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Abstract

We present a new method to obtain dynamic body force at virtual interfaces to reconstruct shear wave motions induced
by a source outside a truncated computational domain. Specifically, a partial differential equation (PDE)-constrained
optimization method is used to minimize the misfit between measured motions at a limited number of sensors on the
ground surface and their counterparts reconstructed from optimized forces. Numerical results show that the optimized
forces accurately reconstruct the targeted ground motions in the surface and the interior of the domain. The proposed
optimization framework yields a particular force vector among other valid solutions allowed by the domain reduction
method (DRM). Per this optimized or inverted force vector, the reconstructed wave field is identical to its reference
counterpart in the domain of interest but may differ in the exterior domain from the reference one. However, we
remark that the inverted solution is valid and introduce a simple post-process that can modify the solution to achieve
an alternative force vector corresponding to the reference wave field. We also study the desired sensor spacing to
accurately reconstruct the wave responses for a given dominant frequency of interest. We remark that the presented
method is omnidirectionally applicable in terms of the incident angle of an incoming wave and is effective for any
given material heterogeneity and geometry of layering of a reduced domain. The presented inversion method requires
information on the wave speeds and dimensions of only a reduced domain. Namely, it does not need any informa-
tion on the geophysical profile of an enlarged domain or a seismic source profile outside a reduced domain. Thus,
the computational cost of the method is compact even though it leads to the high-fidelity reconstruction of wave re-
sponse in the reduced domain, allowing for studying and predicting ground and structural responses using real seismic
measurements.

Keywords: Passive-seismic inversion, Domain reduction method (DRM), Effective seismic force vector,
Discretize-then-optimize (DTO) approach, Reconstruction of seismic responses, Full-waveform inversion.

1. Introduction1

The ability to replay the wave motions from sparsely-measured ground motion data is of great interest to identify2

the locations of large-amplitude dynamic responses during a seismic event. Such technique allows engineers to ac-3

curately estimate earthquakes’ impact on soils and critical structures (e.g., tunnels, subways, bridges, power plants,4

dams, lifelines, tall buildings) and weak or potentially-damaged spots in the structures. This information on seismic5

impact estimation could be shared with decision-makers who would determine the budget and timeline to inspect and6

fix the seismic damages of built environments.7

Thus, engineers should be able to identify seismic sources from the measured ground-motion data to reconstruct8

the corresponding seismic responses in the domain of interest. Although a large amount of ground motion data are9

available from modern sensors, such as accelerometers, optical cables, distributed acoustic sensing (DAS), and vision10
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sensors, there is no established method to identify arbitrarily-incoherent incident wave motions and to reconstruct the11

corresponding responses in a truncated multi-dimensional near-surface domain.12

Common methods to identify earthquake waves hitting a domain of consideration include 1) deconvolution in a13

soil column and 2) seismic source identification in an extensive regional-scale domain. The deconvolution algorithm14

allows engineers to identify an incident earthquake wave signal propagating into a 1D soil domain from surficial15

seismic measurement [1, 2, 3]. However, the method is useful only when geophysical property is horizontally layered16

and incoming seismic waves propagate vertically through the 1D columns. Thus, the approach fails to reconstruct the17

incoming waves when the geophysical property is highly heterogeneous, rather than horizontally layered, and incident18

earthquake waves—consisting of primary, shear, and surface waves—are not vertically propagating (i.e., incoherent)19

due to the basin effect. In the same context, Mena and Jeremic [4] have confirmed the substantial difference between20

(i) the seismic structural responses from the domain reduction method (DRM)-based seismic wave analysis using21

”true” 3D incoherent free-field wave motions and (ii) their counterparts using 1D vertically-propagating free-field22

motions that are generated by the deconvolution from measured ground motions. On the other conventional method,23

there have been studies on a regional-scale inversion of seismic-source parameters at a hypocenter. For instance,24

Akcelik et al. [5] studied an algorithm to invert a simplified seismic source time signal in a large regional-scale 3D25

domain that includes a source at a fault. However, the uncertainties in material properties in a large domain hinder the26

method, and, more importantly, its computational cost is too high to simulate high-frequency contents (e.g., f > 1 Hz)27

of ground wave motions. Because of the applicability and computational limits of the two conventional approaches28

stated above, it is necessary to investigate an alternative method to identify arbitrarily-incoherent (due to, for instance,29

the basin effect) incoming seismic waves or equivalent dynamic forces and reconstruct corresponding ground motions30

within a 2D/3D reduced domain from observational data of seismic waves at sensors.31

Several recent studies in the literature have reported the possibility of utilizing sparsely measured wave motion32

data to estimate unknown earthquake waves entering a solid domain via a full-waveform inversion technique, which33

has been widely used in geotechnical site characterization [6, 7, 8, 9, 10, 11, 12, 13, 14]. First, Jeong and Seylabi34

[15] studied an inversion procedure for predicting an incoming earthquake wave in a one-dimensional soil column.35

Guidio and Jeong [16] discussed an inversion process to estimate the function of targeted traction, in space and time,36

applied on a boundary of a 2D bounded solid. They utilized wave motion data from a limited number of sensors to37

estimate the traction profile. The study shows that the inversion performance without Tikhonov (TN) regularization38

is the same as the case with the regularization employed. To support the observation, the authors proved that their39

presented objective functional is quadratic—the relation from a force vector to wave responses is linear unlike the40

nonlinear material-wave relation—and convex. Guidio et al. [17] also studied a new approach for identifying the41

profile, in time and space, of an inclined wave which impinges a domain of SH wave motions. To mimic the incident42

wave, they applied traction on a truncated boundary.43

Continuing the aforementioned works, herein, we introduce a novel procedure to (i) optimize dynamic body44

force on virtual interfaces such that it induces dynamic behaviors within a reduced domain to be consistent with45

observational data and, consequently, (ii) reconstruct targeted dynamic behaviors in a truncated domain. We also46

compare our optimized body force with the force at the same interfaces calculated by the DRM theory using targeted,47

unknown incident wave motions. The DRM was developed by Bielak et al. [18] and Yoshimura et al. [19], where48

incident waves are modeled as an effective seismic force along a DRM layer of finite elements. The DRM has been49

extensively employed to replicate seismic behaviors in truncated domains hit by an earthquake excitation, regardless50

of the location of a seismic hypocenter and the amplitudes, frequency contents, and incident angles of incoming51

waves. The DRM has been quite extensively utilized in various studies in earthquake engineering [20, 21, 22, 23, 24,52

