} and V_{s6} in Fig. 1. Thus, when simulated with the effective force, the scattered field in the exterior domain exclusively reveals the effect of the local features.

Alternatively, we introduce a modified effective force vector $\hat{\mathbf{F}}_{\text{mod}}^{\text{eff}}$ by using the “modified” free-field ground motions ($\mathbf{u}^{0\text{mod}}$ and $\ddot{\mathbf{u}}^{0\text{mod}}$ on Γ_b and in Ω_e), which are computed in an enlarged domain taking into account the local features (Appendix B). The modified effective force $\hat{\mathbf{F}}_{\text{mod}}^{\text{eff}}$ differs from the original effective force vector $\hat{\mathbf{F}}^{\text{eff}}$ in a manner such that $\hat{\mathbf{F}}_{\text{mod}}^{\text{eff}}$ leads to zero scattered field in Ω_e . In the following, we modify both reference and optimized force vectors to provide a direct comparison.

234 We refer the modification on the optimized force vector as post-processing, which reads:

$$\hat{\mathbf{F}}_{\text{pp}}^{\text{opt}} = \mathbf{Q} \hat{\mathbf{u}}_{\text{pp}}. \quad (20)$$

235 In the above, $\hat{\mathbf{u}}_{\text{pp}}$ is rebuilt from $\hat{\mathbf{u}}$ by making the components of $\hat{\mathbf{u}}$ corresponding to Ω_e to vanish. Namely,

$$\hat{\mathbf{u}}_{\text{pp}} = \mathbf{D} \hat{\mathbf{u}}, \quad (21)$$

236 where \mathbf{D} is a square, diagonal matrix, of which component is one everywhere except on the zero-valued diagonal
237 components corresponding to nodes on Ω_e .

238 Fig. 9 shows that the modified effective force $\hat{\mathbf{F}}_{\text{mod}}^{\text{eff}}$ are in agreement with its post-processed optimized counterpart
239 $\hat{\mathbf{F}}_{\text{pp}}^{\text{opt}}$: the error \mathcal{E} between them is 15.21%, which is a lot smaller than $\mathcal{E} = 97.43\%$ between $\hat{\mathbf{F}}^{\text{eff}}$ and $\hat{\mathbf{F}}^{\text{opt}}$. Particularly,
240 as far as the forces only at the upper-left portion of Γ_e and Γ_b at x of 9 and 10 m, respectively, and $0 \leq y \leq 30$
241 m (i.e., $1 \leq k \leq 31$) are concerned, the error \mathcal{E} is only 1.45%. It is because, for this surface-wave dominant
242 incident wave, the wave response that is induced by $\hat{\mathbf{F}}_{\text{pp}}^{\text{opt}}$ at the upper-left portion on the virtual interfaces accounts for
243 the surficial measurement data more significantly than its counterpart that is induced by $\hat{\mathbf{F}}^{\text{opt}}$ at the other part of the
244 virtual interfaces. Therefore, the measurement data drive our optimizer in a manner such that the part of $\hat{\mathbf{F}}_{\text{pp}}^{\text{opt}}$ at the
245 upper-left portion of Γ_e and Γ_b matches $\hat{\mathbf{F}}_{\text{mod}}^{\text{eff}}$ better than the other part of $\hat{\mathbf{F}}_{\text{pp}}^{\text{opt}}$. Fig. 10 shows the agreement between
246 modified effective forces and their post-processed optimized counterparts corresponding to the nodes on the upper-left
247 portion of Γ_e and Γ_b at x of 9 and 10 m, respectively, and y of 10 m.

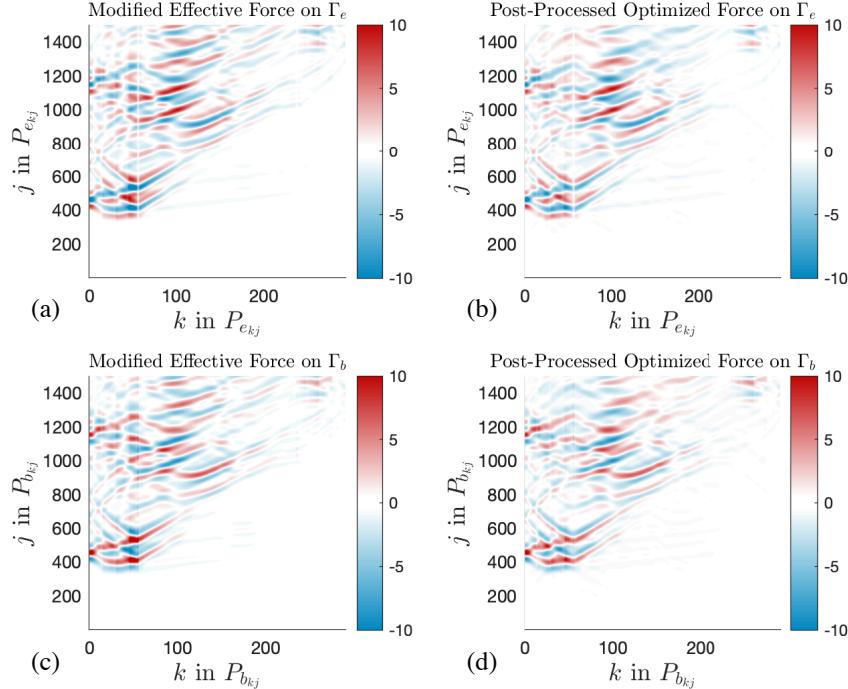


Figure 9: Example 1 - (a) Modified effective seismic force and (b) its post-processed optimized counterpart on Γ_e , and (c) modified effective seismic force and (d) its post-processed optimized counterpart on Γ_b when a Ricker of 10 Hz as the seismic source signal and a sensor spacing of 1 m are used.

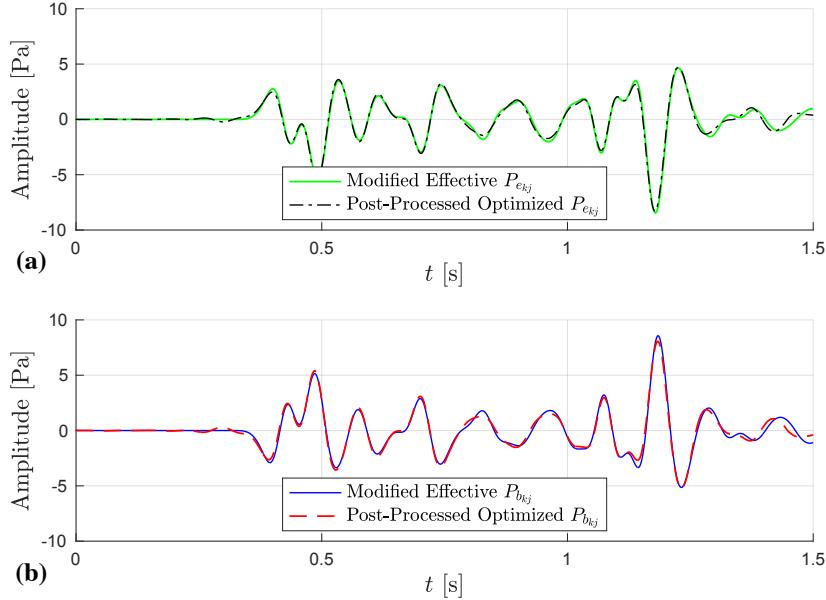


Figure 10: Example 1 - Time signals of modified effective and post-processed optimized forces at (a) $x = 9$ m and $y = 10$ m on Γ_e , and (b) $x = 10$ m and $y = 10$ m on Γ_b , when a Ricker of 10 Hz and a sensor spacing of 1 m are used.

248 5.2. Example 2: Studying the accuracy to reconstruct dynamic responses caused by body wave-dominant, oblique
 249 incoming waves

250 This example focuses on evaluating the performance of the proposed optimization algorithm for identifying dynamic
 251 responses in Ω_i caused by incoherently-propagating body-wave-dominant, oblique incoming waves. The same en-
 252 larged domain used in the previous example is used for generating the incident waves. We use a Ricker source in
 253 the bottom-left area of the enlarged domain, at $x = -40$ m and $y = 100$ m, in this example to obtain the synthetic
 254 measurement data. We note that the incident waves propagate as inclined waves in the reduced domain of interest.

255 In Fig. 11, we present the targeted and reconstructed dynamic motions in Ω_i for the 10 Hz Ricker source in the
 256 enlarged domain. As the spacing of sensors increases, the mismatch between the targeted and reconstructed dynamic
 257 responses in Ω_i grows, as shown in Fig. 11. Fig. 12 also shows the desired sensor spacing required to effectively
 258 estimate dynamic responses in Ω_i . A denser array of sensors is required to effectively estimate higher-frequency
 259 dynamic responses.