25, 26, 27, 28, 29, 30, 31, 32].53

This paper presents numerical experiments that employ incoherently propagating incident waves and show that54

the reconstructed wave field accurately matches its targeted value. We report that our optimized force reconstructs55

the correct wave field in the interior area surrounded by the DRM interface. However, the optimized force can differ56

from the reference force computed by the standard DRM procedure. This is because we do not impose any constraint57

on the choice of solution among other possible solutions allowed by DRM. Fundamentally, as for any linear wave58

equations, DRM admits different decompositions of the incident and scattered waves of the same total wave field,59

where such property has been recently exploited in the context of analog computing [33]. In this paper, we developed60

a post-process procedure to modify an optimized force vector to find an alternative force vector such that the scattered61

wave field in the exterior domain is silenced.62
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2. Problem Definition63

We consider a two-dimensional (2D) linear isotropic solid (Fig. 1(a)), truncated by wave-absorbing boundary con-64

ditions (WABC). The particle motion of the solid is considered to occur only in the anti-plane direction and to be65

attributed to shear-wave propagation. This study attempts to (i) optimize dynamic body forces at two virtual inter-66

faces (i.e., Γb and Γe) in the solid and, then, (ii) replay the dynamic behaviors of the solid surrounded by WABC from67

surficial seismic measurements. The surficial measurements are attributed to wave motions in the domain that are68

induced by incident waves propagated from the outside of the domain.
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Figure 1: Enlarged domain used in the presented optimization problem. (a) a WABC-truncated domain is used for optimization of dynamic force
at the virtual interfaces; (b) targeted dynamic behaviors are originally triggered by a seismic source outside the truncated solid, but the presented
inversion solver is not informed of the source.

69

2.1. The governing equation70

The governing differential equation of a shear wave in a 2D undamped solid domain for (x, y) ∈ Ω and t ∈ J = (0,T ]71

is defined as:72

∇ · (G∇u) − ρ
∂2u
∂t2 = 0, on Ω × J, (1)

where u = u(x, y, t) represents the displacement field of wave motions in the z-plane, while the wave propagates in the73

x-y plane (i.e., SH wave motion); x and y are the horizontal and vertical coordinates. The medium is characterized by74

shear modulus G(x, y) and mass density ρ(x, y). The top surface (Γtop) is subject to a traction-free condition:75

∂u
∂y

(x, 0, t) = 0, 0 ≤ x ≤ L, (2)
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while the WABC [34] are presented on the left (Γleft), bottom (Γbottom), and right (Γright) boundaries:76

∂u
∂x

= −
1
Vs

∂u
∂t
, x = 0, D ≤ y ≤ 0, (3)

∂u
∂y

= −
1
Vs

∂u
∂t
, 0 ≤ x ≤ L, y = D, (4)

∂u
∂x

= −
1
Vs

∂u
∂t
, x = L, D ≤ y ≤ 0. (5)

In the above, Vs(x, y) denotes the shear wave velocity of the soil; D represents the y-coordinate of Γbottom; and L77

represents the x-coordinate of Γright. Lastly, the system is initially at rest:78

u(x, y, 0) = 0,
∂u
∂t

(x, y, 0) = 0. (6)

2.2. Discrete state problem79

We use the finite element method to solve the governing equation (1), where its semi-discrete equation reads:80

Mü(t) + Cu̇(t) + Ku(t) = F(t). (7)

In the above, u(t) is a displacement solution vector at time t. M, C, and K are the global matrices, and F denotes the81

force vector. Our optimized force and effective seismic force (also dubbed a DRM force) on Γb and Γe will be defined82

in the force vector of the discrete form (i.e., the nodal forces along Γb and Γe). Please see Appendix A, which briefly83

describes how to compute DRM forces by using targeted incident (free-field) waves propagated from the outside of84

the truncated domain.85

We solve the time-dependent equation (7) by using the implicit Newmark method, which allows us to formulate86

the forward wave simulation into the following compact form:87

Qû = F̂. (8)

In the above, the matrix Q is the discrete forward operator comprised of the M, C, and K matrices of the semi-discrete88

equation and the Newmark time integrator [35] (the detail of Q can be seen in previous works [16, 17, 36], which used89

the Q matrix during the PDE-constrained optimization process). We use û and F̂ to denote, respectively, the solution90

and global force vectors for all the time steps, i.e.,91

û =



u0
u̇0
ü0
...

uN
u̇N
üN


, F̂ =



0
0

F0
...

FN
0
0


, (9)

where the subscript indicates the time step, and N represents the final time step.92

3. Optimization Modeling93

In this section, we describe the inverse problem for the optimized force vector F̂opt driven by the misfit between the94

measured and reconstructed wave motions at sensor locations on the surface. The discretize-then-optimize (DTO)95

method [16, 17, 36, 37] is utilized in the presented optimization modeling because of its relatively compact numerical96

procedure compared to the optimize-then-discretize (OTD) method. Using the optimized dynamic force at the virtual97

interfaces, we aim to reconstruct the wave motions in an interior domain truncated by WABC.98
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3.1. Control parameters99

Under this optimization method, the control parameters ξ are determined as Pbk j and Pek j . They are components100

of F̂opt corresponding to γbk and γek , respectively, and t j. Here, γbk is the k-th node on Γb, and γek is the k-th node on101

Γe; and t j is the j-th time step. We note that γbk and γek are numbered from the top-left discrete nodes of Γb and Γe to102

the top-right ones. Moreover, the components of F̂opt, which are not part of the control parameters, are set to be zero.103

3.2. Discrete Lagrangian functional104

We are interested in finding the control parameters’ values that result in a minimum of a discrete objective functional:105