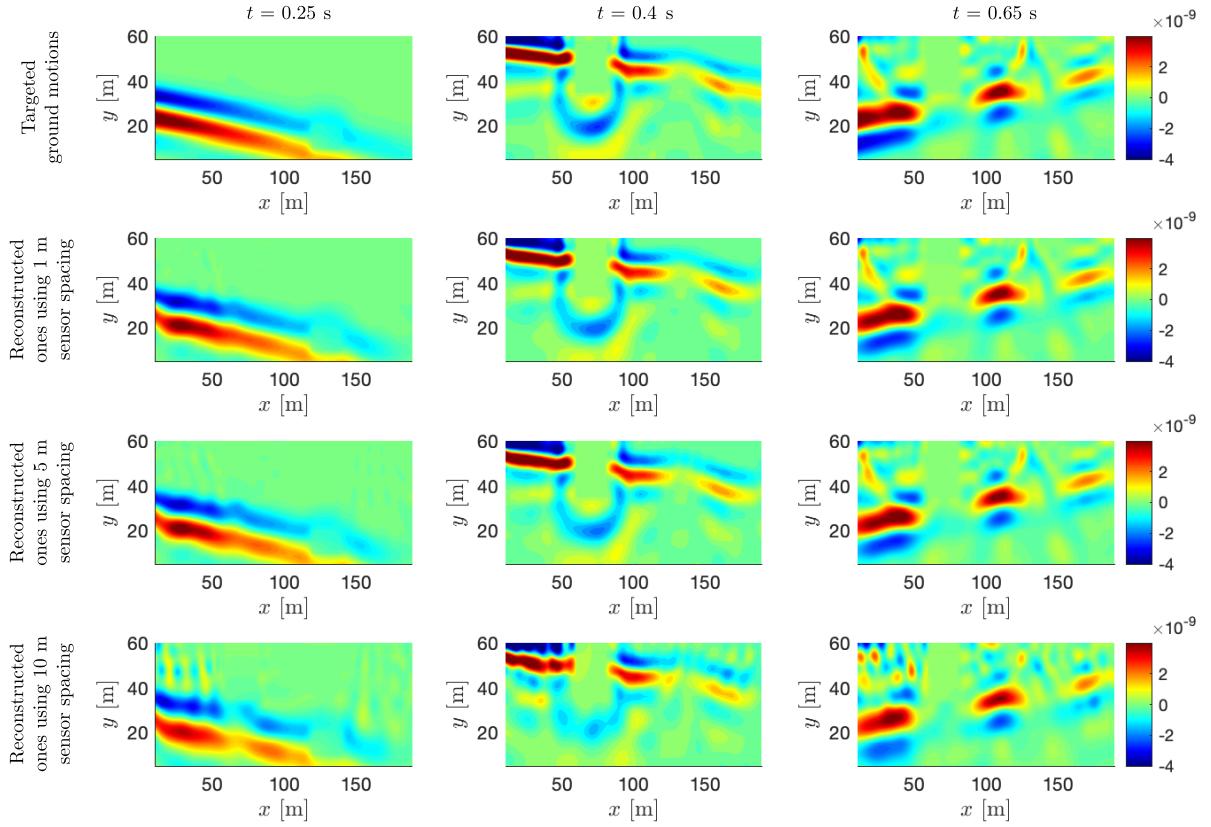


Figure 11: Example 2 - Targeted dynamic motions in Ω_i caused by incoming waves from a source in the bottom-left corner of the enlarged domain with a dominant frequency 10 Hz and reconstructed motions for different sensor spacing (1, 5, and 10 m).

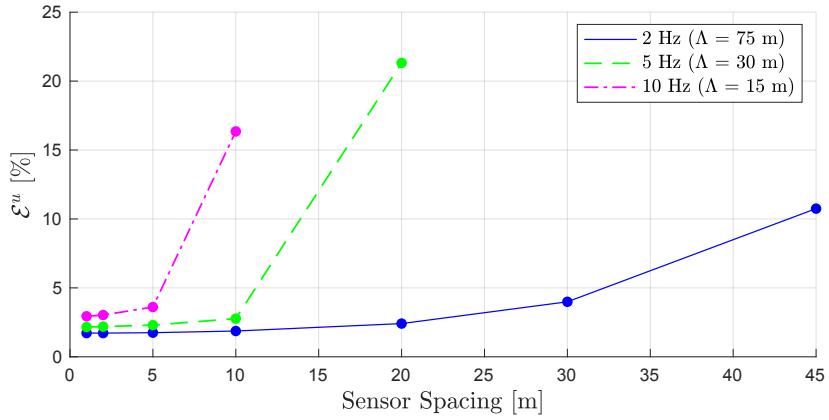


Figure 12: Example 2 - Relation of the reconstruction accuracy to the dominant frequency (or wavelength Λ) of a body wave-dominant incident wave and the sensor spacing.

Figs. 13 and 14 compare reference and optimized force vectors and their modified/post-processed versions. The error between the modified/post-processed vectors is $\mathcal{E} = 13.01\%$. The error reduces to 1.19% when considering the forces only at the bottom-center portion of Γ_b and Γ_e at $85 \leq x \leq 115$ m and y of 55 and 56 m, respectively (i.e., $131 \leq k \leq 161$ and $133 \leq k \leq 163$). Fig. 15 shows the agreement between modified effective control parameters and their post-processed optimized counterparts corresponding to the nodes on the bottom-center portion

265 of Γ_e and Γ_b at x of 100 m and y of 56 and 55 m, respectively.

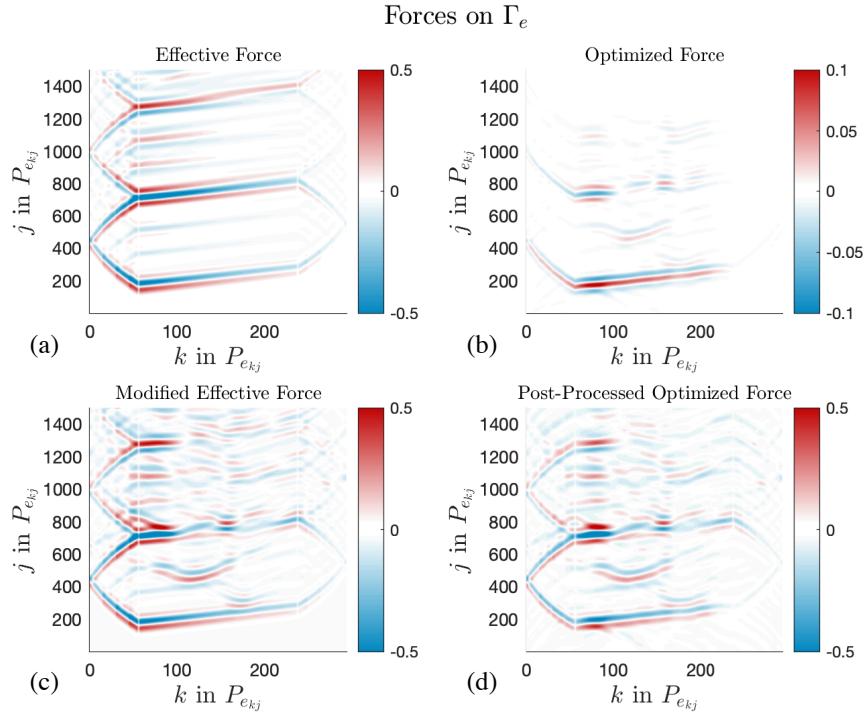


Figure 13: Example 2 - (a) Effective seismic force and (b) its final-optimized counterpart; and (c) modified effective seismic force and (d) its post-processed optimized counterpart on Γ_e when a Ricker of 10 Hz and a sensor spacing of 1 m are used.

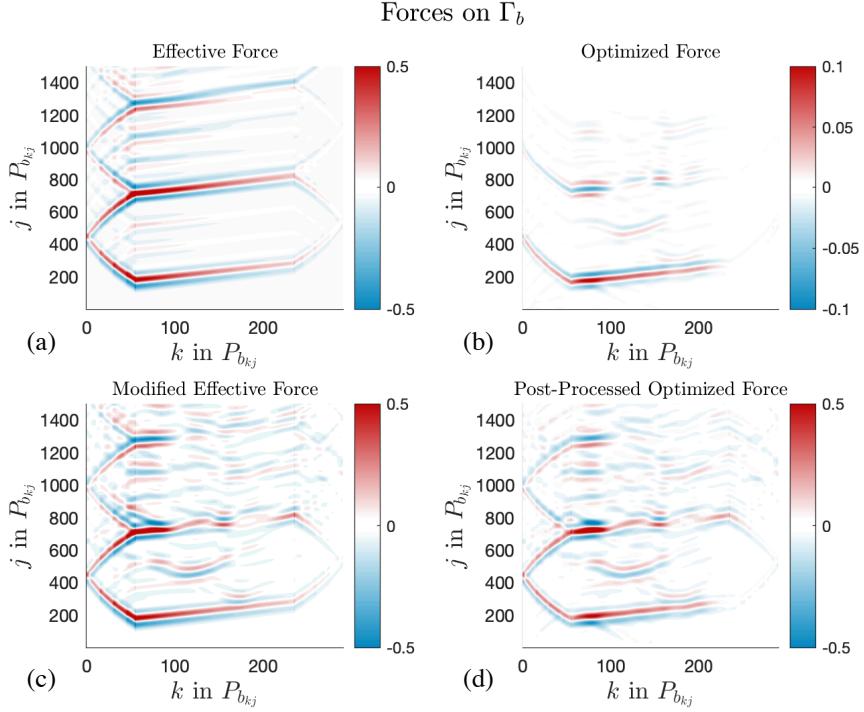


Figure 14: Example 2 - (a) Effective seismic force and (b) its final-optimized counterpart; and (c) modified effective seismic force and (d) its post-processed optimized counterpart on Γ_b when a Ricker of 10 Hz and a sensor spacing of 1 m are used.

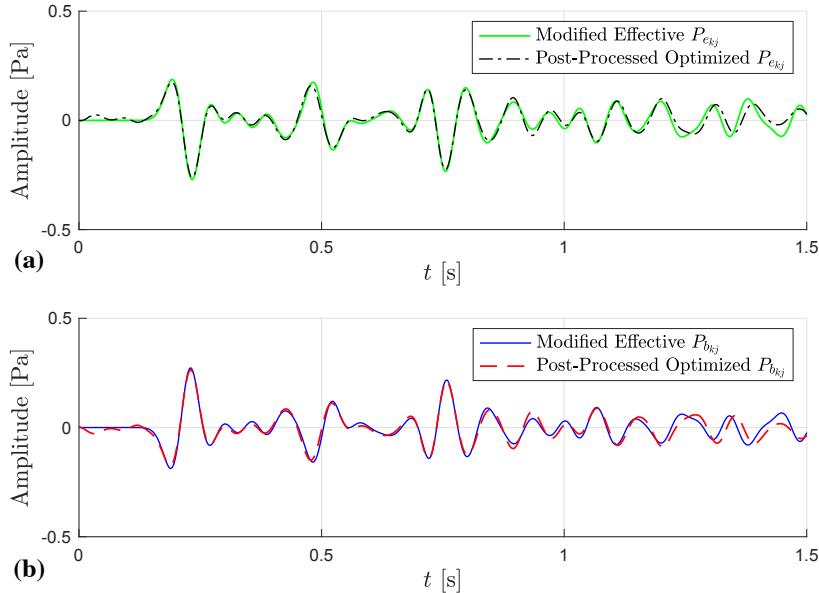


Figure 15: Example 2 - Time signals of modified effective and post-processed optimized forces at (a) $x = 100$ m and $y = 56$ m on Γ_e , and (b) $x = 100$ m and $y = 55$ m on Γ_b , when a Ricker of 10 Hz and a sensor spacing of 1 m are used.

266 5.3. Example 3: Examining the numerical performance to reconstruct ground motions induced by body wave-dominant,
 267 arc-shaped incident waves

268 Here, we consider a seismic source in the bottom-center part (at $x = 100$ m and $y = 100$ m) of the same enlarged
 269 domain. The resulted incident wave propagates as an arc-shaped wave in the reduced domain of interest.

270 Fig. 16 shows the targeted dynamic motions in Ω_i , which are initiated by the arc-shaped body wave-dominant
 271 incident wave in the enlarged domain, and their estimated counterparts in the case where incident waves are charac-
 272 terized by a 10 Hz Ricker source signal. As the sensor spacing increases, we notice a reduction in the effectiveness
 273 to estimate the dynamic responses in Ω_i . Thus, this example, again, serves as another example illustrating that our
 274 optimization simulator can successfully estimate body wave-dominant dynamic responses in Ω_i if the sensor spacing
 275 is small enough for a given frequency of an incident wave.

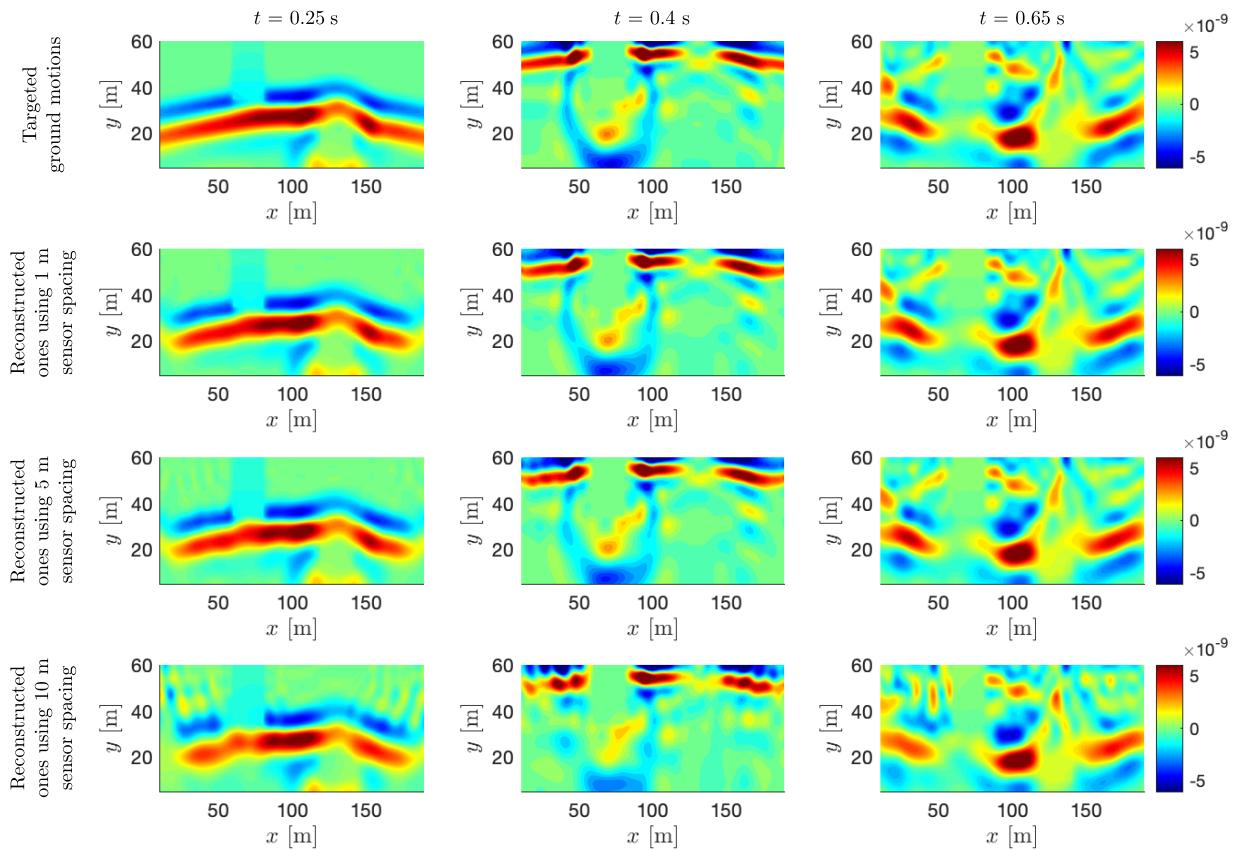


Figure 16: Example 3 - Targeted dynamic motions in Ω_i caused by arc-shaped incoming waves from a source in the bottom center of the enlarged domain with a dominant frequency 10 Hz and reconstructed motions for different sensor spacing (1, 5, and 10 m).

276 Fig. 17 shows that the frequency content of the incident wave and the sensor spacing are related to the performance
 277 of reconstructing wave responses in Ω_i as mentioned in previous examples.

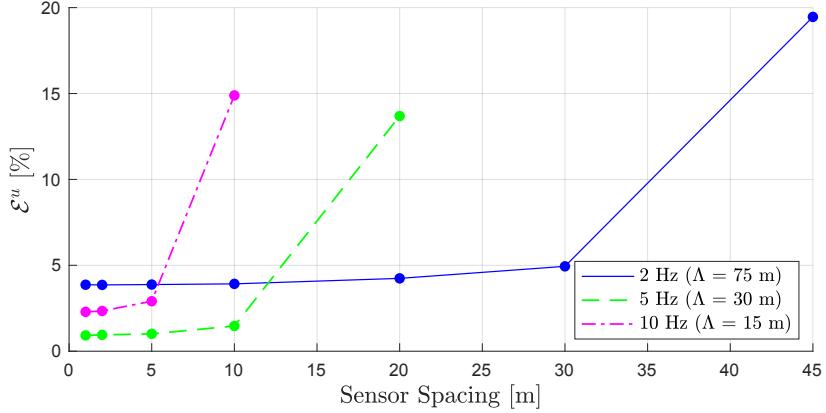


Figure 17: Example 3 - Relation of the reconstruction accuracy to the dominant frequency (or wavelength Λ) of a body wave-dominant arc-shaped incident waves and the sensor spacing.

278 The optimized force vector is compared with its reference value in Figs. 18 and 19. We observed that the post-
 279 processed optimized force vector exhibits a small error of $\mathcal{E} = 8.23\%$ when it is compared with the modified effective
 280 force. The error at the bottom-center portion of Γ_b and Γ_e at $85 \text{ m} \leq x \leq 115 \text{ m}$ and y of 55 and 56 m, respectively (i.e.,
 281 $131 \leq k \text{ in } P_{b_{kj}} \leq 161$ and $133 \leq k \text{ in } P_{e_{kj}} \leq 163$) decreases to 1.43%. Furthermore, Fig. 20 highlights the excellent
 282 agreement between modified effective control parameters and their post-processed optimized counterparts at nodes on
 283 the bottom-center portion of Γ_e and Γ_b at x of 100 m and y of 56 and 55 m, respectively.

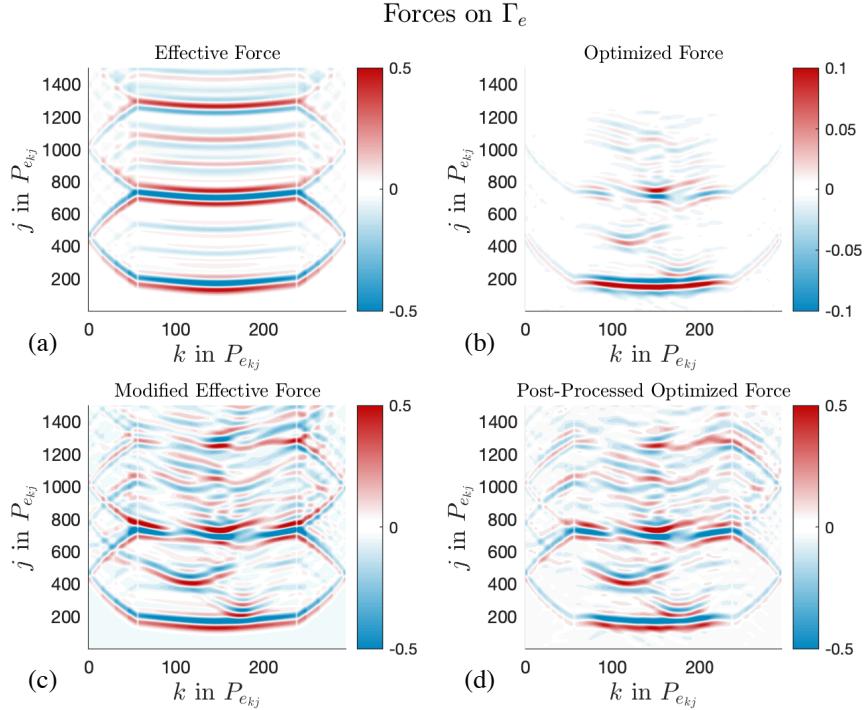


Figure 18: Example 3 - (a) Effective seismic force and (b) its final-optimized counterpart; and (c) modified effective seismic force and (d) its post-processed optimized counterpart on Γ_e when a Ricker of 10 Hz and a sensor spacing of 1 m are used.