L̂ =
1
2

(û − ûm)T B (û − ûm), (10)

where û corresponds to the discretization, in space and time, of u(x, y, t) induced by a set of optimized Pbk j and Pek j ; ûm106

is the discretization, in space and time, of um(x, y, t), which is the targeted wave response induced by incident seismic107

waves propagated from the outside of the truncated domain. In (10), B represents ∆tB, where B is a square matrix108

with mostly zeros except for few diagonal components correspond to sparsely-distributed sensors. We synthetically109

generate ûm by using our FEM solver with an enlarged domain, where a point seismic source induces the wave motions110

(see Fig. 1(b)).111

In addition to the objective functional, the discrete state problem (8) is imposed as a side constraint to L̂ via the112

use of a Lagrange multiplier vector λ̂. There results in the following Lagrangian functional Â:113

Â =
1
2

(û − ûm)T B (û − ûm) − λ̂T (Qû − F̂opt), (11)

where114

λ̂ =
[
λT

0 , λ̇
T
0 , λ̈

T
0 , .., λ

T
N, λ̇

T
N, λ̈

T
N,
]T
. (12)

3.3. The three first-order optimality conditions115

We optimize the control parameters by satisfying the three first-order optimality conditions. In the first condition, the116

derivative of Â with respect to λ̂ vanishes when we solve the state equation (8) by using F̂opt:117

∂Â

∂λ̂
= −Qû + F̂opt = 0. (13)

Next, the second condition, the vanishing derivative of Â with respect to û, leads us to the adjoint equation:118

∂Â

∂û
= −QT λ̂ + B (û − ûm) = 0︸                         ︷︷                         ︸

adjoint problem

. (14)

We note that the adjoint problem is a final-value problem, as opposed to the original initial-value state problem, which119

is identified by QT λ̂ term in (14). The adjoint method (14) can be solved by marching backward in time as shown in120

our previous work [17].121

The third condition makes the derivative of Â with respect to F̂opt to vanish and yields the next control equation:122

∂Â

∂F̂opt
= λ̂ = 0, (15)

which indicates that ∂Â
∂F̂opt = ∂L̂

∂F̂opt is a vector of the components of λ̂ corresponding to the discrete node numbering and123

the time step of ξ. Eq. (15) is satisfied at an optimal value of control parameters, where both the objective functional124

and the source term of the adjoint problem (14) vanish.125
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4. Numerical Implementation126

The algorithm iteratively optimizes the control parameters using the gradient-based minimization method by employ-127

ing the semi-analytically evaluated gradient vector ∇ξL̂ as follows:128

(a) First, ûm are synthetically generated by considering incident seismic waves. Namely, we compute the wave129

solutions in an enlarged domain, which contains a point seismic source.130

(b) An optimized F̂opt, comprised of control parameters ξ (all zero-valued at the initial iteration), is utilized to131

obtain û by solving the state problem.132

(c) Next, λ̂ is computed by solving the adjoint equation using û and ûm.133

(d) The gradient of the objective functional, ∇ξL̂, is calculated by using the adjoint solution.134

(e) We use the conjugate-gradient method to find the best search direction, d, where an optimal step length, h, is135

calculated by using the Newton’s method [16].136

(f) Lastly, the gradient-based scheme refreshes the approximate ξ using the search direction and optimal step length137

as: ξupdated = ξprevious + d h.138

The above procedures, (b) to (f), are consistently repeated by the optimizer, which searches to determine the control139

parameters that make the control equation to vanish as (15). We discontinue the iteration of the optimizer either when140

the L̂updated is smaller than L̂initial × 10−7 or when the iteration number is greater than 1000.141

5. Numerical Results142

We conduct numerical experiments to study the performance of the outlined optimization procedure for updating F̂opt
143

at the virtual interface boundaries (Γb and Γe) and eventually reconstructing the wave responses—induced by incident144

seismic waves propagated from the outside of the truncated domain—in Ωi delineated by the DRM boundary in a145

near-surface area with respect to various factors.146

The proposed objective functional is driven only by the measurements of the sparsely distributed sensors on the147

surface without information on the choice of scattered field in the exterior domain. Thus, we expect that the optimized148

force F̂opt may differ from the reference force F̂eff constructed by the standard DRM procedure. However, F̂opt is a149

valid solution; thus, it is unnecessary to obtain the same reference force, i.e., the standard DRM force. Instead, an150

alternative effective seismic force that gives a silent scattered field may serve as another reference force. Thus, we151

introduce a post-process procedure to modify the optimized force to achieve a zero scattering field in the exterior152

domain and compare it with the alternative effective seismic force.153

For all examples, we reconstruct the ground motions in Ωi of a 4-layered solid with 2 inclusions, as shown in154

Fig. 1(a). The truncated domain is set to be 200 m × 60 m with shear wave speeds Vs1 to Vs6 of 300, 250, 200, 150,155

800, and 1000 m/s. We also consider that a mass density (ρ) is uniform as 1500 kg/m3 in the entire domain. We156

placed sensors in a manner such that the first sensor is always placed in the top-left corner of Γb, and the last one is157

located in the top-right corner of Γb. The truncated domain is a subset of the enlarged domain, as shown in Fig. 1(b).158

The enlarged domain is employed to obtain targeted wave response ûm, of which surficial measurements are used in159

our optimization procedure per (10). Its dimension is 400 m × 120 m, and the wave speeds at the lower part of the160

enlarged domain are set to be Vs7 = 1800 m/s and Vs8 = 1500 m/s, respectively.161