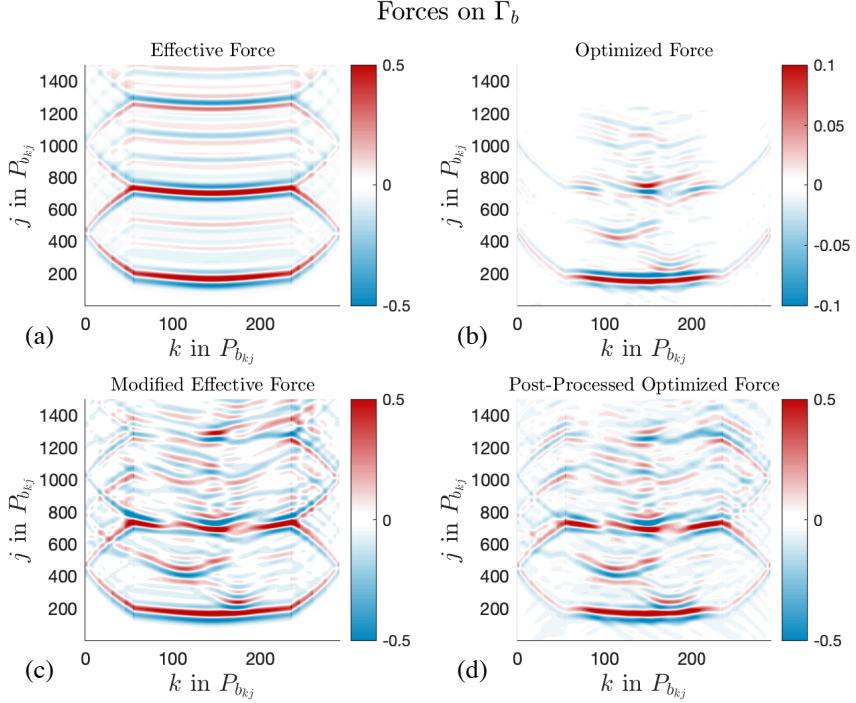


Figure 19: Example 3 - (a) Effective seismic force and (b) its final-optimized counterpart; and (c) modified effective seismic force and (d) its post-processed optimized counterpart on Γ_b when a Ricker of 10 Hz and a sensor spacing of 1 m are used.

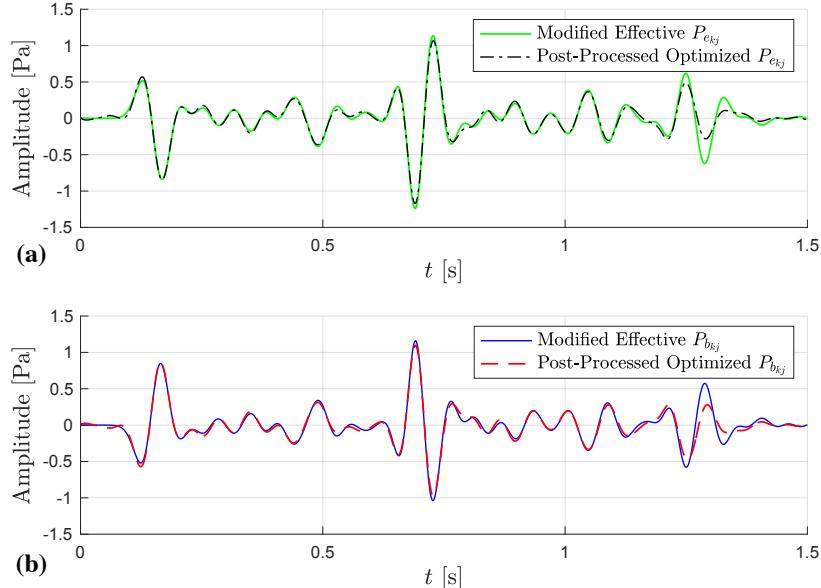


Figure 20: Example 3 - Time signals of modified effective and post-processed optimized forces at (a) $x = 100$ m and $y = 56$ m on Γ_e , and (b) $x = 100$ m and $y = 55$ m on Γ_b , when a Ricker of 10 Hz and a sensor spacing of 1 m are used.

284 5.4. Example 4: Assessing the performance to reconstruct ground motions with respect to the incident angle of an
 285 incoming wave

286 The originally-presented incident SH waves are not plane waves with specific directions. While our method is
 287 generally applicable for arbitrary types of an incident wave, our previously-shown Examples 1 to 3 considered three

288 different point sources at different locations for demonstrations in each example: one at near surface and two at far
 289 field. Each point source radiates in all directions and contains all angles in the wavenumber space. Thus, Examples 1
 290 to 3 generally accommodate a broad range of angles of incident waves.

291 The purpose of this example 4 is to evaluate the performance of the presented method on reconstructing ground
 292 motions in Ω_i with respect to the predominant incident angle of an incoming wave entering Ω_i . To this end, we
 293 consider a line array of seismic wave sources in the bottom-left part of an enlarged domain so that we mimic a
 294 strike slip on a fault line using line body force loading in the anti-plane direction. Each wave source of this line
 295 body force loading is characterized by a 10 Hz Ricker source signal. The line loading generates an inclined plane
 296 incident wave in the enlarged domain with a specific predominant angle of incidence if the material of the enlarged
 297 domain is homogeneous. Thus, this example considers a homogeneous enlarged domain with the two inclusions. The
 298 wave speeds V_{s1} , V_{s2} , V_{s3} , V_{s4} , V_{s7} , and V_{s8} in the previous Examples 1 to 3 are now all reset to 250 m/s (i.e., the
 299 homogeneous background material's wave speed) while V_{s5} and V_{s6} —800 and 1000 m/s, respectively—remain the
 300 same (i.e., the two inclusions' wave speeds).

301 Fig. 21(a) shows an exemplary strike-slip-like line body force loading in the enlarged domain to create an inci-
 302 dent wave of its predominant incident angle of 45°. Fig. 21(b) shows the inclined incident waves entering Ω_i with
 303 three different predominant incident angles θ (i.e., 26.57°, 45°, and 63.43°, respectively). We examine the presented
 304 method's performance to reconstruct ground motions induced by each of these three different inclined plane waves
 305 using a sensor spacing of 1 m.

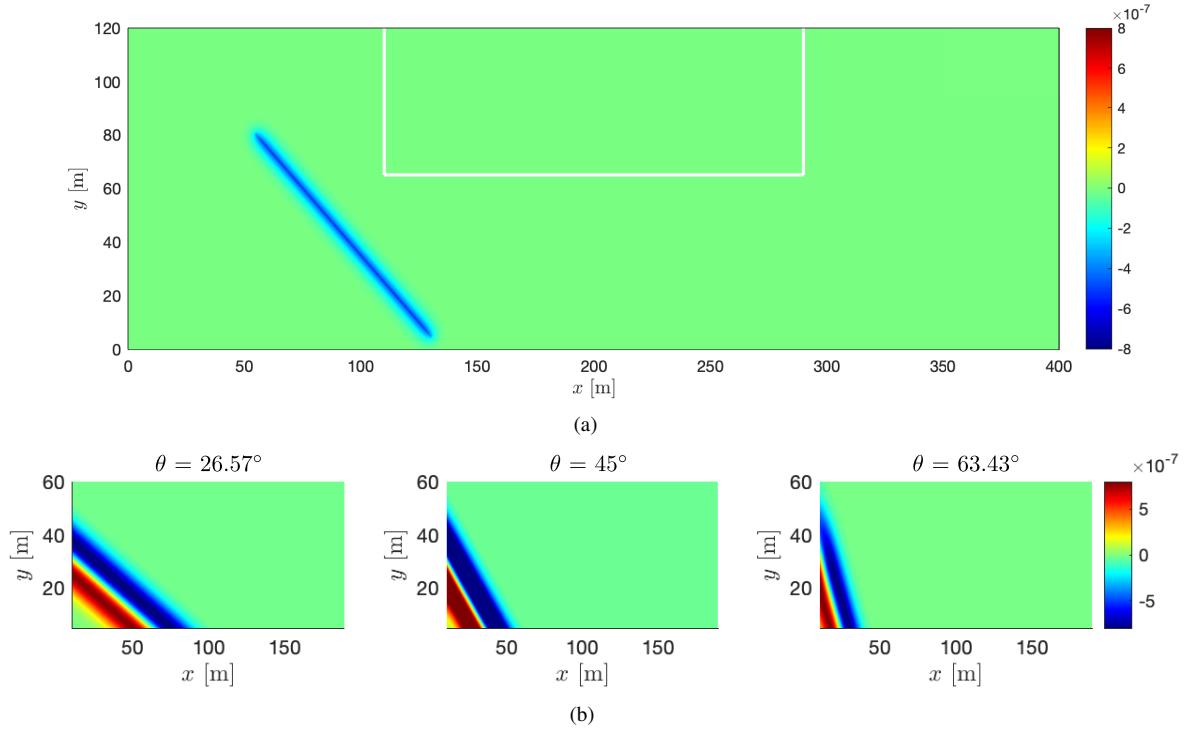


Figure 21: Example 4 - (a) An exemplary strike-slip-like line body force loading in the enlarged homogeneous background domain; (b) targeted incident waves with three different angles of incidence—26.57°, 45°, and 63.43°—entering the reduced domain.

306 Table 1 shows the final values of errors for each case in Example 4 and those in Example 1-3 that employed a
 307 Ricker of 10 Hz and a sensor spacing of 1 m. We note that the values of errors (i.e., \mathcal{E}^u and \mathcal{E}) in Example 4 are
 308 of the same order of magnitude as those in Examples 1-3, indicating that the presented method is omnidirectionally
 309 applicable in terms of the incident angle of an incoming wave.

Table 1: Comparison of \mathcal{E}^u and \mathcal{E} obtained in Examples 1-4 when a Ricker of 10 Hz and a sensor spacing of 1 m are used.

Cases	\mathcal{E}^u	\mathcal{E}
Example 1	1.08%	15.21%
Example 2	2.94%	13.01%
Example 3	2.29%	8.23%
Example 4: $\theta = 26.57^\circ$	4.97%	15.80%
Example 4: $\theta = 45^\circ$	3.70%	7.35%
Example 4: $\theta = 63.43^\circ$	5.98%	16.14%

310 Fig. 22 shows the agreement between targeted ground motions for three different predominant angles of incidence
 311 in Ω_i at t of 0.53 s and their reconstructed counterparts.

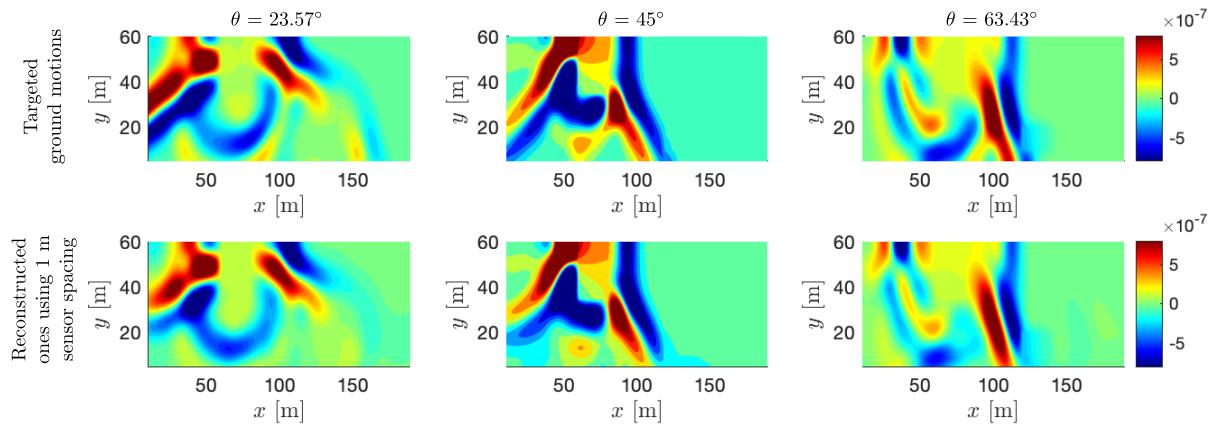


Figure 22: Example 4 - Targeted wave responses in Ω_i propagating in three different predominant angles and their reconstructed counterparts at $t = 0.53$ s.

312 Fig. 23 compares reference and optimized force vectors and their modified/post-processed counterparts on Γ_b for
 313 the case in which the incident angle of an incoming wave is 45° . Fig. 23 shows excellent agreement between the
 314 modified effective seismic force and its post-processed optimized counterpart. In addition, Fig. 24 reveals agreement
 315 between modified effective and post-processed optimized forces corresponding to the nodes on the bottom-left portion
 316 of Γ_e and Γ_b at x of 55 m and y of 56 m and 55 m, respectively, for three predominant incident angles of incoming
 317 waves.

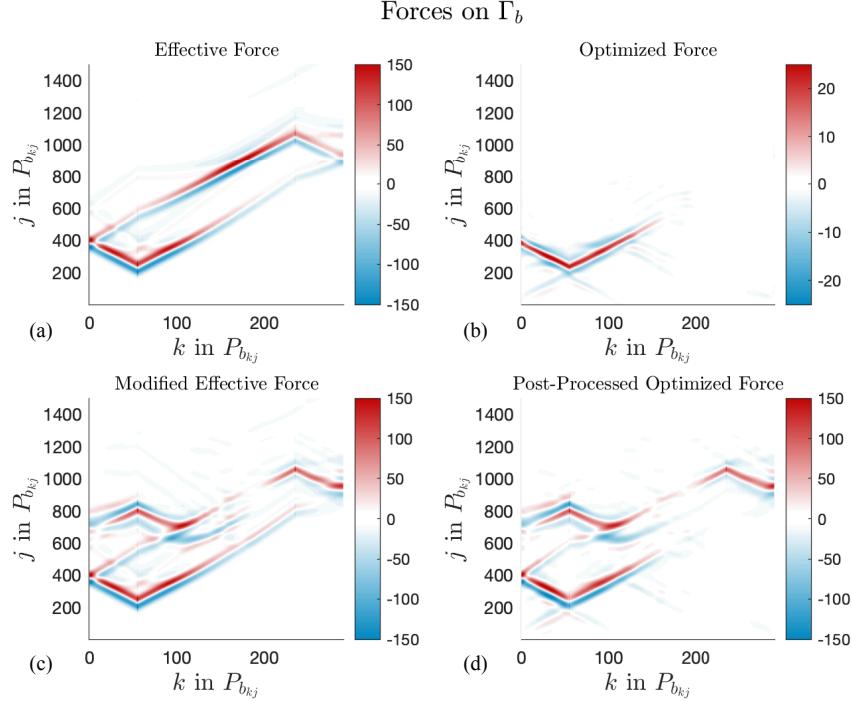


Figure 23: Example 4 - (a) Targeted effective seismic force and (b) its final-optimized counterpart; and (c) modified effective seismic force and (d) its post-processed optimized counterpart on Γ_b when the incident angle of the incoming wave is 45° .

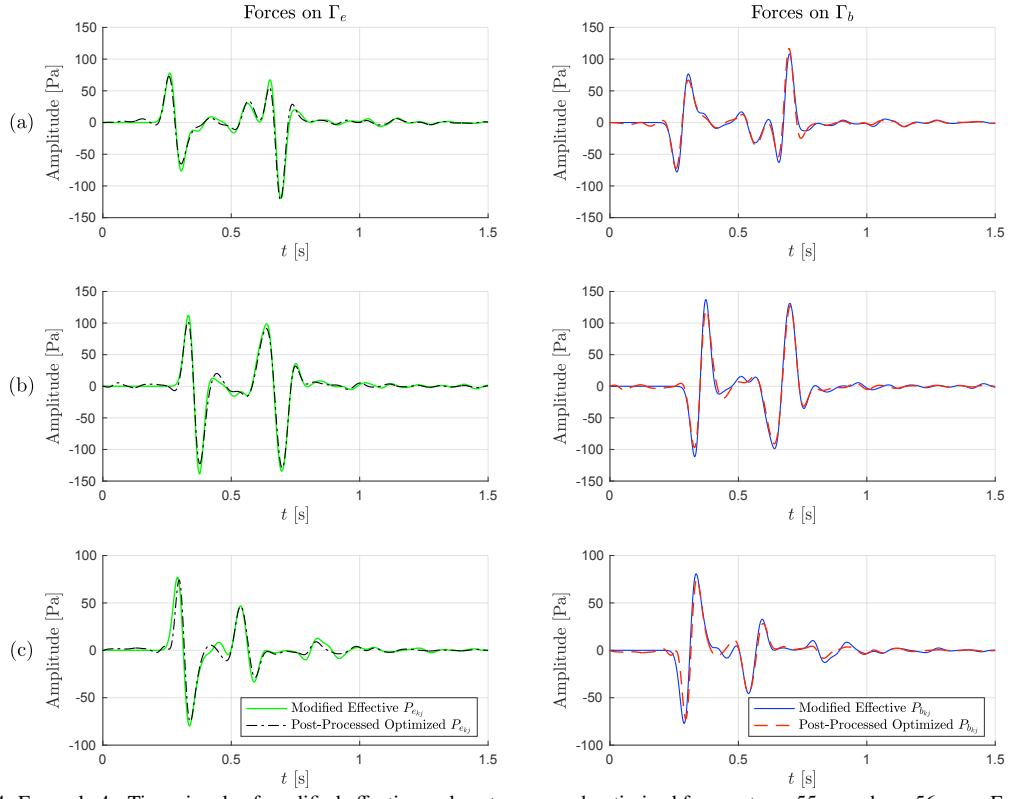


Figure 24: Example 4 - Time signals of modified effective and post-processed optimized forces at $x = 55$ m and $y = 56$ m on Γ_e and $x = 55$ m and $y = 55$ m on Γ_b when the predominant incident angle of an incoming wave is (a) 23.57° , (b) 45° , and (c) 63.43° .

318 5.5. Time duration effect

319 In Figs. 10, 15, and 20, the disagreement between the $\hat{\mathbf{F}}_{\text{mod}}^{\text{eff}}$ and $\hat{\mathbf{F}}_{\text{pp}}^{\text{opt}}$ is more noticeable at the later time steps (e.g.,
320 1.2 to 1.5 s). Such a larger error at the later time is due to the fact that we cannot identify the part of $\hat{\mathbf{F}}_{\text{mod}}^{\text{eff}}$ that is
321 attributed to the incident waves in the later time, which do not arrive at the sensors before the end of the observation
322 duration.

323 Thus, the issue can be resolved simply by considering a longer observation time. We rerun the examples 1-3 with
324 a longer duration of 3 seconds with a Ricker of 10 Hz and the sensor spacing of 1 m. Fig. 25 shows the time signals of
325 modified effective and post-processed optimized forces on Γ_e and Γ_b at the same nodal locations discussed in Fig. 10,
326 15 and 20. We observe a very good agreement at 1.2 to 1.5 s.