The presented method requires that the inversion simulator is informed of the spatial distribution of wave speeds in162

a reduced domain, which can be obtained via a prior site characterization technique (e.g., spectral analysis of surface163

waves (SASW) method [38, 39, 40, 41, 42], multi-channel analysis of surface waves (MASW) method [43, 44], or164

full-waveform inversion (FWI) [12, 13, 45]. The truncated, reduced model is the domain of interest, where we intend165

to reconstruct its response to a seismic activity, and the domain contains the surface on which we sparsely measure166

the response. The dimension of the enlarged domain is chosen to generate synthetic data that are originally attributed167

to a source located outside of the domain of interest. Thus, we determined the dimensions of the reduced and the168

enlarged domains in a manner such that the enlarged domain must contain the reduced model and be sufficiently169
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large to include a seismic source. As long as this condition is met, the presented method can be generalized for any170

dimensions of reduced and enlarged domains that a computing resource can permit. Namely, the method is not limited171

to the presented dimensions of 200 by 60 m and 400 by 120 m.172

We use an error norm to quantify the difference of the reconstructed ground motions at interior nodes uinterior
j from173

their targeted counterpart uinterior
m j

at all the time steps for t j, which reads:174

Eu =

N∑
j=1

|uinterior
m j

− uinterior
j |2

|uinterior
m j |2

× 100[%]. (16)

The difference between the optimized force F̂opt to its reference value F̂eff is measured by:175

E =
|F̂eff − F̂opt|2

|F̂eff|2
× 100[%]. (17)

We analyze the effectiveness of the proposed optimization method with respect to the frequency content of the176

incident wave, the number of sensors utilized on the top surface, and an incident angle in which the incident seismic177

waves are propagated from the outside of the truncated domain. The presented optimizer is tested by incident waves,178

that do not mimic plane waves but those in realistic seismic activity, as shown in Examples 1 to 3. Example 4179

investigates the performance of the optimizer for a plane incoming wave of a dominant incident angle.180

For all numerical examples, the spatial and temporal intervals for the discretization of F̂opt and û are 1 m and 0.001181

s, respectively.182

5.1. Example 1: Assessing the performance to reconstruct ground motions induced by surface wave-dominant inci-183

dent waves184

We evaluate the performance of optimizing the dynamic force at the virtual interfaces and reconstructing the dynamic185

behaviors in Ωi in a case where dynamic behaviors are attributed to surface wave-dominant incident waves impinging186

the reduced domain.187

To this end, we generate the incident waves in the enlarged domain, which encompasses a point wave source at x188

= -40 m and y = 10 m with its force time signal being a Ricker wavelet signal:189

f (x, y, t) = −100 ×
(0.25η2 − 0.5)e−0.25η2

− 13e−13.5

0.5 + 13e−13.5 , t ≤ t̄, (18)

where η = ωt − 3
√

6; t̄ = 6
√

6/ω; ω = 2π fc; and fc is the central frequency of the signal. We note that Ricker pulses190

are used to characterize a seismic source with a continuous spectrum, and by setting their fc to be less than 10 Hz, we191

aim to mimic the frequency spectrum of typical seismic activity. Fig. 2 shows the time histories of Ricker signals of192

dominant frequencies of 2, 5, and 10 Hz, and the frequency content of each signal.193
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Figure 2: (a-c) Time histories and (d-f) frequency content of Ricker wavelet signals of central frequencies of 2, 5, and 10 Hz, respectively.

5.1.1. Optimization without post-processing194

Fig. 3 presents how Eu depends on the dominant frequency of the point source that generates incident waves and195

the sensor spacing in Example 1. Fig. 3 presents that, when we use a sensor spacing of up to 5 m, i.e., 37 sensors on the196

surface, the optimization solver accurately estimates the wave responses in Ωi (Eu ≤ 2%) for surface wave-like waves197

of their dominant frequencies of 2, 5, and 10 Hz. For the spacing of the sensors of 10 m, the solver cannot reconstruct198

the dynamic behaviors in Ωi for the dominant frequency of 10 Hz (Eu = 14.6%) as accurately as 5 Hz (Eu = 2%) and199

2 Hz (Eu = 1%). Overall, the desired sensor spacing decreases as the dominant frequency of the surface-dominant200

incident wave increases.201
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18

Figure 3: Example 1 - Relation of the reconstruction accuracy to the dominant frequency (or wavelength Λ) of the surface wave-dominant incident
waves and the sensor spacing.

Fig. 4(a) shows the targeted dynamic responses in Ωi that are computed from the enlarged domain solver, and202

Fig. 4(b) to (d) show their reconstructed counterparts for a different value of sensor spacing, when a 10 Hz Ricker203

source signal is used in the enlarged domain simulator. The time steps (t) shown in Fig. 4 (0.6 s, 0.8 s, and 1.0 s) are204

based on the time elapsed since the source’s Ricker signal is initiated. We note, from Fig. 4, that, as the spacing of the205

sensors is increased, the agreement between the targeted and reconstructed motions in Ωi diminishes.206
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Figure 4: Example 1 - (a) Targeted dynamic motions in Ωi caused by surface wave-like incoming waves of an dominant frequency 10 Hz and (b-d)
reconstructed motions for different sensor spacing (1, 5, and 10 m).

Fig. 5 shows the excellent agreement between the measured data um obtained by using the enlarged domain, and207

their reconstructed counterparts u induced by F̂opt at nineteen different locations on Γtop when we utilize the 10 Hz208

Ricker source signal and the sensor spacing of 1 m.209

10 30 50 70 90 110 130 150 170 190
0

0.5

1

1.5

Figure 5: Example 1 - Comparison between the measured data um and the computed signals u induced by F̂opt at 19 different locations on Γtop.

In Fig. 6, we examine the amplitudes of the scattered waves in the exterior domain induced by F̂opt and F̂eff, which210

is built by the free-field incident waves propagated from the outside of the truncated domain. The sensor spacing is 1211

m, and the 10 Hz Ricker source signal is utilized. The optimized force F̂opt induces relatively large amplitudes in the212
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exterior domain Ωe, the outer region of the dashed line, compared to the scattered wave in Ωe induced by F̂eff. This213

difference implies that there is more than one choice of incident-scatttered wave decompositions for an identical total214

wave. Namely, a total wave ut can be decomposed into an incident wave u0 and a scattered wave us as the following:215

ut = u0 + us. (19)

In the above, us is defined as a scattered wave from local features in an interior domain impinged by u0 per the216

standard DRM. However, we can also define us in a manner such that u0 is identical to ut, and us is silenced. With217

such a modified free-field, the new decomposition leads to a modified effective seismic force as an alternative.218

Figure 6: Example 1 - Ground motions in the domain induced by the effective force and the optimized force using 1 m sensor spacing; and the
scattered waves of reference ground motions and reconstructed ground motions, for the case that considers a Ricker pulse signal of 10 Hz. The
dashed line indicates a DRM boundary Γb.

Figs. 7 and 8 highlight the difference between the optimized dynamic force vector F̂opt and F̂eff, where the error219

is quantified as E = 97.43%. Specifically, Fig. 8 shows the effective and optimized control parameters corresponding220

to the nodes on Γe and Γb at x = 9 m and 10 m, respectively, and y = 10 m and for every time step. In the following221

section, we discuss this seemingly different behavior in detail and introduce post-processing to alter the optimized222

force, which will be compared with the modified effective seismic force.223
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(a) (b)

(c) (d)

Figure 7: Example 1 - (a) Effective seismic force and (b) its final-optimized counterpart on Γe, and (c) effective seismic force and (d) its final-
optimized counterpart on Γb when a Ricker of 10 Hz as the seismic source signal and a sensor spacing of 1 m are used.
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Figure 8: Example 1 - Time signals of effective and optimized forces at x = 9 m and 10 m (Γe and Γb, respectively) and y = 10 m when a Ricker of
10 Hz and a sensor spacing of 1 m are used.

5.1.2. Post-processing the optimized force224

In the standard DRM procedure, shown in Appendix Appendix A, an effective force vector F̂eff is obtained225

from free-field ground motions (u0 and ü0 on Γb and in Ωe), which are computed in an enlarged domain without226

considering the wave speeds of local features, such as the inclusions of Vs5 and Vs6 in Fig. 1. Thus, when simulated227

with the effective force, the scattered field in the exterior domain exclusively reveals the effect of the local features.228

Alternatively, we introduce a modified effective force vector F̂eff
mod by using the “modified” free-field ground mo-229

tions (u0mod and ü0mod on Γb and in Ωe), which are computed in an enlarged domain taking into account the local230

features (Appendix Appendix B). The modified effective force F̂eff
mod differs from the original effective force vector231

F̂eff in a manner such that F̂eff
mod leads to zero scattered field in Ωe. In the following, we modify both reference and232

optimized force vectors to provide a direct comparison.233
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We refer the modification on the optimized force vector as post-processing, which reads:234

F̂opt
pp = Q ûpp. (20)

In the above, ûpp is rebuilt from û by making the components of û corresponding to Ωe to vanish. Namely,235

ûpp = D û, (21)

where D is a square, diagonal matrix, of which component is one everywhere except on the zero-valued diagonal236

components corresponding to nodes on Ωe.237

Fig. 9 shows that the modified effective force F̂eff
mod are in agreement with its post-processed optimized counterpart238

F̂opt
pp : the error E between them is 15.21%, which is a lot smaller than E = 97.43% between F̂eff and F̂opt. Particularly,239

as far as the forces only at the upper-left portion of Γe and Γb at x of 9 and 10 m, respectively, and 0 m ≤ y ≤ 30240

m (i.e., 1 ≤ k in Pk j ≤ 31) are concerned, the error E is only 1.45%. It is because, for this surface-wave dominant241

incident wave, the wave response that is induced by F̂opt
pp at the upper-left portion on the virtual interfaces accounts for242

the surficial measurement data more significantly than its counterpart that is induced by F̂opt
pp at the other part of the243

virtual interfaces. Therefore, the measurement data drive our optimizer in a manner such that the part of F̂opt
pp at the244

upper-left portion of Γe and Γb matches F̂eff
mod better than the other part of F̂opt

pp . Fig. 10 shows the agreement between245

modified effective forces and their post-processed optimized counterparts corresponding to the nodes on the upper-left246

portion of Γe and Γb at x of 9 and 10 m, respectively, and y of 10 m.247

(a) (b)

(c) (d)

Figure 9: Example 1 - (a) Modified effective seismic force and (b) its post-processed optimized counterpart on Γe, and (c) modified effective seismic
force and (d) its post-processed optimized counterpart on Γb when a Ricker of 10 Hz as the seismic source signal and a sensor spacing of 1 m are
used.
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Figure 10: Example 1 - Time signals of modified effective and post-processed optimized forces at (a) x = 9 m and y = 10 m on Γe, and (b) x = 10
m and y = 10 m on Γb, when a Ricker of 10 Hz and a sensor spacing of 1 m are used.

5.2. Example 2: Studying the accuracy to reconstruct dynamic responses caused by body wave-dominant, oblique248

incoming waves249

This example focuses on evaluating the performance of the proposed optimization algorithm for identifying dynamic250

responses in Ωi caused by incoherently-propagating body-wave-dominant, oblique incoming waves. The same en-251

larged domain used in the previous example is used for generating the incident waves. We use a Ricker source in252

the bottom-left area of the enlarged domain, at x = -40 m and y = 100 m, in this example to obtain the synthetic253

measurement data. We note that the incident waves propagate as inclined waves in the reduced domain of interest.254

In Fig. 11, we present the targeted and reconstructed dynamic motions in Ωi for the 10 Hz Ricker source in the255

enlarged domain. As the spacing of sensors increases, the mismatch between the targeted and reconstructed dynamic256

responses in Ωi grows, as shown in Fig. 11. Fig. 12 also shows the desired sensor spacing required to effectively257

estimate dynamic responses in Ωi. A denser array of sensors is required to effectively estimate higher-frequency258

dynamic responses.259
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Figure 11: Example 2 - Targeted dynamic motions in Ωi caused by incoming waves from a source in the bottom-left corner of the enlarged domain
with a dominant frequency 10 Hz and reconstructed motions for different sensor spacing (1, 5, and 10 m).
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Figure 12: Example 2 - Relation of the reconstruction accuracy to the dominant frequency (or wavelength Λ) of a body wave-dominant incident
wave and the sensor spacing.