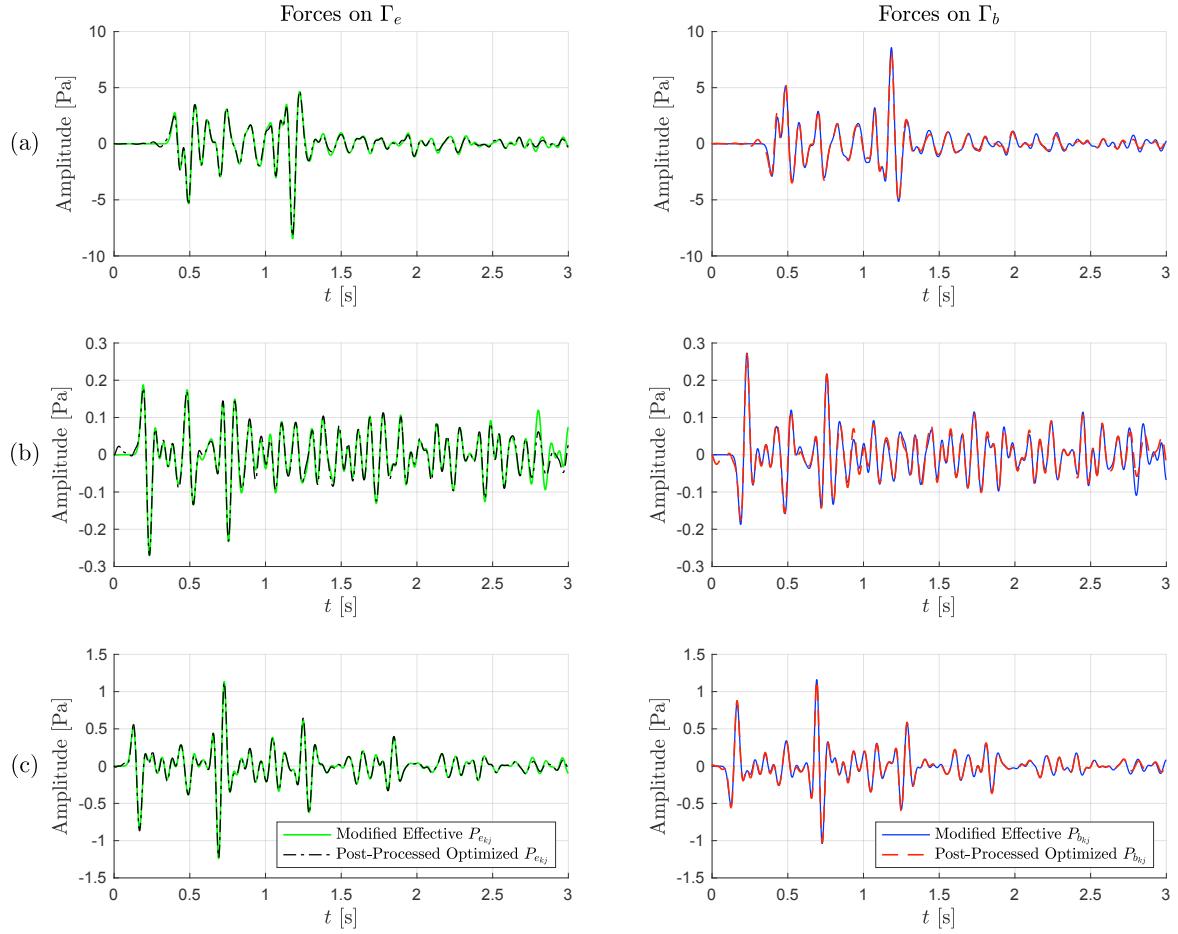


Figure 25: Time signals of modified effective and post-processed optimized forces on Γ_e and Γ_b when a Ricker of 10 Hz, a sensor spacing of 1 m, and a long observation duration (i.e., 3 seconds) are used in (a) Example 1, (b) Example 2, and (c) Example 3. The signals correspond to the same nodal locations discussed in Fig. 10, 15, and 20.

327 6. Conclusion

328 In this paper, we presented a new numerical approach for optimizing dynamic forces at virtual interfaces to reconstruct
329 the shear wave ground motions induced by a seismic source outside of the truncated domain. An enlarged domain is
330 utilized in the forward wave solver to model arbitrarily-incoherent incident waves that propagate into the truncated

331 domain and to generate targeted measurement data at sensors. The optimization problem is tackled using a gradient-
332 based minimization, where the DTO method is implemented to solve the adjoint problem and calculate the gradient
333 of the objective functional.

334 The performance of the presented optimizer was numerically tested for different frequencies of the incident waves,
335 sensor spacings on the surface, and the angles of incident waves. The numerical examples present the following in-
336 sights. First, the targeted wave responses obtained from an enlarged domain can be reconstructed within the interior
337 domain by using the optimized forces from the presented method. Second, the optimized seismic force vector may dif-
338 fer from its reference standard DRM counterpart while being a valid solution among other possible solutions allowed
339 by the DRM and alternative decompositions of total field into incident and scattered fields. Third, we introduce a post-
340 processing technique to properly compare the optimized force vector with its reference value. By post-processing the
341 optimized body force at virtual interfaces, we can identify “modified” targeted effective seismic forces at the interfaces
342 such that scattered wave in the exterior domain is silenced. Fourth, the presented inversion method can reconstruct the
343 dynamic motions in a truncated domain impinged by typical seismic waves of a continuous frequency spectrum. Fifth,
344 the presented method is omnidirectionally applicable in terms of the incident angle of an incoming wave. Lastly, we
345 study the desired spacing of sensors to accurately reconstruct the ground motions, which depends on the dominant
346 frequency of the incident waves.

347 The proposed method provides an efficient method to study the effect of a seismic event on a soil-structure system
348 such as foundations and underground structures. As the merit of the presented inversion method, it necessitates the
349 information of the wave speeds and dimensions of only a reduced domain. Namely, the geophysical profile of an
350 enlarged domain or a seismic source profile outside a reduced domain do not need to be informed to the presented
351 inversion simulator. Thus, the computational cost of the method is quite compact even though it leads to the high-
352 fidelity reconstruction of wave response in the reduced domain. In addition, even though the dispersive properties
353 (natural frequency, wave velocities, etc.) due to material heterogeneity or geometry of layering affect the wave motion,
354 the presented method is effective, for any given material heterogeneity and geometry of layering of the domain, in
355 inverting for DRM force using measurement on the surface. Namely, the presented method can be used for any depth
356 of layers in a reduced domain, which can also be unbounded homogeneous soil.

357 A three-dimensional extension of this study is straightforward and will provide a computationally efficient frame-
358 work in earthquake engineering by selectively modeling a near-surface domain without including the hypocenter. The
359 proposed method could also be extended by using a more robust WABC, such as the Perfectly Matched Layer (PML)
360 [46, 47], instead of the presented Lysmer-Kuhlemeyer WABC [34], to prevent spurious reflection at the truncated
361 boundary, which may improve the performance of the inverse process.

362 **Funding**

363 This material is based upon work supported by the National Science Foundation under Awards CMMI-2044887 and
364 CMMI-2053694. Any opinions, findings, and conclusions or recommendations expressed in this material are those of
365 the authors and do not necessarily reflect the views of the National Science Foundation. The authors are also grateful
366 for the support by the Faculty Research and Creative Endeavors (FRCE) Research Grant-48058 at Central Michigan
367 University.

368 **Availability of data and material**

369 All data and models of the presented numerical results—e.g., MATLAB datasets (.mat format)—are available by
370 request to the corresponding author.

371 **Code Availability**

372 MATLAB code (.m format) of the presented inverse modeling is available available by request to the corresponding
373 author.

Symbol	Definition
x, y, z	Horizontal, vertical, and anti-plane directions, respectively
t, T	Time and final time of \mathbf{J}
\mathbf{J}	Duration of the observation
$u(x, y, t)$	Displacement field of dynamic motions polarized in the z -plane
$G(x, y), V_s(x, y)$	Shear modulus and shear wave speed
$\rho(x, y)$	Mass density
Ω	Domain
Ω_i, Ω_e	Interior and exterior domain, respectively, inside and outside virtual interface
$\Gamma_{\text{top}}, \Gamma_{\text{bottom}}$	Top and bottom boundaries of Ω
$\Gamma_{\text{right}}, \Gamma_{\text{left}}$	Right and left boundaries of Ω
$\mathbf{u}(t)$	Displacement solution vector at t
$\mathbf{M}, \mathbf{K}, \mathbf{C}, \mathbf{F}$	Global mass, stiffness, and damping matrices, and global force vector
Γ_b	Inner virtual interface boundary; Inner boundary of a DRM layer
Γ_e	Outer virtual interface boundary; Outer boundary of a DRM layer
\mathbf{F}^{eff}	Effective force vector
$\mathbf{M}_{be}^{\Omega_e}, \mathbf{M}_{eb}^{\Omega_e}$	Mass matrices that correspond to the nodes only in the DRM layer
$\mathbf{K}_{be}^{\Omega_e}, \mathbf{K}_{eb}^{\Omega_e}$	Stiffness matrices that correspond to the nodes only in the DRM layer
$\mathbf{u}^0, \ddot{\mathbf{u}}^0$	Free-field displacements and accelerations, respectively
\mathbf{Q}	Matrix comprised of the \mathbf{M} , \mathbf{K} , and \mathbf{C} matrices, indicating the Newmark time integration
$\hat{\mathbf{u}}$	Discretization, in time and space, of $u(x, y, t)$ for all t_j
$\hat{\mathbf{F}}$	Force vector for all t_j
N	Final time step
$\hat{\mathbf{F}}^{\text{opt}}$	Optimized seismic force vector
$\gamma_{b_k}, \gamma_{e_k}$	The k -th node on Γ_b and Γ_e , respectively
k	Numbering of the node γ_{b_k} and γ_{e_k} ; k -th component in $P_{b_{kj}}$ and $P_{e_{kj}}$
j	The j -th component in $P_{b_{kj}}$ and $P_{e_{kj}}$; the j -th time step;
$P_{b_{kj}}, P_{e_{kj}}$	Components of $\hat{\mathbf{F}}^{\text{opt}}$ corresponding to γ_{b_k} and γ_{e_k} , respectively, and t_j
ξ	A set of control parameters (i.e., $P_{b_{kj}}$ and $P_{e_{kj}}$)
$\hat{\mathcal{L}}$	Discrete objective functional
$u_m(x, y, t)$	Dynamic response induced by targeted incident waves and measured by a sensor
$\hat{\mathbf{u}}_m$	Space-time discretization of $u_m(x, y, t)$ for all t_j
\mathbf{B}	Square matrix that is zero except on the diagonals corresponding to sensors
$\hat{\mathcal{A}}$	Discrete Lagrangian functional
$\hat{\lambda}$	Lagrange multiplier vector for all the nodes and all t_j
\mathbf{d}, h	Search direction vector and scalar-value step size
\mathcal{E}^u	Error norm between dynamic motions in Ω_i induced by incident waves and its $\hat{\mathbf{F}}^{\text{opt}}$ counterpart
\mathcal{E}	Error norm between optimized force on a DRM layer and its targeted counterpart
$f(x, y, t)$	Ricker wavelet signal
f_c	Central frequency of the Ricker signal
$\mathbf{u}^t, \mathbf{u}^s$	Total and scattered wave field, respectively
\mathbf{F}^{eff}	Modified effective force vector
$\hat{\mathbf{F}}_{\text{mod}}^{\text{opt}}$	Post-processed optimized force vector
$\mathbf{u}^0_{\text{mod}}, \ddot{\mathbf{u}}^0_{\text{mod}}$	Modified free-field displacements and accelerations, respectively
$\hat{\mathbf{u}}_{\text{pp}}$	Post-processed $\hat{\mathbf{u}}$
\mathbf{D}	Square matrix that is zero except on the diagonals corresponding to nodes except Ω_e