Figs. 13 and 14 compare reference and optimized force vectors and their modified/post-processed versions. The260

error between the modified/post-processed vectors is E = 13.01%. The error reduces to 1.19% when considering the261

forces only at the bottom-center portion of Γb and Γe at 85 m ≤ x ≤ 115 m and y of 55 and 56 m, respectively (i.e.,262

131 ≤ k in Pbk j ≤ 161 and 133 ≤ k in Pek j ≤ 163). Fig. 15 shows the agreement between modified effective control263

parameters and their post-processed optimized counterparts corresponding to the nodes on the bottom-center portion264
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of Γe and Γb at x of 100 m and y of 56 and 55 m, respectively.265

(a) (b)

(c) (d)

Figure 13: Example 2 - (a) Effective seismic force and (b) its final-optimized counterpart; and (c) modified effective seismic force and (d) its
post-processed optimized counterpart on Γe when a Ricker of 10 Hz and a sensor spacing of 1 m are used.
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(a) (b)

(c) (d)

Figure 14: Example 2 - (a) Effective seismic force and (b) its final-optimized counterpart; and (c) modified effective seismic force and (d) its
post-processed optimized counterpart on Γb when a Ricker of 10 Hz and a sensor spacing of 1 m are used.
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Figure 15: Example 2 - Time signals of modified effective and post-processed optimized forces at (a) x = 100 m and y = 56 m on Γe, and (b) x =

100 m and y = 55 m on Γb, when a Ricker of 10 Hz and a sensor spacing of 1 m are used.
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5.3. Example 3: Examining the numerical performance to reconstruct ground motions induced by body wave-dominant,266

arc-shaped incident waves267

Here, we consider a seismic source in the bottom-center part (at x = 100 m and y = 100 m) of the same enlarged268

domain. The resulted incident wave propagates as an arc-shaped wave in the reduced domain of interest.269

Fig. 16 shows the targeted dynamic motions in Ωi, which are initiated by the arc-shaped body wave-dominant270

incident wave in the enlarged domain, and their estimated counterparts in the case where incident waves are charac-271

terized by a 10 Hz Ricker source signal. As the sensor spacing increases, we notice a reduction in the effectiveness272

to estimate the dynamic responses in Ωi. Thus, this example, again, serves as another example illustrating that our273

optimization simulator can successfully estimate body wave-dominant dynamic responses in Ωi if the sensor spacing274

is small enough for a given frequency of an incident wave.275

Figure 16: Example 3 - Targeted dynamic motions in Ωi caused by arc-shaped incoming waves from a source in the bottom center of the enlarged
domain with a dominant frequency 10 Hz and reconstructed motions for different sensor spacing (1, 5, and 10 m).

Fig. 17 shows that the frequency content of the incident wave and the sensor spacing are related to the performance276

of reconstructing wave responses in Ωi as mentioned in previous examples.277
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Figure 17: Example 3 - Relation of the reconstruction accuracy to the dominant frequency (or wavelength Λ) of a body wave-dominant arc-shaped
incident waves and the sensor spacing.

The optimized force vector is compared with its reference value in Figs. 18 and 19. We observed that the post-278

processed optimized force vector exhibits a small error of E = 8.23% when it is compared with the modified effective279

force. The error at the bottom-center portion of Γb and Γe at 85 m ≤ x ≤ 115 m and y of 55 and 56 m, respectively (i.e.,280

131 ≤ k in Pbk j ≤ 161 and 133 ≤ k in Pek j ≤ 163) decreases to 1.43%. Furthermore, Fig. 20 highlights the excellent281

agreement between modified effective control parameters and their post-processed optimized counterparts at nodes on282

the bottom-center portion of Γe and Γb at x of 100 m and y of 56 and 55 m, respectively.283

(a) (b)

(c) (d)

Figure 18: Example 3 - (a) Effective seismic force and (b) its final-optimized counterpart; and (c) modified effective seismic force and (d) its
post-processed optimized counterpart on Γe when a Ricker of 10 Hz and a sensor spacing of 1 m are used.
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(a) (b)

(c) (d)

Figure 19: Example 3 - (a) Effective seismic force and (b) its final-optimized counterpart; and (c) modified effective seismic force and (d) its
post-processed optimized counterpart on Γb when a Ricker of 10 Hz and a sensor spacing of 1 m are used.
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Figure 20: Example 3 - Time signals of modified effective and post-processed optimized forces at (a) x = 100 m and y = 56 m on Γe, and (b) x =

100 m and y = 55 m on Γb, when a Ricker of 10 Hz and a sensor spacing of 1 m are used.

5.4. Example 4: Assessing the performance to reconstruct ground motions with respect to the incident angle of an284

incoming wave285

The originally-presented incident SH waves are not plane waves with specific directions. While our method is286

generally applicable for arbitrary types of an incident wave, our previously-shown Examples 1 to 3 considered three287
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different point sources at different locations for demonstrations in each example: one at near surface and two at far288

field. Each point source radiates in all directions and contains all angles in the wavenumber space. Thus, Examples 1289

to 3 generally accommodate a broad range of angles of incident waves.290

The purpose of this example 4 is to evaluate the performance of the presented method on reconstructing ground291

motions in Ωi with respect to the predominant incident angle of an incoming wave entering Ωi. To this end, we292

consider a line array of seismic wave sources in the bottom-left part of an enlarged domain so that we mimic a293

strike slip on a fault line using line body force loading in the anti-plane direction. Each wave source of this line294

body force loading is characterized by a 10 Hz Ricker source signal. The line loading generates an inclined plane295

incident wave in the enlarged domain with a specific predominant angle of incidence if the material of the enlarged296

domain is homogeneous. Thus, this example considers a homogeneous enlarged domain with the two inclusions. The297

wave speeds Vs1 , Vs2 , Vs3 , Vs4 , Vs7 , and Vs8 in the previous Examples 1 to 3 are now all reset to 250 m/s (i.e., the298

homogeneous background material’s wave speed) while Vs5 and Vs6 —800 and 1000 m/s, respectively—remain the299

same (i.e., the two inclusions’ wave speeds).300

Fig. 21(a) shows an examplary strike-slip-like line body force loading in the enlarged domain to create an inci-301

dent wave of its predominant incident angle of 45◦. Fig. 21(b) shows the inclined incident waves entering Ωi with302

three different predominant incident angles θ (i.e., 26.57◦, 45◦, and 63.43◦, respectively). We examine the presented303

method’s performance to reconstruct ground motions induced by each of these three different inclined plane waves304

using a sensor spacing of 1 m.305

(a)

(b)

Figure 21: Example 4 - (a) An exemplary strike-slip-like line body force loading in the enlarged homogeneous background domain; (b) targeted
incident waves with three different angles of incidence—26.57◦, 45◦, and 63.43◦—entering the reduced domain.