376 **Appendix A. Brief review on DRM**

377 Per Bielak's DRM formulation [18, 19], we subdivide a reduced domain of consideration into the following three parts:
 378 an exterior domain Ω_e , an interface Γ_b , and an interior domain Ω_i , as shown in Fig. 1. A DRM layer is delineated
 379 by the nodes on Γ_b and their neighboring exterior counterparts, on a fictitious boundary Γ_e . Per the DRM theory, an
 380 effective seismic force vector \mathbf{F}^{eff} is obtained from free-field dynamic responses and computed using (A.1). We, in
 381 turn, apply \mathbf{F}^{eff} on all the nodes on the DRM layer (i.e., Γ_b and Γ_e if a single, four node-element DRM layer is used
 382 as in the presented paper) so that we can effectively model incident seismic waves impinging a reduced domain as an
 383 equivalent dynamic force vector in the position of $\mathbf{F}(t)$ in (7). Namely, $\mathbf{F}(t)$ in (7) is replaced by \mathbf{F}^{eff} in the following:

$$\mathbf{F}^{\text{eff}} = \begin{bmatrix} \mathbf{P}_i^{\text{eff}} \\ \mathbf{P}_b^{\text{eff}} \\ \mathbf{P}_e^{\text{eff}} \end{bmatrix} = \begin{bmatrix} 0 \\ -\mathbf{M}_{be}^{\Omega_e} \ddot{\mathbf{u}}_e^0 - \mathbf{K}_{be}^{\Omega_e} \mathbf{u}_e^0 \\ \mathbf{M}_{eb}^{\Omega_e} \ddot{\mathbf{u}}_b^0 + \mathbf{K}_{eb}^{\Omega_e} \mathbf{u}_b^0 \end{bmatrix}, \quad (\text{A.1})$$

384 where the subscripts i , b , and e denote the nodes in Ω_i , Γ_b , and Ω_e ; $\mathbf{M}_{be}^{\Omega_e}$, $\mathbf{M}_{eb}^{\Omega_e}$, $\mathbf{K}_{be}^{\Omega_e}$, and $\mathbf{K}_{eb}^{\Omega_e}$ are the mass and stiffness
 385 matrices that correspond to the nodes only in the DRM layer: these matrices vanish everywhere except the single layer
 386 of finite elements (i.e., DRM layer). For instance, $\mathbf{M}_{be}^{\Omega_e}$ is the partition of \mathbf{M}^{Ω_e} corresponding to the row indices of \mathbf{u}_b
 387 and column indices of \mathbf{u}_e . Only the free-field wave responses, \mathbf{u}^0 and $\ddot{\mathbf{u}}^0$, at nodes of the DRM layer are needed to
 388 calculate \mathbf{F}^{eff} . In the presented paper, an effective nodal force vector is obtained by using free-field seismic motions
 389 (\mathbf{u}^0 and $\ddot{\mathbf{u}}^0$) that are obtained from the forward solver using the enlarged domain. We note that, per the DRM theory,
 390 we do not consider the wave speeds of local features, such as inclusions of V_{s5} and V_{s6} in the presented numerical
 391 examples, in order to obtain the free-field ground motions.

392 **Appendix B. Modified effective force vector**

393 The modified effective force vector $\mathbf{F}_{\text{mod}}^{\text{eff}}$ is computed as:

$$\mathbf{F}_{\text{mod}}^{\text{eff}} = \begin{bmatrix} \mathbf{P}_{\text{mod},i}^{\text{eff}} \\ \mathbf{P}_{\text{mod},b}^{\text{eff}} \\ \mathbf{P}_{\text{mod},e}^{\text{eff}} \end{bmatrix} = \begin{bmatrix} 0 \\ -\mathbf{M}_{be}^{\Omega_e} \ddot{\mathbf{u}}_e^{0_{\text{mod}}} - \mathbf{K}_{be}^{\Omega_e} \mathbf{u}_e^{0_{\text{mod}}} \\ \mathbf{M}_{eb}^{\Omega_e} \ddot{\mathbf{u}}_b^{0_{\text{mod}}} + \mathbf{K}_{eb}^{\Omega_e} \mathbf{u}_b^{0_{\text{mod}}} \end{bmatrix}, \quad (\text{B.1})$$

394 where $\mathbf{u}^{0_{\text{mod}}}$ and $\ddot{\mathbf{u}}^{0_{\text{mod}}}$ are the modified free-field displacements and accelerations, respectively. Namely, the wave
 395 speeds of local features in the enlarged domain (i.e., V_{s5} and V_{s6} in the numerical examples) are considered in the
 396 forward wave solver when we obtain the modified free-field wave motions. Therefore, solving (8) using (B.1) leads
 397 to the wave response in the exterior domain to vanish, while solving (8) using (A.1) leads that not to vanish but be equal
 398 to the scattered field from local features.

399 **References**

[1] L. Mejia, E. Dawson, Earthquake deconvolution for FLAC, FLAC and Numerical (2006).

[2] M. K. Poul, A. Zerva, Efficient time-domain deconvolution of seismic ground motions using the equivalent-linear method for soil-structure interaction analyses, *Soil Dynamics and Earthquake Engineering* 112 (2018) 138 – 151. URL: <http://www.sciencedirect.com/science/article/pii/S0267726117305742>. doi:<https://doi.org/10.1016/j.soildyn.2018.04.032>.

[3] M. K. Poul, A. Zerva, Nonlinear dynamic response of concrete gravity dams considering the deconvolution process, *Soil Dynamics and Earthquake Engineering* 109 (2018) 324 – 338. URL: <http://www.sciencedirect.com/science/article/pii/S0267726117308825>. doi:<https://doi.org/10.1016/j.soildyn.2018.03.025>.

[4] J. A. A. Mena, B. Jeremic, 6C vs 1C Earthquake Soil Structure Interaction (ESSI) for Nuclear Power Plants (NPPs), 2015. URL: http://sokocalo.engr.ucdavis.edu/_jeremic/6D_vs_1D_ESSI_for_NPPs/.

[5] V. Akcelik, G. Biros, O. Ghattas, Parallel multiscale Gauss-Newton-Krylov methods for inverse wave propagation, in: *Supercomputing, ACM/IEEE 2002 Conference*, IEEE, 2002, pp. 41–41.

[6] A. Askan, V. Akcelik, J. Bielak, O. Ghattas, Full waveform inversion for seismic velocity and anelastic losses in heterogeneous structures, *Bulletin of the Seismological Society of America* 97 (2007) 1990–2008. doi:[10.1785/0120070079](https://doi.org/10.1785/0120070079).

[7] A. Askan, J. Bielak, Full anelastic waveform tomography including model uncertainty, *Bulletin of the Seismological Society of America* 98 (2008) 2975–2989. doi:[10.1785/0120080138](https://doi.org/10.1785/0120080138).

[8] A. Askan, V. Akcelik, J. Bielak, O. Ghattas, Parameter sensitivity analysis of a nonlinear least-squares optimization-based anelastic full waveform inversion method, *Comptes Rendus Mécanique* 338 (2010) 364 – 376. doi:<https://doi.org/10.1016/j.crme.2010.07.002>, inverse problems.

[9] C. Jeong, S.-W. Na, L. F. Kallivokas, Near-surface localization and shape identification of a scatterer embedded in a halfplane using scalar waves, *Journal of Computational Acoustics* 17 (2009) 277–308.

[10] J. W. Kang, L. F. Kallivokas, The inverse medium problem in 1D PML-truncated heterogeneous semi-infinite domains, *Inverse Problems in Science and Engineering* 18 (2010) 759–786. doi:[10.1080/17415977.2010.492510](https://doi.org/10.1080/17415977.2010.492510).

[11] K. T. Tran, M. McVay, Site characterization using Gauss-Newton inversion of 2-D full seismic waveform in the time domain, *Soil Dynamics and Earthquake Engineering* 43 (2012) 16–24. URL: <https://linkinghub.elsevier.com/retrieve/pii/S0267726112001613>. doi:[10.1016/j.soildyn.2012.07.004](https://doi.org/10.1016/j.soildyn.2012.07.004).

[12] A. Fathi, L. F. Kallivokas, B. Poursartip, Full-waveform inversion in three-dimensional PML-truncated elastic media, *Computer Methods in Applied Mechanics and Engineering* 296 (2015) 39–72.