Table 1 shows the final values of errors for each case in Example 4 and those in Example 1-3 that employed a306

Ricker of 10 Hz and a sensor spacing of 1 m. We note that the values of errors (i.e., Eu and E) in Example 4 are307

of the same order of magnitude as those in Examples 1-3, indicating that the presented method is omnidirectionally308

applicable in terms of the incident angle of an incoming wave.309
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Table 1: Comparison of Eu and E obtained in Examples 1-4 when a Ricker of 10 Hz and a sensor spacing of 1 m are used.

Cases Eu E

Example 1 1.08% 15.21%
Example 2 2.94% 13.01%
Example 3 2.29% 8.23%
Example 4: θ = 26.57◦ 4.97% 15.80%
Example 4: θ = 45◦ 3.70% 7.35%
Example 4: θ = 63.43◦ 5.98% 16.14%

Fig. 22 shows the agreement between targeted ground motions for three different predominant angles of incidence310

in Ωi at t of 0.53 s and their reconstructed counterparts.311

Figure 22: Example 4 - Targeted wave responses in Ωi propagating in three different predominant angles and their reconstructed counterparts at t
= 0.53 s.

Fig. 23 compares reference and optimized force vectors and their modified/post-processed counterparts on Γb for312

the case in which the incident angle of an incoming wave is 45◦. Fig. 23 shows excellent agreement between the313

modified effective seismic force and its post-processed optimized counterpart. In addition, Fig. 24 reveals agreement314

between modified effective and post-processed optimized forces corresponding to the nodes on the bottom-left portion315

of Γe and Γb at x of 55 m and y of 56 m and 55 m, respectively, for three predominant incident angles of incoming316

waves.317
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(a) (b)

(c) (d)

Figure 23: Example 4 - (a) Targeted effective seismic force and (b) its final-optimized counterpart; and (c) modified effective seismic force and (d)
its post-processed optimized counterpart on Γb when the incident angle of the incoming wave is 45◦.
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Figure 24: Example 4 - Time signals of modified effective and post-processed optimized forces at x = 55 m and y = 56 m on Γe and x = 55 m and
y = 55 m on Γb when the predominant incident angle of an incoming wave is (a) 23.57◦, (b) 45◦, and (c) 63.43◦.
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5.5. Time duration effect318

In Figs. 10, 15, and 20, the disagreement between the F̂eff
mod and F̂opt

pp is more noticeable at the later time steps (e.g.,319

1.2 to 1.5 s). Such a larger error at the later time is due to the fact that we cannot identify the part of F̂eff
mod that is320

attributed to the incident waves in the later time, which do not arrive at the sensors before the end of the observation321

duration.322

Thus, the issue can be resolved simply by considering a longer observation time. We rerun the examples 1-3 with323

a longer duration of 3 seconds with a Ricker of 10 Hz and the sensor spacing of 1 m. Fig. 25 shows the time signals of324

modified effective and post-processed optimized forces on Γe and Γb at the same nodal locations discussed in Fig. 10,325

15, and 20. We observe a very good agreement at 1.2 to 1.5 s.326
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Figure 25: Time signals of modified effective and post-processed optimized forces on Γe and Γb when a Ricker of 10 Hz, a sensor spacing of 1 m,
and a long observation duration (i.e., 3 seconds) are used in (a) Example 1, (b) Example 2, and (c) Example 3. The signals correspond to the same
nodal locations discussed in Fig. 10, 15, and 20.

6. Conclusion327

In this paper, we presented a new numerical approach for optimizing dynamic forces at virtual interfaces to reconstruct328

the shear wave ground motions induced by a seismic source outside of the truncated domain. An enlarged domain is329

utilized in the forward wave solver to model arbitrarily-incoherent incident waves that propagate into the truncated330
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domain and to generate targeted measurement data at sensors. The optimization problem is tackled using a gradient-331

based minimization, where the DTO method is implemented to solve the adjoint problem and calculate the gradient332

of the objective functional.333

The performance of the presented optimizer was numerically tested for different frequencies of the incident waves,334

sensor spacings on the surface, and the angles of incident waves. The numerical examples present the following in-335

sights. First, the targeted wave responses obtained from an enlarged domain can be reconstructed within the interior336

domain by using the optimized forces from the presented method. Second, the optimized seismic force vector may dif-337

fer from its reference standard DRM counterpart while being a valid solution among other possible solutions allowed338

by the DRM and alternative decompositions of total field into incident and scattered fields. Third, we introduce a post-339

processing technique to properly compare the optimized force vector with its reference value. By post-processing the340

optimized body force at virtual interfaces, we can identify “modified” targeted effective seismic forces at the interfaces341

such that scattered wave in the exterior domain is silenced. Fourth, the presented inversion method can reconstruct the342

dynamic motions in a truncated domain impinged by typical seismic waves of a continuous frequency spectrum. Fifth,343

the presented method is omnidirectionally applicable in terms of the incident angle of an incoming wave. Lastly, we344

study the desired spacing of sensors to accurately reconstruct the ground motions, which depends on the dominant345

frequency of the incident waves.346

The proposed method provides an efficient method to study the effect of a seismic event on a soil-structure system347

such as foundations and underground structures. As the merit of the presented inversion method, it necessitates the348

information of the wave speeds and dimensions of only a reduced domain. Namely, the geophysical profile of an349

enlarged domain or a seismic source profile outside a reduced domain do not need to be informed to the presented350

inversion simulator. Thus, the computational cost of the method is quite compact even though it leads to the high-351

fidelity reconstruction of wave response in the reduced domain. In addition, even though the dispersive properties352