[13] A. Fathi, B. Poursartip, K. H. Stokoe II, L. F. Kallivokas, Three-dimensional P-and S-wave velocity profiling of geotechnical sites using full-waveform inversion driven by field data, *Soil Dynamics and Earthquake Engineering* 87 (2016) 63–81. URL: <http://www.sciencedirect.com/science/article/pii/S0267726116300148>.

[14] A. Pakravan, J. W. Kang, C. M. Newtson, A Gauss-Newton full-waveform inversion for material profile reconstruction in viscoelastic semi-infinite solid media, *Inverse Problems in Science and Engineering* 24 (2016) 393–421. URL: <http://dx.doi.org/10.1080/17415977.2015.1046861>. doi:[10.1080/17415977.2015.1046861](https://doi.org/10.1080/17415977.2015.1046861).

[15] C. Jeong, E. E. Seylabi, Seismic input motion identification in a heterogeneous halfspace, *Journal of Engineering Mechanics* 144 (2018) 04018070. doi:[10.1061/\(ASCE\)EM.1943-7889.0001495](https://doi.org/10.1061/(ASCE)EM.1943-7889.0001495).

[16] B. P. Guidio, C. Jeong, Full-waveform inversion of incoherent dynamic traction in a bounded 2D domain of scalar wave motions, *Journal of Engineering Mechanics* 147 (2021) 04021010. doi:[10.1061/\(ASCE\)EM.1943-7889.0001909](https://doi.org/10.1061/(ASCE)EM.1943-7889.0001909).

[17] B. Guidio, B. Jeremić, L. Guidio, C. Jeong, Passive seismic inversion of SH wave input motions in a truncated domain, *Soil Dynamics and Earthquake Engineering* 158 (2022) 107263. doi:<https://doi.org/10.1016/j.soildyn.2022.107263>.

[18] J. Bielak, K. Loukakis, Y. Hisada, C. Yoshimura, Domain reduction method for three-dimensional earthquake modeling in localized regions, Part I: Theory, *Bulletin of the Seismological Society of America* 93 (2003) 817–824.

[19] C. Yoshimura, J. Bielak, Y. Hisada, A. Fernández, Domain reduction method for three-dimensional earthquake modeling in localized regions, part II: Verification and applications, *Bulletin of the Seismological Society of America* 93 (2003) 825–841.

[20] B. Jeremić, G. Jie, M. Preisig, N. Tafazzoli, Time domain simulation of soil–foundation–structure interaction in non-uniform soils, *Earthquake Engineering & Structural Dynamics* 38 (2009) 699–718.

[21] B. Jeremić, N. Tafazzoli, T. Ancheta, N. Orbović, A. Blahoianu, Seismic behavior of NPP structures subjected to realistic 3D, inclined seismic motions, in variable layered soil/rock, on surface or embedded foundations, *Nuclear Engineering and Design* 265 (2013) 85–94.

[22] Y. Isbiliroglu, R. Taborda, J. Bielak, Coupled soil-structure interaction effects of building clusters during earthquakes, *Earthquake Spectra* 31 (2015) 463–500.

[23] B. Poursartip, A. Fathi, L. F. Kallivokas, Seismic wave amplification by topographic features: A parametric study, *Soil Dynamics and Earthquake Engineering* 92 (2017) 503–527. URL: <http://www.sciencedirect.com/science/article/pii/S0267726116304559>. doi:[10.1016/j.soildyn.2016.10.031](https://doi.org/10.1016/j.soildyn.2016.10.031).

[24] J. A. Abell, N. Orbović, D. B. McCallen, B. Jeremic, Earthquake soil-structure interaction of nuclear power plants, differences in response to 3-D, 3×1-D, and 1-D excitations, *Earthquake Engineering & Structural Dynamics* 47 (2018) 1478–1495.

[25] B. Poursartip, L. F. Kallivokas, Model dimensionality effects on the amplification of seismic waves, *Soil Dynamics and Earthquake Engineering* 113 (2018) 572–592. URL: <https://www.sciencedirect.com/science/article/pii/S0267726117309570>. doi:<https://doi.org/10.1016/j.soildyn.2018.06.012>.

[26] K. Kanellopoulos, B. Jeremic, I. Anastasopoulos, B. Stojadinovic, Use of the domain reduction method to simulate the seismic response of an existing structure protected by resonating unit cell metamaterials, in: *EURODYN 2020* 23–26 November 2020, Athens, Greece XI International Conference on Structural Dynamics. Proceedings, volume 19985, European Association for Structural Dynamics (EASD), 2020, pp. 2926–2938.

[27] D. Kusanovic, E. Seylabi, A. Kottke, D. Asimaki, SEISMO-VLAB: A parallel, object oriented virtual lab for mesoscale seismic wave propagation problems, in: *The USSD Conference and Exhibition*, 2020, pp. 97–104.

463 [28] L. Zhang, J.-T. Wang, Y.-J. Xu, C.-H. He, C.-H. Zhang, A procedure for 3D seismic simulation from rupture to structures by coupling SEM
464 and FEM, *Bulletin of the Seismological Society of America* 110 (2020) 1134–1148.

465 [29] E. Esmaeilzadeh Seylabi, D. Restrepo, R. Taborda, D. Asimaki, Deterministic ground motion simulations with shallow crust nonlinearity at
466 garner valley in southern california, *Earthquake Engineering & Structural Dynamics* 50 (2021) 43–59.

467 [30] S. Sica, A. D. Russo, Seismic response of large earth dams in near-source areas, *Computers and Geotechnics* 132 (2021) 103807.

468 [31] H. Wang, H. Yang, Y. Feng, B. Jeremić, Modeling and simulation of earthquake soil structure interaction excited by inclined seismic waves,
469 *Soil Dynamics and Earthquake Engineering* 146 (2021) 106720.

470 [32] W. Zhang, E. Taciroglu, 3D time-domain nonlinear analysis of soil-structure systems subjected to obliquely incident SV waves in layered
471 soil media, *Earthquake Engineering & Structural Dynamics* 50 (2021) 2156–2173.

472 [33] H. Goh, A. Alù, Nonlocal scatterer for compact wave-based analog computing, *Phys. Rev. Lett.* 128 (2022) 073201.
473 doi:10.1103/PhysRevLett.128.073201.

474 [34] J. Lysmer, R. L. Kuhlemeyer, Finite dynamic model for infinite media, *Journal of Engineering Mechanics Division, ASCE* 95 (1969)
475 859–877.

476 [35] N. M. Newmark, A method of computation for structural dynamics, in: *Proc. ASCE*, volume 85, 1959, pp. 67–94.

477 [36] P. M. Karve, S. Kucukcoban, L. F. Kallivokas, On an inverse source problem for enhanced oil recovery by wave motion maximization in
478 reservoirs, *Computational Geosciences* 19 (2014) 233–256.

479 [37] T. Walsh, W. Aquino, M. Ross, Source Identification in Acoustics and Structural Mechanics using SIERRA/SD, Technical Report, Sandia
480 National Laboratories, 2013. URL: <https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/2013/132689.pdf>.

481 [38] J. M. Roesset, D.-W. Chang, I. Stokoe, H. Kenneth, M. Aouad, Modulus and thickness of the pavement surface layer from sasw tests,
482 *Transportation Research Record* (1990).

483 [39] B. A. Luke, K. H. Stokoe II, Application of SASW Method Underwater, *Journal of Geotechnical and Geoenvironmental Engineering* 124
484 (1998) 523–531. doi:10.1061/(ASCE)1090-0241(1998)124:6(523).

485 [40] L. T. Brown, D. M. Boore, K. H. Stokoe, Comparison of shear-wave slowness profiles at 10 strong-motion sites from noninvasive SASW
486 measurements and measurements made in boreholes, *Bulletin of the Seismological Society of America* 92 (2002) 3116–3133.

487 [41] B. R. Cox, D. P. Teague, Layering ratios: a systematic approach to the inversion of surface wave data in the absence of a priori information,
488 *Geophysical Journal International* 207 (2016) 422–438.

489 [42] D. P. Teague, B. R. Cox, E. M. Rathje, Measured vs. predicted site response at the Garner Valley Downhole Array considering shear wave
490 velocity uncertainty from borehole and surface wave methods, *Soil Dynamics and Earthquake Engineering* 113 (2018) 339–355.

491 [43] C. B. Park, R. D. Miller, J. Xia, Multichannel analysis of surface waves, *Geophysics* 64 (1999) 800–808.

492 [44] S. Rahimi, C. M. Wood, A. K. Himel, Application of microtremor horizontal to vertical spectra ratio (MHVSR) and multichannel analysis of
493 surface wave (MASW) for shallow bedrock mapping for transportation projects, in: *Geo-Congress 2020: Modeling, Geomaterials, and Site*
494 *Characterization*, American Society of Civil Engineers Reston, VA, 2020, pp. 622–632.

495 [45] L. Kallivokas, A. Fathi, S. Kucukcoban, K. Stokoe, J. Bielak, O. Ghattas, Site characterization using full waveform inversion, *Soil Dynamics*
496 and *Earthquake Engineering* 47 (2013) 62–82. SI: José Manuel Roësset.

497 [46] A. Fathi, B. Poursartip, L. F. Kallivokas, Time-domain hybrid formulations for wave simulations in three-dimensional PML-truncated
498 heterogeneous media, *International Journal for Numerical Methods in Engineering* 101 (2015) 165–198.

499 [47] S. François, H. Goh, L. F. Kallivokas, Non-convolutional second-order complex-frequency-shifted perfectly matched layers
500 for transient elastic wave propagation, *Computer Methods in Applied Mechanics and Engineering* 377 (2021) 113704. URL:
501 <https://www.sciencedirect.com/science/article/pii/S0045782521000402>. doi:https://doi.org/10.1016/j.cma.2021.113704.