(natural frequency, wave velocities, etc.) due to material heterogeneity or geometry of layering affect the wave motion,353

the presented method is effective, for any given material heterogeneity and geometry of layering of the domain, in354

inverting for DRM force using measurement on the surface. Namely, the presented method can be used for any depth355

of layers in a reduced domain, which can also be unbounded homogeneous soil.356

A three-dimensional extension of this study is straightforward and will provide a computationally efficient frame-357

work in earthquake engineering by selectively modeling a near-surface domain without including the hypocenter. The358

proposed method could also be extended by using a more robust WABC, such as the Perfectly Matched Layer (PML)359

[46, 47], instead of the presented Lysmer-Kuhlemeyer WABC [34], to prevent spurious reflection at the truncated360

boundary, which may improve the performance of the inverse process.361
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Nomenclature374

Symbol Definition

x, y, z Horizontal, vertical, and anti-plane directions, respectively
t, T Time and final time of J
J Duration of the observation
u(x, y, t) Displacement field of dynamic motions polarized in the z-plane
G(x, y), Vs(x, y) Shear modulus and shear wave speed
ρ(x, y) Mass density
Ω Domain
Ωi, Ωe Interior and exterior domain, respectively, inside and outside virtual interface
Γtop,Γbottom Top and bottom boundaries of Ω

Γright,Γleft Right and left boundaries of Ω

u(t) Displacement solution vector at t
M,K,C, F Global mass, stiffness, and damping matrices, and global force vector
Γb Inner virtual interface boundary; Inner boundary of a DRM layer
Γe Outer virtual interface boundary; Outer boundary of a DRM layer
Feff Effective force vector
MΩe

be , MΩe
eb Mass matrices that correspond to the nodes only in the DRM layer

KΩe
be , KΩe

eb Stiffness matrices that correspond to the nodes only in the DRM layer
u0, ü0 Free-field displacements and accelerations, respectively
Q Matrix comprised of the M,K, and C matrices, indicating the Newmark time integration
û Discretization, in time and space, of u(x, y, t) for all t j

F̂ Force vector for all t j

N Final time step
F̂opt Optimized seismic force vector
γbk , γek The k-th node on Γb and Γe, respectively
k Numbering of the node γbk and γek ; k-th component in Pbk j and Pek j

j The j-th component in Pbk j and Pek j ; the j-th time step;
Pbk j , Pek j Components of F̂opt corresponding to γbk and γek , respectively, and t j

ξ A set of control parameters (i.e., Pbk j and Pek j )
L̂ Discrete objective functional
um(x, y, t) Dynamic response induced by targeted incident waves and measured by a sensor
ûm Space-time discretization of um(x, y, t) for all t j

B Square matrix that is zero except on the diagonals corresponding to sensors
Â Discrete Lagrangian functional
λ̂ Lagrange multiplier vector for all the nodes and all t j

d, h Search direction vector and scalar-value step size
Eu Error norm between dynamic motions in Ωi induced by incident waves and its F̂opt counterpart
E Error norm between optimized force on a DRM layer and its targeted counterpart
f (x, y, t) Ricker wavelet signal
fc Central frequency of the Ricker signal
ut, us Total and scattered wave field, respectively
F̂eff

mod Modified effective force vector
F̂opt

pp Post-processed optimized force vector
u0mod , ü0mod Modified free-field displacements and accelerations, respectively
ûpp Post-processed û
D Square matrix that is zero except on the diagonals corresponding to nodes except Ωe

375
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Appendix A. Brief review on DRM376

Per Bielak’s DRM formulation [18, 19], we subdivide a reduced domain of consideration into the following three parts:377

an exterior domain Ωe, an interface Γb, and an interior domain Ωi, as shown in Fig. 1. A DRM layer is delineated378

by the nodes on Γb and their neighboring exterior counterparts, on a fictitious boundary Γe. Per the DRM theory, an379

effective seismic force vector Feff is obtained from free-field dynamic responses and computed using (A.1). We, in380

turn, apply Feff on all the nodes on the DRM layer (i.e., Γb and Γe if a single, four node-element DRM layer is used381

as in the presented paper) so that we can effectively model incident seismic waves impinging a reduced domain as an382

equivalent dynamic force vector in the position of F(t) in (7). Namely, F(t) in (7) is replaced by Feff in the following:383

Feff =

P
eff
i

Peff
b

Peff
e

 =


0

−MΩe
be ü0

e −KΩe
be u0

e

MΩe
eb ü0

b + KΩe
eb u0

b

 , (A.1)

where the subscripts i, b, and e denote the nodes in Ωi, Γb, and Ωe; MΩe
be , MΩe

eb , KΩe
be , and KΩe

eb are the mass and stiffness384

matrices that correspond to the nodes only in the DRM layer: these matrices vanish everywhere except the single layer385

of finite elements (i.e., DRM layer). For instance, MΩe
be is the partition of MΩe corresponding to the row indices of ub386

and column indices of ue. Only the free-field wave responses, u0 and ü0, at nodes of the DRM layer are needed to387

calculate Feff. In the presented paper, an effective nodal force vector is obtained by using free-field seismic motions388

(u0 and ü0) that are obtained from the forward solver using the enlarged domain. We note that, per the DRM theory,389

we do not consider the wave speeds of local features, such as inclusions of Vs5 and Vs6 in the presented numerical390

examples, in order to obtain the free-field ground motions.391

Appendix B. Modified effective force vector392

The modified effective force vector Feff
mod is computed as:393

Feff
mod =


Peff

modi

Peff
modb

Peff
mode

 =


0

−MΩe
be ü0mod

e −KΩe
be u0mod

e

MΩe
eb ü0mod

b + KΩe
eb u0mod

b

 , (B.1)

where u0mod and ü0mod are the modified free-field displacements and accelerations, respectively. Namely, the wave394

speeds of local features in the enlarged domain (i.e., Vs5 and Vs6 in the numerical examples) are considered in the395

forward wave solver when we obtain the modified free-field wave motions. Therefore, solving (8) using (B.1) leads396

the wave response in the exterior domain to vanish, while solving (8) using (A.1) leads that not to vanish but be equal397

to the scattered field from local features.398
